JP5659392B2 - Friction material and friction material manufacturing method - Google Patents
Friction material and friction material manufacturing method Download PDFInfo
- Publication number
- JP5659392B2 JP5659392B2 JP2011044339A JP2011044339A JP5659392B2 JP 5659392 B2 JP5659392 B2 JP 5659392B2 JP 2011044339 A JP2011044339 A JP 2011044339A JP 2011044339 A JP2011044339 A JP 2011044339A JP 5659392 B2 JP5659392 B2 JP 5659392B2
- Authority
- JP
- Japan
- Prior art keywords
- friction material
- silicon
- containing polymer
- binder
- friction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002783 friction material Substances 0.000 title claims description 105
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 239000011230 binding agent Substances 0.000 claims description 61
- 229920005573 silicon-containing polymer Polymers 0.000 claims description 50
- 238000010438 heat treatment Methods 0.000 claims description 48
- 239000002734 clay mineral Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 24
- 238000003856 thermoforming Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 19
- 238000010304 firing Methods 0.000 claims description 18
- 230000001590 oxidative effect Effects 0.000 claims description 16
- 229920003257 polycarbosilane Polymers 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 8
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 7
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 7
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000011147 inorganic material Substances 0.000 claims description 6
- 239000003607 modifier Substances 0.000 claims description 6
- 229910018540 Si C Inorganic materials 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 238000000465 moulding Methods 0.000 description 12
- 239000005011 phenolic resin Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 9
- 239000011368 organic material Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 230000000740 bleeding effect Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000010000 carbonizing Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000016571 aggressive behavior Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011153 ceramic matrix composite Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000275 saponite Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- WSNJABVSHLCCOX-UHFFFAOYSA-J trilithium;trimagnesium;trisodium;dioxido(oxo)silane;tetrafluoride Chemical compound [Li+].[Li+].[Li+].[F-].[F-].[F-].[F-].[Na+].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WSNJABVSHLCCOX-UHFFFAOYSA-J 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- CDULGHZNHURECF-UHFFFAOYSA-N 2,3-dimethylaniline 2,4-dimethylaniline 2,5-dimethylaniline 2,6-dimethylaniline 3,4-dimethylaniline 3,5-dimethylaniline Chemical group CC1=CC=C(N)C(C)=C1.CC1=CC=C(C)C(N)=C1.CC1=CC(C)=CC(N)=C1.CC1=CC=C(N)C=C1C.CC1=CC=CC(N)=C1C.CC1=CC=CC(C)=C1N CDULGHZNHURECF-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- -1 aliphatic amines Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- NUKAPDHENUQUOI-UHFFFAOYSA-N benzyl(18-methylnonadecyl)azanium;chloride Chemical compound [Cl-].CC(C)CCCCCCCCCCCCCCCCC[NH2+]CC1=CC=CC=C1 NUKAPDHENUQUOI-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- RBRXPPLNXDVMKG-GMFCBQQYSA-M bis(2-hydroxyethyl)-methyl-[(z)-octadec-9-enyl]azanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC[N+](C)(CCO)CCO RBRXPPLNXDVMKG-GMFCBQQYSA-M 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- VNSBYDPZHCQWNB-UHFFFAOYSA-N calcium;aluminum;dioxido(oxo)silane;sodium;hydrate Chemical compound O.[Na].[Al].[Ca+2].[O-][Si]([O-])=O VNSBYDPZHCQWNB-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- DULAEBAGAYVIDN-UHFFFAOYSA-N n-dodecyl-n-methyldodecan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCCCCCC[NH+](C)CCCCCCCCCCCC DULAEBAGAYVIDN-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229920001558 organosilicon polymer Polymers 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
Images
Landscapes
- Braking Arrangements (AREA)
Description
本発明は、自動車、鉄道、航空機、産業機械等に使われているブレーキ用摩擦材に関するものであり、特に小型・軽量化可能な、高温・高負荷に耐え得る耐熱性に優れた摩擦材及びその製造方法に関する。 The present invention relates to a friction material for brakes used in automobiles, railways, aircraft, industrial machines, and the like, and in particular, a friction material excellent in heat resistance capable of withstanding high temperature and high load, which can be reduced in size and weight, and It relates to the manufacturing method.
主に自動車などに使われている摩擦材は、フェノール樹脂を代表とする熱硬化性樹脂を結合材(バインダー)として成形されているが、結合材が有機材料であることから高速での摩擦係数の低下、制動熱による有機材料の熱変形や劣化による摩擦材の貼りつきが問題となっている。近年、摩擦材に求められる性能は省エネルギー化を目的に小型・軽量化が進み、摩擦材にかかる負荷は益々厳しくなっている。これらの問題解決のため、銅系焼結合金による摩擦材、C/Cコンポジット、CMC(セラミックスマトリックスコンポジット)、有機材料を焼成・炭化させた摩擦材などが特許文献1〜3に提案されている。
しかしながら、これらの摩擦材は、その製法の困難性、製造する上での高エネルギー、コストが従来品より割高になるなど、課題が残っている。
Friction materials mainly used in automobiles are molded with thermosetting resins such as phenol resin as binders (binders), but because the binders are organic materials, the friction coefficient at high speed There is a problem that the friction material sticks due to a decrease in temperature and thermal deformation or deterioration of the organic material due to braking heat. In recent years, the performance required of friction materials has been reduced in size and weight for the purpose of energy saving, and the load on the friction materials has become increasingly severe. In order to solve these problems, a friction material made of a copper-based sintered alloy, a C / C composite, a CMC (ceramic matrix composite), a friction material obtained by firing and carbonizing an organic material, and the like have been proposed in Patent Documents 1 to 3. .
However, these friction materials still have problems such as difficulty in the production method, high energy in production, and higher cost than conventional products.
また、特許文献1及び特許文献2には、ピッチを含む有機材料を焼結・炭化して結合材とした摩擦材が提案されている。一般に、有機材料を焼成炭素化して結合材となるようにして摩擦材を製造する場合、有機材料、無機充填材、固体潤滑材、金属材料等の原材料を混合し、この混合物を真空、還元ガス、不活性ガスの何れかの雰囲気中で必要な荷重をかけながら550〜1000℃程度に昇温して保持する。これにより、有機材料が焼成炭素化して結合材として機能し、摩擦材が製造される。しかし、焼成摩擦材のバインダーとしてピッチを配合すると有害成分であるベンゾピレンを微量に含有しており、昨今の環境規制から使用が制限される可能性がある。今後、使用禁止になった場合、焼成摩擦材のバインダーとして代替原材料が必要になってくる。 Patent Documents 1 and 2 propose a friction material that is a binder obtained by sintering and carbonizing an organic material containing pitch. In general, when manufacturing a friction material by carbonizing an organic material into a binder, the raw materials such as an organic material, an inorganic filler, a solid lubricant, and a metal material are mixed, and this mixture is vacuumed and reduced gas. The temperature is raised to about 550 to 1000 ° C. while applying a necessary load in any atmosphere of an inert gas. As a result, the organic material is carbonized to function as a binder, and a friction material is manufactured. However, when pitch is blended as a binder of the fired friction material, it contains a trace amount of benzopyrene, which is a harmful component, and there is a possibility that its use is restricted due to recent environmental regulations. When the use is prohibited in the future, an alternative raw material will be required as a binder for the fired friction material.
一方、一般的なディスクブレーキ用摩擦材はフェノール樹脂を代表とする熱硬化性樹脂を結合材として成形されるが、熱成形過程において有機結合材の熱硬化反応によりガスが発生する。この発生したガスが熱成形された摩擦材内部に閉じ込められ、そのガス圧が大きすぎる場合には、プレス圧の除圧時に一気に解放され、ヒビやフクレを生じる原因となる。 On the other hand, a general disc brake friction material is formed using a thermosetting resin typified by a phenol resin as a binder, and gas is generated by a thermosetting reaction of the organic binder in the thermoforming process. If the generated gas is confined in the thermoformed friction material and the gas pressure is too high, it is released at a time when the press pressure is released, causing cracks and blisters.
