[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5641178B2 - Optical reflectometry measuring method and optical reflectometry measuring apparatus - Google Patents

Optical reflectometry measuring method and optical reflectometry measuring apparatus Download PDF

Info

Publication number
JP5641178B2
JP5641178B2 JP2009169162A JP2009169162A JP5641178B2 JP 5641178 B2 JP5641178 B2 JP 5641178B2 JP 2009169162 A JP2009169162 A JP 2009169162A JP 2009169162 A JP2009169162 A JP 2009169162A JP 5641178 B2 JP5641178 B2 JP 5641178B2
Authority
JP
Japan
Prior art keywords
light
measurement
measured
distribution
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009169162A
Other languages
Japanese (ja)
Other versions
JP2011022082A (en
Inventor
ファン・シンユー
伊藤 文彦
文彦 伊藤
優介 古敷谷
優介 古敷谷
祖源 何
祖源 何
和夫 保立
和夫 保立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Original Assignee
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, University of Tokyo NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009169162A priority Critical patent/JP5641178B2/en
Publication of JP2011022082A publication Critical patent/JP2011022082A/en
Application granted granted Critical
Publication of JP5641178B2 publication Critical patent/JP5641178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、光回路などの被測定対象の複屈折率分布を計算し、さらに、得られた複屈折率分布から偏波モード分散の長手方向分布を計算する光リフレクトメトリ測定方法及びこの方法を実施するための光リフレクトメトリ測定装置に関する。   The present invention relates to an optical reflectometry measurement method for calculating a birefringence distribution of an object to be measured such as an optical circuit, and further calculating a longitudinal distribution of polarization mode dispersion from the obtained birefringence distribution, and this method. The present invention relates to an optical reflectometry measuring apparatus for implementation.

後方散乱光の偏波状態分布測定方法の一つとして、偏波光時間領域のリフレクトメトリ測定方法(P−OTDR:Polarization - Optical Time Domain Reflectometry)と光周波数領域のリフレクトメトリ測定方法(位相雑音補償OFDR法(PNC−OFDR:Phase Noise Compensation - Optical Frequency Domain Reflectometry))が知られている。(例えば非特許文献1及び非特許文献2を参照)。   As one of the methods for measuring the polarization state distribution of the backscattered light, the polarization measurement time domain reflectometry measurement method (P-OTDR: Polarization-Optical Time Domain Reflectometry) and the optical frequency domain reflectometry measurement method (phase noise compensation OFDR) The method (PNC-OFDR: Phase Noise Compensation-Optical Frequency Domain Reflectometry) is known. (For example, refer nonpatent literature 1 and nonpatent literature 2.).

P−OTDR法では、光パルスを被測定対象に入射し、被測定対象から反射される後方散乱光のストークスパラメータを測定することで、伝播方向に対する光後方散乱光の偏波状態を測定することができる。但し、既存のP−OTDR技術においては、空間分解能が1メートル以上となるため、1ps/√km以上の偏波モード分散(PMD:Polarization Mode Dispersion)を持つファイバに対して、この空間分解能は後方散乱光の分布を測定するには不十分である。それに対し、位相雑音補償OFDR法によれば、優れた空間分解能で偏波状態を測定することができるので、高い偏波モード分散を持つファイバに対しても有効である。   In the P-OTDR method, the polarization state of the light backscattered light with respect to the propagation direction is measured by measuring the Stokes parameter of the backscattered light that is incident on the object to be measured and reflected from the object to be measured. Can do. However, in the existing P-OTDR technology, since the spatial resolution is 1 meter or more, this spatial resolution is backward for a fiber having a polarization mode dispersion (PMD) of 1 ps / √km or more. It is insufficient to measure the distribution of scattered light. On the other hand, according to the phase noise compensation OFDR method, the polarization state can be measured with an excellent spatial resolution, which is also effective for a fiber having high polarization mode dispersion.

伝播方向に対する光後方散乱光の偏波状態がわかれば、偏波モード分散の分布を測定することができる。すなわち、被測定対象の任意セクションの群速度遅延差(DGD:Differential Group-velocity Delay)を測定できる(例えば非特許文献3を参照)。この方法は、測定光が出口から被測定対象のz点まで伝送し、z点での反射や散乱によって光受信器まで戻ってくる伝送路のミュラーマトリックスR(z) を、光リフレクトメトリ測定方法で測定した後方散乱光の偏波状態から求めることができる。ミュラーマトリックスR(z) を用いれば、複屈折率ベクトル[βR(z)](以下、説明において[ ]はベクトルを表すものとする)を計算することができる。被測定対象の複屈折率が線形であると仮定すれば、複屈折率ベクトル[βR(z)]を用いることで、被測定対象の任意セクションの群速度遅延差を計算し、複屈折率分布を計算することができる。 If the polarization state of the light backscattered light with respect to the propagation direction is known, the distribution of polarization mode dispersion can be measured. That is, the differential group-velocity delay (DGD) of an arbitrary section to be measured can be measured (see, for example, Non-Patent Document 3). This method measures the Mueller matrix R (z) of the transmission path in which the measurement light is transmitted from the exit to the point z to be measured and returned to the optical receiver by reflection or scattering at the point z, and the optical reflectometry measurement method. It can obtain | require from the polarization state of the backscattered light measured by (1). By using the Mueller matrix R (z), a birefringence vector [β R (z)] (hereinafter, [] represents a vector in the description) can be calculated. Assuming that the birefringence of the object to be measured is linear, the birefringence vector [β R (z)] is used to calculate the group velocity delay difference of an arbitrary section of the object to be measured. Distribution can be calculated.

しかしながら、実際には、入射光を被測定対象に入射して、戻ってきた光の偏波状態を測定し、偏波状態を一個だけ測定しただけでは、ミュラーマトリックスR(z) の計算ができない。もう一つ入射光の偏波状態と異なる偏波状態を持つ入射光を再び被測定対象に入射して、戻ってきた光の偏波状態を測定する必要がある。   In practice, however, the Mueller matrix R (z) cannot be calculated simply by measuring the polarization state of the returned light after the incident light is incident on the object to be measured and measuring only one polarization state. . Another incident light having a polarization state different from the polarization state of the incident light is again incident on the object to be measured, and the polarization state of the returned light needs to be measured.

但し、R(z) の計算においては、最初の測定と次の測定の間に被測定対象の偏波特性が変わらないことが前提となる。すなわち、外部環境の影響で偏波特性が変わってしまうと、R(z) の計算に予測できない誤差が生じてしまい、最終結果に信頼性が問われる。   However, in the calculation of R (z), it is assumed that the polarization characteristics of the measurement target do not change between the first measurement and the next measurement. That is, if the polarization characteristics change due to the influence of the external environment, an unpredictable error occurs in the calculation of R (z), and the reliability of the final result is questioned.

そこで、互いに異なる偏波状態を持つ二つの偏波光を同時に被測定対象に入射し、それぞれの偏波状態を同時に測定できれば上記のような前提が不要となり、信頼できる最終結果が得られるので、同時に二つ偏波状態を測定する技術が必要となってきた。   Therefore, if two polarized lights having different polarization states are simultaneously incident on the object to be measured and the respective polarization states can be measured at the same time, the above assumption is unnecessary and a reliable final result can be obtained. A technique for measuring two polarization states has become necessary.

「Polarization optical time domain reflectometry」, Alan J. Rogers, IEE Electronics Letters, 16 (13), pp. 489-490.“Polarization optical time domain reflectometry”, Alan J. Rogers, IEE Electronics Letters, 16 (13), pp. 489-490. 「位相雑音補償OFDR法による高PMDファイバ後方散乱光の偏波分布測定」, ファン・シンユー、古敷谷優介、伊藤文彦, 信学技報, 108(309), OCS2008-96, pp. 67-70, 2008年11月."Measurement of polarization distribution of backscattered light of high PMD fiber by phase noise compensation OFDR method", Fan Xinyu, Yusuke Furushikiya, Fumihiko Ito, IEICE Technical Report, 108 (309), OCS2008-96, pp. 67-70, November 2008. 「Distributed Polarization-Mode-Dispersion Measurement in Fiber Links by Polarization-Sensitive Reflectometric Techniques」, Andrea Galtarossa, et. al., 20 (23), IEEE Photonics Technology Letters, pp. 1944-1946.`` Distributed Polarization-Mode-Dispersion Measurement in Fiber Links by Polarization-Sensitive Reflectometric Techniques '', Andrea Galtarossa, et.al., 20 (23), IEEE Photonics Technology Letters, pp. 1944-1946.

以上述べたように、既存のP−OTDR法や位相雑音補償OFDR法などの光偏波状態分布測定技術において、偏波モード分散の分布を測定する際に、ミュラーマトリックスR(z) の計算が必要となるが、外部環境の影響で被測定対象の偏波特性が変わってしまうと、R(z) の計算に予測できない誤差が生じてしまい、最終結果の信頼性が問われるため、同時に二つ偏波状態を測定する技術が必要となってきた。   As described above, the Mueller matrix R (z) is calculated when measuring the distribution of the polarization mode dispersion in the optical polarization state distribution measurement technique such as the existing P-OTDR method and the phase noise compensation OFDR method. Although it is necessary, if the polarization characteristics of the measurement target change due to the external environment, an unpredictable error will occur in the calculation of R (z), and the reliability of the final result will be questioned. A technique for measuring two polarization states has become necessary.

本発明は、上記の事情を鑑みてなされたもので、同時に二つ偏波状態を測定することができ、これによってミュラーマトリックス計算による複屈折率分布について高い信頼性が得られ、さらに、この複屈折率分布から信頼性の高い偏波モード分散分布を測定することのできる光リフレクトメトリ測定方法及びこの方法を用いた光リフレクトメトリ測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can measure two polarization states at the same time, thereby obtaining high reliability with respect to the birefringence distribution by Mueller matrix calculation. An object of the present invention is to provide an optical reflectometry measurement method capable of measuring a polarization mode dispersion distribution with high reliability from a refractive index distribution, and an optical reflectometry measurement apparatus using this method.

上記目的を達成するために本発明に係る光リフレクトメトリ測定方法は以下のような態様の構成とする。
(1)光源の出力光を2分岐し、一方の分岐光を測定光として被測定対象に入射してその反射光を取り込み、この反射光と他方の分岐光による参照光とを合波してその干渉波を光検出することで干渉信号を測定する光リフレクトメトリ測定方法であって、前記測定光から互い異なる2つの偏波状態を持つ光を生成して同時に被測定対象に入射し、前記2つの偏波状態における干渉信号を同時に測定し、前記同時に測定された2つの干渉信号から被測定対象の伝達関数を計算して前記被測定対象の複屈折率分布を測定する態様の構成とする。
In order to achieve the above object, the optical reflectometry measurement method according to the present invention has the following configuration.
(1) The output light of the light source is branched into two, one of the branched light is incident on the measurement target as measurement light, the reflected light is captured, and the reflected light and the reference light from the other branched light are combined. An optical reflectometry measurement method for measuring an interference signal by optically detecting the interference wave, wherein light having two different polarization states is generated from the measurement light and simultaneously incident on an object to be measured, A configuration in which an interference signal in two polarization states is simultaneously measured, a transfer function of the measurement target is calculated from the two interference signals measured at the same time, and a birefringence distribution of the measurement target is measured. .

(2)(1)の光リフレクトメトリ測定方法において、さらに、前記複屈折率分布の測定結果を用いて偏波モード分散の長手方向分布を計算する態様の構成とする。
(3)(1)の光リフレクトメトリ測定方法において、前記互いに異なる偏波状態を持つ2つの入射光の光周波数をずらすことで、測定結果の偏波状態を周波数領域で区別する態様の構成とする。
(2) In the optical reflectometry measurement method of (1), the longitudinal distribution of polarization mode dispersion is calculated using the measurement result of the birefringence distribution.
(3) In the optical reflectometry measurement method according to (1), a configuration in which the polarization state of the measurement result is distinguished in the frequency domain by shifting the optical frequencies of the two incident lights having different polarization states. To do.

また、本発明に係る光リフレクトメトリ測定装置は以下のような態様の構成とする。
(4)光源の出力光を2分岐し、一方の分岐光を測定光として被測定対象に入射してその反射光を取り込み、この反射光と他方の分岐光による参照光とを合波してその干渉波を光検出することで干渉信号を測定する光リフレクトメトリ測定装置であって、前記測定光から互い異なる偏波状態を持つ2つの光を生成して同時に被測定対象に入射する測定光入射手段と、前記2つの偏波状態における干渉信号を同時に測定する干渉信号測定手段と、前記同時に測定された2つの干渉信号から被測定対象の伝達関数を計算して前記被測定対象の複屈折率分布を測定する複屈折率分布解析手段とを具備する態様の構成とする。
Moreover, the optical reflectometry measuring apparatus according to the present invention has the following configuration.
(4) The output light of the light source is branched into two, one of the branched lights is incident on the measurement target as measurement light, the reflected light is captured, and the reflected light and the reference light from the other branched light are combined. An optical reflectometry measuring apparatus that measures an interference signal by optically detecting the interference wave, and generates two lights having different polarization states from the measurement light and simultaneously enters the measurement object An incident means, an interference signal measuring means for simultaneously measuring an interference signal in the two polarization states, a birefringence of the object to be measured by calculating a transfer function of the object to be measured from the two interference signals measured simultaneously. It is set as the structure of the aspect which comprises the birefringence distribution analysis means which measures a rate distribution.

