JP5650331B2 - Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance - Google Patents
Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance Download PDFInfo
- Publication number
- JP5650331B2 JP5650331B2 JP2013535244A JP2013535244A JP5650331B2 JP 5650331 B2 JP5650331 B2 JP 5650331B2 JP 2013535244 A JP2013535244 A JP 2013535244A JP 2013535244 A JP2013535244 A JP 2013535244A JP 5650331 B2 JP5650331 B2 JP 5650331B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon steel
- annealing separator
- oriented silicon
- steel
- magnetic performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000137 annealing Methods 0.000 title claims description 32
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 23
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 12
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 4
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 claims description 4
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 32
- 239000010959 steel Substances 0.000 description 32
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 11
- 238000005261 decarburization Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000395 magnesium oxide Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910004283 SiO 4 Inorganic materials 0.000 description 4
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 4
- 239000000391 magnesium silicate Substances 0.000 description 4
- 229910052919 magnesium silicate Inorganic materials 0.000 description 4
- 235000019792 magnesium silicate Nutrition 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/68—Temporary coatings or embedding materials applied before or during heat treatment
- C21D1/70—Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/68—Temporary coatings or embedding materials applied before or during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Chemical Treatment Of Metals (AREA)
Description
本発明は粒配向珪素鋼の製造方法に関し、特に、鏡状表面を備えて優れた磁気的性能を有する粒配向珪素鋼を製造するためのアニール分離剤に関する。 The present invention relates to a method for producing grain-oriented silicon steel, and more particularly to an annealing separator for producing grain-oriented silicon steel having a mirror-like surface and having excellent magnetic performance.
粒配向珪素鋼は、熱間圧延、焼きならし、および冷間圧延の処理された後にH2‐N2雰囲気で保護された脱炭アニールに処され、それによって圧延ストレスが除去されて予備的再結晶が生じ、その間に、最終製品の磁気的エージングを防ぐために鋼帯中の炭素含量を30ppm未満に制御するように炉内へ湿性ガスが導入される。鋼帯は脱炭アニールされるときに酸化されて、主としてSiO2とFe2SiO4からなる酸化物層を形成し、これはその後の脱炭に負の影響を及ぼす。これに続く高温アニール処理において、その酸化物層は鋼帯の表面上に塗布されたアニール分離剤と化学反応して、主としてMg2SiO4からなるガラス膜の下地被覆を生じる。この下地被覆は、高温アニールの間の鋼の接合と純化を防止する機能を有する。 Grain-oriented silicon steel is subjected to decarburization annealing protected in H 2 -N 2 atmosphere after being subjected to hot rolling, normalizing, and cold rolling treatment, thereby removing rolling stress and preliminarily Recrystallization occurs, during which wet gas is introduced into the furnace to control the carbon content in the steel strip to less than 30 ppm to prevent magnetic aging of the final product. The steel strip is oxidized when decarburized and annealed to form an oxide layer mainly composed of SiO 2 and Fe 2 SiO 4 , which has a negative effect on the subsequent decarburization. In the subsequent high-temperature annealing treatment, the oxide layer chemically reacts with the annealing separator applied on the surface of the steel strip, resulting in an undercoating of a glass film mainly composed of Mg 2 SiO 4 . This undercoating has the function of preventing steel joining and purification during high temperature annealing.
粒配向珪素鋼の表面上のMg2SiO4ガラス膜の下地被覆は比較的高い硬度を有し、それは鋼シートの比較的乏しい打抜き性能をもたらし、それは通常数千回であり、ガラス膜下地被覆と鋼シート本体との間の埋め込まれた結合は磁気ドメイン壁の動きを妨げて磁気ヒステリシス損失を増大させる。 The undercoat of Mg 2 SiO 4 glass film on the surface of grain oriented silicon steel has a relatively high hardness, which results in a relatively poor punching performance of the steel sheet, which is usually thousands of times, The embedded bond between the steel sheet body and the magnetic sheet wall hinders the movement of the magnetic domain wall and increases the magnetic hysteresis loss.
粒配向珪素鋼の打抜き性能を改善して磁気的性能をも改善するために、日本人はガラス膜下地被覆を伴わない粒配向珪素鋼を開発している。日本特許JP49096920は、粒配向珪素鋼の表面上のガラス膜下地被覆を酸洗いで除去する方法を開示している。しかし、(鋼シート内へ埋め込まれた酸化物を含んで)10μmの厚さを有するガラス膜下地被覆を完全に洗い落すためには、鋼が強い酸内で長期間浸漬されねばならず、これは高コスト、化学物質の環境汚染などの問題を生じる。 In order to improve the punching performance of grain-oriented silicon steel and improve the magnetic performance, the Japanese have developed grain-oriented silicon steel without glass film undercoating. Japanese Patent JP49096920 discloses a method of removing the glass film undercoating on the surface of grain oriented silicon steel by pickling. However, in order to completely wash off the glass film undercoating having a thickness of 10 μm (including oxides embedded in the steel sheet), the steel must be immersed in a strong acid for a long time. Causes problems such as high cost and environmental pollution of chemical substances.
日本特許公開JP05156362Aは、Al2O3が高温アニール分離剤として塗布されることを開示している。Al2O3は酸化物層または鋼シート本体と反応しないので、ガラス膜下地被覆を伴わない粒配向珪素鋼が直接的に得られる。しかし、この方法は脱炭アニール中に形成された酸化物層または埋め込まれた酸化物を除去することができず、これは磁気的性能の改善に関して不利である。 Japanese Patent Publication JP05156362A discloses that Al 2 O 3 is applied as a high temperature anneal separator. Since Al 2 O 3 does not react with the oxide layer or the steel sheet body, grain-oriented silicon steel without a glass film undercoating can be obtained directly. However, this method cannot remove the oxide layer or embedded oxide formed during the decarburization anneal, which is disadvantageous with respect to improved magnetic performance.
この問題を解決するために、日本特許JP2003247024は低度の酸化力を有する雰囲気を形成するようにPH2O/PH2の割合が制御される方法に関し、すなわちFeベースの酸化物が形成されず、そして平滑な表面を備えた粒配向鋼を得るように主としてAl2O3の分離剤が塗布される。しかし、脱炭中の酸化力の度合いが低過ぎれば、脱炭が困難となるであろう。日本特許公開05156364Aにおいては、脱炭アニールが完了した後に、鋼シートの表面上の酸化物層が酸洗いによって除去され、そして主としてAl2O3の分離剤が塗布される。 In order to solve this problem, Japanese Patent JP2003247024 relates to a method in which the ratio of PH 2 O / PH 2 is controlled so as to form an atmosphere having a low oxidizing power, that is, no Fe-based oxide is formed. And a separating agent of mainly Al 2 O 3 is applied to obtain a grain oriented steel with a smooth surface. However, if the degree of oxidizing power during decarburization is too low, decarburization will be difficult. In Japanese Patent Publication No. 05156364A, after the decarburization annealing is completed, the oxide layer on the surface of the steel sheet is removed by pickling, and a separating agent mainly of Al 2 O 3 is applied.
米国特許US554719においては、MgO+SiO2がアニール分離剤として使用され、これは二次再結晶アニール工程中に鋼シートの表面上に緩い珪酸マグネシウムを形成し、そしてこの緩い珪酸マグネシウムはブラシングと洗浄によって除去され、ガラス膜下地被覆を伴わない製品が得られる。 In US Pat. No. 5,547,719, MgO + SiO 2 is used as an annealing separator, which forms loose magnesium silicate on the surface of the steel sheet during the secondary recrystallization annealing process, and this loose magnesium silicate is removed by brushing and washing. Thus, a product without a glass film undercoating is obtained.
日本特許JP2000038615においては、塩化物が付加されたマグネシアとアルミナがアニール分離剤として使用され、形成されたガラス膜下地被覆は(2/3)MCl3+Fe+(3/2)O2→M2O3+FeCl2↑の界面反応によって除去され、そして何らガラス膜下地被覆を伴わない製品が得られる。 In Japanese Patent JP2000038615, magnesia to which chloride is added and alumina are used as an annealing separator, and the formed glass film undercoating is (2/3) MCl 3 + Fe + (3/2) O 2 → M 2 O. A product is obtained which is removed by an interfacial reaction of 3 + FeCl 2 ↑ and without any glass film undercoating.
日本の会社であるJFEは、何らガラス膜下地被覆を伴わない粒配向珪素鋼を直接的に得るために、鋼シートの表面と反応しないAl2O3などを高温アニール分離剤として使用している。そのような方法では、鋼シートの近表面酸化物不純物を完全に排除するために、鋼シートの表面上にFeベース酸化物が形成されないように、脱炭のための露点が厳密に制御される。しかし、これは、不可避的に脱炭と窒化の問題を生じる。 JFE, a Japanese company, uses Al 2 O 3 that does not react with the surface of the steel sheet as a high-temperature annealing separator to directly obtain grain-oriented silicon steel without any glass film undercoating. . In such a method, the dew point for decarburization is strictly controlled so that no Fe-based oxide is formed on the surface of the steel sheet in order to completely eliminate the near surface oxide impurities of the steel sheet. . However, this inevitably causes decarburization and nitriding problems.
米国の会社であるArmco社(今はAK社)はSiO2が付加されたマグネシアをアニール分離剤として使用し、二次再結晶アニール工程中に鋼シート上に形成される緩い珪酸マグネシウムは、鋼の純化のために鋼シートの中間層部分内へアニール保護ガスを導入することにおいて有利である。しかし、一般に、そのような方法は表面上の珪酸マグネシウムを完全に洗い落すことができず、鉄シートの近表面の埋込み酸化物を完全に除去することもできず、これは鉄心損失を低減させる効果を制限する。 US company Armco (now AK) uses magnesia with added SiO 2 as an annealing separator, and the loose magnesium silicate formed on the steel sheet during the secondary recrystallization annealing process is steel It is advantageous to introduce an annealing protective gas into the intermediate layer portion of the steel sheet for purification of the steel sheet. However, in general, such methods cannot completely wash out the magnesium silicate on the surface, nor can they completely remove the buried oxide on the near surface of the iron sheet, which reduces core loss. Limit the effect.
日本の会社であるNSCは、塩化物が付加されたマグネシアを使用する。しかし、塩化物の多量の付加は二次再結晶アニール中の鋼シートの表面に不可避の腐食を生じ、これは表面抑制剤に影響し、二次再結晶が不安定になる。 NSC, a Japanese company, uses magnesia with added chloride. However, the addition of a large amount of chloride causes unavoidable corrosion on the surface of the steel sheet during secondary recrystallization annealing, which affects the surface inhibitor and makes secondary recrystallization unstable.
本発明の目的は、鏡状表面を備えて良好な磁気的性能を有する粒配向珪素鋼を製造するためのアニール分離剤を提供することであり、これは鋼シート上にガラス膜下地被覆が生成することを防止することができ、またそのシートの近表面の埋め込まれた酸化物が塩化物との腐食反応によって除去され得て、平滑な表面と安定な磁気的性能を備えた製品が得られる。 The object of the present invention is to provide an annealing separator for producing grain oriented silicon steel with a mirror-like surface and good magnetic performance, which produces a glass film undercoat on the steel sheet. And the embedded oxide on the near surface of the sheet can be removed by a corrosion reaction with chloride, resulting in a product with a smooth surface and stable magnetic performance .
上述の目的を達成するために、本発明の技術的解決は以下のようである。
鏡状表面を備えて良好な磁気的性能を有する粒配向珪素鋼を製造するためのアニール分離剤は以下の組成からなり、すなわち、77〜98wt%Al2O3粉末、1〜8wt%アルカリ土類金属酸化物粉末、1〜15wt%アルカリ金属塩化物および/またはアルカリ土類金属塩化物である。
In order to achieve the above object, the technical solution of the present invention is as follows.
Annealing separating agent for producing the grain oriented silicon steel having good magnetic performance with a mirror-like surface is comprised of the following composition, i.e., 77~98wt% Al 2 O 3 powder, 1~8Wt% alkaline earth Metal oxide powder, 1-15 wt% alkali metal chloride and / or alkaline earth metal chloride.
また、アルカリ土類金属酸化物は、BeO、MgO、CaO、SrO、またはBaOを含む。 The alkaline earth metal oxide includes BeO, MgO, CaO, SrO, or BaO.
さらに、アルカリ金属塩化物は、LiCl、NaCl、KCl、またはRbClを含む。 Furthermore, the alkali metal chloride includes LiCl, NaCl, KCl, or RbCl.
アルカリ土類金属塩化物は、BeCl2、MgCl2、CaCl2、SrCl2、BaCl2、またはZnCl2を含む。 Alkaline earth metal chlorides include BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , or ZnCl 2 .
実験によって以下のことが見出された。すなわち、高温アニール中にシートの酸化物層と反応しない物質をアニール分離剤として塗布することがシートの近表面酸化物層を除去するために効果的であり、その物質は2.5wt%以下の水分を導入するために少量のアルカリ土類金属酸化物が付加され、或る量の塩化物も付加され、水分は塩化物の添加物に含まれる塩素イオンと反応して酸性の腐食性溶液を形成し、これはシートの近表面酸化物層の除去に良好で有利である。 The following was found through experiments. That is, applying a substance that does not react with the oxide layer of the sheet during the high-temperature annealing as an annealing separator is effective for removing the near-surface oxide layer of the sheet, and the substance is 2.5 wt% or less. A small amount of alkaline earth metal oxide is added to introduce moisture, a certain amount of chloride is also added, and the moisture reacts with chloride ions in the chloride additive to form an acidic corrosive solution. This is good and advantageous for the removal of the near surface oxide layer of the sheet.
本発明の鏡状表面を備えた粒配向珪素鋼のためのアニール分離剤は水を加えて攪拌することによって或る濃度を有する塗布液を形成し、そして脱炭されたシートの表面上に塗布が行われる。塗布の完了後、分離剤中の遊離水分を放出するために、製品は300℃以下の温度下で30秒を超えて焼かれる。このとき、分離剤は微細孔を有する物質を形成し、その物質の主要組成はAl2O3、Ca(OH)2、および1以上の種類の塩化物の混合物を形成し、それは良好な透過性を有する。その加水分解中の一次的化学反応は次式である。CaO+H2O=Ca(OH)2 (1)
高温アニールの一次的段階において、温度が580℃より高いときに、Ca(OH)2は分解反応して再度CaOを生じて水分を放出する。水分の存在は一方において溶液を提供し、他方において塩素イオンと反応してHClの酸性物質を生じ、これは或る腐食作用を有する。高温アニール中に続いて起こる化学反応は、以下のようである。
The annealing separator for grain oriented silicon steel with mirror-like surface of the present invention forms a coating solution having a certain concentration by adding water and stirring, and is applied on the surface of the decarburized sheet Is done. After application is complete, the product is baked for more than 30 seconds at a temperature of 300 ° C. or less in order to release free moisture in the separating agent. At this time, the separating agent forms a substance having fine pores, and the main composition of the substance forms a mixture of Al 2 O 3 , Ca (OH) 2 , and one or more kinds of chlorides, which has good permeation. Have sex. The primary chemical reaction during the hydrolysis is: CaO + H 2 O = Ca (OH) 2 (1)
In the primary stage of high-temperature annealing, when the temperature is higher than 580 ° C., Ca (OH) 2 undergoes a decomposition reaction to generate CaO again to release moisture. The presence of moisture on the one hand provides a solution and on the other hand reacts with chloride ions to produce an acidic substance of HCl, which has some corrosive action. The chemical reaction that follows during the high temperature annealing is as follows.
Ca(OH)2=CaO+H2O (2)
H2O+Cl−⇔HCl↑+OH− (3)
気相のHClは分離剤を貫通して、シートの酸化物層と反応し、化学式(3)で示された反応を右向に進め、その反応が連続的に生じる。HClと酸化物層との反応は以下のようである。
Ca (OH) 2 = CaO + H 2 O (2)
H 2 O + Cl − ⇔HCl ↑ + OH − (3)
The gaseous HCl passes through the separating agent and reacts with the oxide layer of the sheet, and the reaction represented by the chemical formula (3) proceeds to the right, and the reaction occurs continuously. The reaction between HCl and the oxide layer is as follows.
2HCl+FeO=FeCl2+H2O↑ (4)
4HCl+Fe2SiO4=2FeCl2+SiO2+2H2O↑ (5)
HClによって損傷された酸化物層は緩くて多孔質の物質に劣化し、シートに対するその結合力が実質的に低減される。ような酸化物層は、高温アニール後に軽く酸洗いしてブラシングすることによって、容易に除去され得る。したがって、鏡状で滑らかな表面を備えた粒配向珪素鋼が、熱間引張と平坦化の処理の後に最終的に得られる。
2HCl + FeO = FeCl 2 + H 2 O ↑ (4)
4HCl + Fe 2 SiO 4 = 2FeCl 2 + SiO 2 + 2H 2 O ↑ (5)
The oxide layer damaged by HCl degrades to a loose and porous material, and its bond strength to the sheet is substantially reduced. Such an oxide layer can be easily removed by light pickling after high temperature annealing and brushing. Thus, grain oriented silicon steel with a mirror-like smooth surface is finally obtained after the hot tensioning and flattening processes.
粒配向珪素鋼のための従来の高温アニール中に形成されるガラス膜下地被覆は比較的高い硬度を示し、これは珪素鋼シートの打抜き性能を劣化させ、金型が製造中の或る範囲で損傷を受ける。一方、シート本体中のピン止めされた酸化物構造は磁気ドメイン壁の動きを妨げ、これは磁気的性能に負の影響を及ぼす。下地被覆を伴わない粒配向珪素鋼は珪素鋼の加工性を実質的に改善することができ、その加工性はピン止め構造の不在によっても改善され得て、特別に低い鉄心損失の製品が得られる。 The glass film undercoating formed during conventional high temperature annealing for grain oriented silicon steel exhibits a relatively high hardness, which degrades the punching performance of the silicon steel sheet and in a range where the mold is in production. Damaged. On the other hand, the pinned oxide structure in the sheet body prevents the movement of the magnetic domain wall, which negatively affects the magnetic performance. Grain-oriented silicon steel without an undercoating can substantially improve the workability of silicon steel, which can also be improved by the absence of a pinned structure, resulting in a product with a particularly low core loss. It is done.
本発明前では、粒配向表面珪素鋼を得るための特許は、主としてMgOと塩化物またはAl2O3とに関係していた。前者は磁気的性能の不安定性を生じ、後者は脱炭アニール処理中に形成される埋め込まれた酸化物を除去することができない。或る者は塩化物が付加されたAl2O3分離剤を利用するが、塩化物自体は埋め込まれた酸化物を除去するためにこれと反応する或る程度の水分の助けを必要とする。 Prior to the present invention, patents for obtaining grain oriented surface silicon steels were primarily concerned with MgO and chloride or Al 2 O 3 . The former results in instability of the magnetic performance and the latter cannot remove the embedded oxide formed during the decarburization annealing process. Some use an Al 2 O 3 separating agent with chloride added, but the chloride itself needs some help of moisture to react with it to remove the embedded oxide. .
本発明は新規にアルカリ土類金属酸化物を導入し、そのアルカリ土類金属酸化物の水溶性に基づいて、高温アニール中に導入される水分が容易に制御され得る。そのような方法は容易であって、優れた粒配向珪素鋼製品を安定して得ることができる。関連する装置は粒配向鋼を造るための慣用的な装置であって、優れた実用性と応用性を有し、優れた普及の期待を示すものである。 The present invention newly introduces an alkaline earth metal oxide, and the moisture introduced during high temperature annealing can be easily controlled based on the water solubility of the alkaline earth metal oxide. Such a method is easy, and an excellent grain-oriented silicon steel product can be obtained stably. The related apparatus is a conventional apparatus for producing grain-oriented steel, has excellent practicality and applicability, and shows excellent expectation of popularization.
以下において、複数の実施例に関して本発明が説明される。
500Kg真空炉が鋼溶錬のために使用され、鋼母材の化学的組成は、(wt%で)0.045wt%C、3.25wt%Si、0.006wt%S、0.027wt%可溶性Al、0.006wt%N、0.15wt%Cu、0.012wt%Mn、および残部のFeと不可避的不純物である。母材は、1150℃下で加熱された後に、2.6mm厚さの熱間圧延シートを形成するように熱間圧延される。熱間圧延シートは1分間平準化されてアニールされ、そして酸洗いされて、0.285mmの最終厚さのシートを形成するように冷間圧延される。冷間圧延シートは835℃下で120分間脱炭アニール処理を受けて、表面上に0.8と1.6g/m2の2つのレベルの酸素含量が存在し、窒化処理後において鋼シートの窒素含量は250ppmである。脱炭されてアニールされたシートはアニール分離剤(材料比率は表2に示されている)が塗布され、シートは巻き取られた後に乾燥窒素と水素の保護雰囲気中で1200℃において20時間の高温アニールを受け、その後にシートは巻きを戻された後に絶縁被覆で被覆され、引伸ばされ、平坦化され、そしてアニールされる。
In the following, the invention will be described with reference to several embodiments.
A 500Kg vacuum furnace was used for steel smelting, and the chemical composition of the steel matrix was 0.045 wt% C, 3.25 wt% Si, 0.006 wt% S, 0.027 wt% soluble (in wt%) Al, 0.006 wt% N, 0.15 wt% Cu, 0.012 wt% Mn, and the balance Fe and inevitable impurities. The base material is heated at 1150 ° C. and then hot rolled to form a 2.6 mm thick hot rolled sheet. The hot rolled sheet is leveled for 1 minute, annealed and pickled and cold rolled to form a sheet with a final thickness of 0.285 mm. The cold-rolled sheet was subjected to decarburization annealing at 835 ° C. for 120 minutes, and there were two levels of oxygen content on the surface, 0.8 and 1.6 g / m 2 . The nitrogen content is 250 ppm. The decarburized and annealed sheet is coated with an annealing separator (the material ratio is shown in Table 2), and after the sheet is wound up, it is 20 hours at 1200 ° C. in a dry nitrogen and hydrogen protective atmosphere. After undergoing a high temperature anneal, the sheet is then unwound and then coated with an insulating coating, stretched, planarized, and annealed.
得られた製品の電磁的性能と表面品質の平均値が表3に示されている。 The average values of electromagnetic performance and surface quality of the obtained products are shown in Table 3.
図1〜4および表3から、本発明の分離剤で被覆された珪素鋼シートの表面上にはわずかな酸素が残存しており、その鋼シートの磁気的性能が良好であることが分かる。すなわち、本発明において粒配向珪素鋼の表面上の効果的な仕上げ処理によって、鏡状表面を備えて良好な磁気的性能を有する粒配向鋼シートが製造され得ることが分かる。 1 to 4 and Table 3 show that a slight amount of oxygen remains on the surface of the silicon steel sheet coated with the separating agent of the present invention, and the steel sheet has good magnetic performance. That is, it can be seen that a grain oriented steel sheet having a mirror-like surface and having good magnetic performance can be produced by an effective finishing treatment on the surface of grain oriented silicon steel in the present invention.
一方において本発明の高温アニール分離剤は効果的に鋼を純化し、他方において本発明は高温でのアニール中に近表面酸化物層を除去するように腐食性雰囲気を提供し、したがって鏡状表面を備えて良好な磁気的性能を有する粒配向珪素鋼が製造され得る。 On the one hand, the high temperature anneal separator of the present invention effectively purifies the steel, while on the other hand, the present invention provides a corrosive atmosphere to remove the near surface oxide layer during high temperature anneal, and thus a mirror-like surface. Grain oriented silicon steel with good magnetic performance can be produced.
Claims (3)
77〜98wt%Al2O3粉末、
1〜8wt%アルカリ土類金属酸化物粉末、および
1〜15wt%アルカリ金属塩化物および/またはアルカリ土類金属塩化物
の組成からなるアニール分離剤。 An annealing separator for producing grain oriented silicon steel with good magnetic performance,
77~98wt% Al 2 O 3 powder,
An annealing separator comprising a composition of 1 to 8 wt% alkaline earth metal oxide powder and 1 to 15 wt% alkali metal chloride and / or alkaline earth metal chloride.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105180375A CN102453793B (en) | 2010-10-25 | 2010-10-25 | Annealing isolation agent used for preparing mirror surface-oriented silicon steel with excellent magnetic property |
CN201010518037.5 | 2010-10-25 | ||
PCT/CN2011/072771 WO2012055214A1 (en) | 2010-10-25 | 2011-04-14 | Annealing separation agent for producing grain-oriented silicon steel with smooth surface and good magnetic property |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013545892A JP2013545892A (en) | 2013-12-26 |
JP5650331B2 true JP5650331B2 (en) | 2015-01-07 |
Family
ID=45993115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013535244A Active JP5650331B2 (en) | 2010-10-25 | 2011-04-14 | Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130292005A1 (en) |
EP (1) | EP2634270B1 (en) |
JP (1) | JP5650331B2 (en) |
KR (1) | KR20130081297A (en) |
CN (1) | CN102453793B (en) |
MX (1) | MX352637B (en) |
RU (1) | RU2552791C2 (en) |
WO (1) | WO2012055214A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104928452B (en) * | 2015-05-15 | 2018-03-20 | 武汉钢铁有限公司 | A kind of coating that can prevent orientation silicon steel secondary recrystallization annealing side from splitting |
CN109306198A (en) * | 2018-08-22 | 2019-02-05 | 武汉钢铁有限公司 | For improving the masking liquid and preparation method thereof of high magnetic induction grain-oriented silicon steel magnesium silicate bottom layer quality |
KR102583464B1 (en) * | 2019-01-16 | 2023-10-04 | 닛폰세이테츠 가부시키가이샤 | Manufacturing method of grain-oriented electrical steel sheet |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU413200A1 (en) * | 1971-06-29 | 1974-01-30 | ||
DE3875676T2 (en) * | 1987-08-31 | 1993-03-18 | Nippon Steel Corp | METHOD FOR PRODUCING CORNORIENTED STEEL SHEETS WITH METAL GLOSS AND EXCELLENT PUNCHABILITY. |
EP0416420B1 (en) * | 1989-09-08 | 1994-12-14 | Armco Inc. | Magnesium oxide coating for electrical steels and the method of coating |
JP2674917B2 (en) * | 1991-12-06 | 1997-11-12 | 新日本製鐵株式会社 | Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating |
JP2706040B2 (en) * | 1993-12-21 | 1998-01-28 | 新日本製鐵株式会社 | Method for manufacturing mirror-oriented silicon steel sheet |
DE4409691A1 (en) * | 1994-03-22 | 1995-09-28 | Ebg Elektromagnet Werkstoffe | Process for the production of electrical sheets with a glass coating |
JP3412959B2 (en) * | 1994-04-22 | 2003-06-03 | 新日本製鐵株式会社 | Method for producing mirror-oriented silicon steel sheet with low iron loss |
US5685920A (en) * | 1994-05-13 | 1997-11-11 | Nippon Steel Corporation | Annealing separator having excellent reactivity for grain-oriented electrical steel sheet and method of use the same |
JPH08134542A (en) * | 1994-11-08 | 1996-05-28 | Sumitomo Metal Ind Ltd | Method for producing grain-oriented electrical steel sheet with excellent punchability |
JP4116702B2 (en) * | 1998-07-21 | 2008-07-09 | 新日本製鐵株式会社 | Method for producing grain-oriented electrical steel sheet |
CN100413980C (en) * | 2001-04-23 | 2008-08-27 | 新日本制铁株式会社 | Method for producing grain-oriented silicon steel sheet without inorganic mineral film |
JP2003253334A (en) * | 2002-03-01 | 2003-09-10 | Jfe Steel Kk | Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property and stamping property |
JP4569070B2 (en) * | 2003-03-13 | 2010-10-27 | Jfeスチール株式会社 | Finish annealing method for grain-oriented electrical steel sheets |
JP2007131880A (en) * | 2005-11-08 | 2007-05-31 | Jfe Steel Kk | Method of manufacturing grain oriented silicon steel without forsterite film |
-
2010
- 2010-10-25 CN CN2010105180375A patent/CN102453793B/en active Active
-
2011
- 2011-04-14 RU RU2013127583/02A patent/RU2552791C2/en active
- 2011-04-14 EP EP11835488.5A patent/EP2634270B1/en active Active
- 2011-04-14 KR KR1020137012552A patent/KR20130081297A/en not_active Ceased
- 2011-04-14 WO PCT/CN2011/072771 patent/WO2012055214A1/en active Application Filing
- 2011-04-14 JP JP2013535244A patent/JP5650331B2/en active Active
- 2011-04-14 US US13/880,278 patent/US20130292005A1/en not_active Abandoned
- 2011-04-14 MX MX2013004592A patent/MX352637B/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20130081297A (en) | 2013-07-16 |
EP2634270A1 (en) | 2013-09-04 |
EP2634270A4 (en) | 2018-01-17 |
EP2634270B1 (en) | 2021-06-02 |
US20130292005A1 (en) | 2013-11-07 |
JP2013545892A (en) | 2013-12-26 |
MX2013004592A (en) | 2013-07-17 |
MX352637B (en) | 2017-12-01 |
WO2012055214A1 (en) | 2012-05-03 |
RU2552791C2 (en) | 2015-06-10 |
CN102453793B (en) | 2013-09-25 |
RU2013127583A (en) | 2014-12-27 |
CN102453793A (en) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5463347B2 (en) | Method for producing copper-containing directional silicon steel | |
JP2011518253A5 (en) | ||
JP5313358B2 (en) | Process of pickling silicon steel with acid pickling solution containing ferric ion | |
KR101605795B1 (en) | Oriented electrical steel steet and method for the same | |
CN102952931B (en) | Glass-film-free oriented silicon steel manufacture method and annealing isolation agent | |
CN103014285B (en) | Manufacturing method of mirror surface oriented silicon steel with good magnetic performance and annealing parting agent | |
JP3539028B2 (en) | Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method. | |
JP6535739B2 (en) | Annealing separator composition for grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet using the same | |
CN102021282A (en) | Annealing separant for preparing grain-oriented silicon steel and using method thereof | |
JP7230930B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
CN109554525B (en) | Manufacturing method of mirror-surface oriented silicon steel | |
JP2019505669A (en) | Method for producing grain-oriented electrical steel sheet | |
JP5650331B2 (en) | Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance | |
JP3382804B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating | |
JP2001295062A (en) | Grain oriented silicon steel sheet having excellent magnetic characteristic and film characteristic | |
JP3336547B2 (en) | Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties | |
JP4161403B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN118600172A (en) | Production method of high magnetic induction oriented silicon steel without magnesium silicate bottom layer and oriented silicon steel | |
JP2001271139A (en) | Steel with easy removal of oxidized scale by pickling and method for producing the same | |
JP2003082472A (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and annealing separator and glass coating | |
KR20150053626A (en) | Method for annealing of ferritic stainless steel having high silicon content | |
KR20240158268A (en) | Method for manufacturing electrical steel sheet having pretreatment solution and insulating film formed thereon | |
KR20140060718A (en) | Grain-oriented electrical steel sheet manufacutred by the same | |
JPS6152349A (en) | Hot-rolled steel plate for enamel with excellent nail-skipping resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5650331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |