JP5652741B2 - Copper wire and method for producing the same - Google Patents
Copper wire and method for producing the same Download PDFInfo
- Publication number
- JP5652741B2 JP5652741B2 JP2009266656A JP2009266656A JP5652741B2 JP 5652741 B2 JP5652741 B2 JP 5652741B2 JP 2009266656 A JP2009266656 A JP 2009266656A JP 2009266656 A JP2009266656 A JP 2009266656A JP 5652741 B2 JP5652741 B2 JP 5652741B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- heat treatment
- copper wire
- copper
- intermediate heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 106
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 89
- 239000010949 copper Substances 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 41
- 238000005482 strain hardening Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 21
- 239000004020 conductor Substances 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 17
- 238000005491 wire drawing Methods 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 description 36
- 239000012535 impurity Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical compound [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、導体に利用される銅線材、この銅線材の製造方法、及びこの銅線材を導体に具える被覆電線に関する。特に、純銅からなり、高強度及び高靭性な銅線材に関するものである。 The present invention relates to a copper wire used as a conductor, a method for producing the copper wire, and a covered electric wire including the copper wire as a conductor. In particular, the present invention relates to a copper wire made of pure copper and having high strength and high toughness.
従来、種々の電気機器の電力供給線などの導体用線材には、導電性に優れる純銅からなる銅線材が利用されている。 Conventionally, copper wires made of pure copper having excellent conductivity have been used for conductor wires such as power supply wires of various electric devices.
純銅は、導電率が高く、靭性に優れるものの、一般に強度が低い。これに対し、特許文献1は、タフピッチ銅といった酸素含有銅に微量の添加元素を含有することで、強度に優れる銅線材を開示している。 Pure copper has high electrical conductivity and excellent toughness, but generally has low strength. On the other hand, Patent Document 1 discloses a copper wire excellent in strength by containing a trace amount of an additive element in oxygen-containing copper such as tough pitch copper.
上述のように添加元素を含有することで、導体用線材の強度を高められる。しかし、添加元素の含有により、導電率や伸びといった靭性などの特性の低下を招く。従って、導電率が高いと共に、高い強度と高い靭性とを両立できる銅線材の開発が望まれる。 By containing an additive element as described above, the strength of the conductor wire can be increased. However, the inclusion of the additive element causes a decrease in properties such as toughness such as conductivity and elongation. Therefore, it is desired to develop a copper wire that has high electrical conductivity and can achieve both high strength and high toughness.
そこで、本発明の目的の一つは、純銅からなり、高強度、高靭性である銅線材を提供することにある。また、本発明の他の目的は、この銅線材の製造方法を提供することにある。更に、本発明の他の目的は、上記銅線材を導体とする被覆電線を提供することにある。 Accordingly, one of the objects of the present invention is to provide a copper wire made of pure copper and having high strength and high toughness. Moreover, the other object of this invention is to provide the manufacturing method of this copper wire. Furthermore, the other object of this invention is to provide the covered electric wire which makes the said copper wire material a conductor.
本発明者らは、種々の製造方法により純銅からなる銅線材を作製し、得られた銅線材において引張強さが高く、かつ伸びも高いものを調べたところ、高強度、高靭性な銅線材は、微細な結晶粒からなる微細組織を有する、との知見を得た。そして、この微細組織を有する銅線材を得るには、素材の準備→冷間加工(代表的には伸線加工)→最終熱処理と言う製造工程において、冷間加工の途中の特定の時期に中間熱処理を施すことが好ましい、との知見を得た。本発明はこれらの知見に基づくものである。 The inventors of the present invention produced copper wires made of pure copper by various production methods, and examined the obtained copper wires that had high tensile strength and high elongation, and found that the copper wires had high strength and high toughness. Has obtained the knowledge that it has a microstructure composed of fine crystal grains. In order to obtain a copper wire having this fine structure, it is necessary to prepare a material at a specific time during the cold working in the manufacturing process of material preparation → cold working (typically wire drawing) → final heat treatment. It was found that heat treatment is preferable. The present invention is based on these findings.
本発明の銅線材の製造方法は、99.9質量%以上のCuからなる銅線材を製造する方法であって、以下の工程を具える。
99.9質量%以上のCuからなる素材に冷間加工を施す工程。
上記冷間加工が施された冷間加工材に中間熱処理を施す工程。
上記中間熱処理が施された中間熱処理材に最終冷間加工を施して、最終線径が0.1mm以上2.0mm以下の伸線材を形成する工程。
上記伸線材に最終熱処理を施して、平均結晶粒径が20μm以下、引張強さが240MPa以上、伸びが20%以上である銅線材を製造する工程。
そして、上記中間熱処理は、この中間熱処理の直後に行う上記最終冷間加工の加工度が85%以上95%以下を満たすときに行う。
The manufacturing method of the copper wire of this invention is a method of manufacturing the copper wire which consists of 99.9 mass% or more of Cu, Comprising: The following processes are provided.
A process of cold working a material consisting of 99.9% by mass or more of Cu.
A step of performing an intermediate heat treatment on the cold worked material subjected to the cold working.
The step of subjecting the intermediate heat treatment material subjected to the intermediate heat treatment to final cold working to form a wire drawing material having a final wire diameter of 0.1 mm to 2.0 mm.
A step of subjecting the wire drawing material to a final heat treatment to produce a copper wire material having an average crystal grain size of 20 μm or less, a tensile strength of 240 MPa or more, and an elongation of 20% or more.
The intermediate heat treatment is performed when the workability of the final cold working performed immediately after the intermediate heat treatment satisfies 85% or more and 95% or less.
上記本発明製造方法により、以下の本発明銅線材が得られる。本発明の銅線材は、99.9質量%以上がCuからなり、線径が0.1mm以上2.0mm以下、平均結晶粒径が20μm以下、引張強さが240MPa以上、伸びが20%以上である。 The following copper wire of the present invention is obtained by the manufacturing method of the present invention. In the copper wire of the present invention, 99.9% by mass or more is made of Cu, the wire diameter is 0.1 mm or more and 2.0 mm or less, the average crystal grain size is 20 μm or less, the tensile strength is 240 MPa or more, and the elongation is 20% or more.
純銅からなり、最終線径が0.1mm未満といった極細の銅線材を製造する場合、従来より、冷間加工(伸線加工)途中に中間熱処理を施すことが行われている。上記中間熱処理により当該中間熱処理前の伸線加工に伴う加工歪みを除去することで、当該中間熱処理後の中間熱処理材の伸線加工性を高められ、上記のような極細の銅線材を製造することができる。特に、超極細の線材を製造する場合、銅では強度が不足するため、一般に、銅合金を利用する。銅合金では、強度が高過ぎることから伸線加工途中に中間熱処理を施さないと断線が多発して生産性の低下を招くため、伸線加工途中に中間熱処理を施すことが多い。一方、最終線径が0.1mm以上といった上記極細の銅線材よりも太い径の銅線材を製造する場合、上述のように伸線加工途中に中間熱処理を施さなくても、銅自体の延性により伸線加工が可能である。伸線加工途中に中間熱処理を施さないことで、例えば、生産性を向上できることから、このような理由により、中間熱処理を施さないことが多い。 In the case of producing an ultrafine copper wire made of pure copper and having a final wire diameter of less than 0.1 mm, an intermediate heat treatment is conventionally performed during cold working (drawing). By removing the processing strain associated with the wire drawing before the intermediate heat treatment by the intermediate heat treatment, the wire heat workability of the intermediate heat treated material after the intermediate heat treatment can be improved, and the above ultrafine copper wire is manufactured. be able to. In particular, when an ultrafine wire is manufactured, since copper is insufficient in strength, a copper alloy is generally used. In copper alloys, since the strength is too high, if the intermediate heat treatment is not performed during the wire drawing process, disconnection frequently occurs and the productivity is lowered. Therefore, the intermediate heat treatment is often performed during the wire drawing process. On the other hand, when producing a copper wire having a diameter larger than the above-mentioned ultrafine copper wire having a final wire diameter of 0.1 mm or more, it is stretched by the ductility of the copper itself even if an intermediate heat treatment is not performed during the drawing process as described above. Wire processing is possible. By not performing the intermediate heat treatment in the middle of the wire drawing process, for example, productivity can be improved. For this reason, the intermediate heat treatment is often not performed.
上述のような背景から、従来、最終線径が0.1mm〜2.0mmといった銅線材を製造するにあたり、伸線加工途中に中間熱処理を施す時期について十分に検討されていなかった。 From the background described above, conventionally, when producing a copper wire material having a final wire diameter of 0.1 mm to 2.0 mm, the timing for performing an intermediate heat treatment during wire drawing has not been sufficiently studied.
これに対し、本発明製造方法は、上述のように特定の時期に中間熱処理を施すことで、従来の製造方法により製造した最終線径が同じ銅線材と比較した場合、高強度で高靭性な銅線材を製造できる。また、本発明製造方法によれば、上述のように中間熱処理の時期を特定の範囲で選択することで、引張強さや伸びが異なる銅線材を製造できる。例えば、最終線径が同じ銅線材を製造する場合、上記冷間加工材の径が太いときよりも細いときに中間熱処理を施すと、引張強さ及び伸びがより高い銅線材を製造できる。このように最終線径が同じ銅線材でも、中間熱処理を施す時期によって引張強さ及び伸びが異なる銅線材を製造できるため、本発明製造方法は、多様な要望に応じた特性を有する銅線材を製造でき、工業的に有用であると期待される。 In contrast, the manufacturing method of the present invention is high strength and high toughness when compared with a copper wire having the same final wire diameter manufactured by a conventional manufacturing method by performing an intermediate heat treatment at a specific time as described above. Copper wire can be manufactured. Moreover, according to this invention manufacturing method, the copper wire material from which tensile strength and elongation differ can be manufactured by selecting the time of intermediate heat processing in the specific range as mentioned above. For example, when producing a copper wire having the same final wire diameter, a copper wire having a higher tensile strength and elongation can be produced by performing an intermediate heat treatment when the cold-worked material is thinner than when the diameter of the cold-worked material is thick. In this way, even with a copper wire having the same final wire diameter, a copper wire having different tensile strength and elongation can be produced depending on the timing of the intermediate heat treatment. Therefore, the production method of the present invention uses a copper wire having characteristics according to various demands. It can be manufactured and is expected to be industrially useful.
本発明銅線材は、純銅からなることで導電率が高い上に、上述のように強度及び靭性の双方に優れることから、電線や電極線、溶接ワイヤなどの導体用線材に好適に利用することができる。以下、本発明をより詳細に説明する。 Since the copper wire of the present invention is made of pure copper and has high conductivity, and is excellent in both strength and toughness as described above, it is preferably used for conductor wires such as electric wires, electrode wires, and welding wires. Can do. Hereinafter, the present invention will be described in more detail.
[銅線材]
《組成》
〈母相〉
本発明銅線材を構成する純銅とは、Cuを99.9質量%以上含有するものとし、Cu以外の元素が合計で0.1質量%以下の範囲で含有することを許容する。このような純銅として、例えば、JIS H 3100(2006)に規定される無酸素銅(合金番号:C1020)、タフピッチ銅(合金番号:C1100)、りん脱酸銅(合金番号:C1201,C1220)などが挙げられる。Cu以外の元素が合計で0.1質量%超含有されると、強度が高まるものの、導電率の低下や靭性の低下を招くため、本発明では除外する。Cuの含有量が99.92質量%〜99.98質量%程度であると、電線用導体に好適に利用することができる。
[Copper wire]
"composition"
<Mother phase>
Pure copper constituting the copper wire of the present invention contains 99.9% by mass or more of Cu, and allows elements other than Cu to be contained in a total range of 0.1% by mass or less. Examples of such pure copper include oxygen-free copper (alloy number: C1020), tough pitch copper (alloy number: C1100), and phosphorous deoxidized copper (alloy number: C1201, C1220) as defined in JIS H 3100 (2006). Is mentioned. If elements other than Cu are contained in total exceeding 0.1% by mass, the strength is increased, but this leads to a decrease in conductivity and a decrease in toughness. It can utilize suitably for the conductor for electric wires as content of Cu is about 99.92 mass%-99.98 mass%.
〈その他の元素:金属元素〉
Cu以外の元素として、Sn,Pb,Fe,Ag,Ni,及びZnの少なくとも1種の元素を質量割合で合計0ppm超100ppm以下(0.01質量%以下)含有すると、強度を更に高められる。所望の特性に応じて、上記元素を上記範囲で添加することができる。但し、上記元素の含有量が質量割合で合計100ppm超となると、上述のように導電率や靭性の低下を招く。特に、Sn,Pb,Fe,Niは導電率を低下させ易いため、それぞれ質量割合でSn:50ppm以下、Pb:20ppm以下、Fe:30ppm以下、Ni:20ppm以下が好ましい。これらの金属元素は、含有しなくてもよいため、含有量の下限は設けない。
<Other elements: Metal elements>
When at least one element of Sn, Pb, Fe, Ag, Ni, and Zn is contained in a mass ratio as the element other than Cu, the total strength is further increased to 0 ppm to 100 ppm (0.01 mass% or less), and the strength can be further increased. Depending on the desired properties, the above elements can be added in the above range. However, when the content of the above elements exceeds 100 ppm in terms of mass ratio, the conductivity and toughness are reduced as described above. In particular, Sn, Pb, Fe, and Ni are liable to lower the electrical conductivity. Therefore, Sn: 50 ppm or less, Pb: 20 ppm or less, Fe: 30 ppm or less, and Ni: 20 ppm or less are preferable. Since these metal elements may not be contained, there is no lower limit of the content.
〈その他の元素:酸素〉
上記金属元素以外の元素として、酸素を質量割合で0ppm超650ppm以下(0.065質量%以下)含有していてもよい。酸素を上記範囲で含有することで、不純物元素を酸化物として析出させ、導電率の低下を抑制することができる。この効果を得る場合、酸素は、質量割合で200ppm〜400ppm程度含有することがより好ましい。一方、酸素の含有量が少ない場合、例えば、無酸素銅レベル(質量割合で10ppm程度)では、耐水素脆性に優れる銅線材とすることができる。酸素は、銅中に主として酸化銅として存在し、その含有量が多いと酸化銅が粗大となり、この粗大な酸化銅を起点として冷間加工時などで断線が生じ易いため、質量割合で650ppm以下とする。所望の特性に応じて、酸素の含有量を選択するとよい。
<Other elements: Oxygen>
As an element other than the metal element, oxygen may be contained in a mass ratio of more than 0 ppm to 650 ppm or less (0.065 mass% or less). By containing oxygen in the above range, an impurity element can be precipitated as an oxide, and a decrease in conductivity can be suppressed. In order to obtain this effect, it is more preferable that oxygen is contained in a mass ratio of about 200 ppm to 400 ppm. On the other hand, when the oxygen content is small, for example, at the oxygen-free copper level (about 10 ppm by mass ratio), a copper wire excellent in hydrogen embrittlement resistance can be obtained. Oxygen is mainly present in copper as copper oxide, and if the content is large, the copper oxide becomes coarse, and disconnection is likely to occur during cold working starting from this coarse copper oxide. And The oxygen content may be selected according to desired characteristics.
〈その他の元素:不可避不純物〉
上述の金属元素及び酸素以外の元素は、不可避不純物とする。不可避不純物は、As,Bi,Sbなどが挙げられ、その含有量は質量割合で合計30ppm以下が望ましく、含有されないことが望ましいため、下限は設けない。
<Other elements: Inevitable impurities>
Elements other than the above metal elements and oxygen are inevitable impurities. Inevitable impurities include As, Bi, Sb, and the like, and the content is desirably 30 ppm or less in total by mass ratio, and it is desirable that the impurities are not contained, so there is no lower limit.
《平均結晶粒径》
本発明銅線材は、平均結晶粒径が小さいことが特徴の一つであり、平均結晶粒径が20μm以下である。このような微細組織から構成されることで、本発明銅線材は、高強度でありながら、靭性にも優れる。平均結晶粒径は、最終冷間加工の加工度や最終熱処理の処理条件により調整することができ、例えば、平均結晶粒径が10μm以下といった更に微細な組織を有する銅線材とすることができる。
<Average crystal grain size>
One feature of the copper wire of the present invention is that the average crystal grain size is small, and the average crystal grain size is 20 μm or less. By being comprised from such a fine structure, the copper wire of the present invention is excellent in toughness while having high strength. The average crystal grain size can be adjusted according to the degree of final cold working and the final heat treatment conditions. For example, a copper wire having a finer structure such as an average crystal grain size of 10 μm or less can be obtained.
《形状》
本発明銅線材は、線径(直径)を0.1mm以上2.0mm以下とする。線径がこの範囲を満たす線材であることで、冷間加工途中の特定の時期に中間熱処理を施したことによる強度及び靭性の向上の効果を十分に得ることができる。線径は、用途に応じて適宜選択するとよく、例えば、被覆電線の導体に利用する場合、線径が0.3mm以上1.0mm以下程度の銅線材が好適に利用することができる。なお、この線径は、製造工程における最終線径に実質的に等しい。
"shape"
The copper wire of the present invention has a wire diameter (diameter) of 0.1 mm or more and 2.0 mm or less. Since the wire diameter satisfies this range, the effect of improving strength and toughness due to the intermediate heat treatment performed at a specific time during cold working can be sufficiently obtained. The wire diameter may be appropriately selected depending on the application. For example, when used as a conductor of a covered electric wire, a copper wire having a wire diameter of about 0.3 mm or more and 1.0 mm or less can be preferably used. This wire diameter is substantially equal to the final wire diameter in the manufacturing process.
《引張強さ及び伸び》
本発明銅線材は、引張強さが240MPa以上と高い上に、20%以上という高い伸びを有する。本発明銅線材は、このように靭性に優れることで、例えば、コイル状に曲げられる場合でも、割れなどを生じることなく容易に曲げられる。
<< Tensile strength and elongation >>
The copper wire of the present invention has a high tensile strength of 240 MPa or higher and a high elongation of 20% or higher. The copper wire of the present invention is excellent in toughness as described above, and can be easily bent without causing cracks, for example, even when it is bent into a coil shape.
引張強さや伸びは、例えば、最終冷間加工時の加工度により調整することができ、当該加工度が高いほど、引張強さが大きくなる傾向にあり、当該加工度が低いほど、伸びが大きくなる傾向にある。特に、本発明では、上述のように中間熱処理を施す時期を特定の範囲で選択することで、同じ最終線径の従来の銅線材と比較した場合、本発明銅線材は、引張強さ及び伸びが大きい。所望の特性を満たすように、最終冷間加工の加工度や中間熱処理を施す時期を選択するとよい。例えば、引張強さが250MPa以上、伸びが30%以上といった更に高強度、高靭性な銅線材とすることができる。 Tensile strength and elongation can be adjusted, for example, by the degree of work at the time of final cold working. The higher the degree of work, the greater the tensile strength. The lower the degree of work, the greater the elongation. Tend to be. In particular, according to the present invention, the copper wire according to the present invention has a tensile strength and an elongation when compared with a conventional copper wire having the same final wire diameter by selecting the timing for performing the intermediate heat treatment in a specific range as described above. Is big. It is advisable to select the degree of final cold working and the timing for performing the intermediate heat treatment so as to satisfy desired characteristics. For example, a copper wire with higher strength and toughness having a tensile strength of 250 MPa or more and an elongation of 30% or more can be obtained.
《導電率》
本発明銅線材は、上述のように純銅から構成されるため、導電率が高く、98%IACS以上を満たす。特に、組成によっては、99%IACS以上、更に100%IACS以上を満たす銅線材とすることができる。
"conductivity"
Since the copper wire of the present invention is made of pure copper as described above, it has high conductivity and satisfies 98% IACS or more. In particular, depending on the composition, a copper wire material satisfying 99% IACS or more, and further 100% IACS or more can be obtained.
《使用形態》
本発明銅線材は、導体用線材に好適に利用することができる。上記導体は、単線、複数の本発明銅線材を撚り合せた撚り線、及びこの撚り線を更に圧縮加工した圧縮線材のいずれかの形態を適宜選択することができる。また、上記導体は、そのまま利用してもよいし、当該導体の外周に絶縁材料からなる絶縁被覆層を具える被覆電線としてもよい。
<< Usage form >>
The copper wire of the present invention can be suitably used as a conductor wire. As the conductor, any form of a single wire, a stranded wire obtained by twisting a plurality of copper wires of the present invention, and a compressed wire obtained by further compressing the stranded wire can be selected as appropriate. The conductor may be used as it is, or may be a covered electric wire having an insulating coating layer made of an insulating material on the outer periphery of the conductor.
[製造方法]
《素材の準備》
本発明製造方法では、まず、上述した組成を満たす純銅からなる素材を準備する。代表的には、原料に、高純度の電気銅を利用し、この原料を適宜な雰囲気で溶解し、得られた純銅の溶湯を鋳造して鋳造材を作製し、この鋳造材に更に熱間圧延を施したものが挙げられる。溶解雰囲気中の酸素濃度を調整したり、大気雰囲気で原料を溶解した後、酸化還元処理を適宜行ったりすることで、最終的に製造される銅線材中の酸素濃度を調整することができる。鋳造には、ツインベルト法やベルトアンドホイール法といった連続鋳造法を利用すると、鋳造材の生産性に優れる。また、連続鋳造に連続して熱間圧延を行って、素材を連続鋳造圧延材としてもよい。素材は、線径8mm〜12mm程度のものが好適に利用できる。
[Production method]
《Preparing the material》
In the manufacturing method of the present invention, first, a material made of pure copper satisfying the above-described composition is prepared. Typically, high-purity electrolytic copper is used as a raw material, this raw material is melted in an appropriate atmosphere, and the resulting pure copper melt is cast to produce a cast material. The thing which gave the rolling is mentioned. The oxygen concentration in the finally produced copper wire can be adjusted by adjusting the oxygen concentration in the dissolving atmosphere or by appropriately performing the oxidation-reduction treatment after dissolving the raw material in the air atmosphere. For casting, when continuous casting methods such as a twin belt method and a belt and wheel method are used, the productivity of the cast material is excellent. Moreover, it is good also as a continuous cast rolling material by performing hot rolling continuously to continuous casting. A material having a wire diameter of about 8 mm to 12 mm can be suitably used.
《冷間加工》
次に、上記素材に冷間加工、代表的には伸線加工を施した冷間加工材を準備する。後述する中間熱処理前に行うこの冷間加工は、その総加工度を最終線径に応じて適宜選択することができる。なお、当該冷間加工材を作製するにあたり、冷間加工途中に適宜熱処理を施して、この熱処理前の冷間加工による歪を除去して、素材の冷間加工性を高めてもよい。
《Cold processing》
Next, a cold-worked material is prepared by subjecting the material to cold working, typically wire drawing. In this cold working performed before the intermediate heat treatment described later, the total degree of work can be appropriately selected according to the final wire diameter. In producing the cold-worked material, a heat treatment may be appropriately performed during the cold work, and distortion due to the cold work before the heat treatment may be removed to improve the cold workability of the material.
《中間熱処理》
上記冷間加工材に中間熱処理を施す。この中間熱処理は、当該中間熱処理前の冷間加工による歪みを除去すると共に軟化して靭性を高めて、当該中間熱処理後に行う、特定の加工度の最終冷間加工を施し易くする。本発明製造方法は、予め最終線径を設定しておき、この最終線径から遡って、上記中間熱処理の直後に施す最終冷間加工の加工度が85%〜95%となるときに当該中間熱処理を施すことを特徴の一つとする。このように特定の時期に中間熱処理を施すことで、平均結晶粒径が小さい微細組織を有し、高強度で高靭性な本発明銅線材を製造することができる。
《Intermediate heat treatment》
An intermediate heat treatment is applied to the cold worked material. This intermediate heat treatment removes distortion due to cold working before the intermediate heat treatment and softens it to enhance toughness, thereby facilitating the final cold working with a specific degree of work performed after the intermediate heat treatment. In the manufacturing method of the present invention, the final wire diameter is set in advance, and when the degree of work of the final cold working performed immediately after the intermediate heat treatment reaches 85% to 95%, the intermediate diameter is traced back from the final wire diameter. One of the characteristics is to perform heat treatment. By performing the intermediate heat treatment at a specific time as described above, the copper wire of the present invention having a fine structure with a small average crystal grain size and high strength and toughness can be produced.
上記中間熱処理、及び後述する最終熱処理には、以下のバッチ処理及び連続処理のいずれも利用できる。 For the intermediate heat treatment and the final heat treatment described later, any of the following batch treatment and continuous treatment can be used.
<バッチ処理>
バッチ処理とは、軟化機(雰囲気炉、例えば、箱型炉)内に予め加熱対象を入れた状態で加熱する処理方法であり、一度の処理量が限られるものの、加熱対象全体の加熱状態を管理し易いため、特に伸びの高い線材を得易い処理方法である。上記中間熱処理や最終熱処理をバッチ処理により行う場合の条件、加熱温度(容器内の雰囲気温度):200℃以上600℃以下、保持時間:30分以上が挙げられる。加熱温度が200℃未満又は保持時間が30分未満では、中間熱処理の場合、歪み除去が十分に行えず、最終熱処理の場合、強度や靭性の向上効果が十分に得られない。600℃超では、結晶粒が粗大化して、靭性が損なわれる。より好ましい条件は、加熱温度:200℃以上400℃以下、保持時間:1時間以上5時間以下である。
<Batch processing>
Batch processing is a processing method in which a heating target is previously placed in a softening machine (atmosphere furnace, for example, a box furnace), and the heating state of the entire heating target is limited although the amount of processing at one time is limited. Since it is easy to manage, it is a processing method that makes it easy to obtain a particularly high elongation wire. Conditions when the intermediate heat treatment and final heat treatment are performed by batch treatment, heating temperature (atmosphere temperature in the container): 200 ° C. or higher and 600 ° C. or lower, holding time: 30 minutes or longer. When the heating temperature is less than 200 ° C. or the holding time is less than 30 minutes, distortion cannot be sufficiently removed in the case of intermediate heat treatment, and the effect of improving strength and toughness cannot be sufficiently obtained in the case of final heat treatment. If it exceeds 600 ° C, the crystal grains become coarse and the toughness is impaired. More preferable conditions are heating temperature: 200 ° C. or more and 400 ° C. or less, holding time: 1 hour or more and 5 hours or less.
<連続処理>
連続処理とは、軟化機内に連続的に加熱対象を供給して、加熱対象を連続的に加熱する処理方法であり、連続的に加熱できる点で作業性に優れる処理方法である。連続処理には、加熱対象に直接通電して加熱する直接通電方式、電磁誘導などを利用して加熱対象に間接的に通電して加熱する間接通電方式、加熱雰囲気とした加熱用容器(パイプ軟化炉)内に加熱対象を導入して熱伝導により加熱する炉式が挙げられる。特に、直接通電方式及び間接通電方式は、冷間加工工程に連続して熱処理を実施する場合でも、生産速度を高速に維持することができるため、高い生産性を実現できる。
<Continuous processing>
The continuous treatment is a treatment method in which a heating object is continuously supplied into the softening machine and the heating object is continuously heated, and the treatment method is excellent in workability in that it can be continuously heated. For continuous processing, direct energization method that heats the object to be heated by direct energization, indirect energization method that heats the object to be heated indirectly by using electromagnetic induction, etc. A furnace type in which an object to be heated is introduced into the furnace and heated by heat conduction. In particular, the direct energization method and the indirect energization method can achieve high productivity because the production rate can be maintained at a high speed even when the heat treatment is performed continuously after the cold working process.
連続処理の場合、所望の特性(ここでは、強度及び伸び)に関与し得る制御パラメータを適宜変化させ、そのときの特性を測定し、このような測定データを予め作成しておく。そして、このデータに基づいて、所望の特性値(最終的に引張強さ:240MPa以上、かつ伸び:20%以上)が得られるようにパラメータを調整するとよい。通電方式の場合、制御パラメータは、軟化機内への供給速度(線速)、加熱対象の大きさ(線径)、電流値などが挙げられる。炉式の場合、制御パラメータは、炉内への供給速度(線速)、加熱対象の大きさ(線径)、炉の大きさ(パイプ型炉の長さ)、加熱雰囲気の温度(400〜600℃が好ましい)などが挙げられる。伸線機の伸線材の排出側に例えば、通電方式の軟化機を配置させる場合、線速は数百m/min以上、特に600m/min以上とすることで、上述の微細組織を得易い。 In the case of continuous processing, control parameters that can be involved in desired characteristics (here, strength and elongation) are appropriately changed, the characteristics at that time are measured, and such measurement data is created in advance. Based on this data, the parameters may be adjusted so that desired characteristic values (final tensile strength: 240 MPa or more and elongation: 20% or more) can be obtained. In the case of the energization method, the control parameters include the supply speed (wire speed) into the softening machine, the size of the object to be heated (wire diameter), the current value, and the like. In the case of the furnace type, the control parameters are the feed rate into the furnace (linear speed), the size of the heating target (wire diameter), the size of the furnace (pipe furnace length), the temperature of the heating atmosphere (400 to 600 ° C. is preferable). For example, when an energizing type softening machine is disposed on the wire drawing material discharge side of the wire drawing machine, the above-mentioned fine structure can be easily obtained by setting the wire speed to several hundred m / min or more, particularly 600 m / min or more.
《最終冷間加工》
上記中間熱処理が施された中間熱処理材に最終冷間加工を施して、最終線径:0.1mm〜2.0mmの伸線材を形成する。この最終冷間加工の加工度(断面減少率)は、85%〜95%とする。加工度が85%未満でも95%超でも、最終熱処理後の銅線材において、高い強度と高い靭性との両立を十分に望めない。
《Final cold working》
The intermediate heat treatment material subjected to the intermediate heat treatment is subjected to final cold working to form a wire drawing material having a final wire diameter of 0.1 mm to 2.0 mm. The final cold working degree (cross-sectional reduction rate) is 85% to 95%. If the degree of work is less than 85% or more than 95%, the copper wire after the final heat treatment cannot be expected to have both high strength and high toughness.
《最終熱処理(軟化処理)》
上記最終冷間加工が施された伸線材に最終熱処理を施す。最終熱処理は、上述した中間熱処理と同様の条件を利用することができる。特定の加工度の上記最終冷間加工とこの最終熱処理とにより、微細組織を有し、高強度、高靭性な本発明銅線材が得られる。
《Final heat treatment (softening treatment)》
A final heat treatment is applied to the wire drawing material that has been subjected to the final cold working. The final heat treatment can utilize the same conditions as the intermediate heat treatment described above. The above-mentioned final cold working and the final heat treatment with a specific degree of processing provide the copper wire of the present invention having a microstructure and high strength and high toughness.
本発明銅線材は、導電率が高く、高強度かつ高靭性である。本発明銅線材の製造方法は、上記本発明銅線材を生産性よく製造できる。本発明被覆電線は、導電率が高く、かつ高強度及び高靭性が望まれる種々の分野の電力供給線に好適に利用することができる。 The copper wire of the present invention has high electrical conductivity, high strength and high toughness. The manufacturing method of the copper wire of the present invention can manufacture the copper wire of the present invention with high productivity. The coated electric wire of the present invention can be suitably used for power supply lines in various fields where electrical conductivity is high and high strength and high toughness are desired.
異なる製造条件で純銅からなる銅線材を作製し、機械的特性及び組織を調べた。各試料は、素材の用意→冷間加工→(中間熱処理→最終冷間加工→)最終熱処理という手順で作製した。 Copper wires made of pure copper were produced under different production conditions, and mechanical properties and structures were examined. Each sample was prepared in the order of preparation of raw material → cold working → (intermediate heat treatment → final cold work →) final heat treatment.
原料として電気銅地金(Cuを99.95質量%以上含有し、残部不可避不純物からなる純銅)を用意して純銅の溶湯を作製し、この溶湯を連続鋳造圧延して、直径φ8.0mmの銅荒引線(素材)を得た。溶湯は、連続溶解炉(シャフト炉)にて作製し、当該炉のバーナーの空燃比などを調整することで酸素濃度の調整を行った。連続鋳造には、ツインベルト法を利用した。 Prepare copper copper as a raw material (pure copper containing 99.95 mass% or more of Cu and the remaining inevitable impurities) to produce a molten pure copper, and continuously cast and roll this molten metal to obtain a copper A drawn line (material) was obtained. The molten metal was prepared in a continuous melting furnace (shaft furnace), and the oxygen concentration was adjusted by adjusting the air-fuel ratio of the burner of the furnace. The twin belt method was used for continuous casting.
上記銅荒引線に冷間加工(冷間伸線加工)を施した。試料No.1〜5,100,110は、冷間加工途中、表1に示す線径(mm)となったときの冷間加工材に中間熱処理を施し、その後、中間熱処理材に表1に示す最終線径(mm)まで最終冷間加工(冷間伸線加工)を施した。試料No.1,2は、中間熱処理をバッチ処理とし(加熱温度:300℃、保持時間:3時間)、試料No.1〜5は、中間熱処理を連続処理とした。一方、試料No.200,210は、上記銅荒引線に表1に示す最終線径(mm)まで冷間加工(冷間伸線加工)を施し、冷間加工途中に中間熱処理を施さなかった。 The copper rough wire was subjected to cold working (cold drawing). Sample Nos. 1-5, 100, and 110 were subjected to intermediate heat treatment on the cold worked material when the wire diameter (mm) shown in Table 1 was reached during cold working, and then the final wire diameter shown in Table 1 on the intermediate heat treated material Final cold working (cold drawing) was performed up to (mm). Samples Nos. 1 and 2 were batch-processed with an intermediate heat treatment (heating temperature: 300 ° C., holding time: 3 hours), and Samples Nos. 1 to 5 were continuously processed with an intermediate heat-treatment. On the other hand, Sample Nos. 200 and 210 were subjected to cold working (cold wire drawing) up to the final wire diameter (mm) shown in Table 1 on the copper rough drawing wire, and no intermediate heat treatment was performed during the cold working.
上記最終冷間加工が施された伸線材に最終熱処理を施して、各試料とした。試料No.1〜5の中間熱処理及び最終熱処理は、通電方式の連続処理とし、上述した制御パラメータ値と測定データとの相関データを予め作成しておき、この相関データに基づいて所望の特性(伸びや引張強さなど)が得られるように制御パラメータ(線速や電流値など)を調整して施した。中間熱処理も最終熱処理も線速は、600m/min以上とした。 A final heat treatment was applied to the wire drawing material subjected to the final cold working to prepare each sample. The intermediate heat treatment and final heat treatment of sample Nos. 1 to 5 are energized continuous processing, and correlation data between the control parameter values and measurement data described above are created in advance, and desired characteristics ( Control parameters (linear speed, current value, etc.) were adjusted so that the elongation and tensile strength were obtained. In both the intermediate heat treatment and the final heat treatment, the linear velocity was set to 600 m / min or more.
最終熱処理を施して得られた各試料について、引張強さ(MPa)、伸び(%)、平均結晶粒径を測定した。その結果を表1に示す。 For each sample obtained by the final heat treatment, the tensile strength (MPa), elongation (%), and average crystal grain size were measured. The results are shown in Table 1.
引張強さ及び伸びは、JIS Z 2201(1998)の記載に準じて試験片を作製して引張試験を行って測定した。試験条件は、標点間距離GL:250mm、引張速度:50mm/min、室温とした。平均結晶粒径は、各試料について任意の断面をとり、この断面をラッピングして、市販のEBSD(Electron Back-Scatter Diffraction Patterns(電子線後方散乱回折))装置により結晶解析を行い(倍率:260倍)、この解析画像において300μm×300μmの領域の結晶粒について求めた。 Tensile strength and elongation were measured by preparing a test piece according to the description of JIS Z 2201 (1998) and conducting a tensile test. The test conditions were a distance between gauge points GL: 250 mm, a tensile speed: 50 mm / min, and room temperature. The average crystal grain size is obtained by taking an arbitrary cross section for each sample, wrapping this cross section, and performing crystal analysis using a commercially available EBSD (Electron Back-Scatter Diffraction Patterns) apparatus (magnification: 260). In this analysis image, the crystal grains in the region of 300 μm × 300 μm were obtained.
表1に示すように、最終冷間加工の加工度が85%以上95%以下を満たすときに中間熱処理を施した試料No.1〜5は、上記加工度が上記範囲を満たさないときに中間熱処理を施した試料No.100,110と比較して、同じ線径である場合、引張強さ及び伸びが高く、平均結晶粒径が微細であることが分かる。また、これらの試料No.1〜5は、中間熱処理を施していない試料No.200,210と比較して、同じ線径である場合、引張強さ及び伸びが高く、平均結晶粒径が微細であることが分かる。更に、これらの試料No.1〜5について4端子法により導電率を測定したところ、いずれの試料も99%IACS以上であった。 As shown in Table 1, sample Nos. 1 to 5 that were subjected to intermediate heat treatment when the degree of final cold working satisfied 85% or more and 95% or less were intermediate when the above degree of processing did not satisfy the above range. It can be seen that the tensile strength and elongation are high and the average crystal grain size is fine when the wire diameter is the same as that of Samples Nos. 100 and 110 subjected to heat treatment. In addition, these sample Nos. 1 to 5 have higher tensile strength and elongation when the wire diameter is the same as those of sample Nos. 200 and 210 not subjected to intermediate heat treatment, and the average crystal grain size is fine. I understand that. Furthermore, when the conductivity of these samples No. 1 to 5 was measured by the 4-terminal method, all the samples were 99% IACS or more.
従って、最終冷間加工の加工度が特定の範囲を満たすときに中間熱処理を施し、この最終冷間加工後、最終熱処理を施すことで、導電率が高く、かつ高強度で高靭性な銅線材が得られることが分かる。そして、得られた銅線材や、この銅線材を複数撚り合せた撚り線、この撚り線を圧縮した圧縮線材は、被覆電線の導体などの導体用線材に好適に利用できると期待される。 Therefore, an intermediate heat treatment is performed when the degree of workability of the final cold working satisfies a specific range, and after this final cold working, the final heat treatment is performed, so that the electrical conductivity is high, and the copper wire has high strength and high toughness. It can be seen that The obtained copper wire, a stranded wire obtained by twisting a plurality of the copper wires, and a compressed wire obtained by compressing the stranded wire are expected to be suitably used for a conductor wire such as a conductor of a covered electric wire.
なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。純銅の組成、中間熱処理を施す時期(素材の線径)、中間熱処理条件、最終熱処理条件、最終線径などを適宜変更することができる。 The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. The composition of pure copper, the timing of performing the intermediate heat treatment (wire diameter of the material), the intermediate heat treatment conditions, the final heat treatment conditions, the final wire diameter, and the like can be appropriately changed.
本発明銅線材は、各種の電線の導体、放電加工などに用いられる電極線、溶接材料に用いられる溶接ワイヤといった導体用線材に好適に利用することができる。本発明被覆電線は、種々の分野の電力供給線に好適に利用することができる。本発明製造方法は、上記本発明銅線材の製造に好適に利用することができる。 The copper wire of the present invention can be suitably used for conductor wires such as conductors of various electric wires, electrode wires used for electric discharge machining, and welding wires used for welding materials. The coated wire of the present invention can be suitably used for power supply lines in various fields. The production method of the present invention can be suitably used for the production of the copper wire of the present invention.
Claims (6)
線径が0.1mm以上2.0mm以下、
平均結晶粒径が20μm以下、
引張強さが240MPa以上、
伸びが20%以上であることを特徴とする銅線材。 A copper wire made of 99.9% by mass or more of Cu,
Wire diameter is 0.1mm to 2.0mm,
The average grain size is 20 μm or less,
Tensile strength is 240 MPa or more,
A copper wire characterized by an elongation of 20% or more.
99.9質量%以上のCuからなる素材に冷間加工を施す工程と、
前記冷間加工が施された冷間加工材に中間熱処理を施す工程と、
前記中間熱処理の後、前記中間熱処理が施された中間熱処理材に加工度が85%以上95%以下の最終冷間加工を施して、最終線径が0.1mm以上2.0mm以下の伸線材を形成する工程と、
前記伸線材に最終熱処理を施して、平均結晶粒径が20μm以下、引張強さが240MPa以上、伸びが20%以上である銅線材を製造する工程とを具えることを特徴とする銅線材の製造方法。 A copper wire manufacturing method for manufacturing a copper wire made of 99.9% by mass or more of Cu,
A process of cold working a material composed of 99.9% by mass or more of Cu,
A step of performing an intermediate heat treatment on the cold worked material subjected to the cold working;
After the intermediate heat treatment, the intermediate heat treatment material that has been subjected to the intermediate heat treatment is subjected to a final cold working with a working degree of 85% to 95% to form a wire drawing material having a final wire diameter of 0.1 mm to 2.0 mm. And a process of
Subjected to final heat treatment to the drawn wire, the average crystal grain size is 20μm or less and a tensile strength of more than 240 MPa, elongation of the copper wire, wherein the obtaining ingredients and the step of producing the copper wire is 20% or more Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009266656A JP5652741B2 (en) | 2009-11-24 | 2009-11-24 | Copper wire and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009266656A JP5652741B2 (en) | 2009-11-24 | 2009-11-24 | Copper wire and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011111634A JP2011111634A (en) | 2011-06-09 |
JP5652741B2 true JP5652741B2 (en) | 2015-01-14 |
Family
ID=44234202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009266656A Active JP5652741B2 (en) | 2009-11-24 | 2009-11-24 | Copper wire and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5652741B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5772338B2 (en) * | 2011-07-21 | 2015-09-02 | 日立金属株式会社 | Soft dilute copper alloy wire, soft dilute copper alloy sheet and soft dilute copper alloy stranded wire |
JP2013040384A (en) * | 2011-08-17 | 2013-02-28 | Hitachi Cable Ltd | Wiring material and plate material using soft dilute copper alloy |
JP2013040386A (en) * | 2011-08-17 | 2013-02-28 | Hitachi Cable Ltd | Conductor for earphone cable, and earphone cable |
JP6175932B2 (en) * | 2013-06-24 | 2017-08-09 | 三菱マテリアル株式会社 | Drawing copper wire, drawing copper wire manufacturing method and cable |
JP6288433B2 (en) * | 2014-03-05 | 2018-03-07 | 住友電気工業株式会社 | Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method |
EP3128019B1 (en) * | 2014-03-31 | 2020-10-14 | Furukawa Electric Co. Ltd. | Copper alloy wire material and manufacturing method thereof |
CN109003743A (en) * | 2018-07-25 | 2018-12-14 | 王文芳 | A kind of production method of the superfine conductor of continuous copper alloy |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6160845A (en) * | 1984-08-31 | 1986-03-28 | Showa Electric Wire & Cable Co Ltd | Oxidation resistant copper alloy wire for connecting copper wire |
JPH01283333A (en) * | 1987-12-25 | 1989-11-14 | Hiroshi Sasaki | High electric conductive metallic material |
JP2623143B2 (en) * | 1989-10-18 | 1997-06-25 | 同和鉱業株式会社 | Manufacturing method of high purity copper wire composed of coarse crystal grains |
JPH04176849A (en) * | 1990-11-10 | 1992-06-24 | Tatsuta Electric Wire & Cable Co Ltd | High-strength and high-conductivity copper alloy thin wire |
JPH04124720U (en) * | 1991-04-27 | 1992-11-13 | タツタ電線株式会社 | high frequency coaxial cable |
JP3718036B2 (en) * | 1997-11-17 | 2005-11-16 | 日立電線株式会社 | Extra fine copper wire and method for producing the same |
JP2006274383A (en) * | 2005-03-30 | 2006-10-12 | Hitachi Cable Ltd | Method for manufacturing copper material, and copper material |
JP4815878B2 (en) * | 2005-05-31 | 2011-11-16 | 三菱マテリアル株式会社 | Copper wire and method for manufacturing the same |
JP2007023305A (en) * | 2005-07-12 | 2007-02-01 | Mitsubishi Cable Ind Ltd | Conductor element wire for electric wire for automobile, and its manufacturing method |
JP2008041447A (en) * | 2006-08-07 | 2008-02-21 | Hitachi Cable Ltd | Conductor for cable, manufacturing method of the same, and flex-resistant cable using the same |
-
2009
- 2009-11-24 JP JP2009266656A patent/JP5652741B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011111634A (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4709296B2 (en) | Method for manufacturing diluted copper alloy material | |
JP6499159B2 (en) | Copper alloy wire and method for producing the same | |
JP5652741B2 (en) | Copper wire and method for producing the same | |
JP5117604B1 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP6782167B2 (en) | Manufacturing method of aluminum alloy wire, aluminum alloy stranded wire, coated electric wire and wire harness, and aluminum alloy wire | |
WO2012124804A1 (en) | Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these | |
WO2015093317A1 (en) | Copper alloy wire, twisted copper alloy wire, electric wire, electric wire having terminal attached thereto, and method for producing copper alloy wire | |
WO2015034071A1 (en) | Copper alloy wire material and method for producing same | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
KR101590242B1 (en) | Cu-Ni-Si ALLOY WIRE HAVING EXCELLENT BENDABILITY | |
WO2016021547A1 (en) | Copper alloy wire, stranded copper alloy wire, coated electric wire, and terminal-equipped electric wire | |
JP2010212164A (en) | Method of manufacturing wire conductor, wire conductor, insulated wire, and wire harness | |
WO2014007258A1 (en) | Copper-alloy wire rod and manufacturing method therefor | |
JP4809934B2 (en) | Dilute copper alloy wire, plated wire and stranded wire | |
TWI429764B (en) | Cu-Co-Si alloy for electronic materials | |
JP5539932B2 (en) | Cu-Co-Si alloy with excellent bending workability | |
JP6228725B2 (en) | Cu-Co-Si alloy and method for producing the same | |
JP5617521B2 (en) | Method for producing enameled wire using dilute copper alloy material | |
JP2016199808A (en) | Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR | |
JP5510879B2 (en) | Wire conductor and wire | |
JP2010198872A (en) | Electric wire conductor for wire harness conductor | |
JP2019119929A (en) | Copper alloy wire | |
JP7430502B2 (en) | Copper alloy wire and electronic equipment parts | |
JP2010084163A (en) | Copper-alloy wire and method for manufacturing the same | |
JP5896185B2 (en) | Conductor for electric wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141027 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5652741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141109 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |