[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5648839B2 - Gear manufacturing method - Google Patents

Gear manufacturing method Download PDF

Info

Publication number
JP5648839B2
JP5648839B2 JP2010192001A JP2010192001A JP5648839B2 JP 5648839 B2 JP5648839 B2 JP 5648839B2 JP 2010192001 A JP2010192001 A JP 2010192001A JP 2010192001 A JP2010192001 A JP 2010192001A JP 5648839 B2 JP5648839 B2 JP 5648839B2
Authority
JP
Japan
Prior art keywords
workpiece
cutter
cutting
rotation axis
cutting blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010192001A
Other languages
Japanese (ja)
Other versions
JP2012045687A (en
Inventor
英理 永田
英理 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2010192001A priority Critical patent/JP5648839B2/en
Publication of JP2012045687A publication Critical patent/JP2012045687A/en
Application granted granted Critical
Publication of JP5648839B2 publication Critical patent/JP5648839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • B23F5/16Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof
    • B23F5/163Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof the tool and workpiece being in crossed axis arrangement, e.g. skiving, i.e. "Waelzschaelen"

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)

Description

本発明は、歯車に加工されるワークの回転軸に対して傾斜した回転軸を有するピニオン型のカッターを用い、前記カッターを前記ワークと同期回転させながら、前記ワークの歯すじ方向に送り操作するスカイビング加工を利用した歯車製造方法に関する。   The present invention uses a pinion-type cutter having a rotation axis inclined with respect to the rotation axis of a workpiece to be processed into a gear, and feeds the cutter in the direction of the teeth of the workpiece while rotating the cutter synchronously with the workpiece. The present invention relates to a gear manufacturing method using skiving.

スカイビング加工とは、図1を参照して説明すると、ワーク10の回転軸Awに対して傾斜した回転軸Acを有するピニオン型のカッター1を、ワーク10と同期回転させつつ、ワーク10の歯すじ方向に送り操作(ここでは回転軸Awに沿って上方から下方への送り操作)を行い歯切りする加工法である。   The skiving process will be described with reference to FIG. 1. The pinion-type cutter 1 having the rotation axis Ac inclined with respect to the rotation axis Aw of the work 10 is rotated synchronously with the work 10 while the teeth of the work 10 are rotated. This is a machining method in which a feed operation (here, a feed operation from above to below along the rotation axis Aw) is performed in the streak direction.

このようなスカイビング加工においては、カッターとワークの回転運動により発生する滑りにより切削を行うので、カッターを往復運動させて切削する他の加工法と比べると滑らかな切削が可能であり、又、カッターの回転速度を速くすることにより高速切削が容易に実現できる。従って、例えば波動歯車のように多数の細かい歯を有する歯車の加工を行う場合に、スカイビング加工は特に有利な加工法といえる。   In such skiving processing, cutting is performed by sliding generated by the rotational motion of the cutter and the workpiece, so that smooth cutting is possible compared to other processing methods in which the cutter is reciprocated and cut, High speed cutting can be easily realized by increasing the rotation speed of the cutter. Therefore, skiving is a particularly advantageous machining method when machining a gear having a large number of fine teeth, such as a wave gear.

図6は、スカイビング加工を利用した従来の歯車製造方法によりワーク10から内歯歯車を製造する場合に、カッター1の切刃2がワーク10に接触した直後の切削状態を示す説明図である。a図はワーク10の加工面10aを正面から見た正面図、b図は加工面10aを横から見た側面図、c図はワーク10を上から見た平面図、d図は切刃2による切削領域Rを示す斜視図である。   FIG. 6 is an explanatory diagram showing a cutting state immediately after the cutting edge 2 of the cutter 1 comes into contact with the workpiece 10 when an internal gear is manufactured from the workpiece 10 by a conventional gear manufacturing method using skiving. . Fig. a is a front view of the workpiece 10a as viewed from the front, Fig. b is a side view of the workpiece 10a as viewed from the side, Fig. c is a plan view of the workpiece 10 as viewed from above, and Fig. d is the cutting edge 2. It is a perspective view which shows the cutting area | region R by.

切刃2を構成する外形面のうち、カッター1の回転方向の上手側の面を上手面2a、下手側の面を下手面2b、a図にて下側の面を底面2c、及び刃先を構成する面を先端面2dと称する。図6の各図から分かるように、切刃2のうち上手面2aと底面2cとの境界角部が最初にワーク10の上面10bにてワーク10に接触し、その後、上手面2aがワーク10と接触状態を維持しながら切削加工が行われる。切削領域Rのうち、切刃2の上手面2aとワーク10との接触面を上手切削領域Ruと称する。   Of the external surfaces constituting the cutting blade 2, the upper surface in the rotational direction of the cutter 1 is the upper surface 2a, the lower surface is the lower surface 2b, the lower surface in FIG. A surface to be configured is referred to as a front end surface 2d. As can be seen from each drawing in FIG. 6, the boundary corner portion between the upper surface 2 a and the bottom surface 2 c of the cutting blade 2 first contacts the workpiece 10 on the upper surface 10 b of the workpiece 10, and then the upper surface 2 a becomes the workpiece 10. Cutting is performed while maintaining the contact state. In the cutting region R, the contact surface between the upper surface 2a of the cutting blade 2 and the workpiece 10 is referred to as a upper cutting region Ru.

スカイビング加工を利用した従来の歯車製造方法によれば、カッター1が上方から下方に送り操作されている状態で、切刃2がワーク10の上面10bに最初に接触することになる。ワーク10の上面10bは送り操作の方向に対して垂直な面なので、接触時にカッター1がワーク10から受ける反力は全て送り操作を妨げる向きに作用し、接触時に切刃に作用する負荷が大きくなる。   According to the conventional gear manufacturing method using skiving, the cutting blade 2 first comes into contact with the upper surface 10b of the workpiece 10 while the cutter 1 is being fed downward from above. Since the upper surface 10b of the workpiece 10 is a surface perpendicular to the direction of the feed operation, all the reaction forces that the cutter 1 receives from the workpiece 10 at the time of contact act in a direction that prevents the feed operation, and the load acting on the cutting blade at the time of contact is large Become.

又、図6(d)から明らかなように、カッター1がワーク10に最初に接触してからしばらくは、上手切削領域Ruが拡大していく形態でワーク10が切削され、切刃2の下手面2bはワーク10と接触しない。従って、切刃2の上手面2aにのみ負荷が発生することになるため、カッター1の回転方向の逆方向に切刃2が逃げやすくなり、加工精度が悪化するという問題がある。   Further, as apparent from FIG. 6 (d), for a while after the cutter 1 first contacts the workpiece 10, the workpiece 10 is cut in a form in which the upper cutting area Ru is enlarged, and the lower edge of the cutting blade 2. The surface 2b does not contact the workpiece 10. Therefore, since a load is generated only on the upper surface 2a of the cutting blade 2, the cutting blade 2 is likely to escape in the direction opposite to the rotation direction of the cutter 1, and there is a problem that the processing accuracy is deteriorated.

上記問題を鑑みると、スカイビング加工において、カッターの送り操作のうちカッターが最初にワークに接触する際に切刃に作用する負荷を低減するとともに、切刃がカッターの回転方向と逆方向に逃げる傾向を抑制することが望ましい。   In view of the above problems, in skiving processing, the load acting on the cutting blade when the cutter first contacts the workpiece in the cutter feeding operation is reduced, and the cutting blade escapes in the direction opposite to the rotation direction of the cutter. It is desirable to suppress the tendency.

本発明に係る歯車製造方法の第1特徴手段は、歯車に加工されるワークの回転軸に対して傾斜した回転軸を有するピニオン型のカッターを用い、前記カッターを前記ワークと同期回転させながら、前記ワークの歯すじ方向に送り操作するスカイビング加工を利用した歯車製造方法において、前記カッターの送り操作のうち前記カッターが最初に接触する前記ワークの角部を、前記スカイビング加工の前に面取り加工しておき、
前記カッターの送り操作のうち前記カッターが最初に前記ワークに接触する際の移動方向が、前記ワークの回転軸と垂直で前記ワークの加工面に近づく方向成分を含んでいる点にある。
The first characteristic means of the gear manufacturing method according to the present invention uses a pinion-type cutter having a rotation axis inclined with respect to the rotation axis of the workpiece to be processed into a gear, and while rotating the cutter synchronously with the workpiece, In the gear manufacturing method using skiving processing that feeds in the direction of the tooth trace of the workpiece, the corner portion of the workpiece that the cutter first contacts among the feeding operations of the cutter is chamfered before the skiving processing. processed and aft,
In the feeding operation of the cutter, the moving direction when the cutter first contacts the workpiece includes a direction component that is perpendicular to the rotation axis of the workpiece and approaches the processing surface of the workpiece .

本特徴手段によれば、角部が面取り加工されて形成されたワークのテーパー面にカッターの切刃が最初に接触することにより、接触時にカッターがワークから受ける斜め方向の反力のうち、上下方向成分のみが送り操作を妨げる向きに作用することになるので、接触時に切刃に作用する負荷が低減される。   According to this characteristic means, when the cutter's cutting blade first comes into contact with the tapered surface of the workpiece formed by chamfering the corner portion, the vertical force out of the diagonal reaction force that the cutter receives from the workpiece at the time of contact. Since only the direction component acts in the direction that prevents the feeding operation, the load acting on the cutting blade at the time of contact is reduced.

更に、ワークの角部が面取り加工された分だけ、接触直後にワークを切削する領域が小さくなる。このように切削領域そのものが小さくなることにより切刃に作用する負荷が低減されるとともに、上手切削領域が小さくなることにより、切刃がカッターの回転方向と逆方向に逃げる傾向を抑制することができる。   Furthermore, the area where the workpiece is cut immediately after the contact is reduced by the amount by which the corner portion of the workpiece is chamfered. In this way, the load acting on the cutting blade is reduced by reducing the cutting area itself, and the tendency of the cutting edge to escape in the direction opposite to the rotation direction of the cutter can be suppressed by reducing the good cutting area. it can.

また、角部を面取り加工したワークを用いると、カッターとワークとの接触時に切刃に作用する負荷を低減できるとともに、カッターの回転方向と逆方向に切刃が逃げるのを抑制することができた。しかし、テーパー面に対してワークの回転軸と平行な方向に切刃が接触するとテーパー面に沿って切刃が滑る場合がある。カッター及びワークの軸振れ防止機能が十分であれば、このような滑りは問題をもたらさないが、軸触れ防止機能の程度によってはカッターとワークとの軸心間距離が変化し、加工精度が悪化するおそれがある。そこで本特徴手段のごとく、カッターの送り操作のうちカッターが最初にワークに接触する際の移動方向が、ワークの回転軸と垂直でワークの加工面に近づく方向成分を含むようにカッターを操作すると、カッターとワークとの接触時にカッターがテーパー面に対して押圧されるので、上記滑りを抑制することが可能となる。その結果、切刃が滑ることに起因する加工精度の悪化を抑制することができる。In addition, if a workpiece with chamfered corners is used, the load acting on the cutting blade during contact between the cutter and the workpiece can be reduced, and the escape of the cutting blade in the direction opposite to the rotation direction of the cutter can be suppressed. It was. However, when the cutting blade comes into contact with the tapered surface in a direction parallel to the rotation axis of the workpiece, the cutting blade may slide along the tapered surface. If the cutter and workpiece shaft runout prevention functions are sufficient, such slipping will not cause a problem, but depending on the degree of shaft touch prevention function, the distance between the axes of the cutter and the workpiece will change, and the machining accuracy will deteriorate. There is a risk. Therefore, as in this feature means, when the cutter is operated so that the moving direction when the cutter first contacts the workpiece in the feeding operation of the cutter includes a direction component that is perpendicular to the workpiece rotation axis and approaches the workpiece processing surface. Since the cutter is pressed against the tapered surface at the time of contact between the cutter and the workpiece, the slip can be suppressed. As a result, it is possible to suppress deterioration in processing accuracy due to the sliding of the cutting blade.

第2特徴手段は、前記カッターの切刃の断面形状が曲線からなる点にある。これにより断面形状が曲線からなる切刃での加工を行える。The second characteristic means is that the cross-sectional shape of the cutter blade is a curve. Thereby, it is possible to perform processing with a cutting edge having a curved cross-sectional shape.

本発明の実施形態に係る歯車製造方法の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the gear manufacturing method which concerns on embodiment of this invention. カッターがワークに接触した直後の切削状態を示す説明図である。It is explanatory drawing which shows the cutting state immediately after a cutter contacts a workpiece | work. カッターの切刃の形状を示す断面図である。It is sectional drawing which shows the shape of the cutting blade of a cutter. 別の実施形態におけるカッターの切刃の形状を示す断面図である。It is sectional drawing which shows the shape of the cutting blade of the cutter in another embodiment. 別の実施形態におけるカッターの移動軌跡を示す説明図である。It is explanatory drawing which shows the movement locus | trajectory of the cutter in another embodiment. 従来の歯車製造方法においてカッターがワークに接触した直後の切削状態を示す説明図である。It is explanatory drawing which shows the cutting state immediately after a cutter contacts the workpiece | work in the conventional gear manufacturing method.

以下、本発明に係る歯車製造方法を内歯歯車の切削加工に適用した実施形態について図面に基づいて説明する。   Hereinafter, an embodiment in which a gear manufacturing method according to the present invention is applied to cutting of an internal gear will be described with reference to the drawings.

図1は、スカイビング加工を利用した本発明の実施形態に係る歯車製造方法の概要を示す説明図である。前述のごとくスカイビング加工とは、ワーク10の回転軸Awに対して傾斜した回転軸Acを有するピニオン型のカッター1を、ワーク10と同期回転させつつ、ワーク10の歯すじ方向に送り操作(ここでは回転軸Awに沿って上方から下方への送り操作)を行い歯切りする加工法である。   FIG. 1 is an explanatory diagram showing an outline of a gear manufacturing method according to an embodiment of the present invention using skiving. As described above, skiving is a feed operation in the direction of the teeth of the workpiece 10 while rotating the pinion cutter 1 having the rotation axis Ac inclined with respect to the rotation axis Aw of the workpiece 10 in synchronization with the workpiece 10 ( This is a processing method in which gearing is performed by performing a feed operation from above to below along the rotation axis Aw.

円環状のワーク10の内周面はスカイビング加工により歯が形成される加工面10aであり、この加工面10aと上面10b又は下面10cとの境界部に相当する角部を予め面取り加工して、テーパー面10dを設けている。   The inner peripheral surface of the annular workpiece 10 is a processed surface 10a on which teeth are formed by skiving, and a corner corresponding to the boundary between the processed surface 10a and the upper surface 10b or the lower surface 10c is chamfered in advance. The tapered surface 10d is provided.

図2は、カッター1がワーク10に接触した直後の切削状態を示す説明図である。a図はワーク10の加工面10aを正面から見た正面図、b図は加工面10aを横から見た側面図、c図はワーク10を上から見た平面図、d図は切刃2による切削領域Rを示す斜視図であり、先に説明した図6のa図〜d図にそれぞれ対応するものである。又、切刃2を構成する外形面のうち、カッター1の回転方向の上手側の面を上手面2a、下手側の面を下手面2b、a図にて下側の面を底面2c、及び刃先を構成する面を先端面2dと称する。   FIG. 2 is an explanatory diagram showing a cutting state immediately after the cutter 1 contacts the workpiece 10. Fig. a is a front view of the workpiece 10a as viewed from the front, Fig. b is a side view of the workpiece 10a as viewed from the side, Fig. c is a plan view of the workpiece 10 as viewed from above, and Fig. d is the cutting edge 2. FIG. 7 is a perspective view showing a cutting region R according to FIG. 6 and corresponds to FIGS. 6a to 6d of FIG. Of the outer surfaces constituting the cutting edge 2, the upper surface in the rotational direction of the cutter 1 is the upper surface 2a, the lower surface is the lower surface 2b, and the lower surface is the bottom surface 2c in FIG. The surface constituting the cutting edge is referred to as a tip surface 2d.

カッター1の切刃2は、面取り加工によって形成されたワーク10のテーパー面10dに最初に接触する。従って、カッター1とワーク10との接触時にカッター1がワーク10から受ける斜め方向の反力のうち、上下方向成分のみが送り操作を妨げる向きに作用することになるので、カッター1の送り操作を妨げる向きに作用し、接触時に切刃2に作用する負荷が低減される。   The cutting edge 2 of the cutter 1 first contacts the tapered surface 10d of the workpiece 10 formed by chamfering. Therefore, only the vertical component of the reaction force in the oblique direction that the cutter 1 receives from the workpiece 10 when the cutter 1 and the workpiece 10 are in contact acts in a direction that obstructs the feeding operation. The load acting on the cutting edge 2 at the time of contact is reduced by acting in the blocking direction.

図2(d)と図6(d)との対比から明らかなように、本実施形態においてはワーク10の角部が面取り加工された分だけ、接触直後にワーク10を切削する切削領域Rが小さくなる。特に切削領域Rのうち、切刃2の上手面2aとワーク10との接触面である上手切削領域Ruが、面取り加工していない場合と比べて小さくなる。従って、切削領域Rそのものが小さくなることにより、切刃2に作用する負荷が低減されるとともに、上手切削領域Ruが小さくなることにより、切刃2がカッター1の回転方向と逆方向に逃げる傾向を抑制することができる。   As apparent from the comparison between FIG. 2D and FIG. 6D, in this embodiment, the cutting region R in which the workpiece 10 is cut immediately after contact is equivalent to the amount of the chamfered corner of the workpiece 10. Get smaller. In particular, in the cutting region R, the upper cutting region Ru that is a contact surface between the upper surface 2a of the cutting blade 2 and the workpiece 10 is smaller than that in the case where the chamfering is not performed. Therefore, the load acting on the cutting edge 2 is reduced by reducing the cutting area R itself, and the cutting edge 2 tends to escape in the direction opposite to the rotation direction of the cutter 1 by reducing the good cutting area Ru. Can be suppressed.

切刃2の断面形状については、図3に示すように角状であってもよいし、図4に示すように外形が曲線からなるものであってもよい。又、図3及び図4に示した形状に限らず、他の形状を採用することも可能である。   About the cross-sectional shape of the cutting blade 2, a square shape may be sufficient as shown in FIG. 3, and an external shape may consist of a curve as shown in FIG. Further, the shape is not limited to the shape shown in FIGS. 3 and 4, and other shapes can be adopted.

図1に示すように、本実施形態においては、カッター1が最初にワーク10に接触する上面10bと加工面10aとの境界に相当する角部だけでなく、下面10cと加工面10aとの境界に相当する角部も面取り加工してテーパー面10dを設けている。   As shown in FIG. 1, in the present embodiment, not only the corner corresponding to the boundary between the upper surface 10b and the processing surface 10a at which the cutter 1 first contacts the workpiece 10, but also the boundary between the lower surface 10c and the processing surface 10a. The corner portion corresponding to is chamfered to provide a tapered surface 10d.

図2(d)の逆を考えれば分かるように、下面10cと加工面10aとの境界に相当する角部も面取り加工しておけば、カッター1を上方から下方に送り操作して最後にカッター1がワーク10から離間する場合に、面取り加工をしていない場合と比べて切削領域が徐々に小さくなる。従って、カッター1がワーク10から離間する際の負荷変動を抑制することができる。しかし、接触時の衝撃と比べると、離間時の衝撃は小さいので、下面10cと加工面10aとの境界に相当する角部を面取り加工しておくことは必須の要件ではない。   As can be seen from the opposite of FIG. 2D, if the corner corresponding to the boundary between the lower surface 10c and the machining surface 10a is also chamfered, the cutter 1 is fed downward from above and finally the cutter is cut. When 1 is separated from the workpiece 10, the cutting area is gradually reduced as compared with the case where chamfering is not performed. Therefore, load fluctuation when the cutter 1 is separated from the workpiece 10 can be suppressed. However, since the impact at the time of separation is smaller than the impact at the time of contact, chamfering the corner corresponding to the boundary between the lower surface 10c and the processed surface 10a is not an essential requirement.

[別の実施形態]
図5に示すように、カッター1の送り操作のうちカッター1が最初にワーク10に接触する際の移動方向を、ワーク10の回転軸Awと垂直でワーク10の加工面10aに近づく方向成分を含むようにして、斜め方向にすることができる。
[Another embodiment]
As shown in FIG. 5, in the feed operation of the cutter 1, the moving direction when the cutter 1 first contacts the workpiece 10 is a direction component that is perpendicular to the rotation axis Aw of the workpiece 10 and approaches the machining surface 10 a of the workpiece 10. Including it can be in an oblique direction.

角部を面取り加工したワーク10を用いると、テーパー面10dに対してワーク10の回転軸Awと平行な方向に切刃2が接触する際に、テーパー面10dに沿って切刃2が滑る場合がある。しかし、本実施形態のごとくカッター1の送り操作を行うと、カッター1とワーク10の接触時に、切刃2がテーパー面10dに対して押圧されるので、上記滑りを抑制することが可能となる。その結果、切刃2が滑ることに起因する加工精度の悪化を抑制することができる。   When using the workpiece 10 whose corners are chamfered, the cutting blade 2 slides along the tapered surface 10d when the cutting blade 2 contacts the tapered surface 10d in a direction parallel to the rotation axis Aw of the workpiece 10. There is. However, when the feed operation of the cutter 1 is performed as in the present embodiment, the cutting edge 2 is pressed against the tapered surface 10d when the cutter 1 and the workpiece 10 are in contact with each other, so that the above-described slip can be suppressed. . As a result, it is possible to suppress the deterioration of the processing accuracy due to the cutting blade 2 slipping.

又、カッター1の送り操作をこのように行えば、ワーク10の角部を面取り加工した場合と同様に、カッター1が最初にワーク10に接触した直後にワーク10を切削する切削領域が小さくなる効果が得られる。従って、ワーク10に対して面取り加工を行わずとも、切刃2に作用する負荷を低減し、切刃2がカッター1の回転方向と逆方向に逃げる傾向を抑制する効果を得ることも可能である。   Further, if the feeding operation of the cutter 1 is performed in this way, the cutting area in which the workpiece 10 is cut immediately after the cutter 1 first contacts the workpiece 10 is reduced as in the case where the corner portion of the workpiece 10 is chamfered. An effect is obtained. Therefore, it is also possible to obtain an effect of reducing the load acting on the cutting blade 2 and suppressing the tendency of the cutting blade 2 to escape in the direction opposite to the rotation direction of the cutter 1 without performing chamfering on the workpiece 10. is there.

本実施形態においては、カッター1が最初にワーク10に接触する際にカッター1を斜め方向に送るだけでなく、カッター1が最後にワーク10から離間する際に、ワーク10の回転軸Awと垂直でワーク10の加工面10aから遠ざかる方向成分を含むようにしてカッター1を斜め方向に送っている。   In the present embodiment, when the cutter 1 first contacts the workpiece 10, not only is the cutter 1 fed in an oblique direction, but also when the cutter 1 is finally separated from the workpiece 10, it is perpendicular to the rotation axis Aw of the workpiece 10. Thus, the cutter 1 is fed in an oblique direction so as to include a direction component away from the processing surface 10a of the workpiece 10.

このようにカッター1をワーク10から離間させれば、切削領域が徐々に小さくなるので、カッター1がワーク10から離間する際の衝撃を抑制することができる。しかし、接触時の衝撃と比べると、離間時の衝撃は小さいので、離間時にカッター1を斜め方向に送ることは必須の要件ではない。   If the cutter 1 is separated from the workpiece 10 in this way, the cutting area is gradually reduced, so that the impact when the cutter 1 is separated from the workpiece 10 can be suppressed. However, since the impact at the time of separation is smaller than the impact at the time of contact, it is not an essential requirement to send the cutter 1 in an oblique direction at the time of separation.

本発明に係る歯車製造方法は、多数の細かい歯を有する波動歯車の加工に特に適しているが、これに限らず外歯歯車等の加工に適用することも可能である。   The gear manufacturing method according to the present invention is particularly suitable for processing a wave gear having a large number of fine teeth, but is not limited thereto, and can also be applied to processing of an external gear or the like.

1 カッター
2 切刃
10 ワーク
10a 加工面
Aw ワークの回転軸
Ac カッターの回転軸
DESCRIPTION OF SYMBOLS 1 Cutter 2 Cutting edge 10 Workpiece 10a Work surface Aw Workpiece rotation axis Ac Cutter rotation axis

Claims (2)

歯車に加工されるワークの回転軸に対して傾斜した回転軸を有するピニオン型のカッターを用い、前記カッターを前記ワークと同期回転させながら、前記ワークの歯すじ方向に送り操作するスカイビング加工を利用した歯車製造方法において、
前記カッターの送り操作のうち前記カッターが最初に接触する前記ワークの角部を、前記スカイビング加工の前に面取り加工しておき、
前記カッターの送り操作のうち前記カッターが最初に前記ワークに接触する際の移動方向が、前記ワークの回転軸と垂直で前記ワークの加工面に近づく方向成分を含んでいる歯車製造方法。
Using a pinion-type cutter having a rotation axis inclined with respect to the rotation axis of the workpiece to be processed into a gear, and performing a skiving process in which the cutter is rotated in synchronization with the workpiece and fed in the direction of the tooth trace of the workpiece. In the gear manufacturing method used,
The corners of the workpiece in which the cutter of the feeding operation of the cutter first contacts, aft and chamfering before the skiving,
The gear manufacturing method in which the moving direction when the cutter first contacts the workpiece in the feeding operation of the cutter includes a direction component that is perpendicular to the rotation axis of the workpiece and approaches the processing surface of the workpiece .
前記カッターの切刃の断面形状が曲線からなる請求項1に記載の歯車製造方法。 The gear manufacturing method according to claim 1, wherein a cross-sectional shape of the cutter blade is a curve .
JP2010192001A 2010-08-30 2010-08-30 Gear manufacturing method Expired - Fee Related JP5648839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192001A JP5648839B2 (en) 2010-08-30 2010-08-30 Gear manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192001A JP5648839B2 (en) 2010-08-30 2010-08-30 Gear manufacturing method

Publications (2)

Publication Number Publication Date
JP2012045687A JP2012045687A (en) 2012-03-08
JP5648839B2 true JP5648839B2 (en) 2015-01-07

Family

ID=45901167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192001A Expired - Fee Related JP5648839B2 (en) 2010-08-30 2010-08-30 Gear manufacturing method

Country Status (1)

Country Link
JP (1) JP5648839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405706A (en) * 2015-03-25 2017-11-28 普罗费雷特两合公司 Method and apparatus by rolling cut to workpiece wheel tooth

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761577B2 (en) 2012-06-22 2015-08-12 アイシン精機株式会社 Crown gear manufacturing apparatus and method
JP5846082B2 (en) 2012-08-30 2016-01-20 アイシン精機株式会社 Grinding method for skiving cutter
CN103433568B (en) * 2013-08-05 2015-09-09 河南科技大学 The shaping tooth milling machine of a kind of ring gear
JP6340764B2 (en) * 2013-08-08 2018-06-13 株式会社ジェイテクト Gear processing equipment
DE102013015252A1 (en) * 2013-09-13 2015-03-19 Gleason-Pfauter Maschinenfabrik Gmbh Coolant supply and thus equipped Wälzschälmaschine and thus executed Wälzschälverfahren
JP6201565B2 (en) 2013-09-24 2017-09-27 アイシン精機株式会社 Gear manufacturing method
JP6427897B2 (en) * 2014-03-03 2018-11-28 株式会社ジェイテクト Gear processing equipment
JP6330443B2 (en) * 2014-04-16 2018-05-30 アイシン精機株式会社 Skiving cutter and gear
JP6409333B2 (en) 2014-05-19 2018-10-24 株式会社ジェイテクト Rotating tool support device
JP5864035B1 (en) * 2014-05-30 2016-02-17 三菱重工業株式会社 Skiving cutter
JP6565399B2 (en) 2015-07-09 2019-08-28 株式会社ジェイテクト Gear processing equipment
JP6720543B2 (en) * 2016-01-14 2020-07-08 アイシン精機株式会社 Gear processing method
JP7003656B2 (en) * 2017-12-28 2022-01-20 株式会社ジェイテクト Gear processing equipment and gear processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159126A (en) * 1987-12-14 1989-06-22 Mitsubishi Heavy Ind Ltd Skiving machine
JP4508994B2 (en) * 2005-09-16 2010-07-21 三菱電機株式会社 Flexible gear joint and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405706A (en) * 2015-03-25 2017-11-28 普罗费雷特两合公司 Method and apparatus by rolling cut to workpiece wheel tooth
CN107405706B (en) * 2015-03-25 2019-05-28 普罗费雷特两合公司 By rolling cut to the method and apparatus of workpiece wheel tooth

Also Published As

Publication number Publication date
JP2012045687A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5648839B2 (en) Gear manufacturing method
JP6212876B2 (en) Gear machining method and gear machining cutter
JP2012171020A (en) Gear manufacturing method
JP6094093B2 (en) Skiving cutter
JP2008279547A (en) Groove working method and formed rotary cutting tool
JP5902753B2 (en) Numerical control device with a function of rounding up / cutting in or circular motion
KR20170045271A (en) Method for machining a toothing, a machining tool, and a machine tool
US10710183B2 (en) Method for determining the flank face contour of a gear skiving tool, gear skiving tool and use thereof
JP5549527B2 (en) Grooving method
JP5419733B2 (en) Driver bit
JP2004074394A (en) Radius end mill and manufacturing method of bevel gear forging die
JP5353375B2 (en) Cutting method
JP6643087B2 (en) Method of manufacturing spiral bevel gear or hypoid gear
JP4765533B2 (en) Thread cutting tool and thread processing device
JP6565399B2 (en) Gear processing equipment
US10058932B2 (en) Face milling tool
WO2011096105A1 (en) Broach chip removal apparatus and broach chip removal method
JP6977494B2 (en) How to re-polish gear cutting tools, gear processing equipment, gear cutting tools and how to design gear cutting tools
JP6720543B2 (en) Gear processing method
JP2016112662A (en) drill
JP2010076069A (en) Machining method and apparatus therefor
JP6394156B2 (en) Gear machining method
JP2014205200A (en) Cutting tool unit and cutting method
JP6371339B2 (en) Machining method, machining apparatus, and power transmission component manufacturing method
JP7448813B2 (en) Manufacturing method for left and right unequal tooth heave gears

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R151 Written notification of patent or utility model registration

Ref document number: 5648839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees