[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5660845B2 - Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same - Google Patents

Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same Download PDF

Info

Publication number
JP5660845B2
JP5660845B2 JP2010230766A JP2010230766A JP5660845B2 JP 5660845 B2 JP5660845 B2 JP 5660845B2 JP 2010230766 A JP2010230766 A JP 2010230766A JP 2010230766 A JP2010230766 A JP 2010230766A JP 5660845 B2 JP5660845 B2 JP 5660845B2
Authority
JP
Japan
Prior art keywords
low
nitrogen
pressure
temperature side
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010230766A
Other languages
Japanese (ja)
Other versions
JP2012083051A (en
Inventor
岡 勝
勝 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010230766A priority Critical patent/JP5660845B2/en
Priority to CN201180031178.7A priority patent/CN102959351B/en
Priority to KR1020127033255A priority patent/KR101536394B1/en
Priority to PCT/JP2011/073255 priority patent/WO2012050068A1/en
Priority to EP11832503.4A priority patent/EP2629035B1/en
Publication of JP2012083051A publication Critical patent/JP2012083051A/en
Application granted granted Critical
Publication of JP5660845B2 publication Critical patent/JP5660845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0207Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as at least a three level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、液化方法、液化装置およびこれを備える浮体式液化ガス製造設備に関し、特に、天然ガスの液化に関するものである。   The present invention relates to a liquefaction method, a liquefaction apparatus, and a floating liquefied gas production facility including the same, and more particularly to liquefaction of natural gas.

一般に、陸上の液化設備としては、被液化ガスをカスケード式冷凍サイクルや、数種類の冷媒の混合冷媒を用いた冷凍サイクルを用いて液化している(例えば特許文献1)。この液化設備の設置場所に、近年、洋上浮体が検討されている。洋上浮体に陸上と同様な液化設備を設置した場合には、対動揺性能や設置スペース、液化の容易性、安全性への考慮において舶用化の要件がある。そのため、LNG船のボイルオフガスの再液化には用いられているが、液化設備としては液化効率に劣る窒素冷媒の窒素膨張サイクルでも適用される余地がある。   In general, as a land-based liquefaction facility, a liquefied gas is liquefied using a cascade refrigeration cycle or a refrigeration cycle using a mixed refrigerant of several kinds of refrigerants (for example, Patent Document 1). In recent years, offshore floating bodies have been studied at the place where this liquefaction facility is installed. When liquefaction equipment similar to that on land is installed on an offshore floating body, there are requirements for marine use in consideration of anti-sway performance, installation space, ease of liquefaction, and safety. Therefore, although it is used for reliquefaction of boil-off gas of an LNG ship, there is room for application as a liquefaction facility even in a nitrogen expansion cycle of nitrogen refrigerant inferior in liquefaction efficiency.

特表2006−504928号公報JP-T-2006-504928 特表2006−503252号公報JP-T-2006-503252

窒素冷凍サイクルにおける天然ガスおよび窒素の熱交換について図5を用いて説明する。図5において、縦軸は、温度(℃)を示し、横軸には、熱負荷(kW)を示す。また、図5中の実線は、4Maに昇圧した天然ガスを示し、点線は、15MPaに昇圧した天然ガスを示す。さらに、図5中の一点鎖線は、4MPaに昇圧した天然ガスと熱交換する場合の窒素を示し、二点鎖線は、15MPaに昇圧した天然ガスと熱交換する窒素を示す。   The heat exchange between natural gas and nitrogen in the nitrogen refrigeration cycle will be described with reference to FIG. In FIG. 5, the vertical axis represents temperature (° C.), and the horizontal axis represents heat load (kW). Moreover, the solid line in FIG. 5 shows the natural gas boosted to 4 Ma, and the dotted line shows the natural gas boosted to 15 MPa. Further, the alternate long and short dash line in FIG. 5 indicates nitrogen in the case where heat is exchanged with natural gas whose pressure is increased to 4 MPa, and the alternate long and two short dashes line indicates nitrogen which is heat exchanged with natural gas whose pressure is increased to 15 MPa.

図5に示すように天然ガス(実線)を4MPaに昇圧した場合には、温度が変化する過程において、熱負荷に対する天然ガスの温度変化が小さくなるステップ状を生じる。このステップ状は、冷媒である窒素が熱交換する過程において液相と気の間を相転移する間、温度が一定になるために生じる。そのため、4Maに昇圧した天然ガスと窒素との温度差が最も小さくなるピンチポイントに合わせるように窒素(一点鎖線)を設定した場合には、ピンチポイント以外の熱交換過程では、天然ガスと窒素との温度差が大きくなり、一般的に温度差が小さい場合に比べ液化効率に劣る。   As shown in FIG. 5, when the natural gas (solid line) is boosted to 4 MPa, a step shape in which the temperature change of the natural gas with respect to the heat load is reduced in the process of changing the temperature. This step shape occurs because the temperature becomes constant during the phase transition between the liquid phase and the air in the process of heat exchange of nitrogen as a refrigerant. Therefore, when nitrogen (one-dot chain line) is set to match the pinch point where the temperature difference between natural gas and nitrogen increased to 4 Ma is the smallest, in the heat exchange process other than the pinch point, natural gas and nitrogen The temperature difference is generally large and the liquefaction efficiency is generally inferior to the case where the temperature difference is small.

熱媒体窒素の圧縮循環は、特許文献2に記載の発明のように、大きな所要動力の窒素圧縮機ゆえにガスタービンによって駆動される例が多いが、ガスタービンによって消費される燃料としては液化されるべき原料ガスの一部が想定されている。液化過程で生じるオフガスは、ガスタービンの燃料としては低圧であるので再加圧が必要となり用いられにくい。製品となる液化ガスを最大化するためにもプロセスオフガスの効率のよい燃料化の課題があった。   The compression circulation of heat medium nitrogen is often driven by a gas turbine because of the nitrogen compressor having a large required power, as in the invention described in Patent Document 2, but is liquefied as fuel consumed by the gas turbine. A part of the raw material gas is assumed. The off-gas generated in the liquefaction process is low in pressure as a fuel for the gas turbine, so that re-pressurization is required and is difficult to use. In order to maximize the liquefied gas used as a product, there was a problem of efficient process-off gas conversion.

また、液化過程で生じるオフガスは、その圧力がほぼ大気圧であることや窒素成分が多く、窒素圧縮機を駆動するガスタービンの燃料に用いることが困難であるという問題があった。   In addition, the off-gas generated in the liquefaction process has a problem that its pressure is almost atmospheric pressure, and there are many nitrogen components, so that it is difficult to use as off-gas fuel for driving a nitrogen compressor.

さらには、特許文献2に記載の発明のように、窒素圧縮機をガスタービンと蒸気タービン、または、蒸気タービンと電動機とのハイブリッドにして駆動している場合には、洋上浮体に適用させるため、船上保守が困難であること、予備品の必要性や電動化による冗長性の確保が問題となっていた。   Furthermore, in the case where the nitrogen compressor is driven as a hybrid of a gas turbine and a steam turbine or a steam turbine and an electric motor as in the invention described in Patent Document 2, in order to apply to a floating body on the ocean, Onboard maintenance is difficult, and the necessity of spare parts and securing of redundancy by electrification have been problems.

一方、図5の点線で示すように、天然ガスを15MPaに昇圧した場合には、実線で示した4MPaに昇圧した天然ガスに生じていたステップ状がなくなり略直線状になる。そのため、15MPaに昇圧した高圧の天然ガスと窒素(二点鎖線)との温度差を全体に渡って小さくして熱交換させることができるため効率的に液化することができる。しかし、高圧の天然ガスと窒素とを熱交換させるためには、シェルアンドチューブ式の熱交換器を用いる必要があるため熱交換器が大型し、液化装置の設置スペースを削減できないという問題があった。   On the other hand, as shown by the dotted line in FIG. 5, when the natural gas is boosted to 15 MPa, the step shape generated in the natural gas boosted to 4 MPa indicated by the solid line disappears and becomes substantially linear. Therefore, since the temperature difference between the high-pressure natural gas boosted to 15 MPa and nitrogen (two-dot chain line) can be reduced over the entire heat exchange, it can be liquefied efficiently. However, in order to exchange heat between high-pressure natural gas and nitrogen, it is necessary to use a shell-and-tube heat exchanger, so that the heat exchanger is large and the installation space for the liquefaction device cannot be reduced. It was.

本発明は、このような事情に鑑みてなされたものであって、液化効率の低下を抑制しつつ、安全性にも優れ、かつ、設備のコンパクト化が可能な液化方法、液化装置およびこれを備える浮体式液化ガス製造設備を提供することを目的とする。   The present invention has been made in view of such circumstances, and a liquefaction method, a liquefaction apparatus, and a liquefaction method that are excellent in safety and capable of downsizing equipment while suppressing a decrease in liquefaction efficiency. An object of the present invention is to provide a floating liquefied gas production facility.

上記課題を解決するために、本発明の液化方法、液化装置およびこれを備える浮体式液化ガス製造設備は、以下の手段を採用する。
すなわち、本発明に係る液化方法によれば、高温側窒素熱交換器を用いて、単一成分の高温側窒素天然ガスを熱交換させ、減圧弁を用いて、前記高温側窒素と熱交換した前記天然ガスを減圧し、低温側窒素熱交換器を用いて、減圧した前記天然ガスを前記高温側窒素よりも低温かつ同種類の低温側窒素と熱交換させて液化し、前記高温側窒素は高温側窒素圧縮機で圧縮された後に膨張させられて前記高温側窒素熱交換器に導入され、前記低温側窒素は低温側窒素圧縮機で圧縮された後に膨張させられて前記低温側窒素熱交換器に導入されることを特徴とする。
In order to solve the above-described problems, the liquefaction method, the liquefaction apparatus, and the floating liquefied gas production facility including the same employ the following means.
That is, according to the liquefaction process according to the present invention, using a high temperature-side nitrogen heat exchanger, the high temperature-side nitrogen and natural gas of a single component is heat exchanger, using a pressure reducing valve, the hot-side nitrogen and heat the natural gas exchange under reduced pressure, using a low temperature-side nitrogen heat exchanger, liquefied said natural gas depressurized low temperature side nitrogen and allowed to heat exchange with the low temperature and the same kind than the high temperature side nitrogen, the hot Side nitrogen is expanded after being compressed by a high temperature side nitrogen compressor and introduced into the high temperature side nitrogen heat exchanger, and the low temperature side nitrogen is expanded after being compressed by a low temperature side nitrogen compressor. is introduced into the nitrogen heat exchanger, characterized in Rukoto.

被液化ガスの液化は、熱媒体と熱交換させることによって行われている。被液化ガスの液化効率は、被液化ガスと熱媒体との温度差が熱交換過程に渡って均一に小さい方が望ましい。しかし、被液化ガスが高圧の場合には、熱媒体との温度差が熱交換過程に渡ってほぼ均一に小さいが、熱媒体と熱交換を行う熱交換器が大型化してしまう。また。被液化ガスが低圧の場合には、被液化ガスがその熱交換過程でステップ状になってしまう。そのため、被液化ガスと熱媒体との温度差が最も小さくなる箇所(ピンチポイント)に合わせて熱媒体の圧力を設定した場合には、ピンチポイント以外の過程では、被液化ガスと熱媒体の温度差が大きくなり、熱交換効率が劣ってしまう。   The liquefied gas is liquefied by exchanging heat with the heat medium. The liquefaction efficiency of the liquefied gas is desirably such that the temperature difference between the liquefied gas and the heat medium is uniformly small over the heat exchange process. However, when the liquefied gas is at a high pressure, the temperature difference with the heat medium is almost uniformly small over the heat exchange process, but the heat exchanger that exchanges heat with the heat medium is enlarged. Also. When the liquefied gas is at a low pressure, the liquefied gas is stepped during the heat exchange process. Therefore, when the pressure of the heat medium is set in accordance with the position (pinch point) where the temperature difference between the liquefied gas and the heat medium is the smallest, the temperature of the liquefied gas and the heat medium is changed in a process other than the pinch point. The difference becomes large and the heat exchange efficiency becomes poor.

そこで、被液化ガスと熱媒体との温度差を小さくするために、炭化水素や窒素等の混合熱媒体もしくは複数の単一成分の熱媒体を複数の熱交換器により熱交換するカスケード方式が用いられている。しかし、カスケード方式の場合には、熱交換器等の機器が増加するという問題があった。また、混合熱媒体を用いる場合には、複数の成分からなるため被液化ガスの特性に合わせて複数の熱媒体が用いられるが、その一部に可燃性の熱媒体が用いられることから安全性に問題があった。   Therefore, in order to reduce the temperature difference between the liquefied gas and the heat medium, a cascade system is used in which heat is exchanged between a mixed heat medium such as hydrocarbon and nitrogen or a plurality of single-component heat medium using a plurality of heat exchangers. It has been. However, in the case of the cascade system, there is a problem that the number of devices such as a heat exchanger increases. In addition, when using a mixed heat medium, it consists of multiple components, so a plurality of heat mediums are used in accordance with the characteristics of the liquefied gas. There was a problem.

そこで、本発明では、被液化ガスを単一成分の高温側熱媒体と熱交換させて、その後、所定圧に減圧する。さらに、減圧された被液化ガスを、高温側熱媒体と同種類であり、かつ、高温側熱媒体よりも低温の低温側熱媒体と熱交換させることとした。これにより、高温側熱媒体と熱交換した被液化ガスを低温側熱媒体の温度変化に近似させるように減圧してから、低温側熱媒体と熱交換させることができる。そのため、被液化ガスと高温側熱媒体および低温側熱媒体との温度差を略一定に保つことができる。したがって、単一成分の熱媒体を用いて、被液化ガスを効率的に液化することができる。
なお、所定圧とは、熱媒体と熱交換する被液化ガスの臨界点に対応した圧力をいう。
また、被液化ガスは、液化する前の原料ガスであり、天然ガス(LNG)や液化石油ガス(LPG)等が挙げられる。
Therefore, in the present invention, the liquefied gas is subjected to heat exchange with the single-component high-temperature side heat medium, and then reduced to a predetermined pressure. Furthermore, the reduced-pressure liquefied gas is of the same type as the high-temperature side heat medium and is subjected to heat exchange with the low-temperature side heat medium at a lower temperature than the high-temperature side heat medium. As a result, the liquefied gas heat-exchanged with the high-temperature side heat medium can be decompressed so as to approximate the temperature change of the low-temperature side heat medium, and then heat-exchanged with the low-temperature side heat medium. Therefore, the temperature difference between the liquefied gas, the high temperature side heat medium, and the low temperature side heat medium can be kept substantially constant. Therefore, the liquefied gas can be efficiently liquefied using a single component heat medium.
The predetermined pressure refers to a pressure corresponding to the critical point of the liquefied gas that exchanges heat with the heat medium.
The liquefied gas is a raw material gas before being liquefied, and examples thereof include natural gas (LNG) and liquefied petroleum gas (LPG).

本発明に係る液化装置によれば、天然ガスと単一成分の高温側窒素とが熱交換する高温側窒素熱交換器と、該高温側窒素熱交換器から導出された前記天然ガスを減圧する減圧弁と、該減圧弁を通過した前記天然ガスと、前記高温側窒素よりも低温かつ同種類の低温側窒素とが熱交換する低温側窒素熱交換器と、を備え、前記高温側窒素は高温側窒素圧縮機で圧縮された後に膨張させられて前記高温側窒素熱交換器に導入され、前記低温側窒素は低温側窒素圧縮機で圧縮された後に膨張させられて前記低温側窒素熱交換器に導入されることを特徴とする。 According to the liquefaction apparatus according to the present invention, a high-temperature side nitrogen heat exchanger that exchanges heat between natural gas and single-component high-temperature side nitrogen, and the natural gas derived from the high-temperature side nitrogen heat exchanger is decompressed. comprising a pressure reducing valve, with the natural gas passing through the pressure reducing valve, and a low temperature and the same type of low-temperature-side nitrogen exchange heat to a low temperature side nitrogen heat exchanger than the hot side nitrogen, the hot-side nitrogen Is expanded after being compressed by a high-temperature side nitrogen compressor and introduced into the high-temperature side nitrogen heat exchanger, and the low-temperature side nitrogen is expanded after being compressed by a low-temperature side nitrogen compressor. It is introduced into the exchanger .

単一成分の高温側熱媒体を高温側熱媒体用熱交換器へ、高温側熱媒体と同種類の低温側熱媒体を低温側熱媒体用熱交換器へと導き、高温側熱媒体用熱交換器と低温側熱媒体用熱交換器との間には、被液化ガスを所定圧に減圧する減圧弁を設けることとした。これにより、高温側熱媒体用熱交換器を通過した被液化ガスを減圧弁により低温側熱媒体の温度変化に近似させて、低温側熱媒体用熱交換器へと導くことができる。そのため、被液化ガスと高温側熱媒体および低温側熱媒体との温度差を略一定に保つことができる。したがって、単一成分の熱媒体を用いて、被液化ガスを効率的に液化することができる。   The single component high-temperature side heat medium is led to the high-temperature side heat medium heat exchanger, and the same type of low-temperature side heat medium as the high-temperature side heat medium is led to the low-temperature side heat medium heat exchanger. A pressure reducing valve for reducing the liquefied gas to a predetermined pressure is provided between the exchanger and the heat exchanger for the low temperature side heat medium. Thereby, the liquefied gas that has passed through the heat exchanger for the high temperature side heat medium can be approximated to the temperature change of the low temperature side heat medium by the pressure reducing valve and led to the heat exchanger for the low temperature side heat medium. Therefore, the temperature difference between the liquefied gas, the high temperature side heat medium, and the low temperature side heat medium can be kept substantially constant. Therefore, the liquefied gas can be efficiently liquefied using a single component heat medium.

さらに、本発明に係る液化装置によれば、蒸気が導かれて駆動される高圧タービンと、該高圧タービンに接続される高圧タービン側軸と、前記高圧タービンから導出された蒸気が導かれて駆動される低圧タービンと、該低圧タービンに接続される低圧タービン側軸と、を有するクロスコンパウンドタービンと、前記高温側窒素熱交換器に導かれる高温側窒素を圧縮する高温側窒素圧縮機と、前記低温側窒素熱交換器に導かれる低温側窒素を圧縮する低温側窒素圧縮機と、前記高圧タービンに導かれる蒸気を発生する蒸気発生手段と、を備え、前記高温側窒素圧縮機を前記高圧タービン側軸に接続し、前記低温側窒素圧縮機を前記低圧タービン側軸に接続することを特徴とする。 Furthermore, according to the liquefaction apparatus according to the present invention, the high pressure turbine to which steam is guided and driven, the high pressure turbine side shaft connected to the high pressure turbine, and the steam derived from the high pressure turbine are guided and driven. A low-pressure turbine, a cross-compound turbine having a low-pressure turbine side shaft connected to the low-pressure turbine, a high-temperature side nitrogen compressor that compresses high-temperature side nitrogen led to the high-temperature side nitrogen heat exchanger, comprising a low-temperature-side nitrogen compressor for compressing low-temperature side nitrogen guided to the low-temperature side nitrogen heat exchanger, and steam generating means for generating steam is guided to the high-pressure turbine, wherein the high pressure turbine the hot-side nitrogen compressor It is connected to a side shaft, and the low temperature side nitrogen compressor is connected to the low pressure turbine side shaft.

高圧タービン側軸に高温側熱媒体用圧縮機を接続し、低圧タービン側軸に低温側熱媒体用圧縮機を接続することとした。クロスコンパウンドタービンを構成している高圧タービン側軸と低圧タービン側軸とは、互いに分離しているため、高圧タービン側軸に接続されている高圧タービン、低圧タービン側軸に接続されている低圧タービンの各々を制御することによって、高温側熱媒体用圧縮機と低温側熱媒体用圧縮機とをそれぞれ独立に制御することができる。したがって、高温側熱媒体と低温側熱媒体とを互いに独立に圧縮することができ、高温側熱媒体と低温側熱媒体との冷凍負荷を独立に制御することができる。   The compressor for the high temperature side heat medium is connected to the high pressure turbine side shaft, and the compressor for the low temperature side heat medium is connected to the low pressure turbine side shaft. Since the high pressure turbine side shaft and the low pressure turbine side shaft constituting the cross compound turbine are separated from each other, the high pressure turbine connected to the high pressure turbine side shaft and the low pressure turbine connected to the low pressure turbine side shaft By controlling each of these, the high temperature side heat medium compressor and the low temperature side heat medium compressor can be independently controlled. Therefore, the high temperature side heat medium and the low temperature side heat medium can be compressed independently of each other, and the refrigeration loads of the high temperature side heat medium and the low temperature side heat medium can be controlled independently.

さらに、本発明に係る液化装置によれば、前記高温側窒素熱交換器は、プレート式であることを特徴とする。 Furthermore, according to the liquefaction apparatus according to the present invention, the high temperature side nitrogen heat exchanger is of a plate type.

被液化ガスと高温側熱媒体とが熱交換する高温側熱媒体用熱交換器には、プレート式を用いることとした。そのため、高温側熱媒体用熱交換器を小型化することができる。したがって、液化装置のコンパクト化を図ることができる。   A plate type was used for the heat exchanger for the high temperature side heat medium in which the liquefied gas and the high temperature side heat medium exchange heat. Therefore, the heat exchanger for high temperature side heat medium can be reduced in size. Therefore, the liquefaction device can be made compact.

また、本発明に係る液化装置によれば、前記蒸気発生手段は、液化された前記天然ガス中のオフガスを燃料として蒸気を発生することを特徴とする。 Moreover, according to the liquefaction apparatus according to the present invention, the steam generating means generates steam using the off-gas in the liquefied natural gas as fuel.

液化ガス中のオフガスを燃料として燃焼して蒸気を発生する蒸気発生手段を用いることとした。そのため、クロスコンパウンドタービンを駆動する蒸気を液化装置内で生じたほぼ大気圧状態のオフガスを用いて駆動することができる。したがって、液化装置から生じるオフガスを有効に利用することができる。   Steam generating means for generating steam by burning off-gas in liquefied gas as fuel is used. Therefore, it is possible to drive the steam that drives the cross compound turbine using off-gas in an approximately atmospheric pressure state generated in the liquefaction apparatus. Therefore, the offgas generated from the liquefaction device can be used effectively.

また、本発明に係る浮体式液化ガス製造設備によれば、上記のいずれかに記載の液化装置を備えることを特徴とする。   Moreover, according to the floating body type liquefied gas manufacturing facility which concerns on this invention, it is provided with the liquefying apparatus in any one of said.

蒸気によって駆動するクロスコンパウンドタービンによって構成される液化装置を浮体式液化ガス製造設備に用いることとした。そのため、クロスコンパウンドタービンとして、既存の舶用主機に用いられている蒸気タービンを適用することができる。したがって、高温側熱媒体用圧縮機および低温側熱媒体用圧縮機を駆動するためのクロスコンパウンドタービンの新たな開発が不要となり、既存の機器を有効利用することができる。   A liquefaction apparatus constituted by a cross compound turbine driven by steam was used for a floating liquefied gas production facility. Therefore, the steam turbine currently used for the existing marine main machine can be applied as a cross compound turbine. Therefore, it is not necessary to newly develop a cross-compound turbine for driving the high temperature side heat medium compressor and the low temperature side heat medium compressor, and the existing equipment can be used effectively.

また、本発明に係る浮体式液化ガス製造設備によれば、前記高温側熱媒体及び前記低温側熱媒体には、窒素を用いることを特徴とする。   The floating liquefied gas production facility according to the present invention is characterized in that nitrogen is used for the high temperature side heat medium and the low temperature side heat medium.

熱媒に不燃性の窒素を用いる高温側熱媒体用圧縮機および低温側熱媒体用圧縮機と、高温側熱媒体用熱交換器および低温側熱媒体用熱交換器とによって構成される液化装置を浮体式液化ガス製造設備に用いることとした。また、高温側熱媒体用圧縮機および低温側熱媒体用圧縮機の駆動には、蒸気タービンを用いることとした。これらにより、熱媒体等から可燃性ガスが漏洩することによる爆発の危険性を防止することができる。そのため、甲板下に、高温側熱媒体用圧縮機、低温側熱媒体用圧縮機や蒸気タービンなどの機器を配置することができる。したがって、甲板上の液化装置の配置スペースを削減することができる。   Liquefaction apparatus comprising a high-temperature side heat medium compressor and a low-temperature side heat medium compressor using non-combustible nitrogen as a heat medium, and a high-temperature side heat medium heat exchanger and a low-temperature side heat medium heat exchanger Was used in a floating liquefied gas production facility. In addition, a steam turbine is used to drive the high temperature side heat medium compressor and the low temperature side heat medium compressor. Accordingly, it is possible to prevent the risk of explosion due to leakage of combustible gas from the heat medium or the like. Therefore, devices such as a high-temperature side heat medium compressor, a low-temperature side heat medium compressor, and a steam turbine can be disposed under the deck. Therefore, the arrangement space of the liquefying device on the deck can be reduced.

本発明によると、被液化ガスを単一成分の高温側熱媒体と熱交換させて、その後、所定圧に減圧する。さらに、減圧された被液化ガスを、高温側熱媒体と同種類であり、かつ、高温側熱媒体よりも低温の低温側熱媒体と熱交換させることとした。これにより、高温側熱媒体と熱交換した被液化ガスを低温側熱媒体の温度変化に近似させるように減圧してから、低温側熱媒体と熱交換させることができる。そのため、被液化ガスと高温側熱媒体および低温側熱媒体との温度差を略一定に保つことができる。したがって、単一成分の熱媒体を用いて、被液化ガスを効率的に液化することができる。   According to the present invention, the liquefied gas is subjected to heat exchange with a single component high-temperature side heat medium, and then depressurized to a predetermined pressure. Furthermore, the reduced-pressure liquefied gas is of the same type as the high-temperature side heat medium and is subjected to heat exchange with the low-temperature side heat medium at a lower temperature than the high-temperature side heat medium. As a result, the liquefied gas heat-exchanged with the high-temperature side heat medium can be decompressed so as to approximate the temperature change of the low-temperature side heat medium, and then heat-exchanged with the low-temperature side heat medium. Therefore, the temperature difference between the liquefied gas, the high temperature side heat medium, and the low temperature side heat medium can be kept substantially constant. Therefore, the liquefied gas can be efficiently liquefied using a single component heat medium.

本発明の一実施形態に係る液化装置を備えた浮体式液化ガス製造設備の概略構成図である。It is a schematic block diagram of the floating body type liquefied gas manufacturing equipment provided with the liquefying device concerning one embodiment of the present invention. 図1に示した液化装置の右側拡大構成図である。It is a right side expanded block diagram of the liquefying apparatus shown in FIG. 図1に示した液化装置の左側拡大構成図である。It is a left side expanded block diagram of the liquefying apparatus shown in FIG. 図2および図3に示した液化装置における天然ガスおよび窒素の関係を示したT−H線図である。FIG. 4 is a TH diagram showing the relationship between natural gas and nitrogen in the liquefaction apparatus shown in FIGS. 2 and 3. 複数の圧力における天然ガスおよび窒素の関係を示したT−H線図である。It is a TH diagram showing the relationship between natural gas and nitrogen at a plurality of pressures.

本発明の一実施形態に係る液化装置を備えた浮体式液化ガス製造設備の概略構成図について図1に基づいて説明する。
浮体式液化天然ガス製造設備(Floating LNG:FLNG)1は、液化天然ガス(液化ガス)を貯蔵する複数の貨物タンク2と、前処理装置3と、液化装置(図示せず)と、浮体式液化天然ガス製造設備1内に電力を供給する電力供給装置(図示せず)とを備えている。
浮体式液化ガス製造設備(浮体式液化ガス製造設備)1は、陸上や海底の地層下から高圧で噴出する原料ガスである天然ガス(被液化ガス)を精製液化して製品である液化天然ガス(Liquefied natural gas:LNG)にするものであり、洋上に設置されるものである。
The schematic block diagram of the floating body type liquefied gas manufacturing equipment provided with the liquefying apparatus which concerns on one Embodiment of this invention is demonstrated based on FIG.
A floating liquefied natural gas production facility (Floating LNG: FLNG) 1 includes a plurality of cargo tanks 2 for storing liquefied natural gas (liquefied gas), a pretreatment device 3, a liquefaction device (not shown), a floating type A power supply device (not shown) for supplying power to the liquefied natural gas production facility 1 is provided.
Floating liquefied gas manufacturing equipment (floating liquefied gas manufacturing equipment) 1 is a liquefied natural gas that is a product obtained by refining and liquefying natural gas (liquefied gas), which is a raw material gas ejected at high pressure from the bottom of the earth or on the seabed (Liquefied natural gas: LNG) and installed on the ocean.

貨物タンク(本図では、3つのみを示す。)2は、液化天然ガスを貯蔵するものである。貨物タンク2は、モス独立球形タンクである。
前処理装置3は、原料ガスである天然ガス中に含まれている二酸化炭素、硫化水素、水分、重質分等の不純物を除去するものである。
The cargo tank (only three are shown in the figure) 2 stores liquefied natural gas. The cargo tank 2 is a moss independent spherical tank.
The pretreatment device 3 removes impurities such as carbon dioxide, hydrogen sulfide, moisture, and heavy components contained in natural gas that is a raw material gas.

液化装置は、天然ガスを冷媒(冷却用熱媒体)と熱交換することによって液化するものである。液化装置は、後述する高圧窒素熱交換器(図示せず)や低圧窒素熱交換器(図示せず)が格納されているコールドボックス5と、船内に電力を供給する電力供給装置が設けられている船内動力設置区画4と、後述する高圧窒素圧縮機(図示せず)、低圧窒素圧縮機(図示せず)、圧縮機駆動用蒸気タービン(図示せず)などが格納されている液化装置用動力装置区画6と、後述するエンドフラッシュタンク(図示せず)などが設けられている貯蔵区画7とに分けられている。   The liquefaction device liquefies natural gas by exchanging heat with a refrigerant (cooling heat medium). The liquefaction device is provided with a cold box 5 in which a high-pressure nitrogen heat exchanger (not shown) and a low-pressure nitrogen heat exchanger (not shown), which will be described later, are stored, and a power supply device that supplies power to the ship. For the liquefaction device in which the inboard power installation section 4 and a high-pressure nitrogen compressor (not shown), a low-pressure nitrogen compressor (not shown), a steam turbine for driving the compressor (not shown), etc., which will be described later, are stored. It is divided into a power unit section 6 and a storage section 7 provided with an end flash tank (not shown) described later.

コールドボックス5は、甲板上に設けられている。コールドボックス5内には、液化装置の一部である高圧窒素熱交換器(高温側熱媒体用熱交換器)および低圧窒素熱交換器(低温側熱媒体用熱交換器)が設けられている。コールドボックス5は、外部との熱の出入りを防ぐために断熱措置が施してある。
液化装置用動力装置区画6は、甲板下に設けられている。液化装置用動力装置区画6には、液化装置を構成している高圧窒素圧縮機(高温側熱媒体用圧縮機)や低圧窒素圧縮機(低温側熱媒体用圧縮機)、これらの圧縮機を駆動する圧縮機駆動用蒸気タービン(クロスコンパウンドタービン)が設けられている。
The cold box 5 is provided on the deck. The cold box 5 is provided with a high-pressure nitrogen heat exchanger (high-temperature side heat medium heat exchanger) and a low-pressure nitrogen heat exchanger (low-temperature side heat medium heat exchanger), which are part of the liquefaction apparatus. . The cold box 5 is heat-insulated to prevent heat from entering and exiting the outside.
The power unit section 6 for the liquefier is provided below the deck. In the power unit section 6 for the liquefier, a high-pressure nitrogen compressor (high-temperature side heat medium compressor), a low-pressure nitrogen compressor (low-temperature side heat medium compressor) constituting these liquefaction devices, and these compressors A compressor driving steam turbine (cross-compound turbine) is provided.

貯蔵区画7は、甲板下に設けられており、エンドフラッシュタンクが設けられている。
船内動力設置区画4は、甲板下に設けられおり、後述するボイラ(図示せず)と、ガス焚きディーゼル機関(図示せず)と、ガス焚きディーゼル機関駆動発電機(図示せず)とを備えている。浮体式液化天然ガス製造設備1内で必要な電力は、船内動力設置区画4に設けられているこれらの機器によって供給されることとなる。
The storage compartment 7 is provided under the deck and is provided with an end flash tank.
The inboard power installation section 4 is provided under the deck and includes a boiler (not shown), a gas-fired diesel engine (not shown), and a gas-fired diesel engine drive generator (not shown). ing. The electric power required in the floating liquefied natural gas production facility 1 is supplied by these devices provided in the inboard power installation section 4.

次に、本実施形態の液化装置の構成について図2および図3を用いて説明する。
図2には、図1に示した液化装置の右側拡大構成図が示されており、図3には、その左側拡大構成図が示されている。
液化装置10は、高圧窒素熱交換器11と、低圧窒素熱交換器12と、高圧窒素圧縮機13と、低圧窒素圧縮機14と、圧縮機駆動用蒸気タービン15と、ジュールトムソン膨張弁(減圧弁)16と、ボイラ(図示せず)と、エンドフラッシュタンク30とを主に備えている。液化装置10は、冷凍サイクルと、液化装置10を駆動する駆動部とに分けられる。
Next, the structure of the liquefying apparatus of this embodiment is demonstrated using FIG. 2 and FIG.
FIG. 2 shows an enlarged configuration diagram on the right side of the liquefying apparatus shown in FIG. 1, and FIG. 3 shows an enlarged configuration diagram on the left side.
The liquefaction apparatus 10 includes a high-pressure nitrogen heat exchanger 11, a low-pressure nitrogen heat exchanger 12, a high-pressure nitrogen compressor 13, a low-pressure nitrogen compressor 14, a compressor driving steam turbine 15, and a Joule-Thomson expansion valve (reduced pressure). Valve) 16, a boiler (not shown), and an end flash tank 30 are mainly provided. The liquefaction apparatus 10 is divided into a refrigeration cycle and a drive unit that drives the liquefaction apparatus 10.

冷凍サイクルは、高圧な天然ガス(例えば15MPaから20MPa)と冷媒である窒素とが熱交換する高圧窒素ループ17と、比較的低圧な天然ガス(例えば6MPa以下)と冷媒である窒素とが熱交換する低圧窒素ループ18とを備えている。これら2つの冷凍サイクルは、互いに独立したループとなっている。
駆動部は、圧縮機駆動用蒸気タービン15を備えている。
In the refrigeration cycle, high-pressure natural gas (for example, 15 MPa to 20 MPa) and nitrogen as a refrigerant exchange heat with each other, and a relatively low-pressure natural gas (for example, 6 MPa or less) and nitrogen as a refrigerant exchange heat with each other. A low-pressure nitrogen loop 18. These two refrigeration cycles are independent loops.
The drive unit includes a compressor driving steam turbine 15.

高圧窒素ループ17は、主に、高圧窒素熱交換器11と、高圧窒素圧縮機13と、高圧窒素膨張機19とを備えている。
高圧窒素熱交換器11は、高圧な天然ガスと、窒素(以下、「高圧窒素」)とが熱交換するものである。高圧窒素熱交換器11には、例えば、Heatric社のプレート式のステンレスプレートディフュージョンタイプ(diffusion-bonded heat exchangers)が好適に用いられる。
The high-pressure nitrogen loop 17 mainly includes a high-pressure nitrogen heat exchanger 11, a high-pressure nitrogen compressor 13, and a high-pressure nitrogen expander 19.
The high-pressure nitrogen heat exchanger 11 exchanges heat between high-pressure natural gas and nitrogen (hereinafter “high-pressure nitrogen”). As the high-pressure nitrogen heat exchanger 11, for example, plate type stainless-plate diffusion type (diffusion-bonded heat exchangers) manufactured by Heatric is preferably used.

高圧窒素圧縮機13は、高圧窒素(高温側熱媒体)を圧縮するものである。高圧窒素圧縮機13には、後述する圧縮機駆動用蒸気タービン15に接続している高圧タービン側減速機20が接続されている。高圧窒素圧縮機13は、高圧タービン側減速機20が駆動されることによって高圧窒素を圧縮する。   The high-pressure nitrogen compressor 13 compresses high-pressure nitrogen (high temperature side heat medium). The high-pressure nitrogen compressor 13 is connected to a high-pressure turbine-side speed reducer 20 connected to a compressor driving steam turbine 15 described later. The high-pressure nitrogen compressor 13 compresses high-pressure nitrogen by driving the high-pressure turbine-side speed reducer 20.

高圧窒素膨張機19は、高圧窒素を膨張させるものである。高圧窒素膨張機19には、高圧窒素昇圧機21が接続されている。高圧窒素昇圧機21は、高圧窒素膨張機19が高圧窒素を膨張して回転駆動することによって駆動される。高圧窒素昇圧機21は、駆動されることによって高圧窒素を昇圧する。   The high-pressure nitrogen expander 19 expands high-pressure nitrogen. A high pressure nitrogen booster 21 is connected to the high pressure nitrogen expander 19. The high-pressure nitrogen booster 21 is driven by the high-pressure nitrogen expander 19 expanding and rotating the high-pressure nitrogen. The high-pressure nitrogen booster 21 boosts high-pressure nitrogen by being driven.

低圧窒素ループ18は、主に、低圧窒素熱交換器12と、低圧窒素圧縮機14と、低圧窒素膨張機22とを備えている。
低圧窒素熱交換器12は、天然ガスと、窒素(以下、「低圧窒素」とう。)とが熱交換するものである。低圧窒素熱交換器12には、アルミロウ付プレートフィンタイプの熱交換器が用いられる。
The low-pressure nitrogen loop 18 mainly includes a low-pressure nitrogen heat exchanger 12, a low-pressure nitrogen compressor 14, and a low-pressure nitrogen expander 22.
The low-pressure nitrogen heat exchanger 12 exchanges heat between natural gas and nitrogen (hereinafter referred to as “low-pressure nitrogen”). As the low-pressure nitrogen heat exchanger 12, a plate fin type heat exchanger with aluminum brazing is used.

低圧窒素圧縮機14は、低圧窒素(低温側熱媒体)を圧縮するものである。低圧窒素圧縮機14には、後述する圧縮機駆動用蒸気タービン15に接続されている低圧タービン側減速機23が接続されている。低圧窒素圧縮機14は、低圧タービン側減速機23が駆動されることによって低圧窒素を圧縮する。   The low-pressure nitrogen compressor 14 compresses low-pressure nitrogen (low-temperature side heat medium). The low-pressure nitrogen compressor 14 is connected to a low-pressure turbine-side speed reducer 23 that is connected to a compressor driving steam turbine 15 described later. The low-pressure nitrogen compressor 14 compresses the low-pressure nitrogen when the low-pressure turbine-side speed reducer 23 is driven.

低圧窒素膨張機22は、低圧窒素を膨張させるものである。低圧窒素膨張機22には、低圧窒素昇圧機24が接続されている。低圧窒素昇圧機24は、低圧窒素膨張機22が低圧窒素を膨張して回転駆動することによって駆動される。低圧窒素昇圧機24は、駆動されることによって低圧窒素を昇圧する。   The low-pressure nitrogen expander 22 expands low-pressure nitrogen. A low pressure nitrogen booster 24 is connected to the low pressure nitrogen expander 22. The low-pressure nitrogen booster 24 is driven by the low-pressure nitrogen expander 22 expanding and rotating the low-pressure nitrogen. The low pressure nitrogen booster 24 boosts the low pressure nitrogen by being driven.

圧縮機駆動用蒸気タービン15は、船舶の主機に用いられているクロスコンパウンド式の大型の蒸気タービンである。圧縮機駆動用蒸気タービン15としては、三菱重工業製のUST(Ultra Steam Turbine)が好的に用いられる。
圧縮機駆動用蒸気タービン15は、高圧タービン15aと、中圧タービン(高圧タービン)15bと、第1低圧タービン15cと、第2低圧タービン15dとを備えている。高圧タービン15aと中圧タービン15bとは、プライマリー軸15e(高圧タービン側軸)上に設けられている。第1低圧タービン(低圧タービン)15cと第2低圧タービン(低圧タービン)15dとは、セカンダリー軸(低圧タービン側軸)15f上に設けられている。
The compressor driving steam turbine 15 is a large cross-compound steam turbine used in a main engine of a ship. As the compressor driving steam turbine 15, UST (Ultra Steam Turbine) manufactured by Mitsubishi Heavy Industries, Ltd. is preferably used.
The compressor driving steam turbine 15 includes a high pressure turbine 15a, an intermediate pressure turbine (high pressure turbine) 15b, a first low pressure turbine 15c, and a second low pressure turbine 15d. The high-pressure turbine 15a and the intermediate-pressure turbine 15b are provided on the primary shaft 15e (high-pressure turbine side shaft). The first low pressure turbine (low pressure turbine) 15c and the second low pressure turbine (low pressure turbine) 15d are provided on a secondary shaft (low pressure turbine side shaft) 15f.

プライマリー軸15eの端部には、高圧タービン側減速機20が接続されており、セカンダリー軸15fの端部には、低圧タービン側減速機23が接続されている。
高圧タービン側減速機20は、プライマリー軸15eから伝達された出力を高圧窒素圧縮機13へと伝達するものである。これにより、高圧窒素圧縮機13は、高圧タービン15aまたは中圧タービン15bが回転駆動されることによって駆動されることとなる。
低圧タービン側減速機23は、セカンダリー軸15fから伝達された出力を低圧窒素圧縮機14へと伝達するものである。これにより、低圧窒素圧縮機14は、第1低圧タービン15cまたは第2低圧タービン15dが回転駆動されることによって駆動されることとなる。
A high-pressure turbine-side speed reducer 20 is connected to the end of the primary shaft 15e, and a low-pressure turbine-side speed reducer 23 is connected to the end of the secondary shaft 15f.
The high-pressure turbine-side speed reducer 20 transmits the output transmitted from the primary shaft 15 e to the high-pressure nitrogen compressor 13. Thereby, the high-pressure nitrogen compressor 13 is driven by the high-pressure turbine 15a or the intermediate-pressure turbine 15b being rotationally driven.
The low-pressure turbine-side speed reducer 23 transmits the output transmitted from the secondary shaft 15 f to the low-pressure nitrogen compressor 14. Thereby, the low-pressure nitrogen compressor 14 is driven by the first low-pressure turbine 15c or the second low-pressure turbine 15d being rotationally driven.

ボイラ(蒸気発生手段)は、燃料として後述するオフガスやボイルオフガス等の液化天然ガスと重油とを燃料として用いる混焼ボイラである。
エンドフラッシュタンク30は、高圧窒素サイクル17および低圧窒素サイクル18を通過した液化天然ガスを膨張させて温度降下させるものである。エンドフラッシュタンク30において、液化天然ガスは、含有されていた窒素成分が除去されることとなる。なお、エンドフラッシュタンク30の代わりに減圧弁を用いても良い。
The boiler (steam generating means) is a co-fired boiler that uses liquefied natural gas such as off-gas and boil-off gas, which will be described later, and heavy oil as fuel.
The end flash tank 30 expands the liquefied natural gas that has passed through the high-pressure nitrogen cycle 17 and the low-pressure nitrogen cycle 18 to lower the temperature. In the end flash tank 30, the nitrogen component contained in the liquefied natural gas is removed. A pressure reducing valve may be used instead of the end flash tank 30.

ジュールトムソン膨張弁16は、高圧窒素ループ17と、低圧窒素ループ18との間に設けられている。ジュールトムソン膨張弁16は、その絞り機構によって高圧窒素ループ17を通過した天然ガスをジュールトムソン膨張させるものである。   The Joule Thomson expansion valve 16 is provided between the high-pressure nitrogen loop 17 and the low-pressure nitrogen loop 18. The Joule-Thompson expansion valve 16 is for expanding Joule-Thompson natural gas that has passed through the high-pressure nitrogen loop 17 by its throttle mechanism.

次に、天然ガスの液化方法について説明する。
陸上や海底の地層下から噴出している原料ガスである天然ガスは、浮体式液化天然ガス製造設備1(図1参照)の甲板上に設けられている前処理装置3へと導かれる。天然ガスは、前処理装置3において、含有されている二酸化炭素、硫化水素、水分、重質分等が除去される。
Next, a method for liquefying natural gas will be described.
Natural gas, which is a raw material gas ejected from onshore or under the seabed, is led to a pretreatment device 3 provided on the deck of the floating liquefied natural gas production facility 1 (see FIG. 1). Natural gas contains carbon dioxide, hydrogen sulfide, moisture, heavy components and the like in the pretreatment device 3.

前処理装置3によって精製された天然ガスは、コールドボックス5へと導かれる。コールドボックス5に導かれた天然ガスは、昇圧コンプレッサ31(図2参照)等によって例えば15MPa以上に昇圧される。なお、この昇圧は、10MPa以上であることが望ましい。   The natural gas purified by the pretreatment device 3 is guided to the cold box 5. The natural gas guided to the cold box 5 is boosted to, for example, 15 MPa or more by a booster compressor 31 (see FIG. 2) or the like. Note that the pressure increase is desirably 10 MPa or more.

昇圧コンプレッサ31によって高圧にされた天然ガスは、第1熱交換器32へと導かれる。第1熱交換器32に導かれた天然ガスは、海水と熱交換して温度が例えば30℃に下げられる。第1熱交換器32によって温度が下げられた天然ガスは、さらに、第2熱交換器33へと導かれる。第2熱交換器33に導かれた天然ガスは、チラー水である清水と熱交換して温度が例えば−20℃まで低下させられる。このようにチラー水と熱交換して予冷することによって、高圧窒素ループ17における高圧窒素との熱交換効率を向上させることができる。   The natural gas that has been increased in pressure by the booster compressor 31 is guided to the first heat exchanger 32. The natural gas guided to the first heat exchanger 32 is heat-exchanged with seawater, and the temperature is lowered to, for example, 30 ° C. The natural gas whose temperature has been lowered by the first heat exchanger 32 is further guided to the second heat exchanger 33. The natural gas guided to the second heat exchanger 33 is heat-exchanged with fresh water which is chiller water, and the temperature is lowered to, for example, -20 ° C. Thus, the heat exchange efficiency with the high pressure nitrogen in the high pressure nitrogen loop 17 can be improved by heat-exchanging with chiller water and precooling.

第2熱交換器33によって予冷された天然ガスは、高圧窒素ループ17へと導かれる。高圧窒素ループ17に導かれた天然ガスは、高圧窒素ループ17を構成している高圧窒素熱交換器11へと導かれる。高圧窒素熱交換器11に導かれた天然ガスは、高圧窒素熱交換器11内に設けられている第1過冷却部K1において高圧窒素と熱交換する。第1過冷却部K1において高圧窒素と熱交換することによって、天然ガスは例えば−80℃に低下する。   The natural gas precooled by the second heat exchanger 33 is guided to the high-pressure nitrogen loop 17. The natural gas guided to the high-pressure nitrogen loop 17 is guided to the high-pressure nitrogen heat exchanger 11 constituting the high-pressure nitrogen loop 17. The natural gas guided to the high-pressure nitrogen heat exchanger 11 exchanges heat with high-pressure nitrogen in the first subcooling section K1 provided in the high-pressure nitrogen heat exchanger 11. By exchanging heat with high-pressure nitrogen in the first subcooling section K1, the natural gas is lowered to, for example, −80 ° C.

温度が低下した天然ガスは、ジュールトムソン膨張弁16へと導かれる。ジュールトムソン弁16に導かれた天然ガスは、ジュールトムソン膨張弁16を通過することによって圧力が例えば10MPaに膨張(減圧)する。これにより、ジュールトムソン膨張弁16を通過した天然ガスは、温度が例えば−90℃まで低下させられることとなる。
なお、ジュールトムソン膨張弁16による膨張によって天然ガスは、10MPa以下になることが望ましい。
The natural gas whose temperature has been lowered is guided to the Joule-Thomson expansion valve 16. The natural gas guided to the Joule-Thomson valve 16 expands (depressurizes) to a pressure of, for example, 10 MPa by passing through the Joule-Thomson expansion valve 16. As a result, the temperature of the natural gas that has passed through the Joule-Thompson expansion valve 16 is lowered to, for example, −90 ° C.
The natural gas is desirably 10 MPa or less due to expansion by the Joule-Thomson expansion valve 16.

ジュールトムソン膨張弁16を通過することによって膨張して温度の低下した天然ガスは、低圧窒素ループ18へと導かれる。低圧窒素ループ18に導かれた天然ガスは、低圧窒素ループ18を構成している低圧窒素熱交換器12へと導かれる。低圧窒素熱交換器12に導かれた天然ガスは、低圧窒素と2段階に渡って熱交換する。すなわち、天然ガスは、低圧窒素熱交換器12に設けられている第2過冷却部K2において例えば−135℃に温度が下げられ後、低圧窒素熱交換器12に設けられている第3過冷却部K3において例えば−160℃にまで温度が下げられて液化される。   Natural gas, which has been expanded by passing through the Joule-Thomson expansion valve 16 and whose temperature has dropped, is led to the low-pressure nitrogen loop 18. The natural gas guided to the low pressure nitrogen loop 18 is guided to the low pressure nitrogen heat exchanger 12 constituting the low pressure nitrogen loop 18. The natural gas led to the low-pressure nitrogen heat exchanger 12 exchanges heat with the low-pressure nitrogen in two stages. That is, after the temperature of natural gas is lowered to, for example, −135 ° C. in the second subcooling section K2 provided in the low-pressure nitrogen heat exchanger 12, the third subcooling provided in the low-pressure nitrogen heat exchanger 12 is performed. In the part K3, the temperature is lowered to, for example, −160 ° C. to be liquefied.

このようにして液化された液化天然ガスは、エンドフラッシュタンク30へと導かれる。エンドフラッシュタンク30に導かれた液化天然ガスは、エンドフラッシュタンク30内で膨張することによってその温度が降下するとともに、液化天然ガス中の窒素分が放出される。温度がさらに低下して窒素分が放出された液化天然ガスは、図1に示した貨物タンク2へと導かれて貯蔵される。   The liquefied natural gas liquefied in this way is guided to the end flash tank 30. The temperature of the liquefied natural gas led to the end flash tank 30 is reduced by expanding in the end flash tank 30, and the nitrogen content in the liquefied natural gas is released. The liquefied natural gas from which the temperature has further decreased and the nitrogen content has been released is led to and stored in the cargo tank 2 shown in FIG.

エンドフラッシュタンク30に導かれた液化天然ガスの一部は、ガス化する。ガス化した液化天然ガス(以下、「オフガス」という。)の量は、エンドフラッシュタンク30に導かれる液化天然ガスの温度を調節することによって、フラッシュ率が例えば10%以下になるようにする。   A part of the liquefied natural gas led to the end flash tank 30 is gasified. The amount of gasified liquefied natural gas (hereinafter referred to as “off-gas”) is adjusted such that the flash rate becomes 10% or less by adjusting the temperature of the liquefied natural gas led to the end flash tank 30.

オフガス(例えば−140℃)は、エンドフラッシュタンク30から低圧窒素熱交換器12へと導かれる。低圧窒素熱交換器12に導かれたオフガスは、低圧窒素熱交換器12に設けられている第2過冷却部K2において、前述した天然ガスと熱交換する。これにより、オフガスは、その温度が例えば−100℃とされる。さらに、オフガスは、低圧窒素熱交換器12に設けられている第2凝縮部G2へと導かれる。第2凝縮部G2に導かれたオフガスは、後述する低圧窒素と熱交換する。第2凝縮部G2において熱交換したオフガスは、その温度が例えば30℃に加熱されて低圧窒素熱交換器12から導出される。   Off-gas (for example, −140 ° C.) is led from the end flash tank 30 to the low-pressure nitrogen heat exchanger 12. The off gas guided to the low-pressure nitrogen heat exchanger 12 exchanges heat with the natural gas described above in the second subcooling section K2 provided in the low-pressure nitrogen heat exchanger 12. Thereby, the temperature of the off gas is set to, for example, −100 ° C. Further, the off gas is guided to the second condensing part G2 provided in the low-pressure nitrogen heat exchanger 12. The off gas guided to the second condensing part G2 exchanges heat with low-pressure nitrogen described later. The off-gas that has undergone heat exchange in the second condensing unit G2 is heated to, for example, 30 ° C. and is led out from the low-pressure nitrogen heat exchanger 12.

また、貨物タンク2(図1参照)内において液化天然ガスの一部が気化したボイルオフガスも、オフガスと同様に低圧窒素熱交換器12へと導かれる。低圧窒素熱交換器12に導かれたボイルオフガスは、低圧窒素熱交換器12に設けられている第2過冷却部K2および第2凝縮部G2において熱交換して、その温度が例えば30℃に加熱されて低圧窒素熱交換器12から導出される。   Further, the boil-off gas in which a part of the liquefied natural gas is vaporized in the cargo tank 2 (see FIG. 1) is also led to the low-pressure nitrogen heat exchanger 12 in the same manner as the off-gas. The boil-off gas guided to the low-pressure nitrogen heat exchanger 12 is heat-exchanged in the second subcooling section K2 and the second condensing section G2 provided in the low-pressure nitrogen heat exchanger 12, and the temperature thereof becomes, for example, 30 ° C. It is heated and derived from the low pressure nitrogen heat exchanger 12.

次に、高圧窒素の流れについて説明する。
高圧窒素ループ17内を循環している高圧窒素は、高圧タービン側減速機20によって駆動される高圧窒素圧縮機13によって例えば12MPa、120℃に圧縮される。高圧とされた高圧窒素は、第3熱交換器34へと導かれる。第3熱交換器34に導かれた高圧窒素は、図示しない給水系統から導かれた給水と熱交換して温度が85℃に下げられる。
Next, the flow of high pressure nitrogen will be described.
The high-pressure nitrogen circulating in the high-pressure nitrogen loop 17 is compressed to, for example, 12 MPa and 120 ° C. by the high-pressure nitrogen compressor 13 driven by the high-pressure turbine-side speed reducer 20. The high-pressure nitrogen having a high pressure is led to the third heat exchanger 34. The high-pressure nitrogen guided to the third heat exchanger 34 is heat-exchanged with water supplied from a water supply system (not shown), and the temperature is lowered to 85 ° C.

第3熱交換器34を通過した高圧窒素は、さらに第4熱交換器35へと導かれる。第4熱交換器35に導かれた高圧窒素は、図示しない清水系統から導かれた清水と熱交換して温度が40℃に下げられる。40℃まで温度が低下した高圧窒素は、高圧窒素熱交換器11へと導かれる。高圧窒素熱交換器11に導かれた高圧窒素は、高圧窒素熱交換器11に設けられている第1凝縮部G1へと導かれる。   The high-pressure nitrogen that has passed through the third heat exchanger 34 is further led to the fourth heat exchanger 35. The high-pressure nitrogen led to the fourth heat exchanger 35 is heat-exchanged with fresh water led from a not-shown fresh water system, and the temperature is lowered to 40 ° C. The high-pressure nitrogen whose temperature has decreased to 40 ° C. is led to the high-pressure nitrogen heat exchanger 11. The high-pressure nitrogen led to the high-pressure nitrogen heat exchanger 11 is led to the first condensing part G1 provided in the high-pressure nitrogen heat exchanger 11.

第1凝縮部G1に導かれた高圧窒素は、第1過冷却部K1を通過して膨張した高圧窒素と熱交換する。これによって、第1凝縮部G1を通過した高圧窒素は、温度が例えば−25℃に低下する。第1凝縮部G1において熱交換して温度が低下した高圧窒素は、高温窒素膨張機19へと導かれる。高温窒素膨張機19へと導かれた高圧窒素は、例えば2MPa、−85℃に膨張される。膨張して温度の低下した高圧窒素は、高圧窒素熱交換器11に設けられている第1過冷却部K1へと導かれる。   The high-pressure nitrogen guided to the first condensing part G1 exchanges heat with the high-pressure nitrogen expanded through the first subcooling part K1. As a result, the temperature of the high-pressure nitrogen that has passed through the first condensing part G1 falls to, for example, -25 ° C. The high-pressure nitrogen whose temperature has decreased due to heat exchange in the first condensing part G <b> 1 is guided to the high-temperature nitrogen expander 19. The high-pressure nitrogen introduced to the high-temperature nitrogen expander 19 is expanded to 2 MPa and −85 ° C., for example. The high-pressure nitrogen that has expanded and the temperature has decreased is led to the first subcooling section K1 provided in the high-pressure nitrogen heat exchanger 11.

第1過冷却部K1に導かれた膨張した高圧窒素は、前述した天然ガスと熱交換して例えば−30℃に加熱される。第1過冷却部K1において加熱された高圧窒素は、第1凝縮部G1において第4熱交換器35から導かれた高圧窒素と熱交換して例えば35℃に加熱される。   The expanded high-pressure nitrogen introduced to the first subcooling section K1 is heated to, for example, −30 ° C. by exchanging heat with the natural gas described above. The high-pressure nitrogen heated in the first subcooling unit K1 is heated to, for example, 35 ° C. by exchanging heat with the high-pressure nitrogen introduced from the fourth heat exchanger 35 in the first condensing unit G1.

高圧窒素熱交換器11に設けられている第1過冷却部K1および第1凝縮部G1を通過して加熱された膨張した高圧窒素は、高圧窒素昇圧機21へと導かれる。高圧窒素昇圧機21に導かれた膨張した高圧窒素は、高圧窒素昇圧機21によって昇圧されて例えば3MPa、85℃とされて第5熱交換器36へと導かれる。   The expanded high-pressure nitrogen heated through the first subcooling section K1 and the first condensing section G1 provided in the high-pressure nitrogen heat exchanger 11 is guided to the high-pressure nitrogen booster 21. The expanded high-pressure nitrogen guided to the high-pressure nitrogen booster 21 is boosted by the high-pressure nitrogen booster 21 to 3 MPa, 85 ° C., for example, and is guided to the fifth heat exchanger 36.

第5熱交換器36に導かれた昇圧された高圧窒素は、清水系統から導かれた清水と熱交換されて温度が例えば40℃に下げられる。第5熱交換器36を通過して温度の下げられた高圧窒素は、高圧窒素圧縮機13へと導かれる。
以上のように、高圧窒素は、高圧窒素ループ17内を循環することとなる。
The pressurized high-pressure nitrogen led to the fifth heat exchanger 36 is heat-exchanged with the fresh water led from the fresh water system, and the temperature is lowered to 40 ° C., for example. The high-pressure nitrogen whose temperature has been lowered through the fifth heat exchanger 36 is led to the high-pressure nitrogen compressor 13.
As described above, high-pressure nitrogen is circulated in the high-pressure nitrogen loop 17.

次に、低圧窒素の流れについて説明する。
低圧窒素ループ18内を循環している低圧窒素は、低圧タービン側減速機23によって駆動される低圧窒素圧縮機14によって例えば5MPaに圧縮される。圧縮された低圧窒素は、第6熱交換器37へと導かれる。第6熱交換器37に導かれた低圧窒素は、給水系統から導かれた給水と熱交換して温度が例えば85℃に下げられる。
Next, the flow of low-pressure nitrogen will be described.
The low-pressure nitrogen circulating in the low-pressure nitrogen loop 18 is compressed to, for example, 5 MPa by the low-pressure nitrogen compressor 14 driven by the low-pressure turbine-side speed reducer 23. The compressed low-pressure nitrogen is led to the sixth heat exchanger 37. The low-pressure nitrogen led to the sixth heat exchanger 37 exchanges heat with the feed water led from the feed water system, and the temperature is lowered to 85 ° C., for example.

第6熱交換器37を通過した低圧窒素は、さらに第7熱交換器38へと導かれる。第7熱交換器38に導かれた低圧窒素は、給水系統から導かれた給水と熱交換して温度が例えば40℃に下げられる。第6熱交換器37および第7熱交換器38を通過して温度が低下した低圧窒素は、低圧窒素熱交換器12へと導かれる。低圧窒素熱交換器12に導かれた低圧窒素は、低圧窒素熱交換器12に設けられている第2凝縮部G2へと導かれる。   The low-pressure nitrogen that has passed through the sixth heat exchanger 37 is further guided to the seventh heat exchanger 38. The low-pressure nitrogen led to the seventh heat exchanger 38 exchanges heat with the feed water led from the feed water system, and the temperature is lowered to 40 ° C., for example. The low-pressure nitrogen whose temperature has decreased after passing through the sixth heat exchanger 37 and the seventh heat exchanger 38 is guided to the low-pressure nitrogen heat exchanger 12. The low-pressure nitrogen guided to the low-pressure nitrogen heat exchanger 12 is guided to the second condensing part G2 provided in the low-pressure nitrogen heat exchanger 12.

第2凝縮部G2に導かれた低圧窒素は、第2過冷却部K2を通過して膨張した低圧窒素と熱交換する。これによって、第2凝縮部G2を通過した低圧窒素は、温度が例えば−90℃に下げられる。第2凝縮部G2において熱交換した低圧窒素は、低圧窒素熱交換器12から低圧窒素膨張機22へと導かれる。低圧窒素膨張機22に導かれた温度の低下した低圧窒素は、膨張して例えば3MPa、−164℃にされる。膨張し温度がさらに低下した低圧窒素は、低圧窒素熱交換器12に設けられている第3過冷却部K3へと導かれる。   The low-pressure nitrogen guided to the second condensing unit G2 exchanges heat with the low-pressure nitrogen expanded through the second subcooling unit K2. As a result, the temperature of the low-pressure nitrogen that has passed through the second condensing part G2 is lowered to, for example, -90 ° C. The low-pressure nitrogen heat-exchanged in the second condensing part G2 is guided from the low-pressure nitrogen heat exchanger 12 to the low-pressure nitrogen expander 22. The low-pressure nitrogen having a reduced temperature led to the low-pressure nitrogen expander 22 is expanded to, for example, 3 MPa and −164 ° C. The low-pressure nitrogen that has expanded and the temperature has further decreased is led to the third subcooling section K3 provided in the low-pressure nitrogen heat exchanger 12.

第3過冷却部K3に導かれた膨張した低圧窒素は、前述した第2過冷却部K2を通過した天然ガスと熱交換して例えば−140℃に加熱される。第3過冷却部K3を通過した膨張した低圧窒素は、さらに、第2過冷却部K2においてジュールトムソン膨張弁16から低圧窒素熱交換器11へと導かれた天然ガスと熱交換する。天然ガスと熱交換して膨張した低圧窒素は、例えば−100℃まで加熱される。   The expanded low-pressure nitrogen introduced to the third subcooling section K3 is heated to, for example, -140 ° C. through heat exchange with the natural gas that has passed through the second subcooling section K2. The expanded low-pressure nitrogen that has passed through the third subcooling section K3 further exchanges heat with the natural gas introduced from the Joule-Thompson expansion valve 16 to the low-pressure nitrogen heat exchanger 11 in the second subcooling section K2. The low-pressure nitrogen expanded by heat exchange with natural gas is heated to, for example, -100 ° C.

第2冷却器K2を通過して膨張した低圧窒素は、さらに低圧窒素熱交換器11に設けられている第2凝縮部G2へと導かれる。第2凝縮部G2に導かれた膨張した低圧窒素は、第7熱交換器38から導かれた低圧窒素と熱交換する。これにより、膨張した低圧窒素は、例えば36℃とされて低圧窒素熱交換器12から導出される。   The low-pressure nitrogen expanded through the second cooler K2 is further guided to the second condensing part G2 provided in the low-pressure nitrogen heat exchanger 11. The expanded low-pressure nitrogen led to the second condensing part G2 exchanges heat with the low-pressure nitrogen led from the seventh heat exchanger 38. Thereby, the expanded low-pressure nitrogen is, for example, 36 ° C. and is led out from the low-pressure nitrogen heat exchanger 12.

低圧窒素熱交換器12に設けられている第3過冷却部K3、第2過冷却部K2および第2凝縮部G2を通過して加熱された低圧窒素は、低圧窒素昇圧機24へと導かれる。低圧窒素昇圧機24に導かれた膨張した低圧窒素は、低圧窒素昇圧機24によって昇圧されて例えば1MPa、85℃とされる。昇圧された低圧窒素は、第8熱交換器39へと導かれる。   The low pressure nitrogen heated through the third subcooling section K3, the second subcooling section K2 and the second condensing section G2 provided in the low pressure nitrogen heat exchanger 12 is led to the low pressure nitrogen booster 24. . The expanded low-pressure nitrogen introduced to the low-pressure nitrogen booster 24 is boosted by the low-pressure nitrogen booster 24 to 1 MPa, 85 ° C., for example. The increased low pressure nitrogen is led to the eighth heat exchanger 39.

第8熱交換器39に導かれた昇圧された低圧窒素は、給水系統から導かれた給水と熱交換して温度が例えば40℃に下げられる。第8熱交換器39を通過して温度が下げられた低圧窒素は、低圧窒素圧縮機14へと導かれる。
以上のように、低圧窒素は、低圧窒素ループ18内を循環することとなる。
The pressure-reduced low-pressure nitrogen led to the eighth heat exchanger 39 exchanges heat with the feed water led from the feed water system, and the temperature is lowered to 40 ° C., for example. The low-pressure nitrogen whose temperature has been lowered after passing through the eighth heat exchanger 39 is guided to the low-pressure nitrogen compressor 14.
As described above, the low pressure nitrogen circulates in the low pressure nitrogen loop 18.

次に、蒸気の流れについて説明する。
低圧窒素熱交換器12に設けられている第2凝縮部G2から導出されて例えば30℃に加熱されたオフガスおよびボイルオフガスは、ボイラへと導かれる。ボイラに導かれたオフガスおよびボイルオフガスは、ボイラの燃料として燃焼されて高温高圧(例えば555℃、11MPa)の蒸気を発生させる。ボイラで発生した蒸気は、圧縮機駆動用蒸気タービン15の高圧タービン15aへと導かれる。高圧タービン15aに導かれた蒸気は、その熱エネルギーを高圧タービン15aの回転エネルギーへと変換して高圧タービン15aを回転駆動する。高圧タービン15aが回転駆動することによってプライマリー軸15eが回転する。プライマリー軸15eが回転することによって、プライマリー軸15eに設けられている中圧タービン15bおよび高圧タービン側減速機20が駆動される。
Next, the flow of steam will be described.
Off-gas and boil-off gas that are led out from the second condensing part G2 provided in the low-pressure nitrogen heat exchanger 12 and heated to, for example, 30 ° C. are led to the boiler. Off-gas and boil-off gas led to the boiler are burned as boiler fuel and generate high-temperature and high-pressure (for example, 555 ° C., 11 MPa) steam. The steam generated in the boiler is guided to the high-pressure turbine 15 a of the compressor driving steam turbine 15. The steam guided to the high-pressure turbine 15a converts the thermal energy into rotational energy of the high-pressure turbine 15a and rotationally drives the high-pressure turbine 15a. When the high-pressure turbine 15a is driven to rotate, the primary shaft 15e rotates. As the primary shaft 15e rotates, the intermediate pressure turbine 15b and the high-pressure turbine-side speed reducer 20 provided on the primary shaft 15e are driven.

一方、高圧タービン15aを回転駆動した蒸気は、例えば2MPaとされて高圧タービン15aから導出される。高圧タービン15aから導出された蒸気は、図示しない再熱器へと導かれる。再熱器に導かれた蒸気は、再熱器によって例えば555℃の再熱蒸気とされる。この再熱蒸気は、圧縮機駆動用蒸気タービン15の中圧タービン15bへと導かれる。   On the other hand, the steam that rotationally drives the high-pressure turbine 15a is, for example, 2 MPa and is derived from the high-pressure turbine 15a. The steam led out from the high-pressure turbine 15a is guided to a reheater (not shown). The steam guided to the reheater is changed to reheat steam at, for example, 555 ° C. by the reheater. The reheated steam is guided to the intermediate pressure turbine 15 b of the compressor driving steam turbine 15.

中圧タービン15bに導かれた再熱蒸気は、その熱エネルギーを中圧タービン15bの回転エネルギーへと変換して中圧タービン15bを回転駆動する。中圧タービン15bが回転駆動することによってさらにプライマリー軸15eがさらに回転する。プライマリー軸15eがさらに回転することによって、プライマリー軸15eに設けられている高圧タービン側減速機20がさらに駆動されることとなる。   The reheated steam guided to the intermediate pressure turbine 15b converts the heat energy into rotational energy of the intermediate pressure turbine 15b and rotationally drives the intermediate pressure turbine 15b. As the intermediate pressure turbine 15b is driven to rotate, the primary shaft 15e further rotates. As the primary shaft 15e further rotates, the high-pressure turbine-side speed reducer 20 provided on the primary shaft 15e is further driven.

中圧タービン15bは、その途中段から蒸気の一部が抽気される。抽気された例えば1MPaの蒸気は、浮体式液化天然ガス製造設備1(図1参照)内で用いる高圧雑用蒸気等に用いられる。
中圧タービン15bの全段を通過した蒸気は、例えば110℃とされて圧縮機駆動用蒸気タービン15の第1低圧タービン15cへと導かれる。
In the intermediate pressure turbine 15b, a part of the steam is extracted from the middle stage. The extracted steam of, for example, 1 MPa is used for high-pressure miscellaneous steam used in the floating liquefied natural gas production facility 1 (see FIG. 1).
The steam that has passed through all the stages of the intermediate pressure turbine 15 b is, for example, 110 ° C., and is guided to the first low pressure turbine 15 c of the compressor driving steam turbine 15.

第1低圧タービン15cに導かれた蒸気は、その熱エネルギーを第1低圧タービン15cの回転エネルギーへと変換して第1低圧タービン15cを回転駆動する。第1低圧タービン15cが回転駆動することによってセカンダリー軸15fが回転する。セカンダリー軸15fが回転することによって、セカンダリー軸15fに設けられている第2低圧タービン15dおよび低圧タービン側減速機23が駆動されることとなる。   The steam guided to the first low-pressure turbine 15c converts the thermal energy into rotational energy of the first low-pressure turbine 15c, and rotationally drives the first low-pressure turbine 15c. When the first low-pressure turbine 15c is driven to rotate, the secondary shaft 15f rotates. By rotating the secondary shaft 15f, the second low-pressure turbine 15d and the low-pressure turbine-side speed reducer 23 provided on the secondary shaft 15f are driven.

第1低圧タービン15cは、その途中段から蒸気の一部が抽気される。抽気された例えば0.1MPaの蒸気は、浮体式液化天然ガス製造設備1(図1参照)内で用いる低圧雑用蒸気等に用いられる。
第1低圧タービン15cの全段を通過した蒸気は、セカンダリー軸15fに設けられている第2低圧タービン15dへと導かれる。
A part of the steam is extracted from the middle stage of the first low-pressure turbine 15c. The extracted steam of, for example, 0.1 MPa is used for low-pressure miscellaneous steam used in the floating liquefied natural gas production facility 1 (see FIG. 1).
The steam that has passed through all the stages of the first low-pressure turbine 15c is guided to the second low-pressure turbine 15d provided on the secondary shaft 15f.

また、第2低圧タービン15dには、別途、図示しないアシスト蒸気供給系統より例えば0.6MPaのアシスト蒸気が供給される。供給されたアシスト蒸気により第2低圧タービン15dは、回転駆動される。第2低圧タービン15dが回転駆動ことによって、セカンダリー軸15fに接続されている低圧タービン側減速機23を駆動することが可能となっている。   Further, for example, 0.6 MPa of assist steam is separately supplied to the second low-pressure turbine 15 d from an assist steam supply system (not shown). The second low-pressure turbine 15d is rotationally driven by the supplied assist steam. When the second low-pressure turbine 15d is driven to rotate, it is possible to drive the low-pressure turbine-side speed reducer 23 connected to the secondary shaft 15f.

第1低圧タービン15cの全段を通過した蒸気および第2低圧タービン15dを駆動したアシスト蒸気は、図示しない主復水器へと導かれて海水と熱交換して復水とされる。   The steam that has passed through all the stages of the first low-pressure turbine 15c and the assist steam that has driven the second low-pressure turbine 15d are led to a main condenser (not shown) to exchange heat with seawater to be condensed.

このように、圧縮機駆動用蒸気タービン15は、プライマリー軸15eとセカンダリー軸15fとによって各々独立に高圧タービン側減速機20と低圧タービン側減速機23とを制御することができ、さらに、アシスト蒸気によって第2低圧タービン15dを駆動することによっても低圧タービン側減速機23を独立に制御することができるようになっている。   As described above, the compressor driving steam turbine 15 can independently control the high-pressure turbine side reduction gear 20 and the low-pressure turbine side reduction gear 23 by the primary shaft 15e and the secondary shaft 15f, and further assist steam. Thus, the low-pressure turbine-side speed reducer 23 can be independently controlled by driving the second low-pressure turbine 15d.

ここで、本実施形態の天然ガスおよび窒素冷媒のT−H線図について図4および前述した図5を用いて説明する。
図4には、本実施形態の天然ガスおよび窒素冷媒のT−H線図が示されている。
図4では、縦軸に熱負荷(kW)を示し、横軸に温度(℃)を示す。図4の実線は、15MPaまたは4MPaに昇圧した天然ガスを示し、一点鎖線は、4MPaに昇圧した場合の天然ガスと熱交換する窒素を示す。
Here, the TH diagram of the natural gas and the nitrogen refrigerant of the present embodiment will be described with reference to FIG. 4 and FIG. 5 described above.
FIG. 4 shows a TH diagram of the natural gas and nitrogen refrigerant of the present embodiment.
In FIG. 4, the vertical axis indicates the heat load (kW), and the horizontal axis indicates the temperature (° C.). The solid line in FIG. 4 indicates natural gas whose pressure is increased to 15 MPa or 4 MPa, and the alternate long and short dash line indicates nitrogen that exchanges heat with natural gas when the pressure is increased to 4 MPa.

また、図5には、複数の圧力における天然ガスおよび窒素の関係を示したT−H線図が示されている。
図5では、縦軸に熱負荷(kW)を示し、横軸に温度(℃)を示す。図5の実線は、15MPaに昇圧した天然ガスを示し、点線は、4MPaに昇圧した天然ガスを示し、一点鎖線は、4MPaの比較的低圧の天然ガスに対して温度差が小さな窒素を示し、二点鎖線は、15MPaの高圧の天然ガスに対して温度差が小さな窒素を示す。
FIG. 5 shows a TH diagram showing the relationship between natural gas and nitrogen at a plurality of pressures.
In FIG. 5, the vertical axis indicates the heat load (kW), and the horizontal axis indicates the temperature (° C.). The solid line in FIG. 5 indicates natural gas whose pressure has been increased to 15 MPa, the dotted line indicates natural gas whose pressure has been increased to 4 MPa, the alternate long and short dash line indicates nitrogen having a small temperature difference with respect to the natural gas having a relatively low pressure of 4 MPa, A two-dot chain line indicates nitrogen having a small temperature difference with respect to a high-pressure natural gas of 15 MPa.

図5に示すように、4MPaの天然ガス(実線)は、窒素と熱交換して温度が低下する過程において温度変化がほとんど生じないステップ状が発生する。天然ガスの液化は、窒素との温度差が小さい方が液化効率がよいため、窒素(点線)と天然ガスとの温度差が最も小さくなるピンチポイントがステップ状になってしまう。そのため、ステップ状以外の熱交換過程では、天然ガスと窒素との温度差が大きくなり全体として液化効率が低下しまう。   As shown in FIG. 5, the 4 MPa natural gas (solid line) generates a step shape in which the temperature hardly changes in the process of lowering the temperature by heat exchange with nitrogen. Since the liquefaction efficiency of natural gas liquefaction is better when the temperature difference from nitrogen is smaller, the pinch point at which the temperature difference between nitrogen (dotted line) and natural gas becomes the smallest is stepped. Therefore, in the heat exchange process other than the step shape, the temperature difference between the natural gas and nitrogen is increased, and the liquefaction efficiency is lowered as a whole.

天然ガスを例えば15MPaの高圧に昇圧した場合(点線)には、4MPaの天然ガスにおいて生じていたステップ状がなくなり、天然ガスの温度変化が略直線状になる。そのため、15MPaの天然ガスと窒素(二点鎖線)との温度差が小さくなり全体に渡って効率的に液化することができる。   For example, when the natural gas is boosted to a high pressure of 15 MPa (dotted line), the step shape generated in the natural gas of 4 MPa disappears, and the temperature change of the natural gas becomes substantially linear. Therefore, the temperature difference between the natural gas of 15 MPa and nitrogen (two-dot chain line) becomes small and can be liquefied efficiently throughout.

なお、図5に示すように、天然ガスの低温部においては、天然ガスの圧力が15MPaの場合であっても4MPaの場合であっても、窒素との温度差は小さくなっている。   As shown in FIG. 5, in the low temperature portion of natural gas, the temperature difference from nitrogen is small regardless of whether the natural gas pressure is 15 MPa or 4 MPa.

本実施形態では、図4に示すように、天然ガスの高温部では、天然ガスを高圧(例えば15MPa)に昇圧して、天然ガスの低温部では、天然ガスを比較的低圧(例えば4MPa)に昇圧して窒素と熱交換させることによって熱交換過程の全域に渡って略均一の温度差にすることとした。   In the present embodiment, as shown in FIG. 4, the natural gas is pressurized to a high pressure (for example, 15 MPa) in the high temperature portion of the natural gas, and the natural gas is set to a relatively low pressure (for example, 4 MPa) in the low temperature portion of the natural gas. By increasing the pressure and exchanging heat with nitrogen, the temperature difference was made substantially uniform throughout the entire heat exchanging process.

すなわち、天然ガスの高温部では、高圧の天然ガスを高圧窒素ループ17の高圧窒素と熱交換させ、天然ガスの低温部では、低圧の天然ガスを低圧窒素ループ18の低圧窒素と熱交換させる。
また、高圧窒素ループ17と低圧窒素ループ18との間には、ジュールトムソン膨張弁16を設けて15MPaの高圧の天然ガスを4MPaの低圧の天然ガスに膨張させることにした。これにより、図4に示すように、天然ガスの高圧部における温度と、4MPaの低圧の天然ガスの温度との差を小さくして、天然ガスの全領域にわたる温度変化を略直線状になるようにすることができる。
That is, in the high temperature portion of the natural gas, the high pressure natural gas is heat exchanged with the high pressure nitrogen of the high pressure nitrogen loop 17, and in the low temperature portion of the natural gas, the low pressure natural gas is heat exchanged with the low pressure nitrogen of the low pressure nitrogen loop 18.
Also, a Joule-Thompson expansion valve 16 is provided between the high-pressure nitrogen loop 17 and the low-pressure nitrogen loop 18 to expand 15 MPa high-pressure natural gas to 4 MPa low-pressure natural gas. As a result, as shown in FIG. 4, the difference between the temperature of the natural gas at the high pressure portion and the temperature of the low pressure natural gas of 4 MPa is reduced so that the temperature change over the entire region of the natural gas becomes substantially linear. Can be.

以上の通り、本実施形態に係る液化装置10およびこれを備えている浮体式液化天然ガス製造設備1によれば、以下の作用効果を奏する。
単一成分の高圧窒素(高温側熱媒体)を高圧窒素熱交換器(高温側熱媒体用熱交換器)11へ、高圧窒素と同種類の低圧窒素(低温側熱媒体)を低圧窒素熱交換器(低温側熱媒体用熱交換器)12へと導き、高圧窒素熱交換器11と低圧窒素熱交換器12との間には、天然ガス(被液化ガス)を所定圧に減圧するジュールトムソン膨張弁(減圧弁)16を設けることとした。これにより、高圧窒素熱交換器11を通過した天然ガスをジュールトムソン膨張弁16により低圧窒素の温度変化に近似させて低圧窒素熱交換器12へと導くことができる。そのため、天然ガスと高圧窒素との熱交換による温度差と、天然ガスと低圧窒素との熱交換による温度差とをそれぞれ熱交換過程において略一定に保つことができる。したがって、単一成分の窒素(熱媒体)を用いて、天然ガスを効率的に液化することができる。
As described above, according to the liquefying apparatus 10 according to the present embodiment and the floating liquefied natural gas production facility 1 including the liquefying apparatus 10, the following operational effects are obtained.
Single component high pressure nitrogen (high temperature side heat medium) to high pressure nitrogen heat exchanger (high temperature side heat medium heat exchanger) 11 and low pressure nitrogen (low temperature side heat medium) of the same type as high pressure nitrogen to low pressure nitrogen heat exchange Joule Thompson that leads to a low pressure side heat exchanger (heat exchanger for low temperature side heat medium) 12 and reduces natural gas (liquefied gas) to a predetermined pressure between the high pressure nitrogen heat exchanger 11 and the low pressure nitrogen heat exchanger 12 An expansion valve (pressure reducing valve) 16 was provided. As a result, the natural gas that has passed through the high-pressure nitrogen heat exchanger 11 can be approximated to the temperature change of the low-pressure nitrogen by the Joule-Thomson expansion valve 16 and led to the low-pressure nitrogen heat exchanger 12. Therefore, the temperature difference due to heat exchange between natural gas and high-pressure nitrogen and the temperature difference due to heat exchange between natural gas and low-pressure nitrogen can be kept substantially constant in the heat exchange process. Therefore, natural gas can be liquefied efficiently using single component nitrogen (heat medium).

プライマリー軸(高圧タービン側軸)15eに高圧タービン側減速機20を介して高圧窒素圧縮機(高温側熱媒体用圧縮機)13を接続し、セカンダリー軸(低圧タービン側軸)15fに低圧タービン側減速機23を介して低圧窒素圧縮機(低温側熱媒体用圧縮機)14を接続することとした。圧縮機駆動用蒸気タービン(クロスコンパウンドタービン)15を構成しているプライマリー軸15eとセカンダリー軸15fとは、互いに分離しているため、プライマリー軸15eに接続されている高圧タービン15aおよび中圧タービン(高圧タービン)15b、セカンダリー軸15fに接続されている第1低圧タービン(低圧タービン)15cおよび第2低圧タービン(低圧タービン)15dとを各々制御することによって高圧窒素圧縮機13と低圧窒素圧縮機14とをそれぞれ独立に制御することができる。したがって、高圧窒素と低圧窒素とを互いに独立に圧縮することができ、高圧窒素ループ17を循環する高圧窒素と低圧窒素ループ18を循環する低圧窒素との冷凍負荷を独立に制御することができる。   A high pressure nitrogen compressor (high temperature side heat medium compressor) 13 is connected to a primary shaft (high pressure turbine side shaft) 15e via a high pressure turbine side speed reducer 20, and a low pressure turbine side is connected to a secondary shaft (low pressure turbine side shaft) 15f. The low-pressure nitrogen compressor (low temperature side heat medium compressor) 14 is connected via the speed reducer 23. Since the primary shaft 15e and the secondary shaft 15f constituting the compressor driving steam turbine (cross compound turbine) 15 are separated from each other, the high pressure turbine 15a and the intermediate pressure turbine (which are connected to the primary shaft 15e) The high-pressure nitrogen compressor 13 and the low-pressure nitrogen compressor 14 are respectively controlled by controlling a first low-pressure turbine (low-pressure turbine) 15c and a second low-pressure turbine (low-pressure turbine) 15d connected to the secondary shaft 15f. And can be controlled independently. Therefore, the high-pressure nitrogen and the low-pressure nitrogen can be compressed independently of each other, and the refrigeration load of the high-pressure nitrogen circulating through the high-pressure nitrogen loop 17 and the low-pressure nitrogen circulating through the low-pressure nitrogen loop 18 can be controlled independently.

天然ガスと高圧窒素とが熱交換する高圧窒素熱交換器11には、ステンレスプレートディフュージョンタイプ(プレート式)を用いることとした。そのため、高圧窒素熱交換器11を小型化することができる。したがって、液化装置10を構成している高圧窒素熱交換器11が格納されているコールドボックス5のコンパクト化を図ることができる。   As the high-pressure nitrogen heat exchanger 11 that exchanges heat between natural gas and high-pressure nitrogen, a stainless plate diffusion type (plate type) is used. Therefore, the high-pressure nitrogen heat exchanger 11 can be reduced in size. Therefore, the cold box 5 in which the high-pressure nitrogen heat exchanger 11 constituting the liquefying apparatus 10 is stored can be made compact.

また、ジュールトムソン膨張弁16を通過することによって天然ガスの圧力を低下させて低圧窒素熱交換器12にアルミロウ付プレートフィンタイプ(プレート式)を用いることとした。そのため、低圧窒素熱交換器12も小型化することができる。したがって、液化装置10を構成しているコールドボックス5を更にコンパクトにすることができる。   Further, the pressure of the natural gas is lowered by passing through the Joule-Thomson expansion valve 16, and a plate fin type with aluminum brazing (plate type) is used for the low-pressure nitrogen heat exchanger 12. Therefore, the low-pressure nitrogen heat exchanger 12 can also be reduced in size. Therefore, the cold box 5 constituting the liquefying apparatus 10 can be made more compact.

液化天然ガス中のオフガスおよびボイルオフガスを燃料として燃焼して蒸気を発生するボイラ(蒸気発生手段)を用いることとした。そのため、圧縮機駆動用蒸気タービン15を駆動する蒸気を液化ガス装置10において生じたオフガスやボイルオフガスを用いて駆動することができる。したがって、液化装置10から生じるオフガスやボイルオフガスを有効に利用することができる。   It was decided to use a boiler (steam generating means) that generates steam by burning off gas and boil off gas in liquefied natural gas as fuel. Therefore, the steam for driving the compressor driving steam turbine 15 can be driven by using the off-gas and boil-off gas generated in the liquefied gas device 10. Therefore, the off gas and boil off gas generated from the liquefying apparatus 10 can be used effectively.

蒸気によって駆動する圧縮機駆動用蒸気タービン15によって構成されている液化装置10を浮体式液化天然ガス製造設備(浮体式液化ガス製造設備)1に用いることとした。そのため、圧縮機駆動用蒸気タービン15には、既存の舶用主機に用いられているクロスパウンド式の蒸気タービンを適用することができる。したがって、高圧窒素圧縮機13および低圧窒素圧縮機14を駆動するために圧縮機駆動用蒸気タービン15の新たな開発が不要となり、既存の機器を有効利用することができる。   The liquefying device 10 constituted by the steam turbine 15 for driving the compressor driven by steam is used for the floating liquefied natural gas manufacturing facility (floating liquefied gas manufacturing facility) 1. Therefore, the cross-pound steam turbine used for the existing marine main engine can be applied to the compressor driving steam turbine 15. Therefore, it is not necessary to newly develop the compressor driving steam turbine 15 for driving the high-pressure nitrogen compressor 13 and the low-pressure nitrogen compressor 14, and the existing equipment can be used effectively.

熱媒体に不燃性の窒素を用いる高圧窒素圧縮機13および低圧窒素圧縮機14と、高圧窒素熱交換器11および低圧窒素熱交換器12とによって構成されている液化装置10を浮体式液化天然ガス製造設備1に用いることとした。また、高圧窒素圧縮機13および低圧窒素圧縮機14の駆動には、圧縮機駆動用蒸気タービン15を用いることとした。これらにより、熱媒体等の可燃性ガスが漏洩することによる爆発の危険性を防止することができる。そのため、浮体式液化天然ガス製造設備1の甲板下の液化装置用動力装置区画6に、高圧窒素圧縮機13、低圧窒素圧縮機14や圧縮機駆動用蒸気タービン15などの機器を配置することができる。したがって、甲板上の液化装置10の配置スペースを削減することができる。   A liquefier 10 comprising a high-pressure nitrogen compressor 13 and a low-pressure nitrogen compressor 14 that use nonflammable nitrogen as a heat medium, a high-pressure nitrogen heat exchanger 11 and a low-pressure nitrogen heat exchanger 12 is used as a floating liquefied natural gas. It was decided to use it for manufacturing equipment 1. Further, the compressor driving steam turbine 15 is used to drive the high-pressure nitrogen compressor 13 and the low-pressure nitrogen compressor 14. Accordingly, it is possible to prevent the risk of explosion due to leakage of combustible gas such as a heat medium. Therefore, equipment such as the high pressure nitrogen compressor 13, the low pressure nitrogen compressor 14, and the compressor driving steam turbine 15 may be arranged in the liquefier power unit section 6 below the deck of the floating liquefied natural gas production facility 1. it can. Therefore, the arrangement space of the liquefying device 10 on the deck can be reduced.

また、本実施形態では、液化装置10に用いられる熱媒体として、窒素を用いて説明したが不燃性の熱媒体であればよい。
また、本実施形態では、被液化ガスとして液化天然ガス(LNG)を用いて説明したが、液化石油ガス(Liquefied petroleum gas:LPG)等であっても良い。
Moreover, in this embodiment, although demonstrated using nitrogen as a heat medium used for the liquefying apparatus 10, what is necessary is just a nonflammable heat medium.
Moreover, although this embodiment demonstrated using liquefied natural gas (LNG) as liquefied gas, liquefied petroleum gas (Liquefied petroleum gas: LPG) etc. may be sufficient.

また、本実施形態では、昇圧コンプレッサ31から高圧窒素熱交換器11へと導かれる天然ガスを第1熱交換器32および第2熱交換器33によって予冷するとして説明したが、本発明はこれに限定されるものではなく、チラー水によって予冷しない、すなわち第2熱交換器33を設けないものとしても良い。チラー水を用いて−10℃から−30℃程度まで予冷することによって、高圧窒素ループ17および低圧窒素ループ18に導かれる高圧窒素および低圧窒素を圧縮する動力の削減効果を高めることができるが、予冷を行わなくても良い。   In the present embodiment, the natural gas introduced from the booster compressor 31 to the high-pressure nitrogen heat exchanger 11 has been described as being precooled by the first heat exchanger 32 and the second heat exchanger 33, but the present invention is not limited thereto. It is not limited, It is good also as what does not pre-cool with chiller water, ie, does not provide the 2nd heat exchanger 33. By pre-cooling from −10 ° C. to about −30 ° C. using chiller water, the power reduction effect of compressing high-pressure nitrogen and low-pressure nitrogen led to the high-pressure nitrogen loop 17 and the low-pressure nitrogen loop 18 can be enhanced. Precooling is not necessary.

また、船内動力設置区画4に設けられているガス焚きディーゼル機関から排出される高温の排気ガスを排熱回収ボイラ等の排熱回収装置(図示せず)へと導いて蒸気を発生させ、排熱回収ボイラによって発生した蒸気を圧縮機駆動用蒸気タービン15へと導いて圧縮機駆動用蒸気タービン15の起動等に利用しても良い。これにより、ガス焚きディーゼル機関からの排熱を有効に利用することができる。   In addition, high-temperature exhaust gas discharged from the gas-fired diesel engine provided in the inboard power installation section 4 is led to an exhaust heat recovery device (not shown) such as an exhaust heat recovery boiler to generate steam, and exhaust The steam generated by the heat recovery boiler may be guided to the compressor driving steam turbine 15 and used for starting the compressor driving steam turbine 15 or the like. Thereby, the exhaust heat from a gas-fired diesel engine can be used effectively.

1 浮体式液化天然ガス製造設備(浮体式液化ガス製造設備)
10 液化設備
11 高圧窒素熱交換器(高温側熱媒体用熱交換器)
12 低圧窒素熱交換器(低温側熱媒体用熱交換器)
16 ジュールトムソン膨張弁(減圧弁)
1 Floating liquefied natural gas production facility (floating liquefied gas production facility)
10 Liquefaction equipment 11 High-pressure nitrogen heat exchanger (heat exchanger for high-temperature side heat medium)
12 Low pressure nitrogen heat exchanger (heat exchanger for low temperature side heat medium)
16 Joule Thomson expansion valve (pressure reducing valve)

Claims (6)

高温側窒素熱交換器を用いて、単一成分の高温側窒素天然ガスを熱交換させ
減圧弁を用いて、前記高温側窒素と熱交換した前記天然ガスを減圧し、
低温側窒素熱交換器を用いて、減圧した前記天然ガスを前記高温側窒素よりも低温かつ同種類の低温側窒素と熱交換させて液化し、
前記高温側窒素は高温側窒素圧縮機で圧縮された後に膨張させられて前記高温側窒素熱交換器に導入され、
前記低温側窒素は低温側窒素圧縮機で圧縮された後に膨張させられて前記低温側窒素熱交換器に導入される液化方法。
Using a high-temperature-side nitrogen heat exchanger, the high temperature-side nitrogen and natural gas of a single component is heat exchanger,
Using a pressure reducing valve, the natural gas heat-exchanged with the high temperature side nitrogen is decompressed,
Using a low temperature-side nitrogen heat exchanger, liquefied said natural gas depressurized low temperature side nitrogen and allowed to heat exchange with the low temperature and the same kind than the high temperature side nitrogen,
The high temperature side nitrogen is expanded by being compressed by a high temperature side nitrogen compressor and introduced into the high temperature side nitrogen heat exchanger,
It said cold side nitrogen liquefaction process that will be introduced into the low temperature side nitrogen heat exchanger inflated after being compressed on the low temperature side nitrogen compressor.
天然ガスと単一成分の高温側窒素とが熱交換する高温側窒素熱交換器と、
該高温側窒素熱交換器から導出された前記天然ガスを減圧する減圧弁と、
該減圧弁を通過した前記天然ガスと、前記高温側窒素よりも低温かつ同種類の低温側窒素とが熱交換する低温側窒素熱交換器と、を備え、
前記高温側窒素は高温側窒素圧縮機で圧縮された後に膨張させられて前記高温側窒素熱交換器に導入され、
前記低温側窒素は低温側窒素圧縮機で圧縮された後に膨張させられて前記低温側窒素熱交換器に導入される液化装置。
And the high-temperature-side nitrogen heat exchanger to the high temperature side nitrogen exchange heat of natural gas and single component,
A pressure reducing valve for depressurizing the natural gas derived from the high temperature side nitrogen heat exchanger;
Comprising said natural gas that has passed through the pressure reducing valve, and a low temperature and the same type of low-temperature-side nitrogen exchange heat to a low temperature side nitrogen heat exchanger than the high-temperature side of nitrogen,
The high temperature side nitrogen is expanded by being compressed by a high temperature side nitrogen compressor and introduced into the high temperature side nitrogen heat exchanger,
The low temperature side nitrogen is compressed by a low temperature side nitrogen compressor and then expanded and introduced into the low temperature side nitrogen heat exchanger .
蒸気が導かれて駆動される高圧タービンと、
該高圧タービンに接続される高圧タービン側軸と、
前記高圧タービンから導出された蒸気が導かれて駆動される低圧タービンと、
該低圧タービンに接続される低圧タービン側軸と、を有するクロスコンパウンドタービンと、
前記高温側窒素熱交換器に導かれる高温側窒素を圧縮する高温側窒素圧縮機と、
前記低温側窒素熱交換器に導かれる低温側窒素を圧縮する低温側窒素圧縮機と、
前記高圧タービンに導かれる蒸気を発生する蒸気発生手段と、を備え、
前記高温側窒素圧縮機を前記高圧タービン側軸に接続し、前記低温側窒素圧縮機を前記低圧タービン側軸に接続する請求項2に記載の液化装置。
A high-pressure turbine in which steam is guided and driven;
A high pressure turbine side shaft connected to the high pressure turbine;
A low-pressure turbine driven by the steam derived from the high-pressure turbine;
A cross-compound turbine having a low-pressure turbine side shaft connected to the low-pressure turbine;
A high temperature side nitrogen compressor that compresses the high temperature side nitrogen led to the high temperature side nitrogen heat exchanger;
A low temperature side nitrogen compressor that compresses the low temperature side nitrogen led to the low temperature side nitrogen heat exchanger;
Steam generating means for generating steam guided to the high-pressure turbine,
The liquefaction apparatus according to claim 2, wherein the high temperature side nitrogen compressor is connected to the high pressure turbine side shaft, and the low temperature side nitrogen compressor is connected to the low pressure turbine side shaft.
前記高温側窒素熱交換器は、プレート式である請求項2または請求項3に記載の液化装置。 The liquefying apparatus according to claim 2 or 3, wherein the high-temperature side nitrogen heat exchanger is a plate type. 前記蒸気発生手段は、液化された前記天然ガス中のオフガスを燃料として蒸気を発生する請求項に記載の液化装置。 The liquefying apparatus according to claim 3 , wherein the steam generating means generates steam by using offgas in the liquefied natural gas as fuel. 請求項2から請求項5のいずれかに記載の液化装置を備える浮体式液化ガス製造設備。   A floating liquefied gas production facility comprising the liquefying device according to any one of claims 2 to 5.
JP2010230766A 2010-10-13 2010-10-13 Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same Active JP5660845B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010230766A JP5660845B2 (en) 2010-10-13 2010-10-13 Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same
CN201180031178.7A CN102959351B (en) 2010-10-13 2011-10-07 Liquefaction method, liquefaction device, and floating liquefied gas production equipment comprising same
KR1020127033255A KR101536394B1 (en) 2010-10-13 2011-10-07 Liquefaction method, liquefaction device, and floating liquefied gas production equipment comprising same
PCT/JP2011/073255 WO2012050068A1 (en) 2010-10-13 2011-10-07 Liquefaction method, liquefaction device, and floating liquefied gas production equipment comprising same
EP11832503.4A EP2629035B1 (en) 2010-10-13 2011-10-07 Liquefaction device and floating liquefied gas production equipment comprising the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230766A JP5660845B2 (en) 2010-10-13 2010-10-13 Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same

Publications (2)

Publication Number Publication Date
JP2012083051A JP2012083051A (en) 2012-04-26
JP5660845B2 true JP5660845B2 (en) 2015-01-28

Family

ID=45938297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230766A Active JP5660845B2 (en) 2010-10-13 2010-10-13 Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same

Country Status (5)

Country Link
EP (1) EP2629035B1 (en)
JP (1) JP5660845B2 (en)
KR (1) KR101536394B1 (en)
CN (1) CN102959351B (en)
WO (1) WO2012050068A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130277021A1 (en) * 2012-04-23 2013-10-24 Lummus Technology Inc. Cold Box Design for Core Replacement
EP2983981B1 (en) 2013-04-12 2018-09-05 Excelerate Liquefaction Solutions LLC Systems and methods for floating dockside liquefaction of natural gas
RU2538192C1 (en) * 2013-11-07 2015-01-10 Открытое акционерное общество "Газпром" Method of natural gas liquefaction and device for its implementation
JP6158725B2 (en) * 2014-02-25 2017-07-05 三井造船株式会社 Boil-off gas recovery system
KR101654220B1 (en) * 2014-03-07 2016-09-05 대우조선해양 주식회사 Fuel supply method in floating type electricity power generation plant
WO2015155818A1 (en) * 2014-04-07 2015-10-15 三菱重工コンプレッサ株式会社 Floating liquefied-gas production facility
RU2578246C1 (en) * 2014-10-27 2016-03-27 Андрей Владиславович Курочкин Natural gas liquefaction method
JP6501527B2 (en) * 2015-01-09 2019-04-17 大阪瓦斯株式会社 Boil-off gas reliquefaction plant
JP2016169837A (en) * 2015-03-13 2016-09-23 三井造船株式会社 Boil-off gas recovery system
SG10202005527RA (en) * 2015-12-14 2020-07-29 Exxonmobil Upstream Res Co Pre-cooling of natural gas by high pressure compression and expansion
WO2018083747A1 (en) * 2016-11-02 2018-05-11 日揮株式会社 Natural gas liquefaction facility
EP3586057B1 (en) 2017-02-24 2022-09-14 ExxonMobil Upstream Research Company Method of purging a dual purpose lng/lin storage tank
US10627158B2 (en) * 2017-03-13 2020-04-21 Baker Hughes, A Ge Company, Llc Coproduction of liquefied natural gas and electric power with refrigeration recovery
RU2645185C1 (en) * 2017-03-16 2018-02-16 Публичное акционерное общество "НОВАТЭК" Method of natural gas liquefaction by the cycle of high pressure with the precooling of ethane and nitrogen "arctic cascade" and the installation for its implementation
EP3688391A1 (en) 2017-09-29 2020-08-05 ExxonMobil Upstream Research Company Natural gas liquefaction by a high pressure expansion process
CA3076605C (en) * 2017-09-29 2022-06-28 Exxonmobil Upstream Research Company Natural gas liquefaction by a high pressure expansion process
AU2019281725B2 (en) 2018-06-07 2022-03-17 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2020026377A1 (en) * 2018-08-01 2020-02-06 日揮グローバル株式会社 Floating facility
AU2019322808B2 (en) 2018-08-14 2022-10-13 ExxonMobil Technology and Engineering Company Conserving mixed refrigerant in natural gas liquefaction facilities
WO2020040953A2 (en) 2018-08-22 2020-02-27 Exxonmobil Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
JP7154385B2 (en) 2018-08-22 2022-10-17 エクソンモービル アップストリーム リサーチ カンパニー Management of make-up gas composition fluctuations for high pressure expander processes
CA3109908A1 (en) 2018-08-22 2020-02-27 Exxonmobil Upstream Research Company Primary loop start-up method for a high pressure expander process
US11578545B2 (en) 2018-11-20 2023-02-14 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
WO2020106397A1 (en) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
WO2020159671A1 (en) 2019-01-30 2020-08-06 Exxonmobil Upstream Research Company Methods for removal of moisture from lng refrigerant
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
JP7326485B2 (en) 2019-09-19 2023-08-15 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー Pretreatment, pre-cooling and condensate recovery of natural gas by high pressure compression and expansion
JP7326484B2 (en) 2019-09-19 2023-08-15 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー Pretreatment and precooling of natural gas by high pressure compression and expansion
WO2021055020A1 (en) 2019-09-19 2021-03-25 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11083994B2 (en) 2019-09-20 2021-08-10 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration
US11808411B2 (en) 2019-09-24 2023-11-07 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen
EP4227620A1 (en) * 2022-02-10 2023-08-16 Burckhardt Compression AG Method and device for reliquifying and returning vapour gas to an lng tank
WO2024189861A1 (en) * 2023-03-15 2024-09-19 日揮グローバル株式会社 Offshore facility

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9726297D0 (en) * 1997-12-11 1998-02-11 Bhp Petroleum Pty Ltd Liquefaction process and apparatus
US6446465B1 (en) * 1997-12-11 2002-09-10 Bhp Petroleum Pty, Ltd. Liquefaction process and apparatus
US6691531B1 (en) 2002-10-07 2004-02-17 Conocophillips Company Driver and compressor system for natural gas liquefaction
US6640586B1 (en) 2002-11-01 2003-11-04 Conocophillips Company Motor driven compressor system for natural gas liquefaction
GB0614250D0 (en) * 2006-07-18 2006-08-30 Ntnu Technology Transfer As Apparatus and Methods for Natural Gas Transportation and Processing
EP1895254A1 (en) * 2006-08-29 2008-03-05 Shell Internationale Researchmaatschappij B.V. Method for starting up a plant for the liquefaction of a hydrocarbon stream
NO328852B1 (en) * 2008-09-24 2010-05-31 Moss Maritime As Gas Process and System
FR2938903B1 (en) * 2008-11-25 2013-02-08 Technip France PROCESS FOR PRODUCING A LIQUEFIED NATURAL GAS CURRENT SUB-COOLED FROM A NATURAL GAS CHARGE CURRENT AND ASSOCIATED INSTALLATION

Also Published As

Publication number Publication date
EP2629035A4 (en) 2018-04-04
WO2012050068A1 (en) 2012-04-19
CN102959351A (en) 2013-03-06
KR101536394B1 (en) 2015-07-13
EP2629035B1 (en) 2020-12-02
KR20130023275A (en) 2013-03-07
CN102959351B (en) 2015-04-22
JP2012083051A (en) 2012-04-26
EP2629035A1 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5660845B2 (en) Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same
JP7548898B2 (en) Gas processing system and vessel containing same
KR101609575B1 (en) Vessel
KR101848139B1 (en) Vessel having Gas Treatment System
JP5926748B2 (en) Fuel supply method for a high pressure natural gas injection engine
JP5737894B2 (en) Boil-off gas reliquefaction equipment
JP2020507736A (en) Precooling of natural gas by high pressure compression and expansion
JP2018516347A (en) Evaporative gas reliquefaction system
KR20110094012A (en) Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility
KR101525664B1 (en) A treatment System of Liquefied Gas and A Method for the same
JP2019509938A (en) Ship
JP6887431B2 (en) Ship with engine
KR101940259B1 (en) Reliquefaction system
JP2019509929A (en) Ship
KR20110121134A (en) Method and apparatus for liquefying natural gas
KR102473952B1 (en) Boil-off Gas Treatment System And Method For Ship
KR101438323B1 (en) A treatment System of Liquefied Gas and A Method for the same
KR101399759B1 (en) A treatment System of Liquefied Gas and A Method for the same
KR102516755B1 (en) Boil-Off Gas Reliquefaction System and Method for Ship
KR102460410B1 (en) Vessel
KR101665498B1 (en) BOG Re-liquefaction Apparatus and Method for Vessel
KR102371429B1 (en) Vessel
KR20200117079A (en) Liquefaction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141202

R151 Written notification of patent or utility model registration

Ref document number: 5660845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350