特許文献4には、熱硬化性樹脂とともに有機金属化合物を含有させることで、高温作動時において揮発分が少なく、耐フェード性、耐摩耗性に優れた摩擦材を提供する技術が記載されているが、このような無機バインダーを用いた摩擦材であっても同様な現象を起こす。 Patent Document 4 describes a technique for providing a friction material that contains an organometallic compound together with a thermosetting resin, has a low volatile content during high temperature operation, and has excellent fade resistance and wear resistance. However, even a friction material using such an inorganic binder causes the same phenomenon.
フェノール樹脂などをバインダーとした摩擦材のヒビ、フクレの解決策としては、特許文献5に熱成形型のパンチ材質を、熱伝導性を上げたものに変更し、温度勾配を設けて発生ガスの排出を促す方法がある。また、特許文献6には成形時に加圧と除圧を繰り返し、除圧時に圧力の解放を制御することによって、急激なガス膨張を抑止する解決策も記載されている。
特許文献7では、押え型、中型及び加圧型からなる摩擦材の熱成形用金型を用いて摩擦材原料の予備成形体を熱成形する際、押え型と加圧型に温度差を設け、熱成形時に予備成形体が最後に硬化する部分を押え型か加圧型のいずれか一方に寄せるとともに、この最終硬化部に対応する押え型または加圧型に前記最終硬化部に突入し、かつ前記の型に外部に通じるガス抜き路を持つ突起を設けることによって前記最終硬化部からガス抜きできるようにした摩擦材の熱成形過程のガス抜き方法が記載されている。
しかし、これらの方法を用いても未だ十分とはいえず、熱成形完了後に製品が徐々に膨張し、ヒビやフクレを起こすケースが確認され、これらの対策を施した場合でも解決にならなかった。
As a solution for cracks and blisters in friction materials using phenolic resin as a binder, Patent Document 5 changes the punch material of the thermoforming die to one with increased thermal conductivity, and provides a temperature gradient to reduce the generated gas. There are ways to encourage emissions. Patent Document 6 also describes a solution that suppresses rapid gas expansion by repeating pressurization and depressurization during molding and controlling the release of pressure during depressurization.
In Patent Document 7, when a friction material raw preform is thermoformed using a friction material thermoforming mold including a presser mold, a middle mold, and a press mold, a temperature difference is provided between the presser mold and the press mold. At the time of molding, the part where the preform is finally cured is brought to either the pressing mold or the pressing mold, and the pressing mold or pressing mold corresponding to this final curing part is entered into the final curing part, and the mold Describes a degassing method in the thermoforming process of the friction material, in which a protrusion having a degassing path leading to the outside is provided so that degassing can be performed from the final hardened portion.
However, even if these methods are used, it is still not sufficient, and it has been confirmed that the product gradually expands after completion of thermoforming, causing cracks and blisters, and even if these measures are taken, it has not been solved. .
上記したように、高温・高負荷に耐えるディスクブレーキパッドを製造する場合、結合材等を焼成・炭化させて摩擦材とすることがあるが、その製法の困難性、製造する上での高エネルギー消費、コストが従来品より割高になるなど実用性に問題がある。その中で有機系摩擦材(NAO材、Non−Asbestos−Organic)と同様な製造プロセスに焼成工程を付け加えるだけで製造することが出来る高耐熱性パッドを提供できれば、上記の高エネルギー生産の間題を解決することができる。
従って、本発明の課題の一つは、高温・高負荷に適合し、有機系摩擦材と同様な工程に焼成工程を付け加えるだけで製造できる高耐熱性パッドを提供することである。
As described above, when manufacturing a disc brake pad that can withstand high temperatures and high loads, the binding material may be fired and carbonized to produce a friction material. However, the manufacturing process is difficult and the energy required for manufacturing is high. There are problems in practicality such as higher consumption and cost than conventional products. If the high heat-resistant pad which can be manufactured only by adding a baking process to the manufacturing process similar to an organic type friction material (NAO material, Non-Asbestos-Organic) in the inside is provided, it is a subject of said high energy production. Can be solved.
Accordingly, one of the objects of the present invention is to provide a high heat-resistant pad that is suitable for high temperature and high load and can be manufactured simply by adding a baking process to the same process as the organic friction material.
本発明のもう一つの課題は、結合材にピッチを含む有機系樹脂を使用すると製造工程内で有害成分のベンゾピレンが排出される恐れがあるので、代替材料としてケイ素含有ポリマーを焼成摩擦材の結合材として応用することを目的とする。
また、無機バインダーを用いた摩擦材において、従来の成形法では熱成形完了後に製品が徐々に膨張し、ヒビやフクレを起こすケースが確認され、各種対策を施した場合でも解決にならなかった。従って、本発明の別の目的は、熱成形完了後の製品のヒビやフクレなどといった成形不良を解消することのできる品質の優れた摩擦材を得る成形方法を開発することである。
Another problem of the present invention is that when an organic resin containing pitch is used as a binder, harmful component benzopyrene may be discharged in the manufacturing process. It is intended to be applied as a material.
In addition, in a friction material using an inorganic binder, it has been confirmed that the conventional molding method gradually expands after completion of thermoforming, causing cracks and blisters, and even when various measures are taken, it cannot be solved. Accordingly, another object of the present invention is to develop a molding method for obtaining a friction material having excellent quality capable of eliminating molding defects such as cracks and blisters of a product after completion of thermoforming.
本発明者は、既存の製造工程で高耐熱性摩擦材あるいは焼成摩擦材を製造するため、成形条件及び摩擦材の各種バインダー等を各種検討した結果、下記(1)〜(12)により本発明の課題を解決した。
(1)繊維基材、摩擦調整材、結合材及び無機材料よりなる摩擦材において、該結合材としてケイ素含有ポリマー及び膨潤性粘土鉱物を含有する原材料を酸化雰囲気で熱処理することにより不融化して、ケイ素含有ポリマーを酸素と架橋させた後、焼成処理してSi−Cネットワークが形成されたことを特徴とする摩擦材。
(2)前記熱処理が、160〜350℃の温度で、1〜10時間の間行ったものである上記(1)に記載の摩擦材。
In order to produce a high heat-resistant friction material or a fired friction material in the existing production process, the inventor has studied various molding conditions and various binders of the friction material, and as a result, the present invention has the following (1) to (12). Solved the problem.
(1) In a friction material composed of a fiber base material, a friction modifier, a binder and an inorganic material, the raw material containing a silicon-containing polymer and a swellable clay mineral as the binder is infusible by heat treatment in an oxidizing atmosphere. A friction material, wherein a silicon-containing polymer is cross-linked with oxygen and then fired to form a Si-C network.
(2) The friction material according to (1), wherein the heat treatment is performed at a temperature of 160 to 350 ° C. for 1 to 10 hours.
(3)前記ケイ素含有ポリマーが、ポリカルボシラン、ポリオルガノボロシラザン、ポリボロシロキサン、ポリカルボシラザン、パーヒドロポリシラザンの群から選択された1つ又は2つ以上の化合物である上記(1)又は(2)に記載の摩擦材。
(4)前記ケイ素含有ポリマーが摩擦材組成全体の5〜10質量%配合されていることを特徴とする上記(1)〜(3)のいずれか1つに記載の摩擦材。
(5)前記ケイ素含有ポリマー100質量部に対して、前記膨潤性粘土鉱物を1〜10質量部含有することを特徴とする上記(1)〜(4)のいずれか1つに記載の摩擦材。
(6)前記膨潤性粘土鉱物が、有機化処理された膨潤性粘土鉱物である上記(1)〜(5)のいずれか1つに記載の摩擦材。
(7)膨潤性粘土鉱物がモンモリロナイトである上記(1)〜(6)のいずれか1つに記載の摩擦材。
(3) The above (1) or wherein the silicon-containing polymer is one or more compounds selected from the group consisting of polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane. The friction material according to (2).
(4) The friction material according to any one of (1) to (3), wherein the silicon-containing polymer is blended in an amount of 5 to 10% by mass of the entire friction material composition.