(5)(4)の光リフレクトメトリ測定装置において、さらに、前記複屈折率分布の測定結果を用いて偏波モード分散の長手方向分布を計算する偏波モード分散分布解析手段を備える態様の構成とする。
(6)(4)の光リフレクトメトリ測定装置において、前記測定光入射手段は、前記互いに異なる偏波状態を持つ2つの入射光の光周波数をずらし、前記複屈折率分布解析手段は、測定結果の偏波状態を周波数領域で区別する態様の構成とする。
(5) In the optical reflectometry measuring device according to (4), the configuration further includes a polarization mode dispersion distribution analyzing means for calculating the longitudinal distribution of the polarization mode dispersion using the measurement result of the birefringence distribution. And
(6) In the optical reflectometry measuring apparatus of (4), the measurement light incident means shifts the optical frequencies of the two incident lights having different polarization states, and the birefringence distribution analysis means The polarization state is distinguished in the frequency domain.

すなわち、本発明に係る光リフレクトメトリ測定方法および装置では、異なる偏波状態を持つ2つの光を同時に被測定対象に入射し、それぞれの入射光に対する後方散乱光の偏波状態を同時に測定し、その結果から測定対象の複屈折率分布を、さらに偏波モード分散分布を計算する。   That is, in the optical reflectometry measurement method and apparatus according to the present invention, two lights having different polarization states are simultaneously incident on a measurement target, and the polarization state of backscattered light with respect to each incident light is simultaneously measured, From the result, the birefringence distribution to be measured and the polarization mode dispersion distribution are calculated.

以上のように、本発明によれば、同時に二つ偏波状態を測定することができ、これによってミュラーマトリックス計算による複屈折率分布について高い信頼性が得られ、さらに、この複屈折率分布から信頼性の高い偏波モード分散分布を測定することのできる光リフレクトメトリ測定方法及びおよびこの方法を用いた光リフレクトメトリ測定装置を提供することができる。   As described above, according to the present invention, two polarization states can be measured simultaneously, thereby obtaining high reliability for the birefringence distribution by Mueller matrix calculation. It is possible to provide an optical reflectometry measuring method capable of measuring a highly reliable polarization mode dispersion distribution and an optical reflectometry measuring apparatus using the method.

本発明に係る光リフレクトメトリ測定装置の一実施形態の概略構成を示すブロック図。The block diagram which shows schematic structure of one Embodiment of the optical reflectometry measuring apparatus which concerns on this invention. 図1に示す実施形態の具体例としてPNC−OFDR法をベースとした場合の光リフレクトメトリ測定装置の構成を示すブロック図。The block diagram which shows the structure of the optical reflectometry measuring apparatus at the time of being based on the PNC-OFDR method as a specific example of embodiment shown in FIG. 図2に示す測定装置の周波数解析装置における解析内容を示すイメージ図。The image figure which shows the analysis content in the frequency analyzer of the measuring apparatus shown in FIG. 既存のP−OTDRやPNC−OFDR測定方法により偏波状態の分布を測定する光リフレクトメトリ測定装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the optical reflectometry measuring apparatus which measures distribution of a polarization state by the existing P-OTDR and PNC-OFDR measuring method. 既存のPNC−OFDR測定方法により偏波状態の分布を測定する光リフレクトメトリ測定装置の具体的な構成を示すブロック図。The block diagram which shows the specific structure of the optical reflectometry measuring apparatus which measures distribution of a polarization state by the existing PNC-OFDR measuring method.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明に係るPMD(偏波モード分散)分布測定方法を適用する光リフレクトメトリ測定装置の一実施形態の構成を示すブロック図である。図1において、光源11で発生された光S1は二偏波生成装置12に送られる。この二偏波生成装置12は入射光S1から2つの偏波成分を有する光を生成するもので、その出力光S2はサーキュレータ13によって被測定光回路14に導かれる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an embodiment of an optical reflectometry measuring apparatus to which a PMD (polarization mode dispersion) distribution measuring method according to the present invention is applied. In FIG. 1, the light S <b> 1 generated by the light source 11 is sent to the dual polarization generation device 12. The two-polarization generator 12 generates light having two polarization components from incident light S 1, and the output light S 2 is guided by the circulator 13 to the measured optical circuit 14.

この被測定光回路14の内部では、偏波調整された光S2が入射されると、後方散乱された信号光が発生する。この信号光は反射光S4となり、サーキュレータ13により光受信器15に導かれる。光受信器15は、サーキュレータ13からの信号光S5を受光してその信号成分を検波するもので、ここで得られた検波信号はサンプリング装置16にてサンプリングされて第1解析装置17に送られる。この第1解析装置17は、サンプリングされた信号成分から被測定光回路14に生じた二偏波の後方散乱光偏波状態を解析するもので、その解析結果は第2解析装置18に送られる。この第2解析装置18は、二偏波の後方散乱光偏波状態の解析結果からミュラーマトリックス計算を行って複屈折率分布を求め、当該複屈折率分布からPMD分布を計算測定するものである。   Inside the optical circuit to be measured 14, when the polarization-adjusted light S2 is incident, backscattered signal light is generated. This signal light becomes reflected light S4 and is guided to the optical receiver 15 by the circulator 13. The optical receiver 15 receives the signal light S5 from the circulator 13 and detects its signal component. The detection signal obtained here is sampled by the sampling device 16 and sent to the first analysis device 17. . The first analysis device 17 analyzes the polarization state of the two-polarized backscattered light generated in the measured optical circuit 14 from the sampled signal component, and the analysis result is sent to the second analysis device 18. . The second analyzer 18 calculates the birefringence distribution by performing Mueller matrix calculation from the analysis result of the polarization state of the two-polarized backscattered light, and calculates and measures the PMD distribution from the birefringence distribution. .

上記構成による光リフレクトメトリ測定装置の測定方法を説明する前に、既存の偏波状態分布測定技術について簡単に述べる。
図4は、例えば既存のP−OTDRやPNC−OFDR測定方法に基づく偏波状態分布を測定するための光リフレクトメトリ測定装置の構成を示すブロック図である。尚、図4において、図1と同一部分には同一符号を付して示す。
Before describing the measurement method of the optical reflectometry measuring apparatus having the above-described configuration, an existing polarization state distribution measurement technique will be briefly described.
FIG. 4 is a block diagram showing a configuration of an optical reflectometry measuring apparatus for measuring a polarization state distribution based on, for example, an existing P-OTDR or PNC-OFDR measurement method. In FIG. 4, the same parts as those in FIG.

図4において、光源11で発生された光S1は偏波コントローラ12′によって偏波調整を受ける。ここで偏波調整された光S2′はサーキュレータ13によって被測定光回路14に導かれる。この被測定光回路14の内部では偏波調整された光S2′が入射されると、後方散乱された信号光が発生する。この信号光は反射光S4′となり、サーキュレータ13により光受信器15に導かれる。光受信器15は、サーキュレータ13からの信号光S5′を受光してその信号成分を検波するもので、ここで得られた検波信号はサンプリング装置16にてサンプリングされて解析装置17′に送られる。この解析装置17′は、サンプリングされた信号成分から被測定光回路14に生じた後方散乱光偏波状態の長手方向分布を以下の計算処理によって解析する。   In FIG. 4, the light S1 generated by the light source 11 is subjected to polarization adjustment by the polarization controller 12 '. Here, the polarization-adjusted light S2 ′ is guided by the circulator 13 to the optical circuit 14 to be measured. In this measured optical circuit 14, when the polarization-adjusted light S2 'is incident, backscattered signal light is generated. This signal light becomes reflected light S 4 ′ and is guided to the optical receiver 15 by the circulator 13. The optical receiver 15 receives the signal light S5 'from the circulator 13 and detects its signal component. The detection signal obtained here is sampled by the sampling device 16 and sent to the analyzing device 17'. . This analysis device 17 'analyzes the longitudinal distribution of the backscattered light polarization state generated in the measured optical circuit 14 from the sampled signal component by the following calculation process.

光の偏波状態はストークスパラメータ(x,y,z)を使って表すことができる。被測定光回路14の長手方向での分布測定なので、偏波状態は距離の関数として表される。入力した偏波状態をI1(0) とすれば、測定した偏波状態U1(z) は次式(1)により表すことができる。
U1(z) = R(z)・I1(0) …(1)
上式から明らかなように、I1(0) とU1(z) が分かっても、ミュラーマトリックスR(z) は特定できない。ただし、I1(0) と違う偏波状態I2(0) を被測定対象に入力すれば、偏波状態U2(z) を測定できる。測定した偏波状態U2(z) は次式(2)により表すことができる。
U2(z) = R(z)・I2(0) …(2)
式(1)と式(2)の連立方程式によって、ミュラーマトリックスR(z) を特定できるので、このR(z) の計算値を用いて、次式(3)による複屈折率ベクトル[βR(z)]を計算することができる。
∂R(z)/∂z = [βR(z)]×R(z) …(3)
式(3)で求めた[βR(z)]を用いて、被測定対象の複屈折率が線形であることを仮定し、被測定対象の任意セクションz0からzまでの群速度遅延差を次式(4)によって計算することができる。
The polarization state of light can be expressed using Stokes parameters (x, y, z). Since it is a distribution measurement in the longitudinal direction of the optical circuit 14 to be measured, the polarization state is expressed as a function of distance. If the input polarization state is I 1 (0), the measured polarization state U 1 (z) can be expressed by the following equation (1).
U 1 (z) = R (z) ・ I 1 (0)… (1)
As is clear from the above equation, the Mueller matrix R (z) cannot be specified even if I 1 (0) and U 1 (z) are known. However, if a polarization state I 2 (0) different from I 1 (0) is input to the object to be measured, the polarization state U 2 (z) can be measured. The measured polarization state U 2 (z) can be expressed by the following equation (2).
U 2 (z) = R (z) ・ I 2 (0)… (2)
Since the Mueller matrix R (z) can be specified by the simultaneous equations of the equations (1) and (2), the birefringence vector [β R according to the following equation (3) is used by using the calculated value of R (z). (z)] can be calculated.
∂R (z) / ∂z = [β R (z)] × R (z) (3)
Using [β R (z)] obtained by equation (3), assuming that the birefringence of the object to be measured is linear, the group velocity delay difference from any section z 0 to z of the object to be measured Can be calculated by the following equation (4).

Figure 0005641178
以上の偏波状態分布測定方法において、入力した偏波状態I1(0) とI2(0) が同時ではなく前後であり、U1(z) とU2(z) を測定する間に外部環境の影響で被測定対象の偏波特性が変わると、ミュラーマトリックスR(z)の計算結果に誤差が生じてしまう。
Figure 0005641178
In the polarization state distribution measurement method described above, the input polarization states I 1 (0) and I 2 (0) are not simultaneous but before and after, and U 1 (z) and U 2 (z) are measured. If the polarization characteristics of the measurement object change due to the influence of the external environment, an error occurs in the calculation result of the Mueller matrix R (z).

本発明は、上記影響を無くすため測定法である。図1の構成によるPMD分布測定用の光リフレクトメトリ測定装置では、従来法の偏波コントローラ22の代わりに二偏波生成装置12にて、二つ異なる偏波状態を持つ第1偏波光I1(0) と第2偏波光I2(0) を作り出して合成出力する。ここで、後に合成される測定信号が区別できるように、両偏波光I1(0) ,I2(0) を区別する技術が必要となる。例えば周波数で区別する場合には、二偏波生成装置12において、I1(0) ,I2(0) の一方の出力端に周波数シフタ(例えば音響光学変調素子)を設けて、両者の周波数に差を持たせることで実現できる。 The present invention is a measurement method in order to eliminate the above influence. In the optical reflectometry measuring apparatus for PMD distribution measurement having the configuration shown in FIG. 1, the first polarized light I 1 having two different polarization states is used in the two-polarization generation apparatus 12 instead of the conventional polarization controller 22. (0) and second polarized light I 2 (0) are generated and combined and output. Here, a technique for distinguishing both polarized lights I 1 (0) and I 2 (0) is necessary so that measurement signals to be synthesized later can be distinguished. For example, when distinguishing by frequency, in the two-polarization generator 12, a frequency shifter (for example, an acoustooptic modulator) is provided at one of the output terminals of I 1 (0) and I 2 (0), and both frequencies This can be realized by making a difference in.

互いに異なる偏波状態を持つ第1及び第2偏波光I1(0),I2(0)は、サーキュレータ13を介して同時に被測定光回路14に入射される。そして、この被測定光回路14の内部では、第1及び第2偏波光I1(0),I2(0)それぞれについて後方散乱された信号光が発生する。その信号光は反射光S4となって出力され、サーキュレータ13により光受信器15に導かれ、光受信器15により検波される。 The first and second polarized lights I 1 (0) and I 2 (0) having different polarization states are simultaneously incident on the measured optical circuit 14 via the circulator 13. In the measured optical circuit 14, signal light back-scattered for each of the first and second polarized lights I 1 (0) and I 2 (0) is generated. The signal light is output as reflected light S 4, guided to the optical receiver 15 by the circulator 13, and detected by the optical receiver 15.

その検波出力に生じる信号はサンプリング装置16によりサンプリングされ、第1解析装置17にて二偏波の後方散乱光偏波状態の解析が行われる。具体的には、第1、第2偏波光I1(0) ,I2(0) 別に区別して、偏波状態U1(z) ,U2(z) を計算する。第2解析装置18では、式(3)と式(4)を用い、第1解析装置17で計算された偏波状態U1(z) ,U2(z) に基づいて、z0からzまでのDGD(群速度遅延差)を計算して複屈折率分布を求め、その計算結果から被測定光回路14の長手方向のPMD分布を測定結果として求める。 A signal generated in the detection output is sampled by the sampling device 16, and the first analyzing device 17 analyzes the polarization state of the two-polarized backscattered light. Specifically, the polarization states U 1 (z) and U 2 (z) are calculated separately for the first and second polarized lights I 1 (0) and I 2 (0). The second analysis device 18 uses the equations (3) and (4), and z 0 to z based on the polarization states U 1 (z) and U 2 (z) calculated by the first analysis device 17. DGD (group velocity delay difference) is calculated to obtain a birefringence distribution, and the PMD distribution in the longitudinal direction of the optical circuit 14 to be measured is obtained as a measurement result from the calculation result.

このようにすることで、二つの後方散乱光の偏波状態を同時に測定することができ、これによってミュラーマトリックス計算による複屈折率分布について高い信頼性が得られ、さらに、この複屈折率分布から信頼性の高い偏波モード分散分布を測定することができる。   By doing so, it is possible to simultaneously measure the polarization states of the two backscattered light, thereby obtaining high reliability for the birefringence distribution by the Mueller matrix calculation, and further from this birefringence distribution. A highly reliable polarization mode dispersion distribution can be measured.

(実施例)
図2は、本発明に係る実施例として、PNC−OFDR測定装置をベースとした光リフレクトメトリ測定装置の具体的な構成を示すブロック図である。
図2において、光周波数掃引された光源21からの出力光S11は光方向性結合器22Aにより2系統に分岐され、一方は参照光S12、他方は測定光S13として用いられる。参照光S12は、偏波コントローラ23Aによって、s偏波方向とp偏波方向の分岐比が1:1に調整され、光S18として光方向性結合器22Bで後述の光S17と合波される。
(Example)
FIG. 2 is a block diagram showing a specific configuration of an optical reflectometry measuring apparatus based on a PNC-OFDR measuring apparatus as an embodiment according to the present invention.
In FIG. 2, the output light S11 from the light source 21 swept by the optical frequency is branched into two systems by an optical directional coupler 22A, one of which is used as reference light S12 and the other is used as measurement light S13. The reference light S12 is adjusted by the polarization controller 23A so that the branching ratio between the s-polarization direction and the p-polarization direction is 1: 1, and is combined with the later-described light S17 by the optical directional coupler 22B as the light S18. .

一方、光方向性結合器22Aにより分岐された測定光S13は、光方向性結合器22Cによりさらに2系統に分岐される。一方の分岐光S20は偏波コントローラ23Bにより偏波の調整を受け、他方の分岐光S21は、周波数シフト装置30により他方の分岐光S20とは異なる周波数にシフトされた後、偏波コントローラ22Cにより偏波の調整を受ける。上記偏波コントローラ22B,22Cで偏波調整された光S22,S23は、光方向性結合器22Dにより合成され、これによって二つの偏波成分を持った測定光S14が得られる。この測定光S14はサーキュレータ24により被測定光回路25に導かれる。   On the other hand, the measurement light S13 branched by the optical directional coupler 22A is further branched into two systems by the optical directional coupler 22C. One branched light S20 is subjected to polarization adjustment by the polarization controller 23B, and the other branched light S21 is shifted to a frequency different from that of the other branched light S20 by the frequency shift device 30, and then is polarized by the polarization controller 22C. Receives polarization adjustment. The lights S22 and S23 whose polarizations have been adjusted by the polarization controllers 22B and 22C are combined by the optical directional coupler 22D, whereby the measurement light S14 having two polarization components is obtained. The measurement light S14 is guided by the circulator 24 to the measured optical circuit 25.

被測定光回路25では、光S13が入射されると、内部で後方散乱された信号光S16が発生する。この信号光S16はサーキュレータ24により取り出され、光S17として、光方向性結合器22Bにより偏波コントローラ23Aからの光S18と合波される。この合波光は、偏波ビームスプリッタ26によりs偏波方向とp偏波方向に分岐され、それぞれ光受信器27A,27Bにより検波される。各光受信器27A,27Bの検波出力に生じるs偏波の干渉ビート信号とp偏波方向の干渉ビート信号はサンプリング装置28によりサンプリングされる。そのサンプリングデータは周波数解析装置29にて解析されることにより、被測定光回路25内の各位置からの後方散乱光振幅分布及びs方向光位相とp方向光位相の差の分布が測定され、後方散乱光の偏波状態が完全に測定される。   In the measured optical circuit 25, when the light S13 is incident, signal light S16 back-scattered inside is generated. The signal light S16 is extracted by the circulator 24, and is combined with the light S18 from the polarization controller 23A by the optical directional coupler 22B as light S17. This combined light is branched in the s-polarization direction and the p-polarization direction by the polarization beam splitter 26 and detected by the optical receivers 27A and 27B, respectively. The sampling beater 28 samples the s-polarized interference beat signal and the p-polarized interference beat signal generated at the detection outputs of the optical receivers 27A and 27B. The sampling data is analyzed by the frequency analyzer 29 to measure the backscattered light amplitude distribution from each position in the measured optical circuit 25 and the distribution of the difference between the s direction optical phase and the p direction optical phase. The polarization state of the backscattered light is completely measured.

周波数解析装置29で被測定光回路25内の各位置からの後方散乱光振幅分布及びs方向光位相とp方向光位相の差の分布が測定されると、その測定結果はPMD分布測定解析装置31に送られ、PMD分布測定の解析に供される。
上記構成による光リフレクトメトリ測定装置の測定方法を説明する前に、既存のPNC−OFDR測定技術について簡単に述べる。
When the frequency analyzer 29 measures the backscattered light amplitude distribution from each position in the optical circuit 25 to be measured and the distribution of the difference between the s-direction optical phase and the p-direction optical phase, the measurement result is the PMD distribution measurement / analysis apparatus. 31 for analysis of PMD distribution measurement.
Before describing the measurement method of the optical reflectometry measuring apparatus having the above-described configuration, an existing PNC-OFDR measurement technique will be briefly described.

図5は、PNC−OFDR測定方法に基づいて偏波状態分布を測定するための光リフレクトメトリ測定装置の構成を示すブロック図である。尚、図5において、図2と同一部分には同一符号を付して示す。
図5において、図2の装置と異なる点は、測定光S13を分岐せずに直接、偏波コントローラ23Bに送り、ここで偏波調整された測定光S14′をサーキュレータ24により被測定光回路15に入射するようにしたこと、サンプリング装置28によりサンプリングし、そのサンプリングデータを周波数解析装置29′にて解析することにより、被測定光回路25内の各位置からの後方散乱光振幅分布及びs方向光位相とp方向光位相の差の分布を測定して後方散乱光の偏波状態を測定するようにしたことにある。
FIG. 5 is a block diagram showing a configuration of an optical reflectometry measuring apparatus for measuring the polarization state distribution based on the PNC-OFDR measurement method. In FIG. 5, the same parts as those in FIG.
5 is different from the apparatus of FIG. 2 in that the measurement light S13 is directly sent to the polarization controller 23B without branching, and the measurement light S14 ′ whose polarization is adjusted here is sent by the circulator 24 to the optical circuit 15 to be measured. , Sampling by the sampling device 28, and analyzing the sampling data by the frequency analyzing device 29 ′, so that the backscattered light amplitude distribution and the s direction from each position in the optical circuit 25 to be measured The distribution of the difference between the optical phase and the p-direction optical phase is measured to measure the polarization state of the backscattered light.

すなわち、図5に示す測定装置では、被測定光回路15の内部で生じた後方散乱信号光S16をサーキュレータ24により取り出し、光S17として、光方向性結合器22Bにより光S18と合波したのち、偏波ビームスプリッタ26によりs偏波方向とp偏波方向に分岐し、それぞれ光受信器27Aと光受信器27Bにより検波して、その検波出力に生じるs偏波の干渉ビート信号とp偏波方向の干渉ビート信号をサンプリング装置28によりサンプリングする。そして、そのサンプリングデータを周波数解析装置29′にて解析することにより、被測定光回路25内の各位置からの後方散乱光振幅分布及びs方向光位相とp方向光位相の差の分布を測定し、後方散乱光の偏波状態を完全に測定するようにしている。   That is, in the measuring apparatus shown in FIG. 5, the backscattered signal light S16 generated inside the optical circuit 15 to be measured is extracted by the circulator 24, and is combined with the light S18 by the optical directional coupler 22B as the light S17. The polarization beam splitter 26 branches the signal into the s-polarization direction and the p-polarization direction, and is detected by the optical receiver 27A and the optical receiver 27B, respectively. The interference beat signal in the direction is sampled by the sampling device 28. Then, by analyzing the sampling data by the frequency analyzer 29 ', the backscattered light amplitude distribution from each position in the optical circuit to be measured 25 and the distribution of the difference between the s-direction optical phase and the p-direction optical phase are measured. In addition, the polarization state of the backscattered light is completely measured.

しかしながら、PMD分布測定に必要となるミュラーマトリックスR(z)の計算には、まだ自由度が一つだけ足りないため、入射光S14の偏波状態を変更し、新しい偏波状態で後方散乱光の偏波状態を測定する必要がある。
図5に示す測定装置では、入射光S14の新しい偏波状態は、偏波コントローラ23Bで測定光S13の偏波状態を調整することによって実現可能であるが、PNC−OFDR測定に二回の測定が必要となり、最初の測定と次の測定の間に外部環境の影響で偏波状態が変わってしまう可能性があり、R(z)の計算に予測できない誤差が生じてしまい、最終結果の信頼性が問われることになる。
However, since there is still only one degree of freedom in the calculation of the Mueller matrix R (z) required for PMD distribution measurement, the polarization state of the incident light S14 is changed, and the backscattered light in the new polarization state. It is necessary to measure the polarization state.
In the measurement apparatus shown in FIG. 5, the new polarization state of the incident light S14 can be realized by adjusting the polarization state of the measurement light S13 with the polarization controller 23B. However, the measurement is performed twice for the PNC-OFDR measurement. The polarization state may change between the first measurement and the next measurement due to the influence of the external environment, resulting in an unpredictable error in the calculation of R (z) and the reliability of the final result. Sex will be asked.

そこで、二つ異なる偏波状態を持つ入射光を、同時に被測定対象に入射し、それぞれの偏波状態を同時に測定できれば、信頼できる最終結果が得られると考えられる。
図2に示す測定装置は、上記の点に着目し、PNC−OFDR測定における二つ偏波状態を同時測定できるようにして、光PMD分布を精度よく測定可能とするものである。
Therefore, it is considered that if the incident light having two different polarization states is simultaneously incident on the object to be measured and the respective polarization states can be measured simultaneously, a reliable final result can be obtained.
The measuring apparatus shown in FIG. 2 pays attention to the above points, and enables the two PM polarization states in the PNC-OFDR measurement to be simultaneously measured so that the optical PMD distribution can be accurately measured.

すなわち、第1の特徴とする点は、測定光S13は光方向性結合器22Cにより光S20とS21に分岐され、一方の分岐光S20は偏波コントローラ23Bにより偏波調整が施されて光S22となる。他方の分岐光S21は分岐光S20との区別をつけるため、周波数シフト装置30(例えば音響光学変調素子)によって周波数Fをずらす。ここで区別をつける理由は、後ほどのデータ処理段階で、周波数解析装置29にて、光S20による生成データなのか、光S21による生成データなのかを判断できるようにするためである。周波数(ΔF)をずらした光が偏波コントローラ23Cを通して偏波を調整し、光S23となる。ここで注意すべくこととして、光S22と光S23の偏波状態が同じでない必要がある。偏波状態を調整した光S22と光S23は光方向性結合器22Dによって合波され、光S14となる。   That is, the first characteristic point is that the measurement light S13 is branched into light S20 and S21 by the optical directional coupler 22C, and one of the branched light S20 is subjected to polarization adjustment by the polarization controller 23B, and the light S22. It becomes. In order to distinguish the other branched light S21 from the branched light S20, the frequency F is shifted by a frequency shift device 30 (for example, an acoustooptic modulator). The reason for making a distinction here is to enable the frequency analyzer 29 to determine whether the data is generated data by the light S20 or the generated data by the light S21 at a later data processing stage. The light whose frequency (ΔF) is shifted adjusts the polarization through the polarization controller 23C and becomes the light S23. It should be noted that the polarization states of the light S22 and the light S23 need not be the same. The light S22 and the light S23 whose polarization states are adjusted are combined by the optical directional coupler 22D to become the light S14.

また、第2の特徴とする点は、サンプリング装置28にてデータを採集し、周波数解析装置29にて高速フーリエ変換(FFT)を行い、横軸を周波数、縦軸を振幅項または位相項とした場合の関係についてデータ処理する。図3にその解析したデータのイメージを示す。   The second feature is that the sampling device 28 collects data, the frequency analysis device 29 performs fast Fourier transform (FFT), the horizontal axis is frequency, and the vertical axis is amplitude term or phase term. Data processing is performed for the relationship when the FIG. 3 shows an image of the analyzed data.

フーリエ変換したデータ(振幅項と位相項)は、その周波数が二つのゾーンの中にある。すなわち、光S20によって生成した信号において、フーリエ変換したデータが左のゾーンとなり、-fからf(fは被測定対象による最大なビート周波数)までの周波数を持つ。ここでそのフーリエ変換されたデータをD1と呼ぶ。一方、光S21によって生成したデータが右のゾーンとなり、ΔF−fからΔF+fまでの周波数を持つ。ここで、データD2と呼ぶ。   The frequency of the Fourier transformed data (amplitude term and phase term) is in two zones. That is, in the signal generated by the light S20, the Fourier-transformed data becomes the left zone, and has a frequency from −f to f (f is the maximum beat frequency depending on the object to be measured). Here, the Fourier-transformed data is called D1. On the other hand, the data generated by the light S21 is the right zone and has a frequency from ΔF−f to ΔF + f. Here, it is called data D2.

このデータD2の周波数はデータD1の周波数より右にΔFだけずらしている。この周波数ΔFは周波数シフト装置30によってずらしたものである。周波数ΔFの設計に関して注意すべきものは、二つゾーンが重ならないこと。つまり、ΔF−f>fにしなければならない。   The frequency of the data D2 is shifted to the right by ΔF from the frequency of the data D1. This frequency ΔF is shifted by the frequency shift device 30. What should be noted about the design of the frequency ΔF is that the two zones do not overlap. That is, ΔF−f> f must be satisfied.

図3において、左のゾーン(データD1)は振幅分布A1(z)と位相分布P1(z)のデータとなり、右のゾーン(データD2)は振幅分布A2(z)と位相分布P2(z)のデータとなる。データD2を捨てることで、振幅分布A1(z)と位相分布P1(z)が取り出される。ここで、光S20の入射による被測定光回路25内の各位置からの後方散乱光振幅分布及びs方向光位相とp方向光位相の差の分布が測定され、光S20の入射による後方散乱光の偏波状態U1(z)が完全に測定される。 In FIG. 3, the left zone (data D1) is amplitude distribution A 1 (z) and phase distribution P 1 (z) data, and the right zone (data D2) is amplitude distribution A 2 (z) and phase distribution P. 2 (z) data. By discarding the data D2, the amplitude distribution A 1 (z) and the phase distribution P 1 (z) are extracted. Here, the backscattered light amplitude distribution from each position in the measured optical circuit 25 due to the incidence of the light S20 and the distribution of the difference between the s-direction light phase and the p-direction light phase are measured, and the backscattered light due to the incidence of the light S20. The polarization state U 1 (z) of is completely measured.

データD1を捨てて、横軸に周波数Fをシフトすることで、振幅分布A2(z)と位相分布P2(z)が取り出される。ここで、光S21の入射による被測定光回路25内の各位置からの後方散乱光振幅分布及びs方向光位相とp方向光位相の差の分布が測定され、光S21の入射による後方散乱光の偏波状態U2(z)が完全に測定される。 By discarding the data D1 and shifting the frequency F on the horizontal axis, the amplitude distribution A 2 (z) and the phase distribution P 2 (z) are extracted. Here, the backscattered light amplitude distribution from each position in the measured optical circuit 25 by the incidence of the light S21 and the distribution of the difference between the s-direction light phase and the p-direction light phase are measured, and the backscattered light by the incidence of the light S21. The polarization state U 2 (z) of is completely measured.

入力偏波状態I1(0)及びI2(0)と偏波状態U1(z)及びU2(z)を用いて、式(1)と式(2)の連立によって、R(z)を計算し、計算したR(z)を用い、式(3)によって複屈折率ベクトル[βR(z)]を計算し、求めた[βR(z)]を用いて、被測定対象の複屈折率が線形であることを仮定し、被測定対象の任意セクションz0からzまでのDGDを式(4)によって計算する。 By using the input polarization states I 1 (0) and I 2 (0) and the polarization states U 1 (z) and U 2 (z), R (z ), Calculate the birefringence vector [β R (z)] using equation (3) using the calculated R (z), and use the obtained [β R (z)] Assuming that the birefringence of is linear, the DGD from an arbitrary section z 0 to z of the object to be measured is calculated by equation (4).

このようにすることで、後方散乱光の偏波状態を同時に測定することが可能になり、高い信頼性を持つPMD分布測定結果を得ることが可能になる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。
By doing in this way, it becomes possible to measure the polarization state of backscattered light simultaneously, and to obtain a PMD distribution measurement result with high reliability.
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some configurations may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

11…光源、12…二偏波生成装置、12′…偏波コントローラ、13…サーキュレータ、14…被測定光回路、15…光受信器、16…サンプリング装置、17…第1解析装置(二偏波の後方散乱光偏波状態を解析)、17′…解析装置(後方散乱光偏波状態の長手方向分布を解析)、18…第2解析装置(PMD分布を計算測定)、21…光源、22A,22B,22C,22D…光方向性結合器、23A,23B…偏波コントローラ、24…サーキュレータ、25…被測定光回路、26…偏波ビームスプリッタ、27A,27B…光受信器、28…サンプリング装置、29,29′…周波数解析装置、30…周波数シフト装置、31…PMD分布測定解析装置。    DESCRIPTION OF SYMBOLS 11 ... Light source, 12 ... Two polarized wave production | generation apparatus, 12 '... Polarization controller, 13 ... Circulator, 14 ... Optical circuit to be measured, 15 ... Optical receiver, 16 ... Sampling apparatus, 17 ... 1st analyzer (bipolar) Analyzing the backscattered light polarization state of the wave), 17 '... analyzing device (analyzing the longitudinal distribution of the backscattered light polarization state), 18 ... second analyzing device (calculating and measuring the PMD distribution), 21 ... light source, 22A, 22B, 22C, 22D ... Optical directional coupler, 23A, 23B ... Polarization controller, 24 ... Circulator, 25 ... Optical circuit to be measured, 26 ... Polarization beam splitter, 27A, 27B ... Optical receiver, 28 ... Sampling device, 29, 29 '... frequency analysis device, 30 ... frequency shift device, 31 ... PMD distribution measurement analysis device.

Claims (2)

光源の出力光を2分岐し、一方の分岐光を測定光として被測定対象に入射してその反射光を取り込み、この反射光と他方の分岐光による参照光とを合波してその干渉波を光検出することで干渉信号を測定する光リフレクトメトリ測定方法であって、
前記測定光から互い異なる偏波状態を持つ互いに異なる光周波数の2つの光を生成して同時に被測定対象に入射し、
前記互いに異なる偏波状態における2つの干渉信号を周波数領域で区別しつつ同時に測定し、
前記同時に測定された2つの干渉信号から被測定対象の伝達関数を計算して前記被測定対象の複屈折率分布を測定し、
前記複屈折率分布の測定結果を用いて偏波モード分散の長手方向分布を計算し、
被測定対象に入射する前記2つの光の光周波数の差ΔFは、前記2つの干渉信号における被測定対象による最大ビート周波数をfとして、ΔF>2×fとなるように設定することを特徴とする光リフレクトメトリ測定方法。
The output light of the light source is branched into two, one of the branched lights is incident on the object to be measured as measurement light, the reflected light is taken in, the reflected light and the reference light from the other branched light are combined, and the interference wave An optical reflectometry measurement method for measuring an interference signal by detecting light,
Generate two lights of different optical frequencies having different polarization states from the measurement light and simultaneously enter the object to be measured,
Measuring two interference signals in different polarization states at the same time while distinguishing them in the frequency domain,
Calculating a transfer function of the object to be measured from the two interference signals measured simultaneously, and measuring a birefringence distribution of the object to be measured ;
Calculate the longitudinal distribution of polarization mode dispersion using the measurement result of the birefringence distribution,
The difference ΔF between the optical frequencies of the two lights incident on the measurement target is set such that ΔF> 2 × f, where f is the maximum beat frequency by the measurement target in the two interference signals. To measure optical reflectometry.
光源の出力光を2分岐し、一方の分岐光を測定光として被測定対象に入射してその反射光を取り込み、この反射光と他方の分岐光による参照光とを合波してその干渉波を光検出することで干渉信号を測定する光リフレクトメトリ測定装置であって、
前記測定光から互い異なる偏波状態を持つ互いに異なる光周波数の2つの光を生成して同時に被測定対象に入射する測定光入射手段と、
前記互いに異なる偏波状態における2つの干渉信号を周波数領域で区別しつつ同時に測定する干渉信号測定手段と、
前記同時に測定された2つの干渉信号から被測定対象の伝達関数を計算して前記被測定対象の複屈折率分布を測定する複屈折率分布解析手段と
前記複屈折率分布の測定結果を用いて偏波モード分散の長手方向分布を計算する偏波モード分散分布解析手段と
を具備し、
被測定対象に入射する前記2つの光の光周波数の差ΔFは、前記2つの干渉信号における被測定対象による最大ビート周波数をfとして、ΔF>2×fとなるように設定されたことを特徴とする光リフレクトメトリ測定装置。
The output light of the light source is branched into two, one of the branched lights is incident on the object to be measured as measurement light, the reflected light is taken in, the reflected light and the reference light from the other branched light are combined, and the interference wave An optical reflectometry measuring device that measures an interference signal by detecting light,
Measurement light incident means for generating two lights of different optical frequencies having different polarization states from the measurement light and simultaneously entering the light to be measured;
Interference signal measuring means for simultaneously measuring two interference signals in the different polarization states while distinguishing them in the frequency domain;
Birefringence distribution analysis means for calculating a birefringence distribution of the measurement object by calculating a transfer function of the measurement object from the two interference signals measured simultaneously ;
Polarization mode dispersion distribution analyzing means for calculating a longitudinal distribution of polarization mode dispersion using the measurement result of the birefringence distribution , and
The difference ΔF between the optical frequencies of the two lights incident on the measurement target is set such that ΔF> 2 × f, where f is the maximum beat frequency by the measurement target in the two interference signals. Optical reflectometry measuring device.
JP2009169162A 2009-07-17 2009-07-17 Optical reflectometry measuring method and optical reflectometry measuring apparatus Expired - Fee Related JP5641178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169162A JP5641178B2 (en) 2009-07-17 2009-07-17 Optical reflectometry measuring method and optical reflectometry measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169162A JP5641178B2 (en) 2009-07-17 2009-07-17 Optical reflectometry measuring method and optical reflectometry measuring apparatus

Publications (2)

Publication Number Publication Date
JP2011022082A JP2011022082A (en) 2011-02-03
JP5641178B2 true JP5641178B2 (en) 2014-12-17

Family

ID=43632285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169162A Expired - Fee Related JP5641178B2 (en) 2009-07-17 2009-07-17 Optical reflectometry measuring method and optical reflectometry measuring apparatus

Country Status (1)

Country Link
JP (1) JP5641178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421720A (en) * 2017-05-25 2017-12-01 青岛理工大学 Optical testing device and method for underwater back scattering transfer function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256225B2 (en) * 2010-01-29 2013-08-07 日本電信電話株式会社 Optical line measuring device and optical line measuring method
CN107328429B (en) * 2017-08-09 2023-05-09 武汉昊衡科技有限公司 Device and method for improving proximity sensing stability in optical frequency domain reflection technology
CN113804299B (en) * 2021-07-20 2024-07-19 广东工业大学 Optical fiber device distributed bidirectional polarization measurement device based on optical frequency domain interference

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850712B1 (en) * 2000-05-31 2005-02-01 Lucent Technologies Inc. Optical fiber transmission system with polarization multiplexing to reduce stimulated brillouin scattering
JP4678587B2 (en) * 2005-06-03 2011-04-27 横河電機株式会社 Optical property measuring device
JP4703303B2 (en) * 2005-07-22 2011-06-15 日本電信電話株式会社 Optical transmitter and frequency shift type high density optical frequency multiplex transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421720A (en) * 2017-05-25 2017-12-01 青岛理工大学 Optical testing device and method for underwater back scattering transfer function
CN107421720B (en) * 2017-05-25 2019-08-27 青岛理工大学 Optical testing device and method for underwater back scattering transfer function

Also Published As

Publication number Publication date
JP2011022082A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
CN106500970B (en) Optical fiber characteristic measuring device
CN110383009B (en) Optical sensing system and method for detecting stress in optical sensing optical fiber
JP6777483B2 (en) Optical fiber test equipment and optical fiber test method
EP3861294B1 (en) Distributed sensing apparatus
CN107515017B (en) Optical frequency domain reflectometer with optical frequency shift modulation
JP5641178B2 (en) Optical reflectometry measuring method and optical reflectometry measuring apparatus
JP2005221500A (en) Heterodyne optical network analysis using signal modulation
JP5159255B2 (en) Optical frequency domain reflection measurement method and apparatus
JP2008064503A (en) Method and device for optical reflectometry
JP5645011B2 (en) Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer
JP5827140B2 (en) Laser light characteristic measuring method and measuring apparatus
JP5613627B2 (en) Laser optical coherence function measuring method and measuring apparatus
US20060215169A1 (en) Delaying interferometer
JP4990853B2 (en) Optical polarization state distribution measuring method and apparatus
JP6751371B2 (en) Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus
JP5470320B2 (en) Laser light coherence length measuring method and measuring apparatus
JP5927079B2 (en) Laser light characteristic measuring method and measuring apparatus
JP6347552B2 (en) Apparatus and method for measuring impulse response of optical device
JP2005283466A (en) Vibration measuring apparatus
WO2024142073A1 (en) System and method for optical range doppler detection
WO2024142059A1 (en) System and method for optical range and velocity detection
JP2024093535A (en) Contactless distance measuring device and method
CN115867778A (en) Optical frequency domain reflectometry apparatus and method
JP2011223149A (en) Communication method using entangled state
JP2010048773A (en) Polarization mode dispersion evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5641178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees