[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5644536B2 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP5644536B2
JP5644536B2 JP2011011107A JP2011011107A JP5644536B2 JP 5644536 B2 JP5644536 B2 JP 5644536B2 JP 2011011107 A JP2011011107 A JP 2011011107A JP 2011011107 A JP2011011107 A JP 2011011107A JP 5644536 B2 JP5644536 B2 JP 5644536B2
Authority
JP
Japan
Prior art keywords
region
sic
conductivity type
semiconductor region
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011011107A
Other languages
Japanese (ja)
Other versions
JP2012156154A (en
Inventor
中田 修平
修平 中田
大塚 健一
健一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011011107A priority Critical patent/JP5644536B2/en
Publication of JP2012156154A publication Critical patent/JP2012156154A/en
Application granted granted Critical
Publication of JP5644536B2 publication Critical patent/JP5644536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、電力用半導体装置に関し、特に電力用半導体装置のサージ電流に対する耐量を向上させることを目的にするものである。 The present invention relates to a power semiconductor device, and in particular, an object thereof is to improve a resistance to surge current of the power semiconductor device.

SiCショットキーダイオードの順方向にサージ電流が流れた場合、特にTi、Ni、Moあるいはこれらの合金などのショットキー障壁高さが低い金属を電極とした場合に、ジュール発熱による自己発熱効果により、ダイオードの温度が上昇する場合があった。ダイオード温度が上昇すると、SiC材料の半導体部分の移動度が低下し、ダイオードの順方向抵抗値の増大をもたらす。その結果として、サージ電流によるジュール発熱が更に増加し温度上昇を招く。以上の正帰還効果により素子温度は急激に上昇し、ショットキーダイオードが素子破壊に至る場合があった。   When a surge current flows in the forward direction of the SiC Schottky diode, especially when a metal having a low Schottky barrier height such as Ti, Ni, Mo or an alloy thereof is used as an electrode, due to the self-heating effect due to Joule heating, The temperature of the diode sometimes increased. As the diode temperature increases, the mobility of the semiconductor portion of the SiC material decreases, resulting in an increase in the forward resistance of the diode. As a result, Joule heat generation due to surge current further increases, leading to a temperature rise. Due to the positive feedback effect described above, the element temperature suddenly rises and the Schottky diode may be destroyed.

このようなサージ電流が流れての温度上昇による正帰還効果によりショットキーダイオードの素子破壊を防止するために、JBS(Junction Barrier Controlled Schottky)ないしはMPS(Merged PiN Schottky Diode)と称されるダイオード構造が提案されている。例えば、JBSダイオードでは、ショットキーダイオードと比べて、大電流駆動時における順方向電圧が小さくなり、順方向のサージ電流に対してより破壊しにくくなることが知られていた(例えば、特許文献1など)。 A diode structure called JBS (Junction Barrier Controlled Schottky) or MPS (Merged PiN Schottky Diode) is used in order to prevent the element destruction of the Schottky diode due to the positive feedback effect due to the temperature rise caused by such surge current flow. Proposed. For example, it has been known that a JBS diode has a smaller forward voltage when driven at a large current than a Schottky diode, and is less likely to be destroyed by a forward surge current (for example, Patent Document 1). Such).

また、不純物濃度が1017〜1020cm−3のp形の半導体領域と3×1016cm−3以下のn形半導体領域とがニッケルとアルミニウムの混合電極と接触し、p形の半導体領域と電極とをオーミック接合させたJBSダイオードが知られていた(例えば、特許文献2)。 In addition, a p-type semiconductor region having an impurity concentration of 10 17 to 10 20 cm −3 and an n-type semiconductor region having an impurity concentration of 3 × 10 16 cm −3 or less are in contact with a mixed electrode of nickel and aluminum, and the p-type semiconductor region A JBS diode in which an electrode and an electrode are in ohmic contact is known (for example, Patent Document 2).

さらに、JBSダイオードの局所的な過熱現象の発生を抑制するために、JBSダイオードのp領域を素子の中心部などの過熱されやすい箇所に密に配置すること、ワイアボンドのボンディング点の直下にもJBSダイオードのp領域を形成することが知られていた(例えば、特許文献3)。   Further, in order to suppress the occurrence of local overheating phenomenon of the JBS diode, the p region of the JBS diode is densely arranged at a place where the overheating such as the central portion of the element is easily overheated. It has been known to form a p region of a diode (for example, Patent Document 3).

特開2003−258271JP 2003-258271 A 特表2003−510817Special table 2003-510817 特開2010−3841JP 2010-3841

しかしながら、SiCを用いたMOSFET半導体装置のように高圧、大電流で動作し、高速スイッチングが可能な半導体装置とともに使用されるSiCのJBSダイオードにおいては、サージ電流が大きくなり、過熱の度合いが増大する場合があった。そのため、JBSダイオードのp領域から電極(ショットキー電極)までの抵抗は、従来知られているより低く、できる限り低くする必要がある。   However, in a SiC JBS diode that is used with a semiconductor device that operates at a high voltage and a large current and is capable of high-speed switching, such as a MOSFET semiconductor device using SiC, the surge current increases and the degree of overheating increases. There was a case. Therefore, the resistance from the p region of the JBS diode to the electrode (Schottky electrode) is lower than conventionally known, and needs to be as low as possible.

JBSダイオードのp領域の抵抗を下げるためには、p領域にイオン注入する不純物濃度を多くすればする程良いが、一方で、p領域にあまり多くの不純物をイオン注入すると、イオン注入により結晶欠陥が増大し、リーク電流が増加する問題が発生する場合があった。   In order to lower the resistance of the p region of the JBS diode, it is better to increase the impurity concentration of ions implanted into the p region. On the other hand, if too much impurity ions are implanted into the p region, crystal defects are caused by ion implantation. In some cases, there is a problem that leakage current increases.

この発明は、上記のような問題を解決するためになされたものであり、JBSダイオードのp領域から電極までの抵抗が小さく、リーク電流の小さなJBSダイオードである電力用半導体装置を得ることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to obtain a power semiconductor device which is a JBS diode having a small resistance from the p region to the electrode of the JBS diode and a small leakage current. And

この発明に係る電力用半導体装置は、第一導電型のSiC基板と、前記SiC基板の第一主面に形成され、前記SiC基板よりも不純物濃度の低い第一導電型でSiCのドリフト層と、前記ドリフト層に形成された第二導電型でSiCの第一の半導体領域と、前記第一の半導体領域の表層側に形成され、前記第一の半導体領域よりも不純物濃度が高濃度である第二導電型でSiCの第二の半導体領域と、前記ドリフト層の表面に形成され前記第一導電型の領域とショットキー接続し、前記第二の半導体領域とオーミック接続するショットキー電極と、前記ショットキー電極の表面に形成されたアノード電極と、前記アノード電極の表面で、前記第一の半導体領域の直上に形成され、上面から見て前記第一の半導体領域の領域を含むように前記第一の半導体領域よりも広い面積に形成された、ワイアボンドのファーストボンドと、前記SiC基板の前記第一主面に対向する第二主面に形成されたカソード電極とを備えたものである。
A power semiconductor device according to the present invention includes a first conductivity type SiC substrate, a first conductivity type SiC substrate formed on a first main surface of the SiC substrate and having a lower impurity concentration than the SiC substrate, The second conductivity type SiC first semiconductor region formed in the drift layer and the surface layer side of the first semiconductor region, and the impurity concentration is higher than that of the first semiconductor region. A second semiconductor region of SiC of the second conductivity type, a Schottky electrode formed on the surface of the drift layer and Schottky connected to the region of the first conductivity type, and ohmic connected to the second semiconductor region; An anode electrode formed on the surface of the Schottky electrode, and the surface of the anode electrode is formed immediately above the first semiconductor region and includes the region of the first semiconductor region as viewed from above. Formed wider area than one semiconductor region, those having a first bond of wire bonds, and a cathode electrode formed on the second main surface opposed to said first main surface of the SiC substrate.

この発明によれば、サージ電流による素子破壊が抑制され、かつ、ダイオードに逆バイアスが加えられた場合のリーク電流の少ない電力用半導体装置を得ることができる。   According to the present invention, it is possible to obtain a power semiconductor device in which element destruction due to surge current is suppressed and leakage current is small when a reverse bias is applied to a diode.

実施の形態1の電力用半導体装置を説明するための構成図である。1 is a configuration diagram for explaining a power semiconductor device according to a first embodiment; 実施の形態1の電力用半導体装置を説明するための上面図である。FIG. 3 is a top view for illustrating the power semiconductor device of the first embodiment. 実施の形態1の電力用半導体装置の製造を説明するための構成図である。FIG. 3 is a configuration diagram for explaining the manufacture of the power semiconductor device of the first embodiment. 実施の形態1の電力用半導体装置の製造を説明するための構成図である。FIG. 3 is a configuration diagram for explaining the manufacture of the power semiconductor device of the first embodiment. 実施の形態1の電力用半導体装置の製造を説明するための構成図である。FIG. 3 is a configuration diagram for explaining the manufacture of the power semiconductor device of the first embodiment. 実施の形態1の変形例を説明するための構成図である。FIG. 6 is a configuration diagram for explaining a modification of the first embodiment. 実施の形態1を説明するための構成図である。FIG. 3 is a configuration diagram for explaining the first embodiment; 実施の形態1を説明するための構成図である。FIG. 3 is a configuration diagram for explaining the first embodiment; 実施の形態2を説明するための構成図である。FIG. 6 is a configuration diagram for explaining a second embodiment;

実施の形態1.
以下、本発明の実施例を図面に基づいて説明する。図1は本発明の実施の形態1に係る電力用半導体装置であるショットキーダイオードを示す断面図である。第1の実施の形態に係るショットキーダイオード100では、炭化珪素(SiC)のN型のエピタキシャル層1(第一導電型の半導体領域、ドリフト層)の下にN型のSiC基板2(カソード領域)が設けられている。SiC基板2は、第1主面2aの面方位が、<0001>シリコン面から4°または8°オフした、4Hのポリタイプを有する低抵抗炭化珪素基板である。エピタキシャル層1の不純物濃度は、SiC基板2の不純物濃度よりも低い。SiC基板2の第2主面2bにはシリサイドからなるカソード電極3(ドレイン電極)が形成され、電気的に接続できるようになっている。ここで、エピタキシャル層1の不純物濃度は、2×1014個/cm以上、2×1016個/cm以下などであればよい。
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a Schottky diode which is a power semiconductor device according to Embodiment 1 of the present invention. In the Schottky diode 100 according to the first embodiment, an N + type SiC substrate 2 (under the N type epitaxial layer 1 (first conductivity type semiconductor region, drift layer) of silicon carbide (SiC) ( A cathode region). SiC substrate 2 is a low-resistance silicon carbide substrate having a 4H polytype in which the plane orientation of first main surface 2a is off by 4 ° or 8 ° from the <0001> silicon surface. The impurity concentration of epitaxial layer 1 is lower than the impurity concentration of SiC substrate 2. A cathode electrode 3 (drain electrode) made of silicide is formed on the second main surface 2b of the SiC substrate 2 so that it can be electrically connected. Here, the impurity concentration of the epitaxial layer 1 may be 2 × 10 14 pieces / cm 3 or more and 2 × 10 16 pieces / cm 3 or less.

型のエピタキシャル層1の上部にTiのショットキー電極4が形成され、更に上部にはアノード電極5が形成されている。アノード電極5(Al電極)はワイアボンド6により他の電極(図示されていない)に接続される。ワイアボンド6のファーストボンド7(1stボンド)は、ワイアボンド6の形成工程で発生する。ファーストボンド7直下のショットキー電極4の下のエピタキシャル層1の内部には、第二導電型のp領域8(第一の半導体領域)が形成され、p領域8の上部、表層側には第二導電型の、より不純物が高濃度なp領域9(第二の半導体領域)が形成されている。p領域9とショットキー電極4はオーミック接触しており、エピタキシャル層1とショットキー電極4はショットキー接続している。また、ショットキー電極4の周囲のエピタキシャル層1の表層部には、第二導電型の終端構造10が形成されている。終端構造10の不純物濃度は、1×1016個/cm以上、1×1018個/cm以下などであればよい。 A Ti Schottky electrode 4 is formed on the N type epitaxial layer 1, and an anode electrode 5 is further formed on the upper portion. The anode electrode 5 (Al electrode) is connected to another electrode (not shown) by a wire bond 6. The first bond 7 (1st bond) of the wire bond 6 is generated in the process of forming the wire bond 6. A second conductivity type p region 8 (first semiconductor region) is formed in the epitaxial layer 1 below the Schottky electrode 4 immediately below the first bond 7. A p + region 9 (second semiconductor region) having a higher conductivity and a two-conductivity type is formed. The p + region 9 and the Schottky electrode 4 are in ohmic contact, and the epitaxial layer 1 and the Schottky electrode 4 are in Schottky connection. A termination structure 10 of the second conductivity type is formed on the surface layer portion of the epitaxial layer 1 around the Schottky electrode 4. The impurity concentration of the termination structure 10 may be 1 × 10 16 pieces / cm 3 or more and 1 × 10 18 pieces / cm 3 or less.

p領域8及びp領域9は、Alイオンを注入することで形成される。Alイオンの他に、Bなどの不純物を注入しても同様の効果を実現できる。p領域8の望ましい不純物濃度は1×1017個/cm以上、1×1018個/cm以下である。p領域9の望ましい不純物濃度は1×1020個/cm以上、5×1020個/cm以下である。 The p region 8 and the p + region 9 are formed by implanting Al ions. Similar effects can be realized by implanting impurities such as B in addition to Al ions. A desirable impurity concentration of the p region 8 is 1 × 10 17 atoms / cm 3 or more and 1 × 10 18 atoms / cm 3 or less. A desirable impurity concentration of the p + region 9 is 1 × 10 20 pieces / cm 3 or more and 5 × 10 20 pieces / cm 3 or less.

図2は、本発明の実施の形態1に係るショットキーダイオード100を示す上面図を示している。図2において、p領域8及びp領域9は、ファーストボンド7およびアノード電極5、ショットキー電極4の下部にあるが、位置関係を明確にするために、透視して見た図としている。ここで、ファーストボンド7は、上面から見てp領域8が形成されている領域を含むように、p領域8よりも広い面積に形成されている。p領域8は、破線で示している。また、終端構造10は、アノード電極5、ショットキー電極4の周囲に形成されている。 FIG. 2 is a top view showing the Schottky diode 100 according to the first embodiment of the present invention. In FIG. 2, the p region 8 and the p + region 9 are located below the first bond 7, the anode electrode 5, and the Schottky electrode 4, but are seen through in order to clarify the positional relationship. Here, the first bond 7 is formed in a larger area than the p region 8 so as to include a region where the p region 8 is formed as viewed from above. The p region 8 is indicated by a broken line. The termination structure 10 is formed around the anode electrode 5 and the Schottky electrode 4.

ここで、p領域8の深さは、0.3〜2μm程度であればよく、また、p領域9の深さは、0.05〜0.1μm程度であればよい。p領域8の深さは、エピタキシャル層1の厚さより小さいものとする。 Here, the depth of the p region 8 may be about 0.3 to 2 μm, and the depth of the p + region 9 may be about 0.05 to 0.1 μm. The depth of the p region 8 is assumed to be smaller than the thickness of the epitaxial layer 1.

つづいて、本実施の形態の電力半導体装置であるJBSダイオード100について、図3〜図5を用いて説明する。図3〜図5は、本実施の形態の電力半導体装置の製造工程を説明するための断面模式図である。   Next, a JBS diode 100 that is a power semiconductor device of the present embodiment will be described with reference to FIGS. 3-5 is a cross-sectional schematic diagram for demonstrating the manufacturing process of the power semiconductor device of this Embodiment.

まず、4Hのポリタイプを有する第一導電型の低抵抗SiC基板2の第1主面2a上に第一導電型のエピタキシャル層1をエピタキシャル成長する。次に、図3に示すように、エピタキシャル層1に、第二導電型のAlなどの不純物をイオン注入とその後に活性化アニールを行うことにより、p領域8、p領域9、終端構造10を形成する。つづいて、図4に示すように、SiC基板2の第2主面2bに接して、カソード電極3をスパッタ法などにより形成する。次に、図5に示すように、SiC基板2の第1主面2a上にショットキー電極4およびAl電極を第1主面2a側から順にスパッタ法などにより形成する。最後に、ファーストボンド7がp領域8、p領域9の直上になるようにワイアボンド6を形成し、図1に示す電力用半導体であるJBSダイオードを形成する。 First, the first conductivity type epitaxial layer 1 is epitaxially grown on the first main surface 2a of the first conductivity type low-resistance SiC substrate 2 having a 4H polytype. Next, as shown in FIG. 3, an impurity such as Al of the second conductivity type is ion-implanted into the epitaxial layer 1 and then activation annealing is performed, whereby a p region 8, a p + region 9, and a termination structure 10 are formed. Form. Subsequently, as shown in FIG. 4, the cathode electrode 3 is formed by sputtering or the like in contact with the second main surface 2b of the SiC substrate 2. Next, as shown in FIG. 5, a Schottky electrode 4 and an Al electrode are sequentially formed on the first main surface 2a of the SiC substrate 2 from the first main surface 2a side by a sputtering method or the like. Finally, the wire bond 6 is formed so that the first bond 7 is directly above the p region 8 and the p + region 9, and the JBS diode which is a power semiconductor shown in FIG. 1 is formed.

ここで、Alイオンを注入する場合、p領域8のイオン注入時の加速エネルギーは、200〜900KeVなどであればよく、p領域9のイオン注入時の加速エネルギーは、40〜300KeVなどであればよい。また、Bイオンを注入する場合は、p領域8のイオン注入時の加速エネルギーは、40〜200KeVなどであればよい。 Here, when Al ions are implanted, the acceleration energy at the time of ion implantation in the p region 8 may be 200 to 900 KeV, and the acceleration energy at the time of ion implantation in the p + region 9 may be 40 to 300 KeV. That's fine. When B ions are implanted, the acceleration energy at the time of ion implantation of the p region 8 may be 40 to 200 KeV.

次に本実施の形態にかかる構造を有するJBSダイオード100の動作について説明する。   Next, the operation of the JBS diode 100 having the structure according to the present embodiment will be described.

まず、通常動作時について説明する。通常の動作時に流れる電流は、サージ電流に対して桁違いに小さい。このためダイオード両端電圧はバイポーラ動作が始まる電圧よりも小さな値となる。このときの電流はショットキー界面(ショットキー電極4とエピタキシャル層1の間の界面)を介する電流となり、通常のショットキーダイオードとして機能する。   First, the normal operation will be described. The current that flows during normal operation is orders of magnitude smaller than the surge current. For this reason, the voltage across the diode is smaller than the voltage at which the bipolar operation starts. The current at this time becomes a current through the Schottky interface (interface between the Schottky electrode 4 and the epitaxial layer 1), and functions as a normal Schottky diode.

実施の形態1のダイオードがショットキーダイオードとして動作し、順方向バイアス電圧が印加されている場合、順方向電流は、p領域8がない領域(ショットキー界面)を流れ、ショットキー電極4に流入する。また、p領域8が設けられている、平面図の中央部分には電流が流れないため、オン電流が流れることによる発熱が中央部で発生せず、温度分布は、中央部で低いドーナツ状になる。さらに、熱がファーストボンド7を経由して放熱され、中央部の温度上昇は限りなく小さな値となる。   When the diode of the first embodiment operates as a Schottky diode and a forward bias voltage is applied, the forward current flows through a region where there is no p region 8 (Schottky interface) and flows into the Schottky electrode 4. To do. In addition, since no current flows in the central portion of the plan view where the p region 8 is provided, heat generation due to the on-current does not occur in the central portion, and the temperature distribution has a low donut shape in the central portion. Become. Furthermore, heat is dissipated through the first bond 7, and the temperature rise at the center becomes an extremely small value.

次にサージ電流が流れた場合について説明する。サージ電流が流れる場合、当初はショットキー界面に電流が流れる。電流の増加と共にダイオード両端電圧(アノード電極5、カソード電極3間電圧)は増加し、やがてpnダイオードが動作する電圧を超え、p領域8を経由して、pnダイオード部分にも電流が流れるようになる。ショットキーダイオードは中央部に形成されたp領域8(およびp領域9)とエピタキシャル層1によるバイポーラ動作を行うことになる。 Next, a case where a surge current flows will be described. When surge current flows, current flows initially at the Schottky interface. As the current increases, the voltage across the diode (the voltage between the anode electrode 5 and the cathode electrode 3) increases, eventually exceeding the voltage at which the pn diode operates, and the current also flows through the pn diode portion via the p region 8. Become. The Schottky diode performs a bipolar operation by the p region 8 (and the p + region 9) formed in the central portion and the epitaxial layer 1.

このときの電流値によりp領域8(およびp領域9)の温度は時間と共に上昇するが、上部に形成されているファーストボンド7が熱容量の大きなヒートシンクとして作用するので、p領域8(およびp領域9)の温度上昇は抑制されることになる。 The temperature of the p region 8 (and the p + region 9) rises with time due to the current value at this time, but the first bond 7 formed on the upper part acts as a heat sink having a large heat capacity, so the p region 8 (and p The temperature rise in the + region 9) is suppressed.

本発明の構造によれば、サージ電流の流れる近傍にワイアボンド6のファーストボンド7が形成されており、ファーストボンド7の大きさは、アノード電極5とp領域9との接触面積(0.5mm×1mm)の大きさとほぼ等しい。すなわち熱容量の大きなヒートシンクがp領域9の直上に存在することになる。また、p領域9とショットキー電極4とがオーミック接続されている。このため、サージ電流が流れた場合にもジュール熱の発生が少なく、また、発生したジュール熱が直上のヒートシンクの放熱効果により放出されるので、発熱による素子の(p領域8、p+領域9)の温度上昇が抑制され、素子が素子破壊されることを抑制できる。また、このようにサージ電流による温度上昇が抑制されるために、サージ耐量が改善する。さらに、付随的な効果として通常動作時の素子温度の上昇を抑制することが可能となり、より大電流域での素子動作を可能とすることができる。 According to the structure of the present invention, the first bond 7 of the wire bond 6 is formed in the vicinity of the surge current flowing, and the size of the first bond 7 is the contact area (0.5 mm) between the anode electrode 5 and the p + region 9. × 1 mm). That is, a heat sink having a large heat capacity is present immediately above the p + region 9. The p + region 9 and the Schottky electrode 4 are ohmically connected. For this reason, generation of Joule heat is small even when a surge current flows, and the generated Joule heat is released by the heat dissipation effect of the heat sink directly above, so that the elements (p region 8, p + region 9) due to heat generation Temperature rise is suppressed, and the element can be prevented from being destroyed. In addition, since the temperature rise due to the surge current is suppressed in this way, the surge resistance is improved. Further, as an incidental effect, it is possible to suppress an increase in element temperature during normal operation, and it is possible to operate the element in a larger current region.

さらに、p領域9の不純物濃度を高くして、p領域8の不純物濃度を所定の値以下のしているため、イオン注入法でp領域8、p領域9を形成した場合に、p領域9近傍の欠陥が増加することを抑制でき、逆方向バイアスを印加した場合に、リーク電流が増加することを抑制できる。 Furthermore, since the impurity concentration of the p + region 9 is increased and the impurity concentration of the p region 8 is lower than a predetermined value, the p region 8 and the p + region 9 are formed by ion implantation. An increase in defects near the + region 9 can be suppressed, and an increase in leakage current can be suppressed when a reverse bias is applied.

なお、本実施の形態では、1個のp領域としていたが、図7に示されるように複数個の分割されたp領域8がワイアボンドの1stボンド7の直下に形成されたとしても同様の効果を奏する。また、本実施の形態では、p領域8の水平方向の大きさはワイアボンドのファーストボンド7より小さくなる場合について説明したが、p領域の水平方向の大きさがファーストボンド7の概略同じサイズであるか、ないしは若干大きめのサイズであっても同様の効果を奏する。   In the present embodiment, one p region is used. However, even if a plurality of divided p regions 8 are formed immediately below the first bond 7 of the wire bond as shown in FIG. Play. In the present embodiment, the case where the horizontal size of the p region 8 is smaller than the wire bond first bond 7 has been described. However, the horizontal size of the p region is approximately the same size as the first bond 7. The same effect can be obtained even with a slightly larger size.

また、本実施の形態においては、ワイアボンド6の材料の例としてAlのワイアボンド6を用いて説明したが、ワイアボンド6の材料はこれに限るものではなく、Cuなどでもよく、また、別の手段(半田接続、リボンボンドなど)を用いて電気的な接続を実現しても本発明の効果に影響を及ぼすことはない。   In the present embodiment, the Al wire bond 6 has been described as an example of the material of the wire bond 6, but the material of the wire bond 6 is not limited to this, and may be Cu or other means ( Even if electrical connection is realized using solder connection, ribbon bond, etc., the effect of the present invention is not affected.

さらに、本発明においては、p領域8は一様な濃度分布を有するものとして説明したが、p領域8の濃度の深度方向の分布ないしは水平方向の分布は、一様である必要はない。例えばp領域8の表面から深さ方向に、その濃度が徐々に濃くなっていき最深部近傍で最大値を取る分布を有している場合でも同様の効果を実現することが出来る。また、p領域8の中央部から水平方向に向かって不純物濃度が増加する分布であっても減少する分布であっても更には極値を持つ分布であっても以下に説明するのと同様の効果を実現することができる。   Furthermore, in the present invention, the p region 8 has been described as having a uniform concentration distribution. However, the distribution in the depth direction or the horizontal direction of the concentration of the p region 8 does not have to be uniform. For example, the same effect can be realized even when the concentration gradually increases from the surface of the p region 8 in the depth direction and takes a maximum value in the vicinity of the deepest portion. Further, even if the distribution is such that the impurity concentration increases or decreases in the horizontal direction from the central portion of the p region 8, the distribution is the same as described below regardless of whether the distribution is an extreme value. The effect can be realized.

また、終端構造10は、素子の周辺部分に耐圧を改善するために通常形成されるが、本願の効果に影響を及ぼすものではない。   Further, the termination structure 10 is usually formed in the peripheral portion of the element in order to improve the breakdown voltage, but does not affect the effect of the present application.

なお、p領域9とショットキー電極4とがオーミック接続されているが、この間のオーミック接触を実現するには、p領域9の不純物濃度としては、不純物濃度は1×1020個/cm以上、5×1020個/cm以下程度の濃度が必要となる。また、図6にその断面図を示すように、p領域9の上に、p領域9との接触抵抗をより低くさせるためのオーミック電極11を別に設けてもよい。 The p + region 9 and the Schottky electrode 4 are ohmically connected. In order to realize an ohmic contact therebetween, the impurity concentration of the p + region 9 is 1 × 10 20 / cm 2. A concentration of about 3 or more and 5 × 10 20 pieces / cm 3 or less is required. Further, as shown in the sectional view thereof in FIG. 6, on the p + region 9, the ohmic electrode 11 in order to lower the contact resistance between the p + region 9 may be provided separately.

また、本実施の形態のSiCJBSダイオードは、SiCMOSFETなどのSiCスイッチング素子と組み合わせて用いた場合に、高速駆動を容易にする点で、より効果を奏する。   Further, the SiC JBS diode of the present embodiment is more effective in facilitating high-speed driving when used in combination with SiC switching elements such as SiC MOSFETs.

実施の形態2.
実施の形態2は、実施の形態1で示したショットキーダイオード構造の変形である。実施の形態2によれば、図7に示されるように2つの領域でp型の半導体層が形成されている。p領域8、p+領域9が形成される位置は、ショットキーダイオードが実際の電力変換機に用いる場合にワイアボンドなどにより接続されるアノード電極5のフロント面の直下になるように設計されている。
Embodiment 2. FIG.
The second embodiment is a modification of the Schottky diode structure shown in the first embodiment. According to the second embodiment, a p-type semiconductor layer is formed in two regions as shown in FIG. The positions where the p region 8 and the p + region 9 are formed are designed to be directly below the front surface of the anode electrode 5 connected by wire bonding or the like when the Schottky diode is used in an actual power converter.

本実施の形態における動作は、実施の形態1と同様であるので、繰り返し説明しないが。また、本実施の形態によればp領域8、p領域9は2箇所形成されていることになるが、図8に示すように、より多数個のp領域が形成されると共にその直上にワイアボンドのファーストボンド7が形成されれば、同様の効果を奏する。このように、実施の形態1においては、ファーストボンド7の直下にp領域8が一箇所形成されていたが、実施の形態1の変形例として示されるように複数個のp領域から構成されていたとしても同様の効果を実現できる。また、複数のファーストボンド7のそれぞれにp領域8、p領域9を形成しているため、温度上昇をより抑制できる。また、実施の形態1の電力用半導体装置と同様に、逆方向バイアスを印加した場合に、リーク電流が増加することを抑制できる。 Since the operation in this embodiment is the same as that in Embodiment 1, it will not be described repeatedly. Further, according to the present embodiment, the p region 8 and the p + region 9 are formed in two places, but as shown in FIG. 8, a larger number of p regions are formed and immediately above them. If the wire bond first bond 7 is formed, the same effect is obtained. As described above, in the first embodiment, one p region 8 is formed immediately below the first bond 7. However, as shown as a modification of the first embodiment, the p region 8 is composed of a plurality of p regions. Even if it is, the same effect can be realized. Further, since the p region 8 and the p + region 9 are formed in each of the plurality of first bonds 7, the temperature rise can be further suppressed. Further, like the power semiconductor device of the first embodiment, it is possible to suppress an increase in leakage current when a reverse bias is applied.

実施の形態3.
実施の形態3を図9に基づいて説明する。実施の形態3は実施の形態1で示したショットキーダイオード構造の変形例を示している。基本的なサージ電流耐量の改善と通常動作時の低抵抗化の両立を実現する発明である。本実施の形態によれば、p領域8はダイオードのフロント面全面に渡って形成されている。
Embodiment 3 FIG.
The third embodiment will be described with reference to FIG. The third embodiment shows a modification of the Schottky diode structure shown in the first embodiment. This invention realizes both improvement of basic surge current withstand capability and reduction of resistance during normal operation. According to the present embodiment, the p region 8 is formed over the entire front surface of the diode.

実施の形態3に係わるp領域8、p領域9は、図9にその断面図を示すように、一様に分布しているのではなく、局所的にドットの密度の高いところと低いところを形成している点にある。ワイアボンド6のファーストボンド7はp領域8、p領域9の密度の高い部位に形成されている。p領域8、p領域9のドットの径は、1〜20μm程度、望ましくは、3〜10μm程度であればよい。 The p region 8 and the p + region 9 according to the third embodiment are not uniformly distributed, as shown in the cross-sectional view of FIG. 9, but where the dot density is locally high and low. Is the point that forms. The first bond 7 of the wire bond 6 is formed at a high density portion of the p region 8 and the p + region 9. The diameters of the dots in the p region 8 and the p + region 9 may be about 1 to 20 μm, preferably about 3 to 10 μm.

本実施の形態の電力用半導体装置においても、p領域8、p領域9をドット状に多数形成し、ドットの密度の高いところに対応してファーストボンド7が形成されているため、温度上昇を抑制できる。また、実施の形態1の電力用半導体装置と同様に、逆方向バイアスを印加した場合に、リーク電流が増加することを抑制できる。なお、本実施の形態ではp領域8はドット形状に形成されていたが、短いストライプ形状に形成されたとしても同様の効果を実現することができる。 Also in the power semiconductor device of the present embodiment, a large number of p regions 8 and p + regions 9 are formed in a dot shape, and the first bond 7 is formed corresponding to the high density of dots. Can be suppressed. Further, like the power semiconductor device of the first embodiment, it is possible to suppress an increase in leakage current when a reverse bias is applied. Although the p region 8 is formed in a dot shape in the present embodiment, the same effect can be realized even if it is formed in a short stripe shape.

1 エピタキシャル層、2 ドレイン領域、3 ドレイン電極、4 ショットキー電極、5 Al電極、6 ワイアボンド、7 ファーストボンド、8 p領域、9 p領域、10 終端構造、11 オーミック電極、100 ショットキーダイオード。 1 epitaxial layer, 2 drain region, 3 drain electrode, 4 Schottky electrode, 5 Al electrode, 6 wire bond, 7 first bond, 8 p region, 9 p + region, 10 termination structure, 11 ohmic electrode, 100 Schottky diode.

Claims (7)

第一導電型のSiC基板と、
前記SiC基板の第一主面に形成され、前記SiC基板よりも不純物濃度の低い第一導電型でSiCのドリフト層と、
前記ドリフト層に形成された第二導電型でSiCの第一の半導体領域と、
前記第一の半導体領域の表層側に形成され、前記第一の半導体領域よりも不純物濃度が高濃度である第二導電型でSiCの第二の半導体領域と、
前記ドリフト層の表面に形成され前記第一導電型の領域とショットキー接続し、前記第二の半導体領域とオーミック接続するショットキー電極と、
前記ショットキー電極の表面に形成されたアノード電極と、
前記アノード電極の表面で、前記第一の半導体領域の直上に形成され、上面から見て前記第一の半導体領域の領域を含むように前記第一の半導体領域よりも広い面積に形成された、ワイアボンドのファーストボンドと、
前記SiC基板の前記第一主面に対向する第二主面に形成されたカソード電極とを備えたことを特徴とする電力用半導体装置。
A first conductivity type SiC substrate;
A drift layer of SiC formed on the first main surface of the SiC substrate and having a first conductivity type having a lower impurity concentration than the SiC substrate;
A first semiconductor region of SiC of the second conductivity type formed in the drift layer;
A second semiconductor region of SiC of the second conductivity type formed on the surface layer side of the first semiconductor region and having a higher impurity concentration than the first semiconductor region; and
A Schottky electrode formed on the surface of the drift layer and Schottky connected to the first conductivity type region, and ohmic connected to the second semiconductor region;
An anode electrode formed on the surface of the Schottky electrode;
Formed on the surface of the anode electrode, directly above the first semiconductor region, and formed in a wider area than the first semiconductor region so as to include the region of the first semiconductor region when viewed from above; First bond of wire bond,
A power semiconductor device comprising: a cathode electrode formed on a second main surface opposite to the first main surface of the SiC substrate.
第一の半導体領域の不純物濃度は1×1017個/cm以上、1×1018個/cm以下であり、前記第二の半導体領域の不純物濃度は1×1020個/cm以上、5×1020個/cm以下であることを特徴とする請求項1に記載の電力用半導体装置。 The impurity concentration of the first semiconductor region is 1 × 10 17 pieces / cm 3 or more and 1 × 10 18 pieces / cm 3 or less, and the impurity concentration of the second semiconductor region is 1 × 10 20 pieces / cm 3 or more. The power semiconductor device according to claim 1, wherein the number is 5 × 10 20 pieces / cm 3 or less. 第二の半導体領域の厚さは、0.05〜0.1μmであることを特徴とする請求項1または2に記載の電力用半導体装置。 3. The power semiconductor device according to claim 1, wherein a thickness of the second semiconductor region is 0.05 to 0.1 μm. 一つのショットキー電極の下に、複数の第一の半導体領域を備えたことを特徴とする請求項1または2に記載の電力用半導体装置 。 3. The power semiconductor device according to claim 1, further comprising a plurality of first semiconductor regions under one Schottky electrode. 複数の第一の半導体領域は、ショットキー電極の外部から中央部に向かうほど密に配置されていることを特徴とする請求項4に記載の電力用半導体装置。 5. The power semiconductor device according to claim 4, wherein the plurality of first semiconductor regions are arranged densely toward the central portion from the outside of the Schottky electrode. SiCスイッチング素子をさらに備えたことを特徴とする請求項1に記載の電力用半導体装置。 The power semiconductor device according to claim 1, further comprising a SiC switching element. 第一導電型のSiC基板と、A first conductivity type SiC substrate;
前記SiC基板の第一主面に形成され、前記SiC基板よりも不純物濃度の低い第一導電型でSiCのドリフト層と、A drift layer of SiC formed on the first main surface of the SiC substrate and having a first conductivity type having a lower impurity concentration than the SiC substrate;
前記ドリフト層に形成された第二導電型でSiCのドット状に複数形成された第一の半導体領域と、A first semiconductor region formed in a plurality of SiC dots in the second conductivity type formed in the drift layer;
前記複数の第一の半導体領域の表層側に形成され、前記複数の第一の半導体領域よりも不純物濃度が高濃度である第二導電型でSiCの複数の第二の半導体領域と、A plurality of second semiconductor regions of SiC of the second conductivity type formed on the surface layer side of the plurality of first semiconductor regions and having a higher impurity concentration than the plurality of first semiconductor regions;
前記ドリフト層の表面に形成され前記第一導電型の領域とショットキー接続し、前記複数の第二の半導体領域とオーミック接続するショットキー電極と、A Schottky electrode formed on the surface of the drift layer and Schottky connected to the first conductivity type region, and in ohmic contact with the plurality of second semiconductor regions;
前記ショットキー電極の表面に形成されたアノード電極と、An anode electrode formed on the surface of the Schottky electrode;
前記アノード電極の表面で、上面から見て前記第一の半導体領域のドット密度の高い部分に対応して形成された、ワイアボンドのファーストボンドと、First wire bond formed on the surface of the anode electrode corresponding to the high dot density portion of the first semiconductor region as viewed from above,
前記SiC基板の前記第一主面に対向する第二主面に形成されたカソード電極とを備えたことを特徴とする電力用半導体装置。A power semiconductor device comprising: a cathode electrode formed on a second main surface opposite to the first main surface of the SiC substrate.
JP2011011107A 2011-01-21 2011-01-21 Power semiconductor device Active JP5644536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011107A JP5644536B2 (en) 2011-01-21 2011-01-21 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011107A JP5644536B2 (en) 2011-01-21 2011-01-21 Power semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014224326A Division JP2015057843A (en) 2014-11-04 2014-11-04 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2012156154A JP2012156154A (en) 2012-08-16
JP5644536B2 true JP5644536B2 (en) 2014-12-24

Family

ID=46837632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011107A Active JP5644536B2 (en) 2011-01-21 2011-01-21 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP5644536B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033276B (en) * 2012-12-27 2014-07-02 长安大学 Silicon carbide (SIC) temperature sensor and manufacturing method thereof
JP6337964B2 (en) * 2014-07-23 2018-06-06 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6745458B2 (en) * 2015-04-15 2020-08-26 パナソニックIpマネジメント株式会社 Semiconductor element
US9773924B2 (en) 2015-04-22 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having barrier region and edge termination region enclosing barrier region
US11125803B2 (en) 2016-09-01 2021-09-21 Mitsubishi Electric Corporation Method of measuring semiconductor device by applying voltage to the semiconductor device using probe needle
CN109244146A (en) * 2018-11-09 2019-01-18 无锡新洁能股份有限公司 Optimize the SiC schottky diode and its manufacturing method of heat distribution
CN109801978B (en) * 2019-03-13 2024-03-19 捷捷半导体有限公司 Low-voltage drop diode and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590284B2 (en) * 1990-02-28 1997-03-12 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP3467381B2 (en) * 1997-05-22 2003-11-17 株式会社日立製作所 Silicon carbide diode
JP4892787B2 (en) * 2001-04-09 2012-03-07 株式会社デンソー Schottky diode and manufacturing method thereof
US8901699B2 (en) * 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
JP4375439B2 (en) * 2007-05-30 2009-12-02 株式会社デンソー Silicon carbide semiconductor device having junction barrier Schottky diode
JP2010003841A (en) * 2008-06-19 2010-01-07 Toyota Motor Corp Vertical type schottky diode

Also Published As

Publication number Publication date
JP2012156154A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
TWI528568B (en) Schottky diode
TWI487121B (en) Schottky diode employing recesses for elements of junction barrier array
JP5644536B2 (en) Power semiconductor device
TWI620332B (en) Edge termination structure employing recesses for edge termination elements
JP6641488B2 (en) Semiconductor device
US20180061951A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US20150287840A1 (en) Semiconductor device
US20190081624A1 (en) Power switching devices with dv/dt capability and methods of making such devices
JP7302285B2 (en) semiconductor equipment
JP2015057843A (en) Power semiconductor device
CN105990412B (en) Semiconductor device with a plurality of semiconductor chips
JP7451981B2 (en) semiconductor equipment
JP7371426B2 (en) semiconductor equipment
JP7415413B2 (en) semiconductor equipment
JP2018022794A (en) Semiconductor device
CN104916690A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R151 Written notification of patent or utility model registration

Ref document number: 5644536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250