(5) The friction material according to any one of (1) to (4) above, wherein 1 to 10 parts by mass of the swellable clay mineral is contained with respect to 100 parts by mass of the silicon-containing polymer. .
(6) The friction material according to any one of (1) to (5), wherein the swellable clay mineral is an organically treated swellable clay mineral.
(7) The friction material according to any one of (1) to (6), wherein the swellable clay mineral is montmorillonite.
(8)少なくとも予備成形、熱成形及び熱処理の工程を含む、繊維基材、摩擦調整材、結合材及び無機材料よりなる摩擦材の製造方法において、該結合材としてケイ素含有ポリマー及び膨潤性粘土鉱物を含有する原材料を熱成形の後、160〜350℃の温度で、1〜10時間の間、酸化雰囲気で熱処理することにより不融化して、ケイ素含有ポリマーを酸素と架橋させた後、焼成処理したことを特徴とする摩擦材の製造方法。
(9)前記不融化処理における熱処理の昇温速度を、1時間あたり14〜140℃で行うことを特徴とする上記(8)に記載の摩擦材の製造方法。
(10)前記不融化処理における熱処理を、ミリ波加熱を用いて行うことを特徴とする上記(8)又は(9)に記載の摩擦材の製造方法。
(8) In a method for producing a friction material comprising a fiber base material, a friction modifier, a binder, and an inorganic material, including at least preforming, thermoforming and heat treatment steps, a silicon-containing polymer and a swellable clay mineral as the binder After the thermoforming, the raw material containing silicon is infusible by heat treatment in an oxidizing atmosphere at a temperature of 160 to 350 ° C. for 1 to 10 hours to crosslink the silicon-containing polymer with oxygen, followed by firing treatment A method for manufacturing a friction material.
(9) The method for producing a friction material as described in (8) above, wherein the temperature increase rate of the heat treatment in the infusibilization treatment is performed at 14 to 140 ° C. per hour.
(10) The method for producing a friction material according to (8) or (9), wherein the heat treatment in the infusibilization treatment is performed using millimeter wave heating.
(11)前記熱処理の後、さらに800〜1000℃の温度で1〜2時間焼成することを特徴とする上記(8)〜(10)のいずれか1つに記載の摩擦材の製造方法。
(12)前記予備成形が圧力25〜300MPaの予備成形を施したことを特徴とする上記(8)〜(11)のいずれか1つに記載の摩擦材の製造方法。
(11) The method for producing a friction material according to any one of the above (8) to (10), wherein after the heat treatment, firing is further performed at a temperature of 800 to 1000 ° C. for 1 to 2 hours.
(12) The method for producing a friction material as described in any one of (8) to (11) above, wherein the preforming is preformed at a pressure of 25 to 300 MPa.
結合材をストレートフェノール樹脂のような有機材料からケイ素含有ポリマーにしたことにより、酸素との架橋による母材強化機構を形成することから、従来の摩擦材よりも耐熱性を上げることが出来る。また、ケイ素含有ポリマーを酸化雰囲気で加熱すれば、加熱処理中に流れ出さないので、摩擦材用のバインダーとして使用可能であることが分かった。更に詳細に検討したところ、ケイ素含有ポリマーは予備硬化温度が300℃未満であると樹脂が柔らかすぎて圧力をかける前に染み出してしまうという課題があったため(例えば、特開2002−255650号公報段落番号〔0012〕参照)、本発明では、更に不融化時にケイ素含有ポリマーの染み出しをより有効に抑制するために、ケイ素含有ポリマーと共に膨潤性粘土鉱物を含有させることにより、ケイ素含有ポリマーの加熱中の流出を抑えることができることを見出した。また、ケイ素含有ポリマーは温度変化に敏感であり、不融化処理中に唐突に粘度低下が生じることがあるが、膨潤性粘土鉱物を含有させることで、溶融粘度を大きくし、粘度変化を制御することができるため、不融化工程を短時間で終了させることができ、低コスト、短時間で摩擦材を製造することができる。また、有機化処理された膨潤性粘土鉱物は微細に分散できるので、膨潤性粘土鉱物の添加量が少量で済み、摩擦性能への影響も少なく、セラミックスネットワークの形成を有効に補助し、強化させることができる。 By changing the binder from an organic material such as a straight phenol resin to a silicon-containing polymer, a base material strengthening mechanism is formed by crosslinking with oxygen, so that the heat resistance can be improved as compared with a conventional friction material. Further, it was found that if the silicon-containing polymer is heated in an oxidizing atmosphere, it does not flow out during the heat treatment, so that it can be used as a binder for a friction material. As a result of further detailed investigation, when the pre-curing temperature of the silicon-containing polymer is less than 300 ° C., there is a problem that the resin is too soft and oozes out before pressure is applied (for example, JP-A-2002-255650). In the present invention, in order to more effectively suppress the exudation of the silicon-containing polymer during infusibilization, the silicon-containing polymer is heated by including a swellable clay mineral together with the silicon-containing polymer. It was found that the outflow inside can be suppressed. In addition, silicon-containing polymers are sensitive to temperature changes and may suddenly drop in viscosity during the infusibilization process, but contain swellable clay minerals to increase melt viscosity and control viscosity changes. Therefore, the infusibilization process can be completed in a short time, and the friction material can be manufactured at a low cost and in a short time. In addition, organically treated swellable clay minerals can be finely dispersed, so the amount of swellable clay minerals can be added in a small amount and has little effect on friction performance, effectively assisting and strengthening the formation of ceramic networks. be able to.
更に、その製造では従来の既存設備のみで対応できることから製造コストも同等となり、設備投資の必要もない。
また、ピッチを焼成摩擦材のバインダーとして使用すると、有害物質であるベンゾピレンが製造工程内で微量排出される恐れがあるが、ケイ素含有ポリマーに替えると環境汚染のない耐熱性に優れた焼成摩擦材として使用することが可能となる。
Furthermore, since the production can be handled only with the existing equipment, the production costs are equivalent and there is no need for capital investment.
In addition, when pitch is used as a binder for fired friction materials, benzopyrene, a harmful substance, may be discharged in a small amount in the manufacturing process. Can be used.
更に、摩擦材の結合材にケイ素含有ポリマーを使用した場合には完全にヒビ・フクレの発生を抑えることはできないが、ケイ素含有ポリマーを使用して高圧力で予備成形を行うと熱成形時の厚み変化が少ない。よって、ガスの排出口を塞ぐことなく、ヒビ・フクレの発生防止になり、品質の優れた摩擦材を製造できる。また、ニアネットシェイプ(near net shape)での成形が可能であり、通常の予備成形品に比べてボロツキがないため、ハンドリングが良好となる。なお、通常の有機系摩擦材の予備成形圧力は25〜35MPaであり、本発明では、これを超える圧力で予備成形することを高圧力での予備成形と称し、具体的には25〜300MPaであることが好ましい。 Furthermore, when a silicon-containing polymer is used as a binder for the friction material, the generation of cracks and bulges cannot be completely suppressed. However, if a silicon-containing polymer is used for pre-molding at high pressure, Little change in thickness. Therefore, it is possible to prevent generation of cracks and blisters without blocking the gas discharge port, and to manufacture a friction material with excellent quality. Further, near net shape can be formed, and there is no fluctuation as compared with a normal preform, so that handling is good. In addition, the preforming pressure of a normal organic friction material is 25 to 35 MPa, and in the present invention, preforming at a pressure exceeding this is referred to as high pressure preforming, specifically 25 to 300 MPa. Preferably there is.
以下、本発明の実施形態について詳しく説明する。
本発明に用いられるケイ素含有ポリマーは、例えば、SiCからなるセラミックス製品を製造する際、直接賦形化して焼成する方法、プリフォームに含浸した後、熱分解によりセラミックス化する方法等に用いられる、セラミックス前駆体として知られているケイ素含有ポリマーを用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
The silicon-containing polymer used in the present invention is used in, for example, a method of directly shaping and firing a ceramic product made of SiC, a method of impregnating a preform, and then converting to ceramic by thermal decomposition. A silicon-containing polymer known as a ceramic precursor can be used.
多孔質炭素繊維にケイ素含有ポリマーを浸透させ、熱分解により多孔質C−C初期体を製造し、この多孔質C−C初期体に液状ケイ素(ケイ素含有ポリマー)を浸透せしめ、その際加熱によりSiCにセラミックス化して摩擦材を製造する例(特許文献2参照)や、ケイ素含有ポリマーを結合材として熱硬化性樹脂とともに用い、熱硬化性樹脂とケイ素含有ポリマーとを架橋させて用いる例(特許文献4参照)は知られているが、前記ポリマーを結合材(バインダー)として使用して熱成形し、酸化雰囲気で熱処理することにより不融化して、酸素と架橋させた後、焼成処理してSi−Cネットワークを形成させた摩擦材は報告されていない。
本発明の特徴は、フェノール樹脂を結合材とする有機系摩擦材の場合と同様な製法に焼成工程を付け加えるだけで、ケイ素含有ポリマーをバインダーとした摩擦材を製造することである。
A porous carbon fiber is infiltrated with a silicon-containing polymer, and a porous CC initial body is produced by thermal decomposition. Liquid silicon (silicon-containing polymer) is infiltrated into the porous CC initial body, and heating is performed at that time. Examples of manufacturing friction material by making ceramics into SiC (see Patent Document 2), and examples of using a silicon-containing polymer as a binder together with a thermosetting resin, and crosslinking the thermosetting resin and the silicon-containing polymer (patent) Although the polymer is used as a binder (binder), it is thermoformed, infusibilized by heat treatment in an oxidizing atmosphere, crosslinked with oxygen, and fired. There has been no report on a friction material in which a Si-C network is formed.
The feature of the present invention is to produce a friction material using a silicon-containing polymer as a binder only by adding a baking step to the same production method as in the case of an organic friction material using a phenol resin as a binder.
具体的なケイ素含有ポリマーとしては、ポリカルボシラン、ポリオルガノボロシラザン、ポリボロシロキサン、ポリカルボシラザン、パーヒドロポリシラザン等の群から成る熱分解可能なポリマーを挙げることができる。
本発明においては、結合材をすべてケイ素含有ポリマーとする必要はなく、ケイ素含有ポリマーとともに他の樹脂を併用することができる。これについては後記する。
Specific examples of the silicon-containing polymer include thermally decomposable polymers composed of groups such as polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane.
In the present invention, it is not necessary that the binder is a silicon-containing polymer, and other resins can be used in combination with the silicon-containing polymer. This will be described later.
価格及び入手のしやすさを考えると、本発明で使用するバインダー(結合材)としては、上記ケイ素含有ポリマーの中でポリカルボシランが好ましい。本発明で使用されるポリカルボシランの種類は特に限定されないが、例えば、下記一般式I、一般式II又は一般式IIIで表される繰返し単位を少なくとも30質量%以上含む有機ケイ素重合体である。 Considering the price and availability, polycarbosilane is preferable among the silicon-containing polymers as the binder (binder) used in the present invention. The type of polycarbosilane used in the present invention is not particularly limited. For example, it is an organosilicon polymer containing at least 30% by mass or more of a repeating unit represented by the following general formula I, general formula II or general formula III. .
(式中、R1は水素原子、アルキル基又は水酸基を示し、R2はアルキル基、フェニル基又はハロゲン原子を示し、nは整数を表す。)
ポリカルボシランは単独重合体であってもよく、共重合体、ブロック体あるいはグラフト体又はブレンド体であってもよい。本発明における前記ポリカルボシランの数平均分子量は、通常、500〜10,000である。
(Wherein R 1 represents a hydrogen atom, an alkyl group or a hydroxyl group, R 2 represents an alkyl group, a phenyl group or a halogen atom, and n represents an integer.)
The polycarbosilane may be a homopolymer, a copolymer, a block, a graft or a blend. The number average molecular weight of the polycarbosilane in the present invention is usually 500 to 10,000.
本発明で用いることのできる膨潤性粘土鉱物としては、例えばモンモリロナイト、サポナイト、バイデライト、ノントロナイト、ヘクトライト、スティブンサイト等のスメクタイト系粘土鉱物やバーミキュライト、ハロイサイト、合成フッ素雲母などが挙げられ、これらは天然品であっても、合成品であってもよい。これらの中で、特にモンモリロナイト、サポナイト、合成フッ素雲母が、有機化処理されやすく、かつフィラーとしての補強性向上効果などの観点から好適である。 Examples of the swellable clay mineral that can be used in the present invention include smectite clay minerals such as montmorillonite, saponite, beidellite, nontronite, hectorite, and stevensite, vermiculite, halloysite, and synthetic fluorine mica. These may be natural products or synthetic products. Among these, montmorillonite, saponite, and synthetic fluorine mica are particularly preferable from the viewpoints of being easily organically treated and improving the reinforcing property as a filler.
これらの膨潤性粘土鉱物は層状構造を有し、有機化処理によって、層間化合物を形成すると共に、層間が拡大し、層剥離が生じやすくなる点で有機化処理することが好ましい。有機化処理に用いられる有機化合物としては、アミン類や4級アンモニウム塩などが挙げられる。これらの有機化合物は、用いる粘土鉱物や分散溶媒の種類(主に極性)、更に用いるケイ素含有ポリマーの種類などを考慮して、最適のものを適宜選択して用いることが好ましい。 These swellable clay minerals have a layered structure, and are preferably subjected to an organic treatment in that an interlayer compound is formed by the organic treatment, the interlayer is enlarged, and delamination is likely to occur. Examples of the organic compound used for the organic treatment include amines and quaternary ammonium salts. For these organic compounds, it is preferable to select and use optimal ones in consideration of the types of clay minerals and dispersion solvents used (mainly polar) and the types of silicon-containing polymers used.
アミン類としては、例えば炭素数1〜18の脂肪族アミンや芳香族アミンなどを用いることができる。脂肪族アミンの具体例としてはジエチルアミン、アミルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、ジドデシルメチルアミンの塩酸塩や臭酸塩などが挙げられ、芳香族アミンの具体例としては、アニリン、トルイジン、キシリジン、フェニレンジアミンなどが挙げられる。これらのアミン類の中では、特にアニリンが好適である。一方、4級アンモニウム塩としては、例えばドデシルトリメチルアンモニウムクロリド、ジメチルステアリルベンジルアンモニウムクロリド、トリメチルステアリルアンモニウムクロリド、ジメチルジオクタデシルアンモニウムクロリド(エスベンNX)、オレイルビス(2−ヒドロキシエチル)メチルアンモニウムクロリドなどを好ましく挙げることができる。これらの中でも、ジメチルジオクタデシルアンモニウムクロリドが特に好適である。 Examples of amines that can be used include aliphatic amines having 1 to 18 carbon atoms and aromatic amines. Specific examples of the aliphatic amine include diethylamine, amylamine, dodecylamine, hexadecylamine, stearylamine, didodecylmethylamine hydrochloride and odorous acid salt, and specific examples of the aromatic amine include aniline and toluidine. , Xylidine, phenylenediamine and the like. Of these amines, aniline is particularly preferred. On the other hand, preferred examples of the quaternary ammonium salt include dodecyltrimethylammonium chloride, dimethylstearylbenzylammonium chloride, trimethylstearylammonium chloride, dimethyldioctadecylammonium chloride (Esben NX), and oleylbis (2-hydroxyethyl) methylammonium chloride. be able to. Among these, dimethyl dioctadecyl ammonium chloride is particularly suitable.
膨潤性粘土鉱物の有機化処理は、従来公知の方法によって適宜行うことができ、例えば、膨潤粘土鉱物を水中に投入し攪拌して粘土鉱物の均一分液とした後、有機化合物又はその塩を水中に溶解した液を上記粘土鉱物分散液中に加えて攪拌することにより、粘土鉱物の層間に有機化合物が挿入、担持された粘土鉱物が沈殿するので、該沈殿物を分離、回収、乾燥して、有機化処理された膨潤性粘土鉱物の粉末を得ることができる。 The organic treatment of the swellable clay mineral can be appropriately performed by a conventionally known method. For example, after the swollen clay mineral is put into water and stirred to form a uniform liquid separation of the clay mineral, the organic compound or a salt thereof is added. By adding the liquid dissolved in water to the clay mineral dispersion and stirring, the organic compound is inserted between the layers of the clay mineral and the supported clay mineral is precipitated, so the precipitate is separated, recovered and dried. Thus, an organically treated swellable clay mineral powder can be obtained.
本発明においては、これらの膨潤性粘土鉱物をケイ素含有ポリマーと共に用いることにより、セラミックスネットワークの形成を補助し、強化させることができ、更に不融化処理工程を短時間で終了させることができる。これは、膨潤性粘土鉱物がケイ素含有ポリマー中にナノレベルに微細分散し、体積効果で溶融粘度が高くなり、不融化処理工程でケイ素含有ポリマーが摩擦材から流出することを防ぐとともにヒビ・フクレを抑制できるため、高温、短時間で不融化処理を行っても、摩擦材中のセラミックス含有率が高い緻密なネットワークを形成できるためと推定される。 In the present invention, by using these swellable clay minerals together with a silicon-containing polymer, formation of a ceramic network can be assisted and strengthened, and the infusibilization treatment process can be completed in a short time. This is because the swellable clay mineral is finely dispersed at the nano level in the silicon-containing polymer, the melt viscosity is increased due to the volume effect, and the silicon-containing polymer is prevented from flowing out of the friction material in the infusibilization process, and cracks, It is presumed that a dense network having a high ceramic content in the friction material can be formed even if the infusibilization treatment is performed at a high temperature for a short time.
本発明では、ケイ素含有ポリマーをキシレン、トルエン、ヘキサン、ブタノン等の有機溶媒中に投入、攪拌して得た樹脂溶液に、膨潤性粘土鉱物を樹脂用液中に投入し、更に攪拌して膨潤性粘土鉱物を分散させた後、上記溶液を脱溶媒し、塊状樹脂を回収して粉砕することにより、摩擦材用の原材料粉末とすることができる。 In the present invention, the silicon-containing polymer is put into an organic solvent such as xylene, toluene, hexane, butanone, and the resin solution obtained by stirring is added to the swellable clay mineral in the resin solution and further stirred to swell. After the clay mineral is dispersed, the solvent is removed from the solution, and the bulk resin is recovered and pulverized to obtain a raw material powder for a friction material.
ケイ素含有ポリマーに対する膨潤性粘土鉱物の添加量は、膨潤性粘土鉱物が有効に機能する範囲であれば特に限定的ではないが、添加量が多すぎると、バインダーの流れ性がなくなり、被着材との濡れ性/密着性が低下し、また、粘土鉱物がバインダー/被着材の界面に介在し、バインダーと被着材の接触面積が小さくなることで、接着を阻害するなどの理由により、バインダーとしての機能を失ってしまい、好ましくない。通常、ケイ素含有ポリマー100質量部に対して、膨潤性粘土鉱物を1〜10質量部の範囲で含有させることが好ましい。 The amount of the swellable clay mineral added to the silicon-containing polymer is not particularly limited as long as the swellable clay mineral functions effectively, but if the amount is too large, the flowability of the binder is lost, and the adherend For example, the wettability / adhesiveness of the clay and the clay mineral intervene at the interface between the binder and the adherend, and the contact area between the binder and the adherend is reduced, thereby inhibiting adhesion. The function as a binder is lost, which is not preferable. Usually, it is preferable to contain a swelling clay mineral in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the silicon-containing polymer.
本発明の摩擦材の製造工程は、通常、摩擦材原料の配合、攪拌、予備成形、熱成形、加熱、焼成及び研摩の各工程からなり、従来の摩擦材の製造工程と同一である。
その実施の形態においては、車両等に搭載されるディスクブレーキ装置のブレーキパッドやドラムブレーキ装置のブレーキライニングなどのブレーキ用の摩擦材を製造するのに適用され、粉粒状の各種の構成成分(原料)を所定の比率で混合させた摩擦材母材を形成する配合・攪拌工程と、その摩擦材母材を予備成形用金型に投入して加圧成形して所定形状の予備成形体を得る予備成形工程と、予備成形体とともに熱成形用金型に投入して所定の成形圧力、温度による熱成形処理を施して所定の摩擦材形状に成形した熱成形体を得る熱成形工程と、熱成形体に対して後熱処理や研摩処理等を適宜実施することで所望形状の摩擦材として完成させる後処理工程とを順に行うようにして実施される。
The process for producing the friction material of the present invention usually comprises the steps of blending the friction material, stirring, preforming, thermoforming, heating, firing and polishing, and is the same as the conventional process for producing the friction material.
In the embodiment, it is applied to manufacture brake friction materials such as brake pads of disc brake devices and brake linings of drum brake devices mounted on vehicles, etc., and various granular components (raw materials) ) Are mixed in a predetermined ratio to form a friction material base material, and the step of mixing and stirring is performed. The friction material base material is put into a preforming mold and pressure-molded to obtain a preform with a predetermined shape. A preforming step, a thermoforming step of obtaining a thermoformed body molded into a predetermined friction material shape by being put into a thermoforming mold together with a preformed body and subjected to a thermoforming process at a predetermined molding pressure and temperature; By performing post-heat treatment, polishing treatment or the like on the molded body as appropriate, a post-treatment step for completing a friction material having a desired shape is sequentially performed.
本発明では、この後熱処理として、酸化雰囲気での加熱処理及び焼成処理が施される。酸化雰囲気での加熱処理によりケイ素含有ポリマーが不融化して酸素と架橋され、その後焼成処理により、バインダー内でネットワーク状のケイ素−炭素(Si−Cネットワーク)構造が構築される。 In the present invention, a heat treatment and a baking treatment in an oxidizing atmosphere are performed as the subsequent heat treatment. The silicon-containing polymer is infusible and crosslinked with oxygen by a heat treatment in an oxidizing atmosphere, and then a network-like silicon-carbon (Si-C network) structure is built in the binder by a baking treatment.
なお、通常の熱成形工程では、熱成形装置を使用し、予備成形体を成形する加圧成形処理と、この成形圧力を開放する除圧(ガス抜き)処理を交互に適宜回数繰り返して実施すると共に、この除圧処理では、熱成形用金型内に発生するガスを熱成形用金型を開くことによって排出する。 In a normal thermoforming process, a thermoforming apparatus is used, and a pressure forming process for forming a preformed body and a depressurization (degassing) process for releasing the forming pressure are alternately repeated as many times as necessary. At the same time, in this depressurization process, the gas generated in the thermoforming mold is discharged by opening the thermoforming mold.
また、摩擦材組成物の予備成形、加熱加圧成形、酸化雰囲気での熱処理、焼成の条件について特に制限はないが、熱成形時の温度は150〜180℃、加圧は30〜50MPa、加圧時間を300〜500secの条件で成形することが望ましい。
酸化雰囲気での熱処理は160〜350℃(好ましくは160〜300℃)、0.1〜0.3MPaの加圧下、処理時間1〜10時間の条件が望ましい。これらの条件範囲内であれば、ケイ素含有ポリマーの流出が抑えられ、寸法安定性も良好である。
There are no particular restrictions on the conditions for preforming the friction material composition, heating and pressing, heat treatment in an oxidizing atmosphere, and firing, but the temperature during thermoforming is 150 to 180 ° C., the pressure is 30 to 50 MPa, It is desirable to mold under a pressure time of 300 to 500 seconds.
The heat treatment in an oxidizing atmosphere is preferably performed under conditions of 160 to 350 ° C. (preferably 160 to 300 ° C.) and a pressure of 0.1 to 0.3 MPa and a treatment time of 1 to 10 hours. Within these condition ranges, the outflow of the silicon-containing polymer is suppressed and the dimensional stability is also good.
更に、上記酸化雰囲気での熱処理は、昇温速度を低速に制御することにより、あるいはミリ波加熱を用いて行うことにより、ケイ素含有ポリマーの流出を更に抑えることができ、品質の安定した製品を製造することができ、好ましい。また、結合材中に含まれる無機成分の残留が多くなり、より緻密なセラミックスネットワークの形成が可能になる。 Furthermore, the heat treatment in the oxidizing atmosphere can be further controlled by controlling the rate of temperature rise to a low speed or by using millimeter wave heating, thereby further suppressing the outflow of the silicon-containing polymer. It can be manufactured and is preferable. In addition, the residual inorganic component contained in the binder increases, and a denser ceramic network can be formed.
昇温速度を低速に制御して酸化雰囲気での熱処理を行う方法としては、例えば、0.1〜0.3MPaの加圧下、1時間あたり14〜140℃の昇温速度で、300℃になるまで1〜10時間加熱することにより、ケイ素含有ポリマーの流出を良好に抑えることができる。また、上記のとおり、酸化雰囲気での熱処理は160℃〜300℃であることが望ましいが、160℃までの昇温速度は特に限定されず、任意である。 As a method of performing heat treatment in an oxidizing atmosphere while controlling the temperature increase rate to be low, for example, the pressure is increased to 300 ° C. at a temperature increase rate of 14 to 140 ° C. per hour under a pressure of 0.1 to 0.3 MPa. By heating to 1 to 10 hours, the outflow of the silicon-containing polymer can be satisfactorily suppressed. As described above, the heat treatment in the oxidizing atmosphere is desirably 160 ° C. to 300 ° C., but the rate of temperature increase up to 160 ° C. is not particularly limited and is arbitrary.
また、ミリ波加熱を用いて酸化雰囲気での熱処理を行うことも好ましい。この場合のミリ波とは、周波数が20GHz〜300GHz(すなわち、波長15mm〜1mm)の電磁波をいい、ミリ波加熱とは、該ミリ波帯電磁波を用いた誘電加熱をいう。ジャイロトロン発振管を用いたミリ波加熱装置を用いることで、ミリ波加熱を行うことができる。
例えば、250〜350℃、0.1〜0.3MPaの加圧下にて1〜5時間の処理時間が好ましい。ミリ波加熱を行うことで、上記のとおりケイ素含有ポリマーの流出が抑えられ、緻密なセラミックスネットワークが形成されるとともに、加熱処理時間を短縮させることができる。
It is also preferable to perform heat treatment in an oxidizing atmosphere using millimeter wave heating. The millimeter wave in this case refers to an electromagnetic wave having a frequency of 20 GHz to 300 GHz (that is, a wavelength of 15 mm to 1 mm), and the millimeter wave heating refers to dielectric heating using the millimeter wave band electromagnetic wave. Millimeter wave heating can be performed by using a millimeter wave heating apparatus using a gyrotron oscillation tube.
For example, a treatment time of 1 to 5 hours is preferable under a pressure of 250 to 350 ° C. and 0.1 to 0.3 MPa. By performing millimeter wave heating, the outflow of the silicon-containing polymer is suppressed as described above, a dense ceramic network is formed, and the heat treatment time can be shortened.
焼成は、800〜1000℃の温度、0.5MPa加圧下、処理時間1〜2時間の条件で真空中、還元ガス、不活性ガスのいずれかの雰囲気中で行うのが望ましい。
焼成温度が800℃以上において、十分なSi−Cの強化ネットワークが達成されるとともに、1000℃以下において、他に配合されている原材料の消失、溶け出しもなく、安定した摩擦性能が得られるため、好ましい。また、摩擦構造体として十分な機械的強度も得られる。
焼成時間(キープ時間)はSi成分のネットワークを形成するための反応を完了させるため、かつ物性安定性を考慮し、1時間以上のキープ時間が好ましい。2時間を超える焼成時間は過剰な高エネルギー製造となり、コスト面から好ましくない。焼成工程においては試料の膨張が懸念されるため、0.5MPa程度の荷重をかけ、寸法安定性を向上させることが好ましい。
Firing is preferably performed in a vacuum, a reducing gas, or an inert gas atmosphere under conditions of a temperature of 800 to 1000 ° C. and a pressure of 0.5 MPa under a treatment time of 1 to 2 hours.
When the firing temperature is 800 ° C. or higher, a sufficient Si—C reinforced network is achieved, and at 1000 ° C. or lower, there is no disappearance or dissolution of other ingredients, and stable friction performance is obtained. ,preferable. Also, sufficient mechanical strength as a friction structure can be obtained.
The firing time (keep time) is preferably 1 hour or longer in order to complete the reaction for forming a network of Si components and considering the stability of physical properties. A firing time exceeding 2 hours is an excessively high energy production, which is not preferable from the viewpoint of cost. Since there is a concern about the expansion of the sample in the firing step, it is preferable to apply a load of about 0.5 MPa to improve the dimensional stability.
所望の摩擦材特性を確保するため各種配合材料が使用されるが、繊維基材としては、衝撃強度や温度などの関係で、銅繊維、スチール繊維等の金属繊維が適している。
耐熱性を考えると無機材料が挙げられる。例えばジルコニア、アルミナ、チタニア、マグネシア、フッ化カルシウム、ボロンナイトライド、SiC等の熱処理温度に耐えられるセラミックスを挙げることができる。
Various blended materials are used to ensure desired friction material characteristics, but metal fibers such as copper fibers and steel fibers are suitable as the fiber base material in terms of impact strength and temperature.
In consideration of heat resistance, inorganic materials can be mentioned. Examples thereof include ceramics that can withstand heat treatment temperatures such as zirconia, alumina, titania, magnesia, calcium fluoride, boron nitride, and SiC.
また、本発明の摩擦材には、通常用いられる種々の摩擦調整材を含有させることができる。かかる摩擦調整材としては、黒鉛、鉄、アルミニウム、銅、真鍮、青銅等の材料が用いられる。これらの材料は実際に使用する場合は、粉体の他に、粒状,繊維状等様々な形状やサイズを考慮して複数種類の材料を組み合わせて使用することが考えられる。 Further, the friction material of the present invention can contain various friction modifiers that are usually used. As such a friction modifier, materials such as graphite, iron, aluminum, copper, brass, bronze and the like are used. When these materials are actually used, it is conceivable to use a combination of a plurality of types of materials in consideration of various shapes and sizes such as granules and fibers in addition to powders.
本発明では結合材としてケイ素含有ポリマーを使用するが、摩擦材の性能を損ねない限り、他の有機樹脂を併用してもよい。その結合材としては、フェノール樹脂(ストレートフェノール樹脂)、フラン樹脂、キシレン樹脂、尿素樹脂、メラミン樹脂、アニリン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、エポキシ樹脂などこれまで知られている熱硬化性樹脂の中から選択することができるが、入手の容易さ、取り扱いやすさの点でフェノール樹脂が好ましい。これらの樹脂の混合割合は結合材の50質量%位までである。 In the present invention, a silicon-containing polymer is used as a binder, but other organic resins may be used in combination as long as the performance of the friction material is not impaired. As the binder, known thermosetting resins such as phenol resin (straight phenol resin), furan resin, xylene resin, urea resin, melamine resin, aniline resin, unsaturated polyester resin, polyimide resin, epoxy resin, etc. Although phenol can be selected from among them, a phenol resin is preferable in terms of availability and ease of handling. The mixing ratio of these resins is up to about 50% by mass of the binder.
摩擦材の組成としては、種々の配合組成を選択することができる。すなわち、これらは、製品に要求される摩擦特性、例えば、摩擦係数、耐摩耗性、振動特性、鳴き特性等に応じて、単独でまたは2種以上を組み合わせて混合すればよい。
一般的な配合組成としては、摩擦材の配合材全体を100質量%としたとき、繊維基材10〜50質量%、無機材料15〜30質量%、結合材5〜10質量%及び金属粉1〜10質量%である。
Various blending compositions can be selected as the composition of the friction material. That is, these may be mixed singly or in combination of two or more according to the friction characteristics required for the product, for example, the friction coefficient, wear resistance, vibration characteristics, squeal characteristics, and the like.
As a general compounding composition, when the total compounding material of the friction material is 100% by mass, the fiber base material is 10 to 50% by mass, the inorganic material is 15 to 30% by mass, the binder is 5 to 10% by mass, and the metal powder 1 -10 mass%.
以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to only these examples.
<実施例1〜6並びに参考例1及び2>
実施例1の試作条件・製造フローは下記の通りである。
<Examples 1-6 and Reference Examples 1 and 2>
The prototype conditions and manufacturing flow of Example 1 are as follows.
1.無機バインダーの調製
(1)無機バインダーA〜Cの調製
ケイ素含有ポリマーのキシレン溶液(宇部興産(株)製:VZ−100、50%溶液)と有機化処理されたモンモリロナイト粉末(ホージュン製:エスベンNK)を表1に示す配合で混合した後、真空オーブンで150℃、24時間加熱乾燥を行った。乾燥後、バインダーを粉砕し、粉末状の無機バインダーA〜Cを得た。
1. Preparation of inorganic binder (1) Preparation of inorganic binders A to C Xylene solution of silicon-containing polymer (Ube Industries, Ltd .: VZ-100, 50% solution) and organically treated montmorillonite powder (Hojoen: Sven NK) ) Was mixed with the formulation shown in Table 1, and then heated and dried in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain powdered inorganic binders A to C.
(2)無機バインダーDの調製
上記ケイ素含有ポリマーのキシレン溶液(VZ-100、50%溶液)を真空オーブンで150℃、24時間加熱乾燥を行った。乾燥後、バインダーを粉砕し、粉末状の無機バインダーDを得た。
(2) Preparation of inorganic binder D The xylene solution of the above silicon-containing polymer (VZ-100, 50% solution) was dried by heating in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain a powdery inorganic binder D.
2.原料の混合
表2に示した原材料を、表2に示す配合量で、アイリッヒ混合攪拌機に投入してチョッパ回転数1500rpm、パン回転数42rpmとし、常温で2分間混合攪拌を行った。
2. Mixing of raw materials The raw materials shown in Table 2 were charged into an Eirich mixing stirrer in the blending amounts shown in Table 2 to obtain a chopper rotation speed of 1500 rpm and a bread rotation speed of 42 rpm, and the mixture was stirred at room temperature for 2 minutes.
3.予備成形
上記混合物を予備成形プレスの金型に投入し、常温・25MPaで5秒間加圧成形して予備成形体を作製した。(サンプルサイズ:100×50mm)
4.熱成形
予備成形体を小型熱プレス機で、成形温度160℃、面圧50MPa、成形時間:7分間で加熱加圧成形し、熱成形体を作製した。
5.熱処理(不融化処理)
熱成形体を加熱用治具にセットし、0.2MPaで加圧保持しながら、オーブン中で300℃まで第3表に示す所定の速度で昇温し、不融化処理を行った。
6.焼成
不融化処理品をホットプレス付き焼成炉に投入し、0.5MPaで加圧保持しながらアルゴンガス雰囲気下1000℃で焼成して摩擦材とした。
3. Preliminary molding The above mixture was put into a mold of a preforming press and subjected to pressure molding at room temperature and 25 MPa for 5 seconds to prepare a preform. (Sample size: 100x50mm)
4). Thermoforming The preform was heat-pressed with a small heat press machine at a molding temperature of 160 ° C., a surface pressure of 50 MPa, and a molding time of 7 minutes to produce a thermoformed body.
5. Heat treatment (infusibilization)
The thermoformed body was set on a heating jig and heated at a predetermined speed shown in Table 3 up to 300 ° C. in an oven while maintaining the pressure at 0.2 MPa to perform infusibilization.
6). Firing The infusibilized product was put into a firing furnace with a hot press, and fired at 1000 ° C. in an argon gas atmosphere while maintaining a pressure of 0.5 MPa to obtain a friction material.
[物性評価結果]
摩擦材の各種評価は下記測定法に従った。
(1)無機バインダーの流れ性試験
無機バインダー0.3gを秤量し、常温圧縮成形により直径7mm、高さ7mmの円筒形成形体を作製する。ガラス板を20°の角度に傾斜させた状態に保持し、オーブン中でガラス板温度275℃に加熱調整した後、上記の円筒形成形体をガラス板上に載せてオーブン中で15分間保持した後、ガラス板を取り出し、十分に冷却した後、無機バインダーの流れた距離を測定する。
[Results of physical property evaluation]
Various evaluations of the friction material were performed according to the following measurement methods.
(1) Flowability test of inorganic binder 0.3 g of inorganic binder is weighed, and a cylindrical formed body having a diameter of 7 mm and a height of 7 mm is prepared by compression molding at room temperature. After holding the glass plate inclined at an angle of 20 ° and adjusting the heating to a glass plate temperature of 275 ° C. in an oven, the cylindrical formed body is placed on the glass plate and held in the oven for 15 minutes. After the glass plate is taken out and sufficiently cooled, the distance through which the inorganic binder flows is measured.
(2)無機バインダーの染み出し評価
不融化処理後の成形体外周部を目視で観察し、染み出しの程度を下記評点により評価する。
5点:染み出しなし、4点:僅かに染み出しあり、3点:染み出しあり、2点:染み出し大、1点:染み出し極大
(2) Evaluation of seepage of inorganic binder The outer periphery of the molded body after the infusibilization treatment is visually observed, and the degree of seepage is evaluated according to the following rating.
5 points: no bleeding, 4 points: slight bleeding, 3 points: bleeding, 2 points: large bleeding, 1 point: maximum bleeding
(3)摩擦材の物性・摩擦性能評価
a.焼成後の摩擦材厚み(15mm狙い)とロックウェル硬さを測定する。
b.焼成後の摩擦材の形状の状態を「○:良」、「×:不良」の2段階で評価した。
(3) Evaluation of physical properties and friction performance of friction material a. Measure the thickness of the friction material after firing (targeted at 15 mm) and the Rockwell hardness.
b. The state of the shape of the friction material after firing was evaluated in two stages: “◯: good” and “x: bad”.
表3に上記摩擦材の各種物性を示す。実施例1〜6及び参考例1、2は酸化雰囲気での熱処理を行うことにより、良好な物性を持つサンプルを得ることが出来た。これらの摩擦材は、大気中の酸素と架橋することによる重量減少は見られず、ポリカルボシランを構成しているSi成分が酸化雰囲気で加熱したことによって酸化反応が促進し、マトリックスの強化を促し、良好な物性を確保できたものと推定される。 Table 3 shows various physical properties of the friction material. In Examples 1 to 6 and Reference Examples 1 and 2, samples having good physical properties could be obtained by performing heat treatment in an oxidizing atmosphere. These friction materials did not lose weight due to crosslinking with oxygen in the atmosphere, and the Si component constituting polycarbosilane was heated in an oxidizing atmosphere to promote the oxidation reaction and strengthen the matrix. It is presumed that good physical properties were secured.
また、表4にポリカルボシランのみを含有する摩擦材(参考例1)と、ポリカルボシランとモンモリロナイトを含有する摩擦材(実施例6)の摩擦性能を評価した。摩擦材の各種評価は下記の測定法に従った。 Table 4 shows the friction performance of a friction material containing only polycarbosilane (Reference Example 1) and a friction material containing polycarbosilane and montmorillonite (Example 6). Various evaluations of the friction material were performed according to the following measurement methods.
1)性能試験(JASO C406−82準拠)
作製したサンプルをテストピース(13×35mm)に加工し、小型ダイナモ式慣性型摩擦試験機を用いて性能試験を行った。第3表には、第2効力及び1stフェードの結果を示した。
(1stフェード試験方法)
初速度:100km/h→3km/h
減速度:0.45G
制動回数:9回
制動サイクル:35秒
なお、フェード率(%)=[(minμ(最低μ))/1回目μ]×100である。
1) Performance test (according to JASO C406-82)
The produced sample was processed into a test piece (13 × 35 mm), and a performance test was performed using a small dynamo inertial friction tester. Table 3 shows the results of the second efficacy and the 1st fade.
(1st fade test method)
Initial speed: 100 km / h → 3 km / h
Deceleration: 0.45G
Number of brakings: 9 times Braking cycle: 35 seconds Note that the fade rate (%) = [(min μ (minimum μ)) / first μ] × 100.
2)ロータ/パッド摩耗量の測定
更に、性能試験終了後に、ロータ/パッドの摩耗量(μm/mm)を測定し、ロータ攻撃性(相手材攻撃性)を評価した。
2) Measurement of rotor / pad wear amount Further, after the performance test was completed, the rotor / pad wear amount (μm / mm) was measured to evaluate the rotor aggression (partner material aggression).
これらの結果を表4に示す。参考例1、実施例6とも、同等の摩擦性能を示すことから、モンモリロナイトを添加したことによる摩擦性能への影響はないと考えられる。 These results are shown in Table 4. Since both Reference Example 1 and Example 6 show equivalent friction performance, it is considered that there is no influence on the friction performance due to the addition of montmorillonite.
また、図1はストレートフェノール樹脂とポリカルボシランの空気中におけるTG(熱重量分析)を比較した結果を示す。ストレートフェノール樹脂は600℃付近で減量が顕著になり最終的には消失してしまうのに対し、ポリカルボシランにおいては600℃以上でもほとんど減量しない。これはポリカルボシランのSi成分が酸素と反応することによりSiO2を形成することで熱的安定性を保持し、減量しなかったと考えられる。これにより通常のストレートフェノール樹脂よりもポリカルボシランをバインダーとして用いた方が熱的安定性に優れた摩擦材を製造することが出来ることが分かる。 Moreover, FIG. 1 shows the result of comparing TG (thermogravimetric analysis) in the air of straight phenol resin and polycarbosilane. The straight phenol resin loses weight significantly at around 600 ° C. and eventually disappears, whereas polycarbosilane hardly reduces the amount even at 600 ° C. or higher. This is probably because the Si component of polycarbosilane reacted with oxygen to form SiO 2 to maintain thermal stability and not reduce the amount. Thus, it can be seen that a friction material having excellent thermal stability can be produced by using polycarbosilane as a binder rather than a normal straight phenol resin.
実施例1〜6及び参考例1,2の結果から、不融化処理時の昇温速度を低速にすることにより、バインダーの流れ出しが抑制され、染み出しにくくなるものの、本発明に従い、膨潤性粘土鉱物を含有させることにより、ケイ素含有ポリマーの溶融時の流れ性が低下して、不融化処理時の昇温速度を遅くしなくてもバインダーの染み出しはほとんどなく、昇温速度を遅くした参考例1と同等の摩擦材が得られることが分かる。 From the results of Examples 1 to 6 and Reference Examples 1 and 2, by lowering the heating rate during the infusibilization treatment, the flow of the binder is suppressed and it is difficult for the binder to ooze out. By including minerals, the flowability at the time of melting of the silicon-containing polymer is reduced, and even if the heating rate during the infusibilization treatment is not slowed, there is almost no oozing out of the binder. It turns out that the friction material equivalent to Example 1 is obtained.
本発明の膨潤性粘土鉱物を含有するケイ素含有ポリマーを結合材として不融化、焼成して得た摩擦材は、ブレーキ性能に優れた高耐熱性ブレーキパッドを既存の製造設備を利用して提供することが出来る。従って、本発明の摩擦材は、自動車、鉄道、産業用機械などのブレーキパッド、ブレーキライニング、クラッチフェーシング等として使用される高耐熱性摩擦材として有用である。 The friction material obtained by infusibilizing and firing the silicon-containing polymer containing the swellable clay mineral of the present invention as a binder provides a high heat-resistant brake pad with excellent braking performance using existing manufacturing equipment. I can do it. Therefore, the friction material of the present invention is useful as a high heat resistance friction material used as a brake pad, brake lining, clutch facing, etc. for automobiles, railways, industrial machines and the like.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011044339A JP5659392B2 (en) | 2011-03-01 | 2011-03-01 | Friction material and friction material manufacturing method |
PCT/JP2012/053689 WO2012111763A1 (en) | 2011-02-18 | 2012-02-16 | Friction material and friction material production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011044339A JP5659392B2 (en) | 2011-03-01 | 2011-03-01 | Friction material and friction material manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012180452A JP2012180452A (en) | 2012-09-20 |
JP5659392B2 true JP5659392B2 (en) | 2015-01-28 |
Family
ID=47011918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011044339A Active JP5659392B2 (en) | 2011-02-18 | 2011-03-01 | Friction material and friction material manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5659392B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016111647A1 (en) * | 2015-01-05 | 2016-07-14 | Agency for Science,Technology and Research | A fiber-reinforced polymer composite |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0351531A (en) * | 1989-07-18 | 1991-03-05 | Ube Ind Ltd | Rotary sliding member |
JPH07190115A (en) * | 1993-12-28 | 1995-07-28 | Osaka Gas Co Ltd | Binder composition for friction material |
JP3799624B2 (en) * | 1994-03-03 | 2006-07-19 | 大阪瓦斯株式会社 | Binder composition for friction material and friction material |
JP2006348188A (en) * | 2005-06-16 | 2006-12-28 | Akebono Brake Ind Co Ltd | Porous functional filler and method for producing the same |
JP2008024780A (en) * | 2006-07-19 | 2008-02-07 | Akebono Brake Ind Co Ltd | Porous functional filler and method for producing the same |
JP2008024536A (en) * | 2006-07-19 | 2008-02-07 | Akebono Brake Ind Co Ltd | Organized layered clay mineral-based lubricant and friction material comprising the same |
JP5959853B2 (en) * | 2008-08-08 | 2016-08-02 | フレニ・ブレンボ エス・ピー・エー | Method for manufacturing a ceramic matrix material for brake friction parts |
EP2518124B1 (en) * | 2009-12-22 | 2021-04-07 | Akebono Brake Industry Co., Ltd. | Method for producing a friction material |
-
2011
- 2011-03-01 JP JP2011044339A patent/JP5659392B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012180452A (en) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5852308B2 (en) | Friction material manufacturing method | |
EP3661895B1 (en) | Pre-impregnated fibre-reinforced composite material | |
CN100516122C (en) | Method for preparing friction material by wet type mixing material | |
JP5797073B2 (en) | Friction material manufacturing method | |
JP5868708B2 (en) | Refractory brick composition, refractory brick, and method for producing refractory brick | |
US9005732B2 (en) | Friction-tolerant disks made of fiber-reinforced ceramic | |
KR20140116107A (en) | Friction material and method for manufacturing same | |
JP5659392B2 (en) | Friction material and friction material manufacturing method | |
CN113461410B (en) | Al-Al added with titanium nitride coated mullite 2 O 3 Sliding plate brick and production method thereof | |
JP7460519B2 (en) | Preforms for creating components of braking systems | |
JP5850739B2 (en) | Friction material manufacturing method | |
JP5068218B2 (en) | Carbon fiber reinforced silicon carbide composite material and method for producing the same | |
WO2012111763A1 (en) | Friction material and friction material production method | |
CN115057692B (en) | Aluminum-carbon sliding brick added with ferrotitanium alloy and production method thereof | |
JP5011557B2 (en) | Composite friction modifier for friction material | |
JP7144473B2 (en) | Binder-free friction lining, method for manufacturing binder-free friction lining, and use of binder-free friction lining | |
JP4959263B2 (en) | Friction material manufacturing method | |
JP4634479B2 (en) | Friction material and manufacturing method thereof | |
CN110715004B (en) | Preparation method of heat-attenuation-resistant friction material | |
JP5957088B2 (en) | Material for disc brake friction components | |
JP5093639B2 (en) | Method for producing carbon / ceramic composite material | |
EP3124455B1 (en) | Method for the production of a fibre-reinforced carbon-ceramic composite material | |
CA2143169A1 (en) | Resin bonded ceramic, carbon metal composite comprising boron source and a combination of at least two metals | |
JPH0554591B2 (en) | ||
JP2019219043A (en) | Braking material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140203 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5659392 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |