[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5671773B2 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP5671773B2
JP5671773B2 JP2006325072A JP2006325072A JP5671773B2 JP 5671773 B2 JP5671773 B2 JP 5671773B2 JP 2006325072 A JP2006325072 A JP 2006325072A JP 2006325072 A JP2006325072 A JP 2006325072A JP 5671773 B2 JP5671773 B2 JP 5671773B2
Authority
JP
Japan
Prior art keywords
less
active material
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006325072A
Other languages
English (en)
Other versions
JP2007180025A (ja
Inventor
正和 横溝
正和 横溝
竜一 加藤
竜一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006325072A priority Critical patent/JP5671773B2/ja
Publication of JP2007180025A publication Critical patent/JP2007180025A/ja
Application granted granted Critical
Publication of JP5671773B2 publication Critical patent/JP5671773B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池に関するものであり、更に詳細には、特定の非水系電解液と特定の負極活物質とを用いたリチウムイオン二次電池に関するものである。
情報関連機器、通信機器の分野では、パソコン、ビデオカメラ、携帯電話等の小型化に伴い、これらの機器に用いる電源として、高エネルギー密度であるという点から、リチウムイオン二次電池が実用化され広く普及するに至っている。
近年では、上記の分野に加えて、自動車の分野においても、特に、環境問題、資源問題を背景に開発が急がれている電気自動車用の電源としての利用を中心に、リチウムイオン二次電池が検討されている。
リチウムイオン二次電池のうち、金属リチウムを負極とする二次電池は、高容量化を達成できる電池として古くから盛んに研究が行われている。しかし、これらの電池には、金属リチウムが充放電の繰り返しによりデンドライト状に成長し、最終的に正極に達して電池内部において短絡が生じてしまうという問題があり、この問題は金属リチウムイオン二次電池を実用化する際の最大の技術的な課題となっている。
そこで負極に、例えばコークス、人造黒鉛、天然黒鉛等のリチウムイオンを吸蔵及び放出することが可能な炭素質材料を用いた非水系電解液二次電池が提案されている。このような非水系電解液二次電池では、リチウムが金属状態で存在しないためデンドライトの形成が抑制され、電池寿命と安全性を向上することができる。特に、人造黒鉛や天然黒鉛等の黒鉛系炭素質材料は、単位体積当たりのエネルギー密度を向上させることができる材料として期待されている。
しかしながら、黒鉛系の種々の電極材料を単独で、あるいはリチウムを吸蔵及び放出することが可能な他の負極材料と混合して負極とした非水系電解液二次電池に、リチウム一次電池で一般に好んで使用されるプロピレンカーボネートを主溶媒とする非水系電解液を用いると、黒鉛電極表面で溶媒の分解反応が激しく進行し、黒鉛電極へのスムーズなリチウムの吸蔵及び放出が不可能になる。一方、エチレンカーボネートはこのような分解が少ないことから、非水系電解液二次電池の電解液の主溶媒として多用されているが、エチレンカーボネートを主溶媒としても、充放電過程において、電極表面で電解液が分解するために充放電効率やサイクル特性の低下を招くといった問題がある。
更に電気自動車用電源としてリチウムイオン二次電池を使用する場合、屋外での使用時に、低温状態で保管された車載されたリチウムイオン二次電池も低温になることが想定される。現在、自動車の始動直後の低温時では、電池の出力が常温時より低下し、十分な性能が発揮できない問題があり、この低出力状態から高出力状態まで回復するのに要する時間が短いことも重要な性能となる。
そこでこれまで、リチウムイオン二次電池の入出力特性を改善するための手段として、正極や負極の活物質を始めとする様々な電池の構成要素について、数多くの技術が検討されている。
負極活物質に関する技術としては、特許文献1に、電極の性能を改善するために、黒鉛粒子内部が高結晶でかつ板状をしている黒鉛粒子の厚み方向が比較的厚いこと、また粒子表面に近い部分特にベーサル面が荒れている(ベーサル面にクラックや折り曲がりを有し結晶のエッジ部が露出した粒子にする)ことによりエッジ部の存在比率の高くなっている黒鉛粒子を用いることで、リチウムイオンの出入りできる部分の量を増加させ、更には黒鉛粒子形状がより球状に近く充填性が高い炭素材料を用いることで粒子のより等方的な配置すなわちエッジ部分の等方的な配置を高めることで、高容量急速充放電性、サイクル特性の優れた電極が得られるという記載がある。しかし、この方法でも低温状態からの出力の回復の早さは十分とはいえなかった。
非水系電解液に関する技術としては、特許文献2に、非水系電解液二次電池において、非水系電解液にモノフルオロリン酸リチウムやジフルオロリン酸リチウムを添加すると、電極界面に良質な被膜が形成されることにより電解液の分解が抑制されて、保存特性が向上した電池が得られることが記載されている。
しかしながら、これらの方法でも、低温状態からの出力の回復の早さは十分とは言えなかった。
特開2000−340232号公報 特開平11−067270号公報
本発明は、かかる背景技術に鑑みてなされたものであり、その課題は、低温時の低出力状態からの出力の回復が早いリチウムイオン二次電池を提供することにある。
本発明者は、上記課題に鑑み鋭意研究した結果、低温からの早期出力回復については、負極活物質の熱伝導性が重要であると考えられ、その因子として負極活物質の充填性、すなわち円形度が高く、また、同時に結晶性が高く、同時にラマンR値が高いことが重要であると導いた。更に、同時に非水系電解液中に特定の化合物を含有させ、かつ、特定の物性を有する黒鉛質炭素粒子を用いることにより、低温時の低出力状態からの出力の回復が早くなることを見出し、本発明を完成した。
すなわち本発明は、非水溶媒とリチウム塩を含有する非水系電解液、正極活物質及び負極活物質を有するリチウムイオン二次電池であって、該非水系電解液が、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物を、非水系電解液全体中に10ppm以上含有するものであり、かつ、該負極活物質が、円形度0.85以上であり、広角X線回折法による(002)面の面間隔(d002)が0.337nm未満であり、アルゴンイオンレーザーラマンスペクトル法における1580cm-1のピーク強度に対する1360cm-1のピーク強度の比として定義されるラマンR値が0.12以上0.8以下である黒鉛質炭素粒子を含有するものであることを特徴とするリチウムイオン二次電池を提供するものである。
Figure 0005671773
[一般式(1)中、R及びRは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、nは3〜10の整数を表す。]
Figure 0005671773
[一般式(2)中、R〜Rは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、xは1〜3の整数を表し、p、q及びrはそれぞれ0〜3の整数を表し、1≦p+q+r≦3である。]
Figure 0005671773
[一般式(3)中、R〜Rは互いに同一であっても異なっていてもよい炭素数1〜12の有機基を表し、AはH、C、N、O、F、S、Si及び/又はPから構成される基を表す。]
本発明によれば、低温時の低出力状態からの出力の回復が早いリチウムイオン二次電池を提供できる。
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの具体的内容に限定はされず、その要旨の範囲内で種々変形して実施することができる。
<非水系電解液>
本発明のリチウムイオン二次電池に用いられる非水系電解液は、リチウム塩及びこれを溶解する非水溶媒を含有する。
[リチウム塩]
リチウム塩としては、リチウムイオン二次電池用非水系電解液の電解質として用い得ることが知られているリチウム塩であれば特に制限はないが、例えば次のものが挙げられる。
無機リチウム塩:
LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩;LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩;LiAlCl4等の無機塩化物塩等。
含フッ素有機リチウム塩:
LiCF3SO3等のパーフルオロアルカンスルホン酸塩;LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)等のパーフルオロアルカンスルホニルイミド塩;LiC(CF3SO23等のパーフルオロアルカンスルホニルメチド塩;Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF32]、Li[PF3(CF2CF2CF33]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF32]、Li[PF3(CF2CF2CF2CF33]等のフルオロアルキルフッ化リン酸塩等。
オキサラトボレート塩:
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等。
これらは、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用しても良い。これらのなかでも、非水溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、LiPF6、LiBF4等が好ましく、LiPF6が特に好ましい。
非水系電解液中の上記リチウム塩の濃度は、特に制限はないが、通常0.3mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、その上限は、通常2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、非水系電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、リチウムイオン二次電池の性能が低下する場合がある。
非水系電解液中には、リチウム塩として、含フッ素リチウム塩を含有することが好ましく、非水系電解液中の含フッ素リチウム塩の濃度は、特に制限はないが、0.5mol/L以上が好ましく、特に好ましくは0.7mol/L以上である。また、その上限は、2mol/L以下が好ましく、1.7mol/L以下が特に好ましい。濃度が低すぎると、非水系電解液の電気伝導率が不十分となる場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下して、リチウムイオン二次電池の性能が低下する場合がある。
リチウム塩は、1種を単独で使用しても、2種以上を任意の組み合わせ及び比率で併用しても良いが、リチウム塩を2種以上併用する場合の好ましい一例は、LiPF6とLiBF4との併用であり、この場合には、両者の合計に占めるLiBF4の割合が、0.01質量%以上、20質量%以下であることが特に好ましく、0.1質量%以上、5質量%以下であるのが更に好ましい。また、他の好ましい一例は、無機フッ化物塩とパーフルオロアルカンスルホニルイミド塩との併用であり、この場合には、両者の合計に占める無機フッ化物塩の割合は、70質量%以上、99質量%以下であることが特に好ましく、80質量%以上、98質量%以下であることがより更に好ましい。この両者の併用は、高温保存による劣化を抑制する効果がある。
[非水溶媒]
非水溶媒としても従来から非水系電解液の溶媒として提案されているものの中から、適宜選択して用いることができる。例えば、次のものが挙げられる。
1)環状カーボネート:
環状カーボネートを構成するアルキレン基の炭素数は2〜6が好ましく、特に好ましくは2〜4である。具体的には例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。
2)鎖状カーボネート:
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、構成するアルキル基の炭素数は、それぞれ、1〜5が好ましく、特に好ましくは1〜4である。具体的には例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート対称鎖状カーボネート類;エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の非対称鎖状カーボネート類等のジアルキルカーボネートが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。
3)環状エステル:
具体的には例えば、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。
4)鎖状エステル:
具体的には例えば、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。
5)環状エーテル:
具体的には例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
6)鎖状エーテル:
具体的には例えば、ジメトキシエタン、ジメトキシメタン等が挙げられる。
7)含硫黄有機溶媒:
具体的には例えば、スルフォラン、ジエチルスルホン等が挙げられる。
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用するのが好ましい。例えば、環状カーボネート類や環状エステル類等の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。
非水溶媒の好ましい組合せの一つは、環状カーボネート類と鎖状カーボネート類を主体とする組合せである。なかでも、非水溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、85容量%以上、好ましくは90容量%以上、より好ましくは95容量%以上である。また、環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が5%以上、好ましくは10%以上、より好ましくは15%以上であり、通常50%以下、好ましくは35%以下、より好ましくは30%以下のものである。非水溶媒全体に占めるカーボネート類の合計の上記好ましい容量範囲と、環状及び鎖状カーボネート類に対する環状カーボネート類の好ましい上記容量範囲は、組み合わされていることが特に好ましい。
環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。
これらの中で、非対称鎖状カーボネート類を含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数は1〜2が好ましい。
好ましい非水溶媒の他の例は、鎖状エステルを含有するものである。特に、上記、環状カーボネート類と鎖状カーボネート類の混合溶媒に、鎖状エステルを含有するものが、電池の低温特性向上の観点から好ましく、鎖状エステルとしては,酢酸メチル、酢酸エチルが、特に好ましい。非水溶媒に占める鎖状エステルの容量は、通常5%以上、好ましくは8%以上、より好ましくは15%以上であり、通常50%以下、好ましくは35%以下、より好ましくは30%以下、更に好ましくは25%以下である。
他の好ましい非水溶媒の例は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン及びγ−バレロラクトンよりなる群から選ばれた1種の有機溶媒、又は該群から選ばれた2以上の有機溶媒からなる混合溶媒を全体の60容量%以上を占めるものである。こうした混合溶媒は、引火点が50℃以上であるものが好ましく、中でも70℃以上であるものが特に好ましい。この溶媒を用いた非水系電解液は、高温で使用しても溶媒の蒸発や液漏れが少なくなる。中でも、非水溶媒に占めるγ−ブチロラクトンの量が60容量%以上であるものや、非水溶媒に占めるエチレンカーボネートとγ−ブチロラクトンとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとγ−ブチロラクトンとの容量比が5:95〜45:55であるもの、又は非水溶媒に占めるエチレンカーボネートとプロピレンカーボネートとの合計が、80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートの容量比が30:70〜60:40であるものを用いると、一般にサイクル特性と大電流放電特性等のバランスがよくなる。
[特定化合物]
本発明のリチウムイオン二次電池に用いられる非水系電解液は、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩及びプロピオン酸塩からなる群より選ばれた少なくとも1種以上の化合物(以下、これらを「特定化合物」と略記することがある)を、10ppm以上含有することが必須である。
かかる特定化合物が含有された非水系電解液と、負極活物質として後述する特定の物性を有する黒鉛系炭素粒子とを組み合わせることによって、低温時の低出力状態からの出力の回復が早いリチウムイオン二次電池を提供することができる。
[[一般式(1)で表される環状シロキサン化合物]]
一般式(1)で表される環状シロキサン化合物におけるR及びRは互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、R及びRとしては、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の鎖状アルキル基;シクロヘキシル基、ノルボルニル基等の環状アルキル基;ビニル基、1−プロペニル基、アリル基、ブテニル基、1,3−ブタジエニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基等のアルキニル基;トリフルオロメチル基等のハロゲン化アルキル基;3−ピロリジノプロピル基等の飽和複素環基を有するアルキル基;アルキル置換基を有していてもよいフェニル基等のアリール基;フェニルメチル基、フェニルエチル基等のアラルキル基;トリメチルシリル基等のトリアルキルシリル基;トリメチルシロキシ基等のトリアルキルシロキシ基等が挙げられる。
中でも、炭素数が少ないものの方が特性が発現しやすく、炭素数1〜6の有機基が好ましい。また、アルケニル基は非水系電解液や電極表面の被膜に作用して入出力特性を向上させ、アリール基は充放電時に電池内で発生するラジカルを捕捉して電池性能全般を向上させる作用を有するので好ましい。従って、R及びRとしては、メチル基、ビニル基又はフェニル基が特に好ましい。
一般式(1)中、nは3〜10の整数を表すが、3〜6の整数が好ましく、3又は4が特に好ましい。
一般式(1)で表される環状シロキサン化合物の例としては、例えば、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン等のシクロトリシロキサン、オクタメチルシクロテトラシロキサン等のシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシクロペンタシロキサン等が挙げられる。このうち、シクロトリシロキサンが特に好ましい。
[[一般式(2)で表されるフルオロシラン化合物]]
一般式(2)で表されるフルオロシラン化合物におけるR〜Rは、互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、一般式(1)におけるR及びRの例として挙げた鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、飽和複素環基を有するアルキル基、アルキル基を有していてもよいフェニル基等のアリール基、アラルキル基、トリアルキルシリル基、トリアルキルシロキシ基に加え、エトキシカルボニルエチル基等のカルボニル基;アセトキシ基、アセトキシメチル基、トリフルオロアセトキシ基等のカルボキシル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、アリロキシ基等のオキシ基;アリルアミノ基等のアミノ基;ベンジル基等を挙げることができる。
一般式(2)中、xは1〜3の整数を表し、p、q及びrはそれぞれ0〜3の整数を表し、1≦p+q+r≦3である。また必然的に、x+p+q+r=4である。
一般式(2)で表されるフルオロシラン化合物の例としては、トリメチルフルオロシラン、トリエチルフルオロシラン、トリプロピルフルオロシラン、フェニルジメチルフルオロシラン、トリフェニルフルオロシラン、ビニルジメチルフルオロシラン、ビニルジエチルフルオロシラン、ビニルジフェニルフルオロシラン、トリメトキシフルオロシラン、トリエトキシフルオロシラン等のモノフルオロシラン類の他、ジメチルジフルオロシラン、ジエチルジフルオロシラン、ジビニルジフルオロシラン、エチルビニルジフルオロシラン等のジフルオロシラン類;メチルトリフルオロシラン、エチルトリフルオロシラン等のトリフルオロシラン類も挙げられる。
一般式(2)で表されるフルオロシラン化合物は、沸点が低いと、揮発してしまうため非水系電解液に所定量含有させるのが難しくなる場合がある。また、非水系電解液に含有させた後も、充放電による電池の発熱や外部環境が高温になる様な条件下で揮発してしまう可能性がある。よって、1気圧で、50℃以上の沸点を持つものが好ましく、中でも60℃以上の沸点を持つものが特に好ましい。
また、一般式(1)の化合物と同様に、有機基としては炭素数の少ないものの方が効果が発現しやすく、炭素数1〜6のアルケニル基は非水系電解液や電極表面の被膜に作用して入出力特性を向上させ、アリール基は充放電時に電池内で発生するラジカルを捕捉して電池性能全般を向上させる作用を有する。従って、この観点からは有機基としては、メチル基、ビニル基又はフェニル基が好ましく、化合物の例としては、トリメチルフルオロシラン、ビニルジメチルフルオロシラン、フェニルジメチルフルオロシラン、ビニルジフェニルフルオロシラン等が特に好ましい。
[[一般式(3)で表される化合物]]
一般式(3)で表される化合物におけるR〜Rは、互いに同一であっても異なっていてもよい炭素数1〜12の有機基であるが、その例としては、一般式(2)のR〜Rの例として挙げた鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、飽和複素環基を有するアルキル基、アルキル基を有していてもよいフェニル基等のアリール基、アラルキル基、トリアルキルシリル基、トリアルキルシロキシ基、カルボニル基、カルボキシル基、オキシ基、アミノ基、ベンジル基等を同様に挙げることができる。
一般式(3)で表される化合物におけるAは、H、C、N、O、F、S、Si及び/又はPから構成される基であれば特に制限はないが、一般式(3)中の酸素原子に直接結合する元素としては、C、S、Si又はPが好ましい。これら原子の存在形態としては、例えば、鎖状アルキル基、環状アルキル基、アルケニル基、アルキニル基、ハロゲン化アルキル基、カルボニル基、スルホニル基、トリアルキルシリル基、ホスホリル基、ホスフィニル基等に含まれるものが好ましい。また、一般式(3)で表される化合物の分子量は、1000以下が好ましく、中でも800以下が特に好ましく、500以下が更に好ましい。
一般式(3)で表される化合物の例としては、ヘキサメチルジシロキサン、1,3−ジエチルテトラメチルジシロキサン、ヘキサエチルジシロキサン、オクタメチルトリシロキサン等のシロキサン化合物類;メトキシトリメチルシラン、エトキシトリメチルシラン等のアルコキシシラン類;ビス(トリメチルシリル)パーオキサイド等の過酸化物類;酢酸トリメチルシリル、酢酸トリエチルシリル、プロピオン酸トリメチルシリル、メタクリル酸トリメチルシリル、トリフルオロ酢酸トリメチルシリル等のカルボン酸エステル類;メタンスルホン酸トリメチルシリル、エタンスルホン酸トリメチルシリル、メタンスルホン酸トリエチルシリル、フルオロメタンスルホン酸トリメチルシリル等のスルホン酸エステル類;ビス(トリメチルシリル)スルフェート等の硫酸エステル類;トリス(トリメチルシロキシ)ボロン等のホウ酸エステル類;トリス(トリメチルシリル)ホスフェート、トリス(トリメチルシリル)ホスファイト等のリン酸若しくは亜リン酸エステル類等が挙げられる。
このうち、シロキサン化合物類、スルホン酸エステル類、硫酸エステル類が好ましく、スルホン酸エステル類が特に好ましい。シロキサン化合物類としては、ヘキサメチルジシロキサンが好ましく、スルホン酸エステル類としては、メタンスルホン酸トリメチルシリルが好ましく、硫酸エステル類としては、ビス(トリメチルシリル)スルフェートが好ましい。
[[分子内にS−F結合を有する化合物]]
分子内にS−F結合を有する化合物としては特に限定はないが、スルホニルフルオライド類、フルオロスルホン酸エステル類が好ましい。例えば、メタンスルホニルフルオライド、エタンスルホニルフルオライド、メタンビス(スルホニルフルオライド)、エタン−1,2−ビス(スルホニルフルオライド)、プロパン−1,3−ビス(スルホニルフルオライド)、ブタン−1,4−ビス(スルホニルフルオライド)、ジフルオロメタンビス(スルホニルフルオライド)、1,1,2,2−テトラフルオロエタン−1,2−ビス(スルホニルフルオライド)、1,1,2,2,3,3−ヘキサフルオロプロパン−1,3−ビス(スルホニルフルオライド)、フルオロスルホン酸メチル、フルオロスルホン酸エチル等が挙げられる。中でも、メタンスルホニルフルオライド、メタンビス(スルホニルフルオライド)又はフルオロスルホン酸メチルが好ましい。
[[硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩、プロピオン酸塩]]
硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩、プロピオン酸塩のカウンターカチオンとしては特に限定はないが、Li、Na、K、Mg、Ca、Fe、Cu等の金属元素の他、NR9101112(式中、R9〜R12は、各々独立に、水素原子又は炭素数1〜12の有機基を表わす。)で表現されるアンモニウム、4級アンモニウムが挙げられる。ここで、R9〜R12の炭素数1〜12の有機基としては、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいシクロアルキル基、ハロゲン原子で置換されていてもよいアリール基、窒素原子含有複素環基等が挙げられる。R9〜R12としては、それぞれ、水素原子、アルキル基、シクロアルキル基、窒素原子含有複素環基等が好ましい。これらのカウンターカチオン中でも、リチウムイオン二次電池に用いたときの電池特性の点から、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム又はNR9101112が好ましく、リチウムが特に好ましい。また、中でも、硝酸塩又はジフルオロリン酸塩が、出力向上効果が大きい上、電池のサイクル、高温保存特性の点で好ましく、ジフルオロリン酸リチウムが特に好ましい。また、これらの化合物は非水溶媒中で合成されたものを実質的にそのまま用いてもよく、別途合成して実質的に単離されたものを非水溶媒中又は非水系電解液中に添加してもよい。
特定化合物、すなわち、一般式(1)で表される環状シロキサン化合物、一般式(2)で表されるフルオロシラン化合物、一般式(3)で表される化合物、分子内にS−F結合を有する化合物、硝酸塩、亜硝酸塩、モノフルオロリン酸塩、ジフルオロリン酸塩、酢酸塩又はプロピオン酸塩は、1種を単独で用いてもよく、2種類以上の化合物を任意の組み合わせ及び比率で併用してもよい。また、特定化合物で、上記それぞれに分類される化合物の中であっても、1種を単独で用いてもよく、2種類以上の化合物を任意の組み合わせ及び比率で併用してもよい。
非水系電解液中のこれら特定化合物の割合は、全非水系電解液に対して、合計で10ppm以上(0.001質量%以上)が必須であるが、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。また、上限は、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。特定化合物の濃度が低すぎると、長期間使用した後でも、出力特性が維持される効果が得られ難い場合があり、一方、濃度が高すぎると充放電効率の低下を招く場合がある。
また、これら特定化合物は、非水系電解液として実際に二次電池作製に供すると、その電池を解体して再び非水系電解液を取り出しても、その中の含有量が著しく低下している場合が多い。そのため、電池から抜き出した非水系電解液から、少なくとも上記特定化合物が検出できるものは本発明に含まれるとみなされる。
[他の化合物]
本発明のリチウムイオン二次電池における非水系電解液は、電解質であるリチウム塩及び特定化合物を必須成分として含有するが、必要に応じて他の化合物を、本発明の効果を損なわない範囲で、任意の量で含有させることができる。このような他の化合物としては、具体的には、例えば、
(1)ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等の過充電防止剤;
(2)ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の負極被膜形成剤;
(3)亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド等の正極保護剤;
等が挙げられる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは2種類以上併用して用いてもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンやターフェニル(又はその部分水素化体)と、t−ブチルベンゼンやt−アミルベンゼンを併用するのが好ましい。
負極被膜形成剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、無水コハク酸、無水マレイン酸が好ましい。これらは2種類以上併用して用いてもよい。2種以上併用する場合は、少なくとも1種はビニレンカーボネートを用いるのが好ましい。正極保護剤としては、亜硫酸エチレン、亜硫酸プロピレン、プロパンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファンが好ましい。これらは2種類以上併用して用いてもよい。また、負極皮膜形成剤と正極保護剤との併用や、過充電防止剤と負極皮膜形成剤と正極保護剤との併用が特に好ましい。
非水系電解液中におけるこれら他の化合物の含有割合は特に限定はないが、非水系電解液全体に対し、それぞれ、0.01質量%以上が好ましく、特に好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、上限は、5質量%以下が好ましく、特に好ましくは3質量%以下、更に好ましくは2質量%以下である。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。
本発明の二次電池用非水系電解液の調製法については、特に限定はなく、非水溶媒に、常法に従って、リチウム塩、特定化合物、必要に応じて他の化合物を溶解させて調製することができる。
<負極>
以下に本発明のリチウムイオン二次電池に使用される負極について説明する。
[負極活物質]
以下に負極に使用される負極活物質について述べる。
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものが用いられる。本発明のリチウムイオン二次電池に用いられる負極活物質は、少なくとも、以下の(a)、(b)及び(c)を満たす黒鉛質炭素粒子を含有するものであることが必須である。
(a)円形度が0.85以上。
(b)広角X線回折法による(002)面の面間隔(d002)が0.337nm未満。
(c)アルゴンイオンレーザーラマンスペクトル法における1580cm-1のピーク強度に対する1360cm-1のピーク強度の比として定義されるラマンR値(以下、単に「ラマンR値」と略記する場合がある)が0.12以上0.8以下。
[[円形度]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の円形度は0.85以上であることが必須であるが、好ましくは0.87以上、特に好ましくは0.89以上、更に好ましくは0.92以上である。上限としては、円形度が1のときに理論的真球となる。この範囲を下回ると、負極活物質の充填性が低下し、熱伝導性が低下するため、早期の出力回復の妨げとなる場合があり、特に、低温時の低出力状態からの出力の回復が遅くなる場合がある。
本発明でいう円形度は、以下の式で定義される。
円形度
=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
円形度の値としては、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定した値を用いる。
[[面間隔(d002)]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の広角X線回折法による(002)面の面間隔(d002)は、0.337nm未満であることが必須であるが、好ましくは0.336nm以下である。下限としては、黒鉛の理論値である0.335である。この範囲を上回ると、結晶性が低下し、電子による熱伝導性が低下し、早期の出力回復特性が低下する場合があり、特に、低温時の低出力状態からの出力の回復が遅くなる場合がある。
本発明でいう、広角X線回折法による(002)面の面間隔(d002)とは、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)である。
また、学振法によるX線回折で求めた黒鉛質炭素粒子の結晶子サイズ(Lc)は特に限定はないが、通常10nm以上、好ましくは30nm以上、より好ましくは80nm以上の範囲である。この範囲を下回ると、結晶性が低下し、電子による熱伝導性が低下し、早期の出力回復特性が低下する場合がある。
[[ラマンR値]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子のラマンR値は、0.12以上が必須であるが、好ましくは0.15以上、特に好ましくは0.17以上、更に好ましくは0.2以上である。上限としては、好ましくは0.8以下、特に好ましくは0.6以下、更に好ましくは0.45以下である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎ、充放電サイトの減少に伴って出力そのものが低下する場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下するため、電子による熱伝導が低下して出力の回復特性が低下する場合がある。
ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用い、試料を測定セル内へ自然落下させることで試料充填し、測定はセル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させながら行なう。得られたラマンスペクトルについて、1580cm-1のピークPAの強度IAと、1360cm-1のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出して、これを黒鉛質炭素粒子のラマンR値と定義する。また、得られたラマンスペクトルの1580cm-1のピークPAの半値幅を測定し、これを黒鉛質炭素粒子のラマン半値幅と定義する。
なお、ここでのラマンスペクトル測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm-1
・測定範囲 :1100cm-1〜1730cm-1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
また、本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の1580cm-1のラマン半値幅は特に制限されないが、通常10cm-1以上、好ましくは15cm-1以上、また上限として、通常60cm-1以下、好ましくは50cm-1以下、より好ましくは45cm-1以下の範囲である。ラマン半値幅がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎ、充放電サイトの減少に伴って出力そのものが低下する場合がある。一方、この範囲を上回ると、粒子表面の結晶性が低下するため、電子による熱伝導が低下して出力の回復特性が低下する場合がある。
[[タップ密度]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子のタップ密度は、好ましくは0.55g/cm3以上、より好ましくは0.7g/cm3以上、更に好ましくは0.8g/cm3以上、特に好ましくは1g/cm3以上である。また上限は、好ましくは2g/cm3以下、更に好ましくは1.8g/cm3以下、特に好ましくは1.6g/cm3以下である。タップ密度がこの範囲を下回ると、負極として用いた場合に充填密度が上がり難く、粒子間の接触面積が減少するため、熱伝導性が低くなる場合がある。一方、この範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路が減少することで、出力自体が減少する場合がある。
本発明においてタップ密度は、目開き300μmの篩を通過させて、20cm3のタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度と定義する。
[[BET比表面積]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子のBET法を用いて測定した比表面積は、0.1m2/g以上が好ましく、特に好ましくは0.7m2/g以上、より好ましくは1m2/g以上、更に好ましくは1.5m2/g以上である。上限は、100m2/g以下が好ましく、特に好ましくは50m2/g以下、より好ましくは25m2/g以下、更に好ましくは15m2/g以下である。BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなり易く、リチウムが電極表面で析出し易くなる場合がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなり易く、好ましい電池が得られにくい場合がある。
BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義する。
[[体積平均粒径]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の体積平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義され、1μm以上が好ましく、特に好ましくは3μm以上、より好ましくは5μm以上、更に好ましくは7μm以上である。また、上限は、通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下である。上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また上記範囲を上回ると、電極極板化時に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
[[細孔容積]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の細孔容積は、水銀ポロシメトリー(水銀圧入法)により求められる、直径0.01μm以上、1μm以下に相当する粒子内の空隙、粒子表面のステップによる凹凸の量が、0.01mL/g以上、好ましくは0.05mL/g以上、より好ましくは0.1mL/g以上、上限として0.6mL/g以下、好ましくは0.4mL/g以下、より好ましくは0.3mL/g以下の範囲である。この範囲を上回ると、極板化時にバインダーを多量に必要となる場合がある。下回ると、高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られない場合がある。
また、全細孔容積が、好ましくは0.1mL/g以上、より好ましくは0.25mL/g以上、上限として10mL/g以下、好ましくは5mL/g以下、より好ましくは2mL/g以下の範囲である。この範囲を上回ると極板化時にバインダーを多量に必要となる場合がある。下回ると極板化時に増粘剤や結着剤の分散効果が得られない場合がある。
また、平均細孔径が、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上、上限として50μm以下、好ましくは20μm以下、より好ましくは10μm以下の範囲である。この範囲を上回ると、バインダーを多量に必要となる場合がある。下回ると高電流密度充放電特性が低下する場合がある。
水銀ポロシメトリー用の装置として、水銀ポロシメータ(オートポア9520:マイクロメリテックス社製)を用いた。試料(負極材料)を、0.2g前後の値となるように秤量し、パウダー用セルに封入し、室温、真空下(50μmHg以下)にて10分間脱気して前処理を実施した。引き続き、4psia(約28kPa)に減圧し水銀を導入し、4psia(約28kPa)から40000psia(約280MPa)までステップ状に昇圧させた後、25psia(約170kPa)まで降圧させた。昇圧時のステップ数は80点以上とし、各ステップでは10秒の平衡時間の後、水銀圧入量を測定した。こうして得られた水銀圧入曲線からWashburnの式を用い、細孔分布を算出した。なお、水銀の表面張力(γ)は485dyne/cm、接触角(ψ)は140°として算出した。平均細孔径には累計細孔体積が50%となるときの細孔径を用いた。
[[灰分]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の灰分は、黒鉛質炭素粒子の全質量に対して、1質量%以下が好ましく、特に好ましくは0.5質量%以下、更に好ましくは0.1質量%以下である。また下限としては、1ppm以上であることが好ましい。上記の範囲を上回ると充放電時の非水系電解液との反応による電池性能の劣化が無視できなくなる場合がある。一方、この範囲を下回ると、製造に多大な時間とエネルギーと汚染防止のための設備とを必要とし、コストが上昇する場合がある。
[[真密度]]
黒鉛質炭素粒子の真密度は、通常2.0g/cm3以上、好ましくは2.1g/cm3以上、より好ましくは2.2g/cm3以上、更に好ましくは2.22g/cm3以上であり、上限としては2.26g/cm3以下である。上限は黒鉛の理論値である。この範囲を下回ると炭素の結晶性が低すぎて初期不可逆容量が増大する場合がある。本発明においては、真密度は、ブタノールを使用した液相置換法(ピクノメータ法)によって測定したもので定義する。
[[配向比]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子の配向比は、通常0.005以上であり、好ましくは0.01以上、より好ましくは0.015以上、上限は、理論上0.67以下である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
配向比はX線回折により測定する。X線回折により炭素の(110)回折と(004)回折のピークを、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)回折と(004)回折のピークの積分強度を各々算出する。得られた積分強度から、(110)回折積分強度/(004)回折積分強度で表わされる比を算出し、活物質配向比と定義する。
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
・測定範囲及びステップ角度/計測時間:
(110)面:76.5度≦2θ≦78.5度 0.01度/3秒
(004)面:53.5度≦2θ≦56.0度 0.01度/3秒
[[アスペクト比]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子のアスペクト比は、理論上1以上であり、上限としては10以下、好ましくは8以下、更に好ましくは5以下である。上限を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。
なお、アスペクト比は、3次元的に観察した時の粒子の最長となる径A、それと直交する最短となる径Bとしたとき、A/Bであらわされる。粒子の観察は、拡大観察ができる走査型電子顕微鏡で行う。厚さ50μm以下の金属の端面に固定した任意の50個の粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、A、Bを測定し、A/Bの平均値を求める。
[[黒鉛質炭素粒子]]
本発明のリチウムイオン二次電池の負極活物質として用いられる黒鉛質炭素粒子は、天然に産出するものであっても、人工的に製造されたものであってもよいが、黒鉛質炭素粒子が天然黒鉛を含有するものであることが好ましい。また、天然に産出するものや人工的に製造されたものに特定の処理を加えたものであってもよい。また、製造方法(選別方法も含む)も特に制限されず、例えば、篩い分けや風力分級等の分別手段を用いて、上記特性を有する黒鉛質炭素粒子を選別して取得することもできる。
これらのうち特に好ましい黒鉛質炭素粒子は、天然に産出する炭素質粒子や人工的に製造された炭素質粒子に対して、力学的エネルギー処理を加えて改質して製造されたものである。力学的エネルギー処理の原料である炭素質粒子が、天然黒鉛を含有するものであることが更に好ましい。
[[力学的エネルギー処理]]
以下において、この力学的エネルギー処理について説明する。力学的エネルギー処理を加える対象となる原料の炭素質粒子は特には限定されないが、天然又は人造の黒鉛系炭素質粒子、黒鉛前駆体である炭素質粒子等である。これらの原料の特性について以下に示す。
[[[力学的エネルギー処理の原料である黒鉛系炭素質粒子]]]
原料の黒鉛系炭素質粒子についての性質は、次に示す(1)〜(11)の何れか1項又は複数項を同時に満たしていることが望ましい。なお、物性測定方法や定義は、何れも上記した黒鉛質炭素粒子の場合と同様である。
(1)X線パラメータ
原料の黒鉛系炭素質粒子は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、上限は、通常0.340nm以下、好ましくは0.337nm以下であることが望まれる。また、学振法によるX線回折で求めた黒鉛系炭素質粒子の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。この範囲を下回ると、結晶性が低下し、初期不可逆容量の増大が増加する可能性がある。
(2)灰分
原料の黒鉛系炭素質粒子中に含まれる灰分は、黒鉛系炭素質の全質量に対して、1質量%以下、中でも0.5質量%以下、特に0.1質量%以下、下限としては1ppm以上であることが好ましい。上記の範囲を上回ると充放電時の非水系電解液との反応による電池性能の劣化が無視できなくなる場合がある。この範囲を下回ると、製造に多大な時間とエネルギーと汚染防止のための設備とを必要とし、コストが上昇する場合がある。
(3)体積基準平均粒径
原料の黒鉛系炭素質粒子の体積平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義されるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、更に好ましくは7μm以上である。また、上限は特に制限されないが、通常10mm以下、好ましくは1mm以下、より好ましくは500μm以下、更に好ましくは100μm以下、特に好ましくは50μm以下である。上記範囲を下回ると、力学的エネルギーを加えることによって粒径が小さくなり過ぎて不可逆容量の増大を招く場合がある。また上記範囲を上回ると、力学的エネルギーを加える装置による効率的な運転が困難となり、時間的損失を招く場合がある。
(4)ラマンR値、ラマン半値幅
アルゴンイオンレーザーラマンスペクトル法を用いて測定した原料の黒鉛系炭素質粒子のラマンR値は、通常0.01以上、好ましくは0.03以上、より好ましくは0.1以上、上限としては0.6以下、好ましくは0.4以下である。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高過ぎて、力学的エネルギーを加えることによるラマン値の増加によってもなお、結晶性の低さによって充放電に伴ってLiが層間に入るサイトが少なくなる場合、すなわち、充電受入性が低下する場合がある。一方、この範囲を上回ると、力学的エネルギーを加えることによって、より粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、1580cm-1のラマン半値幅は特に制限されないが、通常10cm-1以上、好ましくは15cm-1以上、また上限として、通常50cm-1以下、好ましくは45cm-1以下、より好ましくは40cm-1以下の範囲である。ラマン半値幅がこの範囲を下回ると、粒子表面の結晶性が高過ぎて、力学的エネルギーを加えることによるラマン値増加によってもなお、結晶性の低さによって充放電に伴ってLiが層間に入るサイトが少なくなる場合、すなわち、充電受入性が低下する場合がある。一方、この範囲を上回ると、力学的エネルギーを加えることによって、より粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
(5)BET比表面積
原料の黒鉛系炭素質粒子のBET法を用いて測定した比表面積は、通常0.05m2/g以上、好ましくは0.2m2/g以上、より好ましくは0.5m2/g以上、更に好ましくは1m2/g以上である。上限は、通常50m2/g以下、好ましくは25m2/g以下、より好ましくは15m2/g以下、更に好ましくは10m2/g以下である。BET比表面積の値がこの範囲を下回ると、力学的エネルギーを加えることによってBET比表面積が増加しても、充電時にリチウムの受け入れ性が悪くなり易く、リチウムが電極表面で析出し易くなる場合がある。一方、この範囲を上回ると、力学的エネルギーを加えることによって更にBET比表面積が増加して負極活物質として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなり易く、好ましい電池が得られにくい場合がある。
(7)円形度
原料の黒鉛系炭素質粒子の球形の程度としては、その粒径が3〜40μmの範囲にある粒子の円形度が0.1以上が好ましく、より好ましくは0.2以上、更に好ましくは0.4以上、更に好ましくは0.5以上、最も好ましくは0.6以上である。この範囲を下回ると、力学的エネルギーを加えても、十分球形化が進まず、高電流密度充放電特性が低くなる場合がある。
(8)真密度
原料の黒鉛系炭素質粒子の真密度は、通常2g/cm3以上、好ましくは2.1g/cm3以上、より好ましくは2.2g/cm3以上、更に好ましくは2.22g/cm3以上であり、上限としては2.26g/cm3以下である。上限は黒鉛の理論値である。この範囲を下回ると炭素の結晶性が低すぎて初期不可逆容量が増大する場合がある。
(9)タップ密度
原料の黒鉛系炭素質粒子のタップ密度は、通常0.05g/cm3以上であり、好ましくは0.1g/cm3以上、更に好ましくは0.2g/cm3以上、特に好ましくは0.5g/cm3以上であることが望まれる。また、好ましくは、2g/cm3以下、更に好ましくは、1.8g/cm3以下、特に好ましくは1.6g/cm3以下である。タップ密度がこの範囲を下回ると、力学的エネルギーを加えてもタップ密度の向上が十分でなく、負極活物質として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。一方、この範囲を上回ると、力学的エネルギーを加えた場合に更にタップ密度が上昇し、電極化後の電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路不足による、高電流密度充放電特性が低下する可能性がある。黒鉛系炭素質粒子のタップ密度も、前記した方法と同一の方法で測定され定義される。
(10)配向比(粉)
原料の黒鉛系炭素質粒子の配向比は、通常0.001以上であり、好ましくは0.005以上である。上限は、理論上0.67以下である。この範囲を下回ると、力学的エネルギーを加えても、配向比の向上が十分ではなく、高密度充放電特性が低下する場合がある。
(11)アスペクト比(粉)
黒鉛系炭素質粒子のアスペクト比は、理論上1以上であり、上限として10以下、好ましくは8以下、更に好ましくは5以下である。上限を上回ると、力学的エネルギーを加えてもアスペクト比が十分低下せず、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。
上記の原料の黒鉛系炭素質粒子の中で、炭素六角網面構造が発達した高結晶性炭素材料として、六角網面を面配向的に大きく成長させた高配向黒鉛と、高配向の黒鉛粒子を等方向に集合させた等方性高密度黒鉛を挙げることができる。高配向黒鉛としては、スリランカあるいはマダカスカル産の天然黒鉛や、溶融した鉄から過飽和の炭素として析出させたいわゆるキッシュグラファイト、一部の高黒鉛化度の人造黒鉛等を好適なものとして例示することができる。
天然黒鉛は、その性状によって、鱗片状黒鉛(Flake Graphite)、鱗状黒鉛(Crystalline(Vein) Graphite)、土状黒鉛(Amorphous Graphite)に分類される(「粉粒体プロセス技術集成」((株)産業技術センター、昭和49年発行)の黒鉛の項、及び「HANDBOOK OF CARBON,GRAPHITE,DIAMOND AND FULLERENES」(Noyes Publications発行)参照)。黒鉛化度は、鱗状黒鉛が100%で最も高く、これに次いで鱗片状黒鉛が99.9%で高いが、土状黒鉛は28%と低い。天然黒鉛である鱗片状黒鉛は、マダガスカル、中国、ブラジル、ウクライナ、カナダ等に産し、鱗状黒鉛は、主にスリランカに産する。土状黒鉛は、朝鮮半島、中国、メキシコ等を主な産地としている。これらの天然黒鉛の中で、土状黒鉛は一般に粒径が小さいうえ、純度が低い。これに対して、鱗片状黒鉛や鱗状黒鉛は、黒鉛化度が高く、不純物量が低い等の長所があるため、本発明において好ましく使用することができる。
人造黒鉛は、非酸化性雰囲気下において石油系重質油、石炭系重質油、石油系コークス又は石炭系コークスを1500〜3000℃、あるいはそれ以上の温度で加熱することによって製造することができる。
本発明では、力学的エネルギー処理及び熱処理を行った後に高配向かつ高容量を示すものであれば、何れの人造黒鉛も原料として使用することができる。また上記人造黒鉛の中で、黒鉛化が完全でない材料、例えば黒鉛前駆体でも、力学的エネルギー処理を行うことによって、上記物性を満たす黒鉛質炭素粒子になり得るものであれば、本発明における力学的エネルギー処理の原料として用いることが可能である。
[[[力学的エネルギー処理の内容]]]
これらの原料の黒鉛系炭素質粒子に対する力学的エネルギー処理は、処理前後の体積平均粒径の比が1以下になるように粒径を減じ、かつ、処理によりタップ密度を高め、かつ、ラマンR値が処理により1.1倍以上となるようなものである。
かかる力学的エネルギー処理を行うことによって、原料となる黒鉛系炭素質粒子等の炭素質粒子は、全体的には高結晶性を維持したまま、粒子の表面近傍のみが粗くなり歪み及びエッジ面の露出した粒子となる。このことでリチウムイオンの出入りできる面が増加することとなり高電流密度においても高い容量を持つことになる。
粉砕、分級、混合、造粒、表面改質、反応等の粒子設計に活用できる工学的単位操作の中では、本発明における「力学的エネルギー処理」は「粉砕処理」に属するが、同時に表面構造を衝撃や摩擦、圧縮などによって、微細な構造的欠陥を生じさせるような表面処理も含む。
一般に粉砕処理とは、物質に力を加えて、その大きさを減少させ、物質の粒径や粒度分布、充填性を調節することを指す。粉砕処理は、物質へ加える力の種類、処理形態により分類される。物質に加える力は、たたき割る力(衝撃力)、押しつぶす力(圧縮力)、すりつぶす力(摩砕力)、削りとる力(剪断力)の4つに大別される。一方、処理形態は、粒子内部に亀裂を発生させ、伝播させていく体積粉砕と、粒子表面を削り取っていく表面粉砕の二つに大別される。体積粉砕は、衝撃力、圧縮力、剪断力により進行し、表面粉砕は、摩砕力、剪断力により進行する。粉砕処理は、これらの物質に加える力の種類と処理形態を様々に組み合わせた処理である。その組み合わせは、処理目的に応じて適宜決定することができる。粉砕処理は、爆破等化学的な反応や体積膨張を用いて行う場合もあるが、粉砕機等の機械装置を用いて行うのが一般的である。
本発明の黒鉛質炭素粒子の製造に好ましく用いられる力学的エネルギー処理は、体積粉砕の有無に関わらず、最終的に表面処理を含む粒子表面部分の粉砕(表面粉砕)の占める割合が高くなるような処理であることが好ましい。それは、粒子の表面粉砕が黒鉛質炭素粒子等の炭素質粒子の角を取って、粒子形状に丸みを導入するために重要だからである。具体的には、ある程度体積粉砕が進んでから表面粉砕が行われるように力学的エネルギー処理を行ってもよいし、体積粉砕をほとんど進めずに表面粉砕のみが行われるように力学的エネルギー処理を行ってもよい。更には、体積粉砕と表面粉砕が、同時に行われるように力学的エネルギー処理を行ってもよい。最終的に表面粉砕が進み、粒子の表面から角がとれるような力学的エネルギー処理が好ましい。
本発明における力学的エネルギー処理は、処理前後の体積平均粒径の比が1以下になるように粒径を減じ、かつ、処理によりタップ密度を高め、かつ、ラマンR値が処理により1.1倍以上となるようなものである。
「処理前後の体積平均粒子径の比」とは、処理後の体積平均粒子径を処理前の体積平均粒子径で除した値である。(処理後の体積平均粒径)/(処理前の体積平均粒径)の値は1以下であるが、好ましくは0.95以下である。実質的に1であると、力学的エネルギー処理によって円形度向上による充填性向上の効果が小さい場合がある。なお、処理前後の平均粒径比が1以下となるように粒子サイズを減ずることによって、粒子形状をも制御できる。
本発明における力学的エネルギー処理は、処理によりタップ密度を高めるようなものである。タップ密度が高まるということは、後に詳述するように円形度に代表される球形化度合の向上を意味するので、力学的エネルギー処理は、このようなものである必要がある。(処理後のタップ密度)/(処理前のタップ密度)の値は1以上であるが、好ましくは1.1以上である。1未満であると、円形度向上による充填性向上の効果が小さい場合がある。
本発明における力学的エネルギー処理は、処理によりラマンR値を1.1倍以上にするものである。ラマンR値が高まるということは、後述のように粒子表面近傍の結晶性が低下することを意味するので、力学的エネルギー処理は、このようなものである必要がある。(処理後のラマンR値)/(処理前のラマンR値)の値は1.1以上であるが、好ましくは1.4以上である。1.1未満であると、ラマンR値変化によって充電受入性向上の効果が小さい場合がある。
本発明の力学的エネルギー処理は粒子に丸みを導入し、これらの粒子のタップ密度を上昇させる。粉体粒子のタップ密度を高めるためには、粒子と粒子の間にできる空隙に入り込むことができる、より小さな粒子を充填すると良いことが知られている。このため、黒鉛系炭素質粒子等の炭素質粒子に対し、粉砕等の処理を行い、粒径を小さくすればタップ密度が高まるとも考えられるが、このような方法で粒径を小さくしても、一般的にタップ密度は却って減少しまう。この原因としては粉砕することにより粒子形状がより不定形になってしまうためであると考えられる。
一方、粉体粒子群の中の一つ粒子(着目粒子)に接触している粒子の個数(配位数n)が多いほど、充填層の空隙の占める割合は低下する。すなわち、タップ密度に影響を与える因子としては、粒子の大きさの比率と組成比、すなわち、粒径分布が重要である。ただし、この検討は、モデル的な球形粒子群で行われたものであり、本発明で取り扱われる処理前の黒鉛系炭素質粒子等の炭素質粒子は、鱗片状、鱗状、板状であり、単に一般的な粉砕、分級等だけで粒径分布を制御して、タップ密度を高めようと試みても、それほどの高充填状態を生み出すことはできない。
一般的に、鱗片状、鱗状、板状の黒鉛系炭素質粒子等の炭素質粒子は、粒子径が小さくなるほどタップ密度が低下する傾向にある。これは、粉砕により粒子がより不定形化する、また、粒子の表面に「ささくれ」や「はがれかけ」、「折れ曲がり」等の突起状物の生成が増加する、更には粒子表面に、より微細な不定形粒子がある程度の強度で付着される等の原因で、隣接粒子との間の抵抗が大きくなり充填性を悪化させるためと考えられる。
これらの不定形性が減少し、粒子形状が球形に近づけば粒子径が小さくなっても充填性の減少は少なくなり、理論的には大粒径粒子でも小粒径粒子でも同程度のタップ密度を示すことになるはずである。
本発明者らの検討では、真密度がほぼ等しく、平均粒径もほぼ等しい炭素質あるいは黒鉛質粒子では、形状が球状であるほど、タップ密度が高い値を示すことが確認されている。すなわち、粒子の形状に丸みを帯びさせ、球状に近づけることが重要である。粒子形状が球状に近づけば、粉体の充填性も、同時に大きく向上する。本発明では、以上の理由により、力学的エネルギーを加えること度の指標に粉体のタップ密度を採用している。処理後の粉粒体の充填性が処理前に比べ上昇している場合は、用いた処理方法により、粒子が球状化した結果と考えることができる。また、本発明の方法において粒径を大きく低下させながら処理を行った場合に得られる炭素材料のタップ密度が、一般的粉砕で得られる同程度の粒径の炭素材料のタップ密度に比べ高い値であれば、球状化した結果と考えることができる。
粒子の結晶性及び粒子表面の粗さ、すなわち結晶のエッジ面存在量の指標として、広角X線回折法による(002)面の面間隔(d002)、結晶子サイズ(Lc)、及びラマンR値を用いることができる。一般に炭素材料は(002)面の面間隔(d002)の値が小さく、結晶子サイズ(Lc)が大きいものほどラマンR値は小さい。すなわち、黒鉛系炭素質粒子等の炭素質粒子全体は、ほぼ同様な結晶状態となっている。これに対し、本発明の黒鉛質炭素粒子は、(002)面の面間隔(d002)の値が小さく、結晶子サイズ(Lc)が大きいが、ラマンR値は大きい値を取っている。すなわち、黒鉛質炭素粒子のバルクの結晶性は高いが、表面近傍(粒子表面から100Å位まで)の結晶性は乱れており、エッジ面の露出が多くなっていることを表している。
本発明における力学的エネルギー処理は、更に、処理により円形度を1.02倍に、特に好ましくは、1.04倍するものであることが、充填性向上の点で好ましい。
[[[力学的エネルギー処理に用いられる装置]]]
力学的エネルギー処理を行う装置は、上記の好ましい処理を行うことが可能なものの中から選択する。本発明者らが検討したところ、上記の4つの一つ以上を用いることでも達成可能ではあるが、好ましくは、衝撃力を主体に粒子の相互作用も含めた圧縮力、摩擦力、剪断力等の機械的作用を繰り返し粒子に与える装置が有効であることが明らかになった。具体的には、ケーシング内部に複数のブレードを設置したローターを有していて、そのローターが高速回転することによって、内部に導入された炭素質粒子に対して衝撃圧縮、摩擦、剪断力等の機械的作用を与え、体積粉砕を進行させながら表面粉砕を行う装置が好ましい。また、炭素質粒子を循環又は対流させることによって機械的作用を繰り返して与える機構を有するものであるのがより好ましい。ケーシング内部のブレードの数は、3枚以上が好ましく、5枚以上が特に好ましい。
このような要件を満たす好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムを挙げることができる。この装置を用いて処理する場合は、回転するローターの周速度を30〜100m/秒にするのが好ましく、40〜100m/秒にするのがより好ましく、50〜100m/秒にするのが更に好ましい。また、処理は、単に炭素質粒子を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理することが好ましく、1分以上装置内を循環又は滞留させて処理することがより好ましい。
原料とする黒鉛系炭素質粒子の真密度が2.25未満で結晶性がそれほど高くない場合には、力学的エネルギー処理を行った後に、更に、結晶性を高める熱処理を行うことが好ましい。かかる熱処理は2000℃以上で行うのが好ましく、2500℃以上で行うのがより好ましく、2800℃以上で行うのが更に好ましい。
[電極作製]
負極の製造は、常法によればよい。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。電池の電解液注液工程直前の段階での片面あたりの負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上であり、上限は150μm以下、好ましくは120μm以下、より好ましくは100μm以下である。この範囲を上回ると、非水系電解液が集電体界面付近まで浸透しにくいため、高電流密度充放電特性が低下する場合がある。またこの範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。また、負極活物質をロール成形してシート電極としたり、圧縮成形によりペレット電極としても良い。
[[集電体]]
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。集電体の形状は、集電体が金属材料の場合は、例えば金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。銅箔の厚さが25μmよりも薄い場合、純銅よりも強度の高い銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることができる。
圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。電解銅箔は、例えば、銅イオンが溶解された非水系電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものである。上記の圧延銅箔の表面に、電解法により銅を析出させていても良い。銅箔の片面又は両面には、粗面化処理や表面処理(例えば、厚さが数nm〜1μm程度までのクロメート処理、Ti等の下地処理等)がなされていても良い。
また、集電体基板には、更に次のような物性が望まれる。
(1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.01μm以上、好ましくは0.03μm以上、通常1.5μm以下、好ましくは1.3μm以下、特に好ましくは1.0μm以下である。集電体基板の平均表面粗さ(Ra)を上記した下限と上限の間の範囲内とすることにより、良好な充放電サイクル特性が期待できる。上記下限値以上とすることにより、活物質薄膜との界面の面積が大きくなり、活物質薄膜との密着性が向上する。平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが好ましい。
(2)引張強度
集電体基板の引張強度は、特に制限されないが、通常50N/mm2以上、好ましくは100N/mm2以上、更に好ましくは150N/mm以上、である。引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、伸び率と同様な装置及び方法で測定される。引張強度が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の亀裂を抑制することができ、良好なサイクル特性を得ることができる。
(3)0.2%耐力
集電体基板の0.2%耐力は、特に制限されないが、通常30N/mm2以上、好ましくは100N/mm2以上、特に好ましくは150N/mm2以上である。0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形している事を意味している。本発明における0.2%耐力は、伸び率と同様な装置及び方法で測定される。0.2%耐力が高い集電体基板であれば、充電・放電に伴う活物質薄膜の膨張・収縮による集電体基板の塑性変形を抑制することができ、良好なサイクル特性を得ることができる。金属薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上である。また、上限は、通常1mm以下、好ましくは100μm以下、より好ましくは30μm以下である。1μmより薄くなると強度が低下するため塗布が困難となる場合がある。100μmより厚くなると捲回等で所望の電極の形を変形させることが困難となる場合がある。また、金属薄膜は、メッシュ状でもよい。
[[集電体と活物質層の厚さの比]]
集電体と活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)の値が150以下、好ましくは20以下、より好ましくは10以下であり、下限は0.1以上、好ましくは0.4以上、より好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
[[電極密度]]
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、好ましくは1g/cm3以上、より好ましくは1.2g/cm3、更に好ましくは1.3g/cm3以上であり、上限として2g/cm3以下、好ましくは1.9g/cm3以下、より好ましくは1.8g/cm3以下、更に好ましくは1.7g/cm3以下の範囲である。この範囲を上回ると活物質粒子が破壊され、初期不可逆容量の増加や、集電体/活物質界面付近への非水系電解液の浸透性が低下し、高電流密度充放電特性が低下する場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
[[バインダー]]
活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル−ブタジエンゴム)、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。
スラリーを形成するための溶媒としては、活物質、バインダー、必要に応じて使用される増粘剤及び導電材を、溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセトアミド、ヘキサメリルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、上述の増粘剤に併せて分散剤等を加え、SBR等のラテックスを用いてスラリー化する。なお、これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。
活物質に対するバインダーの割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下の範囲である。この範囲を上回るとバインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量が低下する場合がある。また下回ると、負極電極の強度低下を招き、電池作製工程上好ましくない場合がある。特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、活物質に対するバインダーの割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には活物質に対する割合は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限としては15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下の範囲である。
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5%以上、より好ましくは0.6%以上であり、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、負極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する問題が生じる場合がある。
[[極板配向比]]
極板配向比は、0.001以上、好ましくは0.005以上、より好ましくは0.01以上、上限は理論値である0.67以下である。この範囲を下回ると、高密度充放電特性が低下する場合がある。
極板配向比の測定は以下のとおりである。目的密度にプレス後の負極電極について、X線回折により電極の活物質配向比を測定する。具体的手法は特に制限されないが、標準的な方法としては、X線回折により炭素の(110)回折と(004)回折のピークを、プロファイル関数として非対称ピアソンVIIを用いてフィッティングすることによりピーク分離を行ない、(110)回折と(004)回折のピークの積分強度を各々算出する。得られた積分強度から、(110)回折積分強度/(004)回折積分強度で表わされる比を算出する。該測定で算出される電極の活物質配向比を極板配向比と定義する。
ここでのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット: Cu(Kα線)グラファイトモノクロメーター
・スリット : 発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度・測定範囲、及び、ステップ角度/計測時間:
(110)面 : 76.5度≦2θ≦78.5度 0.01度/3秒
(004)面 : 53.5度≦2θ≦56.0度 0.01度/3秒
・試料調整 : 硝子板に0.1mm厚さの両面テープで電極を固定
[[インピーダンス]]
放電状態から公称容量の60%まで充電した時の負極の抵抗が500Ω以下が好ましく、特に好ましくは100Ω以下、より好ましくは50Ω以下、及び/又は二重層容量が1×10-6F以上が好ましく、特に好ましくは1×10-5F以上、より好ましくは3×10-5F以上である。この範囲であると出力特性が良く好ましい。
負極の抵抗及び二重層容量は、次の手順で測定する。測定するリチウムイオン二次電池は、公称容量を5時間で充電できる電流値にて充電した後に、20分間充放電をしない状態を維持し、次に公称容量を1時間で放電できる電流値で放電したときの容量が公称容量の80%以上あるものを用いる。前述の放電状態のリチウムイオン二次電池について公称容量を5時間で充電できる電流値にて公称容量の60%まで充電し、直ちにリチウムイオン二次電池をアルゴンガス雰囲気下のグローブボックス内に移す。ここで該リチウムイオン二次電池を負極が放電又はショートしない状態ですばやく解体して取り出し、両面塗布電極であれば、片面の電極活物質を他面の電極活物質を傷つけずに剥離し、負極電極を12.5mmφに2枚打ち抜き、セパレータを介して活物質面がずれないよう対向させる。電池に使用されていた非水系電解液60μLをセパレータと両負極間に滴下して密着し、外気と触れない状態を保持して、両負極の集電体に導電をとり、交流インピーダンス法を実施する。測定は温度25℃で、10-2〜105Hzの周波数帯で複素インピーダンス測定を行ない、求められたコール・コール・プロットの負極抵抗成分の円弧を半円で近似して表面抵抗(インピーダンスRct)と、二重層容量Cdlを求める。
<正極>
以下に本発明の非水系電解液二次電池に使用される正極について説明する。
[正極活物質]
以下に正極に使用される正極活物質について述べる。
[[正極活物質の組成]]
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はない。リチウムと少なくとも1種の遷移金属を含有する物質が好ましく、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMnO2、LiMn、Li2MnO3等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.52、LiNi0.85Co0.10Al0.052、LiNi0.33Co0.33Mn0.332、LiMn1.8Al0.2、LiMn1.5Ni0.5等が挙げられる。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、Li3Fe2(PO3、LiFeP27等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
[[表面被覆]]
また、これら正極活物質の表面に、正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下で用いられる。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
[[正極活物質の物性]]
[[[形状]]]
本発明における正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
[[[タップ密度]]]
正極活物質のタップ密度は、通常1.3g/cm3以上、好ましくは1.5g/cm3以上、更に好ましくは1.6g/cm3以上、最も好ましくは1.7g/cm3以上である。正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく特に上限はないが、大きすぎると、正極活物質層内における非水系電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、通常2.5g/cm3以下、好ましくは2.4g/cm3以下である。正極活物質のタップ密度も、負極活物質の項に記載した方法と同一の方法で測定され定義される。
[[[メジアン径d50]]]
粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、最も好ましくは3μm以上で、上限は、通常20μm以下、好ましくは18μm以下、より好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることもできる。
なお、本発明におけるメジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
[[[平均一次粒子径]]]
一次粒子が凝集して二次粒子を形成している場合には、正極活物質の平均一次粒子径としては、通常0.01μm以上、好ましくは0.05μm以上、更に好ましくは0.08μm以上、最も好ましくは0.1μm以上で、上限は、通常3μm以下、好ましくは2μm以下、更に好ましくは1μm以下、最も好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、BET比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
[[[BET比表面積]]]
本発明の二次電池に供する正極活物質のBET比表面積は、0.2m2/g以上、好ましくは0.3m2/g以上、更に好ましくは0.4m2/g以上で、上限は4.0m2/g以下、好ましくは2.5m2/g以下、更に好ましくは1.5m2/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすい場合がある。
BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
[[[正極活物質の製造法]]]
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属硝酸塩、遷移金属硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、遷移金属硝酸塩、遷移金属硫酸塩、遷移金属水酸化物、遷移金属酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法、また、遷移金属硝酸塩、遷移金属硫酸塩、遷移金属水酸化物、遷移金属酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法等が挙げられる。
[[正極の構成]]
以下に、本発明に使用される正極の構成について述べる。
[[[電極構造と作製法]]]
本発明のリチウムイオン二次電池用正極は、正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、常法により行うことができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。正極活物質はその2種類以上を事前に混合して用いてもよいし、正極作成時に同時に加えることによって混合されてもよい。
本発明のリチウムイオン二次電池の正極に用いられる正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
[[[導電材]]]
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
[[[結着剤]]]
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは3質量%以上であり、上限は通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
[[[液体媒体]]]
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。
水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等を挙げることができる。
[[[増粘剤]]]
特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。更に増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
[[[圧密化]]]
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3、更に好ましくは2.2g/cm3以上であり、上限としては、好ましくは3.5g/cm3以下、より好ましくは3g/cm3以下、更に好ましくは2.8g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大する場合がある。
[[[集電体]]]
正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。一方、この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
[[[電極面積]]]
本発明の場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する前記正極の電極面積の総和が面積比で20倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
[[[放電容量]]]
本発明の特定化合物を含有する非水系電解液を用いる場合、二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上であると、周辺部材との接触面積が大きくなり、熱伝導性向上の観点で好ましい。そのため、正極板は、放電容量が満充電で、3アンペアーアワー(Ah)以上20Ah以下になるように設計することが好ましく、更に4Ah以上10Ah以下がより好ましい。3Ah未満では、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり電力効率が悪くなる場合がある。20Ah以上では、電極反応抵抗が小さくなり電力効率は良くなるが、パルス充放電時の電池内部発熱による温度分布が大きく、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなり、内圧が上昇してガス放出弁が作動する現象(弁作動)、電池内容物が外に激しく噴出する現象(破裂)に至る確率が上がる場合がある。
[[[正極板の厚さ]]]
正極板の厚さは特に限定されるものではないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは200μm以下、より好ましくは100μm以下である。
<電池形状>
電池形状は特に限定されるものではないが、有底筒型形状、有底角型形状、薄型形状、シート形状、ペーパー形状が挙げられる。システムや機器に組み込まれる際に、容積効率を高めて収納性を上げるために、電池周辺に配置される周辺システムへの収まりを考慮した馬蹄形、櫛型形状等の異型のものであってもよい。電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する角型形状が好ましい。
有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。
有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm2)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させるとともに、異常発熱時の放熱効率を上げることができ、「弁作動」や「破裂」という危険な状態になることを抑制することができる。
<電池構成>
本発明の充放電可能なリチウムイオン二次電池は、リチウムイオンを吸蔵・放出可能な正極及び負極、本発明の上記非水系電解液、正極と負極の間に配設されるセパレータ、集電端子、及び外装ケース等によって少なくとも構成される。更に要すれば、電池の内部及び/又は電池の外部に保護素子を装着してもよい。
[セパレータ]
本発明で用いられるセパレータは、両極間を電子的に絶縁する所定の機械的強度を有し、イオン透過度が大きく、かつ、正極と接する側における酸化性と負極側における還元性への耐性を兼ね備えるものであれば特に限定されるものではない。このような要求特性を有するセパレータの材質として、樹脂、無機物、ガラス繊維等が用いられる。前記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。
前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状又は繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製の結着剤を用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂を結着剤として、多孔層に形成させることが挙げられる。
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。
電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、40%〜90%にすることが好ましく、50%〜80%にすることが更に好ましい。前記の電極群占有率が40%未満では、電池容量が小さくなり、また、90%以上では空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
[集電構造]
集電構造は特に限定されるものではないが、本発明の温度順応による出力回復をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にする必要がある。こうした内部抵抗が小さい場合、本発明の非水系電解液と負極活物質とを併用した効果が特に良好に発揮される。
電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
前述の構造を最適化することにより、内部抵抗をできるだけ小さくすることができる。大電流で用いられる電池では、10kHz交流法で測定されるインピーダンス(以下、「直流抵抗成分」と略記する)を10ミリオーム(mΩ)以下にすることが好ましく、直流抵抗成分を5ミリオーム(mΩ)以下にすることがより好ましい。直流抵抗成分を0.1ミリオーム未満にすると高出力特性が向上するが、用いられる集電構造材の占める比率が増え、電池容量が減少する場合がある。
本発明に用いられる特定化合物を含有する非水系電解液は、電極活物質に対するリチウムの脱挿入に係わる反応抵抗の低減に効果があり、それが良好な低温放電特性を実現できる要因になっていると考えられる。しかし、通常の直流抵抗が大きな電池では、直流抵抗に阻害されて反応抵抗低減の効果を低温放電特性に100%反映できないことが分かった。直流抵抗成分の小さな電池を用いることでこれを改善し、本発明の非水系電解液の効果を充分に発揮できるようになる。
また、特定化合物を含有する非水系電解液の効果を引き出し、高い低温放電特性をもつ電池を作製するという観点からは、この要件と前述した二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、3アンペアーアワー(Ah)以上である、という要件を同時に満たすことが特に好ましい。
[外装ケース]
外装ケースの材質は用いられる非水系電解質に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
前記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して前記金属類を用いてかしめ構造とするものが挙げられる。
前記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、前記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
[保護素子]
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<作用・原理>
「特定化合物を含有する非水系電解液」と、「円形度0.85以上であり、広角X線回折法による(002)面の面間隔(d002)が0.337nm未満であり、ラマンR値が0.12以上0.8以下である黒鉛質炭素粒子を含有する負極活物質」とを組み合わせることで、低温状態から早期に出力を回復できるリチウムイオン二次電池を提供できる作用・原理は明らかではないが、また、その作用・原理によって本発明は限定されるものではないが、電池作製後の初回の充電時に特定物質存在下で生成するSEI(Solid Electrolyte Interface 固体電解質界面)被膜が、ラマンR値が高く、円形度が大きい球形化黒鉛では薄く、熱的伝導性が高い被膜を形成するため、周囲の温度上昇時に外部から電極反応部位への熱の伝導が早く、温度に対する応答性が良く出力が向上すると推察している。
以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
なお、実施例6〜15は参考例6〜15と読み替えるものとする。
(負極活物質の作製1)
市販の天然黒鉛粉末(A)を粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(B)とした。
(負極活物質の作製2)
市販の天然黒鉛粉末(C)(d002:0.336nm、Lc:100nm以上、ラマンR値:0.11、タップ密度:0.46g/cm3、真密度:2.27g/cm3、体積平均粒径:28.7μm)を微粉砕機(マツボー社製ターボミル)にて、処理し、粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返して炭素質物(D)を調製した。
(負極活物質の作製3)
天然黒鉛粉末(C)をハイブリダイゼーションシステム((株)奈良機械製作所製ハイブリダイゼーションシステムNHS−1型)を用いて、処理量90g、ローター周速度60m/s、処理時間3分にて処理することによって球形化を行い、更に粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(E)とした。この操作を繰り返すことで、電池作製に必要な量を確保した。
(負極活物質の作製4)
市販の天然黒鉛粉末(F)(d002:0.336nm、Lc:100nm以上、ラマンR値:0.09、タップ密度:0.57g/cm3、真密度:2.26g/cm3、体積平均粒径:85.4μm)をハイブリダイゼーションシステムにて処理量90g、ローター周速度30m/s、処理時間1分で球形化を行い、更に粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(G)とした。この操作を繰り返すことで、電池作製に必要な量を確保した。
(負極活物質の作製5)
キノリン不溶分が0.05質量%以下のコールタールピッチを、反応炉にて460℃で10時間熱処理し、軟化点385℃の、溶融性のある塊状の炭化処理前駆体を得た。得られた塊状の炭化処理前駆体を金属製の容器に詰め、箱形の電気炉で窒素ガス流通下、1000℃で2時間、熱処理を行なった。得られた非晶質の塊を粗砕機(吉田製作所製ロールジョークラッシャー)で粉砕、更に微粉砕機(マツボー社製ターボミル)を用いて微粉砕し、体積基準平均径18μmの非晶質粉末を得た。得られた粉末を粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(H)とした。
(負極活物質の作製6)
(負極活物質の作製5)で得られた炭素質物(H)を更に、黒鉛坩堝に移し替え、直接通電炉を用いて不活性雰囲気下で3000℃で5時間かけて黒鉛化し、得られた粉末を粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(I)とした。
(負極活物質の作製7)
(負極活物質の作製6)で得られた炭素質物(I)をハイブリダイゼーションシステムにて処理量90g、ローター周速度30m/s、処理時間1分の条件で球形化を行い、更に粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(J)とした。この操作を繰り返すことで、電池作製に必要な量を確保した。
(負極活物質の作製8)
天然黒鉛粉末(A)よりも純度の低い天然黒鉛粉末(K)(d002:0.336nm、Lc:100nm以上、ラマンR値:0.10、タップ密度:0.49g/cm3、真密度:2.27g/cm3、体積平均粒径:27.3μm、灰分0.5質量%)を(負極活物質の作製3)と同様の条件にて球形化及び、篩いを行い、炭素質物(L)を調製した。これの操作を繰り返すことで、電池作製に必要な量を確保した。
(負極活物質の作製9)
市販の鱗片状天然黒鉛粉末(M)を粗大粒子の混入を防ぐため、ASTM400メッシュの篩いを5回繰り返した。ここで得られた負極活物質を炭素質物(N)とした。
炭素質物(B)(D)(E)(G)(H)(I)(J)(L)(N)について、上記した方法で、その形状や物性を測定した。結果を表1に示す。
Figure 0005671773
〔電池の作製〕
《正極の作製1》
正極活物質としてのコバルト酸リチウム(LiCoO2)90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを厚さ15μmのアルミ箔の両面に塗布して乾燥し、プレス機で厚さ80μmに圧延したものを、活物質層のサイズとして幅100mm、長さ100mm及び幅30mmの未塗工部を有する形状に切り出し、正極とした。このときの正極の活物質の密度は2.35g/cm3であった。
《負極の作製1》
負極活物質を98重量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100重量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)2重量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの圧延銅箔の両面に塗布して乾燥し、プレス機で厚さ75μmに圧延したものを、活物質層のサイズとして幅104mm、長さ104mm及び幅30mmの未塗工部を有する形状に切り出し、負極とした。このときの負極の活物質の密度は1.35g/cm3であった。
《非水系電解液の作製1》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。更に、ジフルオロリン酸リチウム塩(LiPO22)を0.3質量%となるように含有させた。
《非水系電解液の作製2》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。更に、メタンスルホン酸トリメチルシリルを0.3質量%となるように含有させた。
《非水系電解液の作製3》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。更に、ヘキサメチルシクロトリシロキサンを0.3質量%となるように含有させた。
《非水系電解液の作製4》
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の混合物(体積比3:3:4)に、1mol/Lの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を溶解させた。
《電池の作製1》
正極32枚と負極33枚は交互となるように配置し、各電極の間に多孔性ポリエチレンシートのセパレータ(厚さ25μm)が挟まれるよう積層した。この際、正極活物質面が負極活物質面内から外れないよう対面させた。この正極と負極それぞれについての未塗工部同士を溶接して集電タブを作製し、電極群としたものを電池缶(外寸:120×110×10mm)に封入した。その後、電極群を装填した電池缶に非水系電解液を20mL注入して、電極に充分浸透させ、密閉し角型電池を作製した。この電池の定格放電容量は約6アンペアーアワー(Ah)であり、10kHz交流法で測定される直流抵抗成分は約5ミリオーム(mΩ)である。電池の外装表面積の和に対する、正極の電極面積の総和の比は20.6であった。
実施例1
《負極の作製1》項の負極活物質を炭素質物(D)として作製した負極と、《正極の作製1》項で作製した正極と《非水系電解液の作製1》項で作製した非水系電解液を用いて、《電池の作製1》項の手法で電池を作製した。この電池について、下記の《電池の評価》の項で述べる方法及び上記した測定方法で、測定を実施した。結果を表2に示す。
実施例2
実施例1の《負極の作製1》項の負極活物質に炭素質物(E)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
実施例3
実施例1の《負極の作製1》項の負極活物質に炭素質物(G)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
実施例4
実施例1の《負極の作製1》項の負極活物質に炭素質物(J)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
実施例5
実施例1の《負極の作製1》項の負極活物質に炭素質物(L)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
実施例6〜10
実施例1〜5の非水系電解液を、《非水系電解液の作製2》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、評価を実施した。結果を表2に示す。
実施例11〜15
実施例1〜5の非水系電解液を、《非水系電解液の作製3》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、評価を実施した。結果を表2に示す。
比較例1
実施例1の《負極の作製1》項の負極活物質に炭素質物(B)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例2
比較例1の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例3
実施例2の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例4
実施例1の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例5
実施例1の《負極の作製1》項の負極活物質に炭素質物(H)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例6
比較例5の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例7
実施例1の《負極の作製1》項の負極活物質に炭素質物(N)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例8
比較例7の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例9
実施例1の《負極の作製1》項の負極活物質に炭素質物(I)を用いた以外は同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例10
比較例9の非水系電解液に《非水系電解液の作製4》項で作製した非水系電解液を用いた以外は、同様にして電池を作製し、《電池の評価》項記載の電池評価を実施した。結果を表2に示す。
比較例11〜14
比較例1、5、7、9の非水系電解液を、《非水系電解液の作製2》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、評価を実施した。結果を表2に示す。
比較例15〜18
比較例1、5、7、9の非水系電解液を、《非水系電解液の作製3》の項で作製した非水系電解液に代えた以外は、それぞれ同様の方法にて電池を作製し、評価を実施した。結果を表2に示す。
《電池の評価》
(容量測定)
充放電を経ていない新たな電池に対して、25℃で電圧範囲4.1V〜3.0Vの25℃で5サイクル初期充放電を行った(電圧範囲4.1V〜3.0V)。この時の5サイクル目0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)放電容量を初期容量とした。
(出力測定1)
25℃環境下で0.2Cの定電流により150分間充電を行ない、−30℃環境下で3時間静置した後に各々、0.1C、0.3C、1.0C、3.0C、5.0Cで10秒間放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる3角形の面積を初期低温出力(W)とした。
(出力測定2)
出力測定1の後に、4.1Vの低電圧充電を1時間実施した後、電池を25℃の環境下に移動し、15分後に、0.1C、0.3C、1.0C、3.0C、5.0Cで10秒間放電させ、その10秒目の電圧を測定した。電流−電圧直線と下限電圧(3V)とで囲まれる3角形の面積を温度上昇時出力(W)とした。
出力測定1と出力測定2の結果から下記計算式によって、温度順応出力向上率(%)を計算した。
温度順応出力向上率(%)
=[(温度上昇時出力(W)/初期低温出力(W))−1]×100
表2中のインピーダンスRctと二重層容量Cdlは、出力に寄与するパラメーターの一つであり、インピーダンスRctの値が小さいほど、また二重層容量Cdlの値が大きいほど、出力は良化する傾向がある。なお、「インピーダンスRct」と「二重層容量Cdl」は、インピーダンスの箇所に記載した方法で求めた。
Figure 0005671773
表2の結果から分かるように、ジフルオロリン酸リチウム塩、メタンスルホン酸トリメチルシリル、ヘキサメチルシクロトリシロキサンを含有すること、及び、円形度が0.85以上、かつ広角X線回折法による(002)面の面間隔(d002)が0.337nm未満、かつラマンR値が0.12以上0.8以下である黒鉛質炭素粒子を負極活物質として含有することで、−30℃の低温状態での出力の、温度上昇による回復が、飛躍的に早くなっていることが分かった。
本発明のリチウムイオン二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。特に、本発明のリチウムイオン二次電池は、良好なサイクル特性と、常に高い低温特性を得られることから、寒暖差の激しい環境下での用途に、広く好適に利用できるものである。

Claims (13)

  1. 非水溶媒とリチウム塩を含有する非水系電解液、正極活物質及び負極活物質を有するリチウムイオン二次電池であって、
    該非水系電解液が、ジフルオロリン酸リチウムを非水系電解液全体中に10ppm以上含有するものであり、
    かつ、該負極活物質が、円形度0.85以上であり、広角X線回折法による(002)面の面間隔(d002)が0.337nm未満であり、アルゴンイオンレーザーラマンスペクトル法における1580cm-1のピーク強度に対する1360cm-1のピーク強度の比として定義されるラマンR値が0.12以上0.8以下である黒鉛質炭素粒子を含有するものであることを特徴とするリチウムイオン二次電池。
  2. 黒鉛質炭素粒子のタップ密度が、0.55以上である請求項1に記載のリチウムイオン二次電池。
  3. 黒鉛質炭素粒子のBET比表面積が、0.1m2/g以上、100m2/g以下である請求項1又は請求項2に記載のリチウムイオン二次電池。
  4. 黒鉛質炭素粒子の体積平均粒径が、1μm以上、50μm以下である請求項1ないし請求項3の何れかの請求項に記載のリチウムイオン二次電池。
  5. 黒鉛質炭素粒子の水銀ポロシメトリーにおける0.01μm〜1μmの範囲の細孔容積が、0.01mL/g以上である請求項1ないし請求項4の何れかの請求項に記載のリチウムイオン二次電池。
  6. 黒鉛質炭素粒子の灰分が、1ppm以上、1質量%以下である請求項1ないし請求項5の何れかの請求項に記載のリチウムイオン二次電池。
  7. 黒鉛質炭素粒子が、天然黒鉛を含有するものである請求項1ないし請求項6の何れかの請求項に記載のリチウムイオン二次電池。
  8. 該負極活物質が、炭素質粒子に力学的エネルギー処理を含む処理をして得られた黒鉛質炭素粒子であって、該力学的エネルギー処理が、処理前後の体積平均粒径の比が1以下になるように粒径を減じ、かつ、処理によりタップ密度を高め、かつ、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1のピーク強度に対する1360cm-1のピーク強度比であるラマンR値が処理により1.1倍以上となるような力学的エネルギー処理である請求項1ないし請求項7の何れかの請求項に記載のリチウムイオン二次電池。
  9. 炭素質粒子が、天然黒鉛を含有するものである請求項8に記載のリチウムイオン二次電池。
  10. 力学的エネルギー処理が、ケーシング内部に複数のブレードを設置したローターを有する装置を用い、そのローターを高速回転させることにより行うものである請求項8又は請求項9に記載のリチウムイオン二次電池。
  11. 二次電池の外装の表面積に対する正極の電極面積の総和が、面積比で20倍以上である請求項1ないし請求項10の何れかの請求項に記載のリチウムイオン二次電池。
  12. 二次電池の直流抵抗成分が、10ミリオーム(mΩ)以下である請求項1ないし請求項11の何れかの請求項に記載のリチウムイオン二次電池。
  13. 二次電池の1個の電池外装に収納される電池要素のもつ電気容量が、3アンペアーアワー(Ah)以上である請求項1ないし請求項12の何れかの請求項に記載のリチウムイオン二次電池。
JP2006325072A 2005-12-02 2006-11-30 リチウムイオン二次電池 Active JP5671773B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325072A JP5671773B2 (ja) 2005-12-02 2006-11-30 リチウムイオン二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005349052 2005-12-02
JP2005349052 2005-12-02
JP2006325072A JP5671773B2 (ja) 2005-12-02 2006-11-30 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2007180025A JP2007180025A (ja) 2007-07-12
JP5671773B2 true JP5671773B2 (ja) 2015-02-18

Family

ID=38304968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325072A Active JP5671773B2 (ja) 2005-12-02 2006-11-30 リチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP5671773B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668308B2 (ja) * 2009-03-27 2015-02-12 三菱化学株式会社 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池
EP2413404B1 (en) * 2009-03-27 2016-12-14 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5799710B2 (ja) 2010-09-29 2015-10-28 三菱化学株式会社 非水電解液二次電池負極用炭素材及びその製造方法、これを用いた非水系二次電池用負極並びに非水電解液二次電池
KR101325555B1 (ko) * 2011-12-09 2013-11-05 주식회사 엘지화학 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지
CN115571876A (zh) * 2014-07-07 2023-01-06 三菱化学株式会社 碳材料、碳材料的制造方法、以及使用了碳材料的非水系二次电池
JP6634720B2 (ja) * 2014-07-07 2020-01-22 三菱ケミカル株式会社 炭素材、及び、非水系二次電池
KR20180089244A (ko) * 2017-01-31 2018-08-08 삼성전자주식회사 모노플루오로실란 화합물을 함유하는 전해액을 포함하는 리튬이차전지
KR20190027188A (ko) 2017-09-06 2019-03-14 삼성에스디아이 주식회사 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
KR102449844B1 (ko) 2017-09-06 2022-09-29 삼성에스디아이 주식회사 리튬 이차 전지
JP7087889B2 (ja) * 2018-09-27 2022-06-21 株式会社豊田自動織機 複合粒子
CN113039672A (zh) * 2018-12-06 2021-06-25 松下知识产权经营株式会社 非水电解质二次电池和非水电解液
CN110745819B (zh) * 2019-10-25 2022-02-18 哈尔滨工业大学 一种用硅烷偶联剂对石墨材料表面进行改性的方法和锂离子电池负极及其制备方法
WO2021193388A1 (ja) * 2020-03-25 2021-09-30 三井化学株式会社 リチウム二次電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735842B2 (ja) * 1988-09-20 1998-04-02 三洋電機株式会社 非水電解液二次電池
JP2680685B2 (ja) * 1989-06-01 1997-11-19 三洋電機株式会社 非水電解液二次電池
JPH03190959A (ja) * 1989-12-19 1991-08-20 Hitachi Maxell Ltd リチウムイオン伝導性ポリマー電解質
JPH05101846A (ja) * 1991-10-08 1993-04-23 Sanyo Electric Co Ltd 非水電解液二次電池
JPH09180758A (ja) * 1995-12-25 1997-07-11 Fuji Photo Film Co Ltd 非水二次電池
JP3916012B2 (ja) * 1997-05-30 2007-05-16 三菱化学株式会社 非水系二次電池用電極
JP3439085B2 (ja) * 1997-08-21 2003-08-25 三洋電機株式会社 非水系電解液二次電池
US6060184A (en) * 1998-07-09 2000-05-09 Wilson Greatbatch Ltd. Inorganic and organic nitrate additives for nonaqueous electrolyte in alkali metal electrochemical cells
JP4337324B2 (ja) * 2002-10-10 2009-09-30 三菱化学株式会社 非水系電解液及びそれを用いたリチウム二次電池
JP4288402B2 (ja) * 2002-06-18 2009-07-01 日本電気株式会社 二次電池用電解液、二次電池および二次電池の使用方法
JP4367001B2 (ja) * 2002-06-25 2009-11-18 三菱化学株式会社 非水電解液二次電池
JP4154951B2 (ja) * 2002-08-08 2008-09-24 三菱化学株式会社 非水電解液二次電池
JP2004087196A (ja) * 2002-08-23 2004-03-18 Sanyo Electric Co Ltd ポリマー電解質二次電池
JP4450550B2 (ja) * 2002-11-21 2010-04-14 三井化学株式会社 非水電解液およびそれを用いた二次電池
JP4407205B2 (ja) * 2003-08-22 2010-02-03 三菱化学株式会社 リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP2005097010A (ja) * 2003-09-22 2005-04-14 Showa Denko Kk 炭素材料、その製造方法及び用途
EP1683219B1 (en) * 2003-10-31 2015-12-23 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP2005251456A (ja) * 2004-03-02 2005-09-15 Mitsubishi Chemicals Corp リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP4462414B2 (ja) * 2004-08-24 2010-05-12 信越化学工業株式会社 非水電解液及びこれを用いた電池
JP4650625B2 (ja) * 2004-10-15 2011-03-16 信越化学工業株式会社 環状カーボネート変性有機ケイ素化合物、それを含有する非水電解液並びに二次電池及びキャパシタ

Also Published As

Publication number Publication date
JP2007180025A (ja) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5671775B2 (ja) リチウムイオン二次電池
JP5671773B2 (ja) リチウムイオン二次電池
JP5003095B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5671774B2 (ja) リチウムイオン二次電池
JP5671772B2 (ja) リチウムイオン二次電池
JP5636622B2 (ja) リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP5671771B2 (ja) リチウム二次電池
JP5671770B2 (ja) リチウム二次電池
JP5514394B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP6627904B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2007194209A (ja) リチウム二次電池及びそれを連結した組電池
JP5916268B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2007220670A (ja) リチウムイオン二次電池
JP5503098B2 (ja) 二次電池用非水系電解液及びそれを用いた二次電池
JP5740802B2 (ja) リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP2007194208A (ja) リチウム二次電池及びそれを連結してなる組電池
JP2007227367A (ja) リチウムイオン二次電池
JP2011142112A (ja) 二次電池用非水系電解液及びそれを用いた二次電池
JP2007200871A (ja) リチウムイオン二次電池
JP2007165292A (ja) 二次電池用非水系電解液及びそれを用いた二次電池
JP5636623B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2007165299A (ja) リチウム二次電池
JP2007165298A (ja) リチウム二次電池
JP2007165301A (ja) リチウム二次電池
JP2013145762A (ja) 二次電池用非水系電解液及びそれを用いた二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5671773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350