[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5650331B2 - Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance - Google Patents

Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance Download PDF

Info

Publication number
JP5650331B2
JP5650331B2 JP2013535244A JP2013535244A JP5650331B2 JP 5650331 B2 JP5650331 B2 JP 5650331B2 JP 2013535244 A JP2013535244 A JP 2013535244A JP 2013535244 A JP2013535244 A JP 2013535244A JP 5650331 B2 JP5650331 B2 JP 5650331B2
Authority
JP
Japan
Prior art keywords
silicon steel
annealing separator
oriented silicon
steel
magnetic performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013535244A
Other languages
Japanese (ja)
Other versions
JP2013545892A (en
Inventor
自 鵬 趙
自 鵬 趙
亜 明 吉
亜 明 吉
勇 杰 楊
勇 杰 楊
国 保 李
国 保 李
登 峰 李
登 峰 李
云 鵬 許
云 鵬 許
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2013545892A publication Critical patent/JP2013545892A/en
Application granted granted Critical
Publication of JP5650331B2 publication Critical patent/JP5650331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は粒配向珪素鋼の製造方法に関し、特に、鏡状表面を備えて優れた磁気的性能を有する粒配向珪素鋼を製造するためのアニール分離剤に関する。   The present invention relates to a method for producing grain-oriented silicon steel, and more particularly to an annealing separator for producing grain-oriented silicon steel having a mirror-like surface and having excellent magnetic performance.

粒配向珪素鋼は、熱間圧延、焼きならし、および冷間圧延の処理された後にH‐N雰囲気で保護された脱炭アニールに処され、それによって圧延ストレスが除去されて予備的再結晶が生じ、その間に、最終製品の磁気的エージングを防ぐために鋼帯中の炭素含量を30ppm未満に制御するように炉内へ湿性ガスが導入される。鋼帯は脱炭アニールされるときに酸化されて、主としてSiOとFeSiOからなる酸化物層を形成し、これはその後の脱炭に負の影響を及ぼす。これに続く高温アニール処理において、その酸化物層は鋼帯の表面上に塗布されたアニール分離剤と化学反応して、主としてMgSiOからなるガラス膜の下地被覆を生じる。この下地被覆は、高温アニールの間の鋼の接合と純化を防止する機能を有する。 Grain-oriented silicon steel is subjected to decarburization annealing protected in H 2 -N 2 atmosphere after being subjected to hot rolling, normalizing, and cold rolling treatment, thereby removing rolling stress and preliminarily Recrystallization occurs, during which wet gas is introduced into the furnace to control the carbon content in the steel strip to less than 30 ppm to prevent magnetic aging of the final product. The steel strip is oxidized when decarburized and annealed to form an oxide layer mainly composed of SiO 2 and Fe 2 SiO 4 , which has a negative effect on the subsequent decarburization. In the subsequent high-temperature annealing treatment, the oxide layer chemically reacts with the annealing separator applied on the surface of the steel strip, resulting in an undercoating of a glass film mainly composed of Mg 2 SiO 4 . This undercoating has the function of preventing steel joining and purification during high temperature annealing.

粒配向珪素鋼の表面上のMgSiOガラス膜の下地被覆は比較的高い硬度を有し、それは鋼シートの比較的乏しい打抜き性能をもたらし、それは通常数千回であり、ガラス膜下地被覆と鋼シート本体との間の埋め込まれた結合は磁気ドメイン壁の動きを妨げて磁気ヒステリシス損失を増大させる。 The undercoat of Mg 2 SiO 4 glass film on the surface of grain oriented silicon steel has a relatively high hardness, which results in a relatively poor punching performance of the steel sheet, which is usually thousands of times, The embedded bond between the steel sheet body and the magnetic sheet wall hinders the movement of the magnetic domain wall and increases the magnetic hysteresis loss.

粒配向珪素鋼の打抜き性能を改善して磁気的性能をも改善するために、日本人はガラス膜下地被覆を伴わない粒配向珪素鋼を開発している。日本特許JP49096920は、粒配向珪素鋼の表面上のガラス膜下地被覆を酸洗いで除去する方法を開示している。しかし、(鋼シート内へ埋め込まれた酸化物を含んで)10μmの厚さを有するガラス膜下地被覆を完全に洗い落すためには、鋼が強い酸内で長期間浸漬されねばならず、これは高コスト、化学物質の環境汚染などの問題を生じる。   In order to improve the punching performance of grain-oriented silicon steel and improve the magnetic performance, the Japanese have developed grain-oriented silicon steel without glass film undercoating. Japanese Patent JP49096920 discloses a method of removing the glass film undercoating on the surface of grain oriented silicon steel by pickling. However, in order to completely wash off the glass film undercoating having a thickness of 10 μm (including oxides embedded in the steel sheet), the steel must be immersed in a strong acid for a long time. Causes problems such as high cost and environmental pollution of chemical substances.

日本特許公開JP05156362Aは、Alが高温アニール分離剤として塗布されることを開示している。Alは酸化物層または鋼シート本体と反応しないので、ガラス膜下地被覆を伴わない粒配向珪素鋼が直接的に得られる。しかし、この方法は脱炭アニール中に形成された酸化物層または埋め込まれた酸化物を除去することができず、これは磁気的性能の改善に関して不利である。 Japanese Patent Publication JP05156362A discloses that Al 2 O 3 is applied as a high temperature anneal separator. Since Al 2 O 3 does not react with the oxide layer or the steel sheet body, grain-oriented silicon steel without a glass film undercoating can be obtained directly. However, this method cannot remove the oxide layer or embedded oxide formed during the decarburization anneal, which is disadvantageous with respect to improved magnetic performance.

この問題を解決するために、日本特許JP2003247024は低度の酸化力を有する雰囲気を形成するようにPHO/PHの割合が制御される方法に関し、すなわちFeベースの酸化物が形成されず、そして平滑な表面を備えた粒配向鋼を得るように主としてAlの分離剤が塗布される。しかし、脱炭中の酸化力の度合いが低過ぎれば、脱炭が困難となるであろう。日本特許公開05156364Aにおいては、脱炭アニールが完了した後に、鋼シートの表面上の酸化物層が酸洗いによって除去され、そして主としてAlの分離剤が塗布される。 In order to solve this problem, Japanese Patent JP2003247024 relates to a method in which the ratio of PH 2 O / PH 2 is controlled so as to form an atmosphere having a low oxidizing power, that is, no Fe-based oxide is formed. And a separating agent of mainly Al 2 O 3 is applied to obtain a grain oriented steel with a smooth surface. However, if the degree of oxidizing power during decarburization is too low, decarburization will be difficult. In Japanese Patent Publication No. 05156364A, after the decarburization annealing is completed, the oxide layer on the surface of the steel sheet is removed by pickling, and a separating agent mainly of Al 2 O 3 is applied.

米国特許US554719においては、MgO+SiOがアニール分離剤として使用され、これは二次再結晶アニール工程中に鋼シートの表面上に緩い珪酸マグネシウムを形成し、そしてこの緩い珪酸マグネシウムはブラシングと洗浄によって除去され、ガラス膜下地被覆を伴わない製品が得られる。 In US Pat. No. 5,547,719, MgO + SiO 2 is used as an annealing separator, which forms loose magnesium silicate on the surface of the steel sheet during the secondary recrystallization annealing process, and this loose magnesium silicate is removed by brushing and washing. Thus, a product without a glass film undercoating is obtained.

日本特許JP2000038615においては、塩化物が付加されたマグネシアとアルミナがアニール分離剤として使用され、形成されたガラス膜下地被覆は(2/3)MCl+Fe+(3/2)O→M+FeCl↑の界面反応によって除去され、そして何らガラス膜下地被覆を伴わない製品が得られる。 In Japanese Patent JP2000038615, magnesia to which chloride is added and alumina are used as an annealing separator, and the formed glass film undercoating is (2/3) MCl 3 + Fe + (3/2) O 2 → M 2 O. A product is obtained which is removed by an interfacial reaction of 3 + FeCl 2 ↑ and without any glass film undercoating.

日本の会社であるJFEは、何らガラス膜下地被覆を伴わない粒配向珪素鋼を直接的に得るために、鋼シートの表面と反応しないAlなどを高温アニール分離剤として使用している。そのような方法では、鋼シートの近表面酸化物不純物を完全に排除するために、鋼シートの表面上にFeベース酸化物が形成されないように、脱炭のための露点が厳密に制御される。しかし、これは、不可避的に脱炭と窒化の問題を生じる。 JFE, a Japanese company, uses Al 2 O 3 that does not react with the surface of the steel sheet as a high-temperature annealing separator to directly obtain grain-oriented silicon steel without any glass film undercoating. . In such a method, the dew point for decarburization is strictly controlled so that no Fe-based oxide is formed on the surface of the steel sheet in order to completely eliminate the near surface oxide impurities of the steel sheet. . However, this inevitably causes decarburization and nitriding problems.

米国の会社であるArmco社(今はAK社)はSiOが付加されたマグネシアをアニール分離剤として使用し、二次再結晶アニール工程中に鋼シート上に形成される緩い珪酸マグネシウムは、鋼の純化のために鋼シートの中間層部分内へアニール保護ガスを導入することにおいて有利である。しかし、一般に、そのような方法は表面上の珪酸マグネシウムを完全に洗い落すことができず、鉄シートの近表面の埋込み酸化物を完全に除去することもできず、これは鉄心損失を低減させる効果を制限する。 US company Armco (now AK) uses magnesia with added SiO 2 as an annealing separator, and the loose magnesium silicate formed on the steel sheet during the secondary recrystallization annealing process is steel It is advantageous to introduce an annealing protective gas into the intermediate layer portion of the steel sheet for purification of the steel sheet. However, in general, such methods cannot completely wash out the magnesium silicate on the surface, nor can they completely remove the buried oxide on the near surface of the iron sheet, which reduces core loss. Limit the effect.

日本の会社であるNSCは、塩化物が付加されたマグネシアを使用する。しかし、塩化物の多量の付加は二次再結晶アニール中の鋼シートの表面に不可避の腐食を生じ、これは表面抑制剤に影響し、二次再結晶が不安定になる。   NSC, a Japanese company, uses magnesia with added chloride. However, the addition of a large amount of chloride causes unavoidable corrosion on the surface of the steel sheet during secondary recrystallization annealing, which affects the surface inhibitor and makes secondary recrystallization unstable.

本発明の目的は、鏡状表面を備えて良好な磁気的性能を有する粒配向珪素鋼を製造するためのアニール分離剤を提供することであり、これは鋼シート上にガラス膜下地被覆が生成することを防止することができ、またそのシートの近表面の埋め込まれた酸化物が塩化物との腐食反応によって除去され得て、平滑な表面と安定な磁気的性能を備えた製品が得られる。   The object of the present invention is to provide an annealing separator for producing grain oriented silicon steel with a mirror-like surface and good magnetic performance, which produces a glass film undercoat on the steel sheet. And the embedded oxide on the near surface of the sheet can be removed by a corrosion reaction with chloride, resulting in a product with a smooth surface and stable magnetic performance .

上述の目的を達成するために、本発明の技術的解決は以下のようである。
鏡状表面を備えて良好な磁気的性能を有する粒配向珪素鋼を製造するためのアニール分離剤は以下の組成からなり、すなわち、77〜98wt%Al粉末、1〜8wt%アルカリ土類金属酸化物粉末、1〜15wt%アルカリ金属塩化物および/またはアルカリ土類金属塩化物である。
In order to achieve the above object, the technical solution of the present invention is as follows.
Annealing separating agent for producing the grain oriented silicon steel having good magnetic performance with a mirror-like surface is comprised of the following composition, i.e., 77~98wt% Al 2 O 3 powder, 1~8Wt% alkaline earth Metal oxide powder, 1-15 wt% alkali metal chloride and / or alkaline earth metal chloride.

また、アルカリ土類金属酸化物は、BeO、MgO、CaO、SrO、またはBaOを含む。   The alkaline earth metal oxide includes BeO, MgO, CaO, SrO, or BaO.

さらに、アルカリ金属塩化物は、LiCl、NaCl、KCl、またはRbClを含む。   Furthermore, the alkali metal chloride includes LiCl, NaCl, KCl, or RbCl.

アルカリ土類金属塩化物は、BeCl、MgCl、CaCl、SrCl、BaCl、またはZnClを含む。 Alkaline earth metal chlorides include BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , or ZnCl 2 .

実験によって以下のことが見出された。すなわち、高温アニール中にシートの酸化物層と反応しない物質をアニール分離剤として塗布することがシートの近表面酸化物層を除去するために効果的であり、その物質は2.5wt%以下の水分を導入するために少量のアルカリ土類金属酸化物が付加され、或る量の塩化物も付加され、水分は塩化物の添加物に含まれる塩素イオンと反応して酸性の腐食性溶液を形成し、これはシートの近表面酸化物層の除去に良好で有利である。   The following was found through experiments. That is, applying a substance that does not react with the oxide layer of the sheet during the high-temperature annealing as an annealing separator is effective for removing the near-surface oxide layer of the sheet, and the substance is 2.5 wt% or less. A small amount of alkaline earth metal oxide is added to introduce moisture, a certain amount of chloride is also added, and the moisture reacts with chloride ions in the chloride additive to form an acidic corrosive solution. This is good and advantageous for the removal of the near surface oxide layer of the sheet.

本発明の鏡状表面を備えた粒配向珪素鋼のためのアニール分離剤は水を加えて攪拌することによって或る濃度を有する塗布液を形成し、そして脱炭されたシートの表面上に塗布が行われる。塗布の完了後、分離剤中の遊離水分を放出するために、製品は300℃以下の温度下で30秒を超えて焼かれる。このとき、分離剤は微細孔を有する物質を形成し、その物質の主要組成はAl、Ca(OH)、および1以上の種類の塩化物の混合物を形成し、それは良好な透過性を有する。その加水分解中の一次的化学反応は次式である。CaO+HO=Ca(OH) (1)
高温アニールの一次的段階において、温度が580℃より高いときに、Ca(OH)は分解反応して再度CaOを生じて水分を放出する。水分の存在は一方において溶液を提供し、他方において塩素イオンと反応してHClの酸性物質を生じ、これは或る腐食作用を有する。高温アニール中に続いて起こる化学反応は、以下のようである。
The annealing separator for grain oriented silicon steel with mirror-like surface of the present invention forms a coating solution having a certain concentration by adding water and stirring, and is applied on the surface of the decarburized sheet Is done. After application is complete, the product is baked for more than 30 seconds at a temperature of 300 ° C. or less in order to release free moisture in the separating agent. At this time, the separating agent forms a substance having fine pores, and the main composition of the substance forms a mixture of Al 2 O 3 , Ca (OH) 2 , and one or more kinds of chlorides, which has good permeation. Have sex. The primary chemical reaction during the hydrolysis is: CaO + H 2 O = Ca (OH) 2 (1)
In the primary stage of high-temperature annealing, when the temperature is higher than 580 ° C., Ca (OH) 2 undergoes a decomposition reaction to generate CaO again to release moisture. The presence of moisture on the one hand provides a solution and on the other hand reacts with chloride ions to produce an acidic substance of HCl, which has some corrosive action. The chemical reaction that follows during the high temperature annealing is as follows.

Ca(OH)=CaO+HO (2)
O+Cl⇔HCl↑+OH (3)
気相のHClは分離剤を貫通して、シートの酸化物層と反応し、化学式(3)で示された反応を右向に進め、その反応が連続的に生じる。HClと酸化物層との反応は以下のようである。
Ca (OH) 2 = CaO + H 2 O (2)
H 2 O + Cl ⇔HCl ↑ + OH (3)
The gaseous HCl passes through the separating agent and reacts with the oxide layer of the sheet, and the reaction represented by the chemical formula (3) proceeds to the right, and the reaction occurs continuously. The reaction between HCl and the oxide layer is as follows.

2HCl+FeO=FeCl+HO↑ (4)
4HCl+FeSiO=2FeCl+SiO+2HO↑ (5)
HClによって損傷された酸化物層は緩くて多孔質の物質に劣化し、シートに対するその結合力が実質的に低減される。ような酸化物層は、高温アニール後に軽く酸洗いしてブラシングすることによって、容易に除去され得る。したがって、鏡状で滑らかな表面を備えた粒配向珪素鋼が、熱間引張と平坦化の処理の後に最終的に得られる。
2HCl + FeO = FeCl 2 + H 2 O ↑ (4)
4HCl + Fe 2 SiO 4 = 2FeCl 2 + SiO 2 + 2H 2 O ↑ (5)
The oxide layer damaged by HCl degrades to a loose and porous material, and its bond strength to the sheet is substantially reduced. Such an oxide layer can be easily removed by light pickling after high temperature annealing and brushing. Thus, grain oriented silicon steel with a mirror-like smooth surface is finally obtained after the hot tensioning and flattening processes.

粒配向珪素鋼のための従来の高温アニール中に形成されるガラス膜下地被覆は比較的高い硬度を示し、これは珪素鋼シートの打抜き性能を劣化させ、金型が製造中の或る範囲で損傷を受ける。一方、シート本体中のピン止めされた酸化物構造は磁気ドメイン壁の動きを妨げ、これは磁気的性能に負の影響を及ぼす。下地被覆を伴わない粒配向珪素鋼は珪素鋼の加工性を実質的に改善することができ、その加工性はピン止め構造の不在によっても改善され得て、特別に低い鉄心損失の製品が得られる。   The glass film undercoating formed during conventional high temperature annealing for grain oriented silicon steel exhibits a relatively high hardness, which degrades the punching performance of the silicon steel sheet and in a range where the mold is in production. Damaged. On the other hand, the pinned oxide structure in the sheet body prevents the movement of the magnetic domain wall, which negatively affects the magnetic performance. Grain-oriented silicon steel without an undercoating can substantially improve the workability of silicon steel, which can also be improved by the absence of a pinned structure, resulting in a product with a particularly low core loss. It is done.

本発明前では、粒配向表面珪素鋼を得るための特許は、主としてMgOと塩化物またはAlとに関係していた。前者は磁気的性能の不安定性を生じ、後者は脱炭アニール処理中に形成される埋め込まれた酸化物を除去することができない。或る者は塩化物が付加されたAl分離剤を利用するが、塩化物自体は埋め込まれた酸化物を除去するためにこれと反応する或る程度の水分の助けを必要とする。 Prior to the present invention, patents for obtaining grain oriented surface silicon steels were primarily concerned with MgO and chloride or Al 2 O 3 . The former results in instability of the magnetic performance and the latter cannot remove the embedded oxide formed during the decarburization annealing process. Some use an Al 2 O 3 separating agent with chloride added, but the chloride itself needs some help of moisture to react with it to remove the embedded oxide. .

本発明は新規にアルカリ土類金属酸化物を導入し、そのアルカリ土類金属酸化物の水溶性に基づいて、高温アニール中に導入される水分が容易に制御され得る。そのような方法は容易であって、優れた粒配向珪素鋼製品を安定して得ることができる。関連する装置は粒配向鋼を造るための慣用的な装置であって、優れた実用性と応用性を有し、優れた普及の期待を示すものである。   The present invention newly introduces an alkaline earth metal oxide, and the moisture introduced during high temperature annealing can be easily controlled based on the water solubility of the alkaline earth metal oxide. Such a method is easy, and an excellent grain-oriented silicon steel product can be obtained stably. The related apparatus is a conventional apparatus for producing grain-oriented steel, has excellent practicality and applicability, and shows excellent expectation of popularization.

比較例1の鋼シートの光学断面写真である(分離剤:65wt%MgO+35wt%SiO)。Is an optical photograph of a cross section of the steel sheet of Comparative Example 1 (separating agent: 65wt% MgO + 35wt% SiO 2). 比較例2の鋼シートの光学断面写真である(分離剤:90wt%MgO+10wt%CaCl)。Is an optical photograph of a cross section of the steel sheet of Comparative Example 2 (separating agent: 90wt% MgO + 10wt% CaCl 2). 比較例3の鋼シートの光学断面写真である(分離剤:100wt%Al)。Is an optical photograph of a cross section of the steel sheet of Comparative Example 3 (separating agent: 100wt% Al 2 O 3) . 本発明の一実施例の鋼シートの光学断面写真である(分離剤:86wt%Al+4wt%CaO+10wt%MgCl)。Is an optical photograph of a cross section of the steel sheet of an embodiment of the present invention (separating agent: 86wt% Al 2 O 3 + 4wt% CaO + 10wt% MgCl 2).

以下において、複数の実施例に関して本発明が説明される。
500Kg真空炉が鋼溶錬のために使用され、鋼母材の化学的組成は、(wt%で)0.045wt%C、3.25wt%Si、0.006wt%S、0.027wt%可溶性Al、0.006wt%N、0.15wt%Cu、0.012wt%Mn、および残部のFeと不可避的不純物である。母材は、1150℃下で加熱された後に、2.6mm厚さの熱間圧延シートを形成するように熱間圧延される。熱間圧延シートは1分間平準化されてアニールされ、そして酸洗いされて、0.285mmの最終厚さのシートを形成するように冷間圧延される。冷間圧延シートは835℃下で120分間脱炭アニール処理を受けて、表面上に0.8と1.6g/mの2つのレベルの酸素含量が存在し、窒化処理後において鋼シートの窒素含量は250ppmである。脱炭されてアニールされたシートはアニール分離剤(材料比率は表2に示されている)が塗布され、シートは巻き取られた後に乾燥窒素と水素の保護雰囲気中で1200℃において20時間の高温アニールを受け、その後にシートは巻きを戻された後に絶縁被覆で被覆され、引伸ばされ、平坦化され、そしてアニールされる。
In the following, the invention will be described with reference to several embodiments.
A 500Kg vacuum furnace was used for steel smelting, and the chemical composition of the steel matrix was 0.045 wt% C, 3.25 wt% Si, 0.006 wt% S, 0.027 wt% soluble (in wt%) Al, 0.006 wt% N, 0.15 wt% Cu, 0.012 wt% Mn, and the balance Fe and inevitable impurities. The base material is heated at 1150 ° C. and then hot rolled to form a 2.6 mm thick hot rolled sheet. The hot rolled sheet is leveled for 1 minute, annealed and pickled and cold rolled to form a sheet with a final thickness of 0.285 mm. The cold-rolled sheet was subjected to decarburization annealing at 835 ° C. for 120 minutes, and there were two levels of oxygen content on the surface, 0.8 and 1.6 g / m 2 . The nitrogen content is 250 ppm. The decarburized and annealed sheet is coated with an annealing separator (the material ratio is shown in Table 2), and after the sheet is wound up, it is 20 hours at 1200 ° C. in a dry nitrogen and hydrogen protective atmosphere. After undergoing a high temperature anneal, the sheet is then unwound and then coated with an insulating coating, stretched, planarized, and annealed.

得られた製品の電磁的性能と表面品質の平均値が表3に示されている。   The average values of electromagnetic performance and surface quality of the obtained products are shown in Table 3.

図1〜4および表3から、本発明の分離剤で被覆された珪素鋼シートの表面上にはわずかな酸素が残存しており、その鋼シートの磁気的性能が良好であることが分かる。すなわち、本発明において粒配向珪素鋼の表面上の効果的な仕上げ処理によって、鏡状表面を備えて良好な磁気的性能を有する粒配向鋼シートが製造され得ることが分かる。   1 to 4 and Table 3 show that a slight amount of oxygen remains on the surface of the silicon steel sheet coated with the separating agent of the present invention, and the steel sheet has good magnetic performance. That is, it can be seen that a grain oriented steel sheet having a mirror-like surface and having good magnetic performance can be produced by an effective finishing treatment on the surface of grain oriented silicon steel in the present invention.

一方において本発明の高温アニール分離剤は効果的に鋼を純化し、他方において本発明は高温でのアニール中に近表面酸化物層を除去するように腐食性雰囲気を提供し、したがって鏡状表面を備えて良好な磁気的性能を有する粒配向珪素鋼が製造され得る。   On the one hand, the high temperature anneal separator of the present invention effectively purifies the steel, while on the other hand, the present invention provides a corrosive atmosphere to remove the near surface oxide layer during high temperature anneal, and thus a mirror-like surface. Grain oriented silicon steel with good magnetic performance can be produced.

Claims (3)

良好な磁気的性能を備えた粒配向珪素鋼を製造するためのアニール分離剤であって、
77〜98wt%Al粉末、
1〜8wt%アルカリ土類金属酸化物粉末、および
1〜15wt%アルカリ金属塩化物および/またはアルカリ土類金属塩化物
の組成からなるアニール分離剤。
An annealing separator for producing grain oriented silicon steel with good magnetic performance,
77~98wt% Al 2 O 3 powder,
An annealing separator comprising a composition of 1 to 8 wt% alkaline earth metal oxide powder and 1 to 15 wt% alkali metal chloride and / or alkaline earth metal chloride.
アルカリ土類金属酸化物は、BeO、MgO、CaO、SrO、またはBaOを含む、請求項1に記載のアニール分離剤。   The annealing separator according to claim 1, wherein the alkaline earth metal oxide includes BeO, MgO, CaO, SrO, or BaO. アルカリ金属塩化物は、LiCl、NaCl、KCl、またはRbClを含む、請求項1に記載のアニール分離剤。   The annealing separator according to claim 1, wherein the alkali metal chloride comprises LiCl, NaCl, KCl, or RbCl.
JP2013535244A 2010-10-25 2011-04-14 Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance Active JP5650331B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010105180375A CN102453793B (en) 2010-10-25 2010-10-25 Annealing isolation agent used for preparing mirror surface-oriented silicon steel with excellent magnetic property
CN201010518037.5 2010-10-25
PCT/CN2011/072771 WO2012055214A1 (en) 2010-10-25 2011-04-14 Annealing separation agent for producing grain-oriented silicon steel with smooth surface and good magnetic property

Publications (2)

Publication Number Publication Date
JP2013545892A JP2013545892A (en) 2013-12-26
JP5650331B2 true JP5650331B2 (en) 2015-01-07

Family

ID=45993115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013535244A Active JP5650331B2 (en) 2010-10-25 2011-04-14 Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance

Country Status (8)

Country Link
US (1) US20130292005A1 (en)
EP (1) EP2634270B1 (en)
JP (1) JP5650331B2 (en)
KR (1) KR20130081297A (en)
CN (1) CN102453793B (en)
MX (1) MX352637B (en)
RU (1) RU2552791C2 (en)
WO (1) WO2012055214A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928452B (en) * 2015-05-15 2018-03-20 武汉钢铁有限公司 A kind of coating that can prevent orientation silicon steel secondary recrystallization annealing side from splitting
CN109306198A (en) * 2018-08-22 2019-02-05 武汉钢铁有限公司 For improving the masking liquid and preparation method thereof of high magnetic induction grain-oriented silicon steel magnesium silicate bottom layer quality
KR102583464B1 (en) * 2019-01-16 2023-10-04 닛폰세이테츠 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU413200A1 (en) * 1971-06-29 1974-01-30
DE3875676T2 (en) * 1987-08-31 1993-03-18 Nippon Steel Corp METHOD FOR PRODUCING CORNORIENTED STEEL SHEETS WITH METAL GLOSS AND EXCELLENT PUNCHABILITY.
EP0416420B1 (en) * 1989-09-08 1994-12-14 Armco Inc. Magnesium oxide coating for electrical steels and the method of coating
JP2674917B2 (en) * 1991-12-06 1997-11-12 新日本製鐵株式会社 Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP2706040B2 (en) * 1993-12-21 1998-01-28 新日本製鐵株式会社 Method for manufacturing mirror-oriented silicon steel sheet
DE4409691A1 (en) * 1994-03-22 1995-09-28 Ebg Elektromagnet Werkstoffe Process for the production of electrical sheets with a glass coating
JP3412959B2 (en) * 1994-04-22 2003-06-03 新日本製鐵株式会社 Method for producing mirror-oriented silicon steel sheet with low iron loss
US5685920A (en) * 1994-05-13 1997-11-11 Nippon Steel Corporation Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same
JPH08134542A (en) * 1994-11-08 1996-05-28 Sumitomo Metal Ind Ltd Method for producing grain-oriented electrical steel sheet with excellent punchability
JP4116702B2 (en) * 1998-07-21 2008-07-09 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
CN100413980C (en) * 2001-04-23 2008-08-27 新日本制铁株式会社 Method for producing grain-oriented silicon steel sheet without inorganic mineral film
JP2003253334A (en) * 2002-03-01 2003-09-10 Jfe Steel Kk Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property and stamping property
JP4569070B2 (en) * 2003-03-13 2010-10-27 Jfeスチール株式会社 Finish annealing method for grain-oriented electrical steel sheets
JP2007131880A (en) * 2005-11-08 2007-05-31 Jfe Steel Kk Method of manufacturing grain oriented silicon steel without forsterite film

Also Published As

Publication number Publication date
KR20130081297A (en) 2013-07-16
EP2634270A1 (en) 2013-09-04
EP2634270A4 (en) 2018-01-17
EP2634270B1 (en) 2021-06-02
US20130292005A1 (en) 2013-11-07
JP2013545892A (en) 2013-12-26
MX2013004592A (en) 2013-07-17
MX352637B (en) 2017-12-01
WO2012055214A1 (en) 2012-05-03
RU2552791C2 (en) 2015-06-10
CN102453793B (en) 2013-09-25
RU2013127583A (en) 2014-12-27
CN102453793A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5463347B2 (en) Method for producing copper-containing directional silicon steel
JP2011518253A5 (en)
JP5313358B2 (en) Process of pickling silicon steel with acid pickling solution containing ferric ion
KR101605795B1 (en) Oriented electrical steel steet and method for the same
CN102952931B (en) Glass-film-free oriented silicon steel manufacture method and annealing isolation agent
CN103014285B (en) Manufacturing method of mirror surface oriented silicon steel with good magnetic performance and annealing parting agent
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP6535739B2 (en) Annealing separator composition for grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet using the same
CN102021282A (en) Annealing separant for preparing grain-oriented silicon steel and using method thereof
JP7230930B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN109554525B (en) Manufacturing method of mirror-surface oriented silicon steel
JP2019505669A (en) Method for producing grain-oriented electrical steel sheet
JP5650331B2 (en) Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP2001295062A (en) Grain oriented silicon steel sheet having excellent magnetic characteristic and film characteristic
JP3336547B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP4161403B2 (en) Method for producing grain-oriented electrical steel sheet
CN118600172A (en) Production method of high magnetic induction oriented silicon steel without magnesium silicate bottom layer and oriented silicon steel
JP2001271139A (en) Steel with easy removal of oxidized scale by pickling and method for producing the same
JP2003082472A (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and annealing separator and glass coating
KR20150053626A (en) Method for annealing of ferritic stainless steel having high silicon content
KR20240158268A (en) Method for manufacturing electrical steel sheet having pretreatment solution and insulating film formed thereon
KR20140060718A (en) Grain-oriented electrical steel sheet manufacutred by the same
JPS6152349A (en) Hot-rolled steel plate for enamel with excellent nail-skipping resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141112

R150 Certificate of patent or registration of utility model

Ref document number: 5650331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250