[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5640395B2 - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP5640395B2
JP5640395B2 JP2010038354A JP2010038354A JP5640395B2 JP 5640395 B2 JP5640395 B2 JP 5640395B2 JP 2010038354 A JP2010038354 A JP 2010038354A JP 2010038354 A JP2010038354 A JP 2010038354A JP 5640395 B2 JP5640395 B2 JP 5640395B2
Authority
JP
Japan
Prior art keywords
combustion gas
cylindrical structure
flow path
cylindrical
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010038354A
Other languages
Japanese (ja)
Other versions
JP2011173751A (en
Inventor
前西 晃
晃 前西
向井 裕二
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010038354A priority Critical patent/JP5640395B2/en
Publication of JP2011173751A publication Critical patent/JP2011173751A/en
Application granted granted Critical
Publication of JP5640395B2 publication Critical patent/JP5640395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、都市ガスやLPG等の炭化水素系燃料を原料ガスとして、高濃度の水素が含まれた生成ガスをつくる水素発生装置に関するものである。   The present invention relates to a hydrogen generator that produces a product gas containing a high concentration of hydrogen using a hydrocarbon-based fuel such as city gas or LPG as a raw material gas.

燃料電池発電装置は、高濃度の水素を含む生成ガスをつくる水素発生装置と、水素発生装置でつくられた水素を利用して発電する燃料電池とを主たる要素として構成されている。   The fuel cell power generation device is mainly configured by a hydrogen generation device that generates a product gas containing high-concentration hydrogen and a fuel cell that generates power using hydrogen generated by the hydrogen generation device.

水素発生装置は、都市ガスやLPG等の炭化水素系燃料を原料ガスとし、原料ガスと水とを改質触媒を用いて水蒸気改質反応させることによって、水素やメタン、一酸化炭素(10〜15%程度)、二酸化炭素や水蒸気を成分とする改質ガスを生成する改質部と、燃料電池に対する被毒作用のある一酸化炭素を改質ガス中から除去するCO除去部とを備えて形成されている。ここで、燃料電池として固体高分子型燃料電池を用いる場合、改質ガス中に含まれる一酸化炭素濃度を10ppm程度にまで除去する必要があるため、CO除去部は、変成触媒を用いたシフト反応により一酸化炭素を0.5%程度まで除去する変成部と、選択酸化触媒を用いて酸素と混合することで選択酸化反応により一酸化炭素を酸化させて一酸化炭素濃度を10ppm以下程度にまで低減する選択酸化部の、2段階の構成部で形成されるのが一般的である。   The hydrogen generator uses a hydrocarbon-based fuel such as city gas or LPG as a raw material gas, and performs a steam reforming reaction between the raw material gas and water using a reforming catalyst, thereby producing hydrogen, methane, carbon monoxide (10 to 10). About 15%), a reforming section that generates reformed gas containing carbon dioxide and water vapor as a component, and a CO removal section that removes carbon monoxide having a poisoning effect on the fuel cell from the reformed gas. Is formed. Here, when a polymer electrolyte fuel cell is used as the fuel cell, it is necessary to remove the carbon monoxide concentration contained in the reformed gas to about 10 ppm. Therefore, the CO removal unit uses a shift catalyst to shift. The carbon monoxide concentration is reduced to about 10 ppm or less by oxidizing the carbon monoxide by a selective oxidation reaction by mixing with oxygen using a selective oxidation catalyst by removing the carbon monoxide to about 0.5% by the reaction. In general, it is formed of a two-stage constituent part of the selective oxidation part that reduces to a minimum.

水素発生装置として、小型化、高効率化、高耐久性、運転の安定性向上、低コスト化などの観点から種々の装置が従来から提案されているが、小型で高効率な水素発生装置に関しては、改質部やCO除去部を一体化してその内部に加熱用のバーナを配置し、装置内の熱のバランスを最適化することで熱ロスを最低限に抑え、実現している。   Various devices have been proposed as hydrogen generators from the viewpoints of miniaturization, high efficiency, high durability, improved operational stability, low cost, etc. Is realized by minimizing heat loss by integrating a reforming section and a CO removal section and arranging a heating burner therein to optimize the heat balance in the apparatus.

小型で高効率な水素発生装置を実現するためには、内部に備えた加熱用のバーナからの熱を如何に有効に触媒に伝え、触媒全体を良好な触媒反応が行える温度状態とするかがポイントとなる。特に、600℃〜700℃の高温状態とすることで水蒸気改質反応させる改質部では、高温状態であるため、改質触媒への伝熱に無駄が生じたら水素発生装置外への放熱につながり改質効率の低下を引き起こしてしまう。ここで、改質効率とは、必要な水素量に対してその水素をつくるために必要とする原料ガス量の割合のことであり、必要とする原料ガス量を如何に少なくするか、つまりバーナでの加熱量を如何に少なくして熱バランスさせるかが改質効率の向上につながる。バーナでの加熱量を少なくするためには、バーナで生じた高温の燃焼ガスから改質触媒への伝熱を促進して伝熱部を小さくし、また、触媒にむらがないように熱を伝えて触媒全体を触媒性能が良好になるような温度とすることで触媒量を少なくし、装置の大きさを小さくすることが必要となる。燃焼ガスから触媒への伝熱を促進する一つの手段として、燃焼ガス流路の流路幅を狭くして燃焼ガス流速を速くし、燃焼ガスから改質触媒への熱伝達係数を大きくする方法がある。しかし、流路幅を狭くすると、燃焼ガス流路の内周面や外周面を構成している2つの円筒状構造体の位置関係に径方向のずれが生じた時、少しのずれでも狭い流路幅に対して大きな割合となり、周方向の流路幅のばらつきが大きくなる。流路幅のばらつきが大きいと、燃焼ガスに流速が速いところと遅いところが生じ、燃焼ガスから改質触媒への伝熱量に差が生じてしまう。伝熱量に差が生じると改質触媒が高温化する箇所と、あまり温度が上がらない箇所が生じる。改質触媒の反応性は改質触媒の温度に対して線形ではなく、温度が高くなるほど反応性が向上する割合は小さくなる。つまり、改質触媒に温度むらが生じ高温部ができると、その箇所では伝えた熱量の割には反応性が向上されずに熱が無駄に使用されてしまうことになり、一定の水素量を生成しようとするとバーナでの加熱量が多く必要となり改
質効率が悪くなってしまう。また、触媒は高温化すると触媒上に分散している触媒作用する貴金属などの触媒種がシンタリングにより凝集して分散性が悪くなり、触媒作用の悪化により触媒の反応性が悪くなる。したがって、触媒の耐久性に影響を及ぼす可能性がでてくる。さらに、触媒が高温化して周方向に温度むらがあるということは、燃焼ガスと触媒層の間の隔壁を構成している円筒状構造体も部分的に高温化し、周方向に温度のむらが生じてしまう。円筒状構造体の周方向に温度むらが生じると、その温度差により構造体に応力が生じる。特に高温部では構造体を形成している材料の許容応力値が低くなっているため、応力がかかった場合、構造体の耐久性に影響を与える可能性が生じてしまう。
In order to realize a small and highly efficient hydrogen generator, how to effectively transfer the heat from the internal heating burner to the catalyst and bring the whole catalyst to a temperature state where a good catalytic reaction can be performed. It becomes a point. In particular, the reforming section that performs the steam reforming reaction by setting the temperature to 600 ° C. to 700 ° C. is in a high temperature state, so if heat is transferred to the reforming catalyst, heat is released outside the hydrogen generator. This leads to a reduction in reforming efficiency. Here, the reforming efficiency is the ratio of the amount of raw material gas required for producing hydrogen to the amount of necessary hydrogen. How much the amount of raw material gas required is reduced, that is, a burner. How to reduce the amount of heating in the steel and balance the heat leads to improvement of the reforming efficiency. In order to reduce the amount of heating in the burner, heat transfer from the high-temperature combustion gas generated in the burner to the reforming catalyst is promoted to reduce the heat transfer section, and heat is applied so that the catalyst is not uneven. It is necessary to reduce the amount of the catalyst and reduce the size of the apparatus by setting the temperature of the entire catalyst so that the catalyst performance is good. As a means of promoting heat transfer from the combustion gas to the catalyst, a method of increasing the heat transfer coefficient from the combustion gas to the reforming catalyst by narrowing the width of the combustion gas passage to increase the flow speed of the combustion gas There is. However, when the flow path width is narrowed, when a radial shift occurs in the positional relationship between the two cylindrical structures constituting the inner and outer peripheral surfaces of the combustion gas flow path, even a slight shift causes a narrow flow. It becomes a big ratio with respect to a path width, and the dispersion | variation in the flow path width of the circumferential direction becomes large. When the variation in the flow path width is large, the combustion gas has a fast flow rate and a slow flow rate, resulting in a difference in heat transfer amount from the combustion gas to the reforming catalyst. If there is a difference in the amount of heat transfer, there will be a part where the reforming catalyst is heated to a high temperature and a part where the temperature is not so high. The reactivity of the reforming catalyst is not linear with respect to the temperature of the reforming catalyst. The higher the temperature, the smaller the rate at which the reactivity improves. In other words, if the temperature of the reforming catalyst becomes uneven and a high-temperature part is formed, the heat is wasted without being improved in reactivity for the amount of heat transferred, and a certain amount of hydrogen is reduced. If it is to be produced, a large amount of heating in the burner is required, and the reforming efficiency is deteriorated. Further, when the temperature of the catalyst is increased, catalyst species such as a catalytic noble metal dispersed on the catalyst are aggregated by sintering and the dispersibility is deteriorated, and the reactivity of the catalyst is deteriorated due to the deterioration of the catalytic action. Therefore, there is a possibility of affecting the durability of the catalyst. Furthermore, the temperature of the catalyst is increased and the temperature is uneven in the circumferential direction. This means that the cylindrical structure that forms the partition wall between the combustion gas and the catalyst layer is also partially heated, causing uneven temperature in the circumferential direction. End up. When temperature unevenness occurs in the circumferential direction of the cylindrical structure, stress is generated in the structure due to the temperature difference. In particular, since the allowable stress value of the material forming the structure is low in the high-temperature portion, if stress is applied, the durability of the structure may be affected.

上記課題に対し従来の構成では、例えば、特許文献1に示される提案がなされていた。   In the conventional configuration for the above problem, for example, a proposal shown in Patent Document 1 has been made.

図7は、特許文献1に記載された従来の水素発生装置を示すものである。図7に示すように、筒状壁部材の表面に凸状の突起部を複数形成し、突起部の先端を外側に位置するもうひとつの筒状壁部材に当接させることで突起部の高さによって均一な燃焼ガス流路幅を形成し、燃焼ガスから触媒への伝熱を均一化していた。   FIG. 7 shows a conventional hydrogen generator described in Patent Document 1. In FIG. As shown in FIG. 7, a plurality of convex projections are formed on the surface of the cylindrical wall member, and the tip of the projection is brought into contact with another cylindrical wall member located on the outer side to increase the height of the projection. Accordingly, a uniform combustion gas flow path width is formed, and heat transfer from the combustion gas to the catalyst is made uniform.

特許第4068111号公報Japanese Patent No. 4068111

しかしながら、前記従来の構成では、複数の突起部先端をもうひとつの筒状壁部材に当接させるように製造しようとすると部品精度が必要となり、また製造時の組み立て性にも困難が予想され、製造コストが高くなる可能性があった。   However, in the conventional configuration, when trying to make the tip of the plurality of protrusions abut against another cylindrical wall member, parts accuracy is required, and difficulty in assembling during production is expected. Manufacturing costs could be high.

本発明は上記の点に鑑みてなされたものであり、製造性や製造時のコストも考慮した構成において、水素発生装置における燃焼ガスから改質触媒への伝熱の促進と均一化をはかることで、小型で高効率な水素発生装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and promotes and equalizes heat transfer from the combustion gas to the reforming catalyst in the hydrogen generator in a configuration that also takes manufacturability and manufacturing costs into consideration. Thus, an object of the present invention is to provide a small and highly efficient hydrogen generator.

上記課題を解決するため、本発明に係る水素発生装置は、それぞれ径が異なり中心軸が重なるように配置された多重の円筒状構造体と円筒状構造体を加熱するバーナを有し、多重の円筒状構造体のうち最も内側に位置する第一の円筒状構造体と第一の円筒状構造体の外側に位置する第二の円筒状構造体との間にバーナからの燃焼ガスが流れる燃焼ガス流路を形成し、第二の円筒状構造体と第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水蒸気と原料ガスとの混合ガスの供給により水蒸気改質反応を行い水素を含む改質ガスを生成する改質触媒層を備え、燃焼ガス流路を流れる燃焼ガスの流れ方向と、
改質触媒層を流れる混合ガスと改質ガスとの流れる方向とが対向する円筒型の水素発生装置であって、燃焼ガス流路の間隔を維持するための突起またはスペーサを、燃焼ガス流路を流れる燃焼ガスの流れの上流部と下流部とに、複数、第一の円筒状構造体の外周面または第二の円筒状構造体の内周面に備え、複数の突起またはスペーサの数が上流部は下流部より多い水素発生装置である。
In order to solve the above problems, a hydrogen generator according to the present invention has multiple cylindrical structures each having a different diameter and arranged so that the central axes overlap with each other, and a burner for heating the cylindrical structures. Combustion in which combustion gas flows from a burner between a first cylindrical structure located on the innermost side of the cylindrical structure and a second cylindrical structure located on the outer side of the first cylindrical structure By forming a gas flow path and supplying a mixed gas of water vapor and source gas between the second cylindrical structure and the third cylindrical structure located outside the second cylindrical structure. A reforming catalyst layer that generates a reformed gas containing hydrogen by performing a steam reforming reaction, and a flow direction of the combustion gas flowing through the combustion gas flow path;
A cylindrical hydrogen generator in which the mixed gas flowing through the reforming catalyst layer and the flow direction of the reformed gas face each other, and a protrusion or a spacer for maintaining the interval between the combustion gas channels is provided as a combustion gas channel. A plurality of protrusions or spacers are provided on the outer peripheral surface of the first cylindrical structure or the inner peripheral surface of the second cylindrical structure at the upstream and downstream portions of the flow of the combustion gas flowing through The upstream part is more hydrogen generator than the downstream part.

具体的には、第一の円筒状構造体や第二の円筒状構造体の単位面積あたりの突起またはスペーサの数や、第一の円筒状構造体や第二の円筒状構造体の周方向の突起またはスペーサの数や、突起またはスペーサを第一の円筒状構造体と第二の円筒状構造体の中心軸に平行に燃焼ガス流路の一端から燃焼ガス流路の他端まで見た場合に見える突起またはスペーサの数が、燃焼ガス流路を流れる燃焼ガスの流れの上流部は下流部より多いものである。   Specifically, the number of protrusions or spacers per unit area of the first cylindrical structure or the second cylindrical structure, or the circumferential direction of the first cylindrical structure or the second cylindrical structure The number of protrusions or spacers and the protrusions or spacers were viewed from one end of the combustion gas flow path to the other end of the combustion gas flow path in parallel to the central axes of the first cylindrical structure and the second cylindrical structure. The number of protrusions or spacers visible in the case is larger in the upstream part of the flow of the combustion gas flowing in the combustion gas flow path than in the downstream part.

これにより、高温の燃焼ガスが流れる燃焼ガス流路の上流部では、燃焼ガス流路幅を周方向にできるだけ均一に構成することが可能となり、燃焼ガスから改質触媒層への伝熱の促進と均一化を実現することができる。   As a result, in the upstream portion of the combustion gas passage through which high-temperature combustion gas flows, the combustion gas passage width can be configured as uniformly as possible in the circumferential direction, and heat transfer from the combustion gas to the reforming catalyst layer is promoted. And uniformization can be realized.

また、それぞれ径が異なり中心軸が重なるように配置された多重の円筒状構造体と円筒状構造体を加熱するバーナを有し、多重の円筒状構造体のうち最も内側に位置する第一の円筒状構造体と第一の円筒状構造体の外側に位置する第二の円筒状構造体との間にバーナからの燃焼ガスが流れる燃焼ガス流路を形成し、第二の円筒状構造体と第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水蒸気と原料ガスとの混合ガスの供給により水蒸気改質反応を行い水素を含む改質ガスを生成する改質触媒層を備え、燃焼ガス流路を流れる燃焼ガスの流れ方向と、改質触媒層を流れる混合ガスと改質ガスとの流れる方向とが対向する円筒型の水素発生装置であって、燃焼ガス流路の間隔を維持するための突起またはスペーサを、燃焼ガス流路を流れる燃焼ガスの流れの上流部と下流部とに、複数、第一の円筒状構造体の外周面または第二の円筒状構造体の内周面に備え、燃焼ガス流路の間隔の寸法から複数の突起またはスペーサの高さ寸法を引いた値が上流部は下流部より小さい水素発生装置である。 In addition, a plurality of cylindrical structures each having a different diameter and arranged so that the central axes overlap with each other and a burner for heating the cylindrical structures are provided, and the first innermost one of the plurality of cylindrical structures is located. A combustion gas flow path through which combustion gas from the burner flows is formed between the cylindrical structure and the second cylindrical structure located outside the first cylindrical structure, and the second cylindrical structure A reformed gas containing hydrogen is produced by a steam reforming reaction by supplying a mixed gas of steam and a raw material gas between the first cylindrical structure and the third cylindrical structure located outside the second cylindrical structure. And a reforming catalyst layer, wherein the flow direction of the combustion gas flowing through the combustion gas flow path is opposed to the flow direction of the mixed gas and the reforming gas flowing through the reforming catalyst layer. the projections or spacers for maintaining a distance between the combustion gas flow passage, the combustion gas Into an upstream portion and a downstream portion of the flow of combustion gases flowing through the duct, a plurality, provided on the outer peripheral surface or inner peripheral surface of the second cylindrical structure of the first cylindrical structure, the interval of the combustion gas passage The value obtained by subtracting the height dimension of the plurality of protrusions or spacers from the dimension of is a hydrogen generator in which the upstream part is smaller than the downstream part.

これにより、突起またはスペーサの数を変える構成以外で、高温の燃焼ガスが流れる燃焼ガス流路の上流部で燃焼ガス流路幅を周方向にできるだけ均一に構成することが可能となり、燃焼ガスから改質触媒層への伝熱の促進と均一化を実現することができる。   This makes it possible to configure the combustion gas passage width as uniform as possible in the circumferential direction in the upstream portion of the combustion gas passage through which the high-temperature combustion gas flows, in addition to the configuration in which the number of protrusions or spacers is changed. Promotion and uniformity of heat transfer to the reforming catalyst layer can be realized.

本発明によれば、燃焼ガス流路を構成する円筒状の構造体に突起やスペーサを設けて燃焼ガス流路幅を規定する構成において、製造性を損なうことなく、高温の燃焼ガスが流れ、改質触媒層の高温部への伝熱性能を支配する箇所において、燃焼ガス流路幅を周方向に均一に構成することが可能となり、燃焼ガスから改質触媒層への伝熱促進と、周方向に対して均一な伝熱を可能とするものである。よって、改質触媒温度の周方向の均一化により触媒全体の有効使用による小型化を実現し、同時に改質触媒や構造体の部分的な高温化を防止することで、触媒と構造体の耐久性を向上させることができ、小型で高効率、高耐久な水素発生装置を実現できることができるものである。   According to the present invention, in the configuration in which the cylindrical structure constituting the combustion gas flow path is provided with protrusions and spacers to define the combustion gas flow path width, high-temperature combustion gas flows without impairing manufacturability, In the part governing the heat transfer performance to the high temperature portion of the reforming catalyst layer, it becomes possible to uniformly configure the combustion gas flow path width in the circumferential direction, and the heat transfer promotion from the combustion gas to the reforming catalyst layer, It enables uniform heat transfer in the circumferential direction. Therefore, by reducing the temperature of the reforming catalyst in the circumferential direction, it is possible to reduce the size of the entire catalyst by effectively using it, and at the same time, by preventing partial heating of the reforming catalyst and the structure, the durability of the catalyst and the structure is improved. Thus, a small, highly efficient, and highly durable hydrogen generator can be realized.

本発明の実施の形態1における水素発生装置を示す概略構成図Schematic configuration diagram showing a hydrogen generator in Embodiment 1 of the present invention 本発明の実施の形態1における水素発生装置を示す概略構成図(a)突起の一例を示す外観図(b)別の突起の例を示す外観図BRIEF DESCRIPTION OF THE DRAWINGS Schematic block diagram which shows the hydrogen generator in Embodiment 1 of this invention (a) The external view which shows an example of a protrusion (b) The external view which shows the example of another protrusion 本発明の実施の形態1における燃焼ガス流路幅と転化率の関係を示す数値解析結果の特性図Characteristic diagram of numerical analysis result showing relationship between combustion gas flow path width and conversion rate in Embodiment 1 of the present invention 本発明の実施の形態1における水素発生装置を示す概略構成図(a1)突起が3個でずれがない時の燃焼ガス流路を示す概略構成図(a2)突起が3個でずれがある時の燃焼ガス流路を示す概略構成図(b1)突起が8個でずれがない時の燃焼ガス流路を示す概略構成図(b2)突起が8個でずれがある時の燃焼ガス流路を示す概略構成図Schematic configuration diagram (a1) showing the hydrogen generator in Embodiment 1 of the present invention (a1) Schematic configuration diagram showing the combustion gas flow path when there are no deviations with three projections (a2) When there are deviations with three projections (B1) Schematic configuration diagram showing the combustion gas flow path when there are no deviations with 8 projections (b2) Combustion gas flow path when there are 8 projections and deviations Schematic configuration diagram 本発明の実施の形態1における水素発生装置を示す概略構成図(a)燃焼ガスの流れ方向に見た時の突起の数が8個の時の燃焼ガス流路を示す図(b1)燃焼ガスの流れ方向に見た時の突起の数が8個の時の突起の状態の一例を示す外観図(b2)燃焼ガスの流れ方向に見た時の突起の数が8個の時の突起の状態の別の例を示す外観図(b3)燃焼ガスの流れ方向に見た時の突起の数が8個の時の突起の状態の別の例を示す外観図(b4)燃焼ガスの流れ方向に見た時の突起の数が8個の時の突起の状態の別の例を示す外観図FIG. 1 is a schematic configuration diagram showing a hydrogen generator in Embodiment 1 of the present invention. (A) A diagram showing a combustion gas flow path when the number of protrusions when viewed in the flow direction of the combustion gas is eight (b1) combustion gas. (B2) External view showing an example of the state of the projection when the number of projections is 8 when viewed in the flow direction of the gas (b2) The projection of the projection when the number of projections is 8 when viewed in the flow direction of the combustion gas External view showing another example of the state (b3) External view showing another example of the state of the protrusion when the number of protrusions is 8 when viewed in the flow direction of the combustion gas (b4) Flow direction of the combustion gas External view showing another example of the state of the protrusion when the number of protrusions when viewed at 8 is 8 本発明の実施の形態2における水素発生装置を示す概略構成図Schematic configuration diagram showing a hydrogen generator in Embodiment 2 of the present invention 従来の水素発生装置を示す概略構成図Schematic configuration diagram showing a conventional hydrogen generator

第1の発明は、それぞれ径が異なり中心軸が重なるように配置された多重の円筒状構造体と前記円筒状構造体を加熱するバーナを有し、前記多重の円筒状構造体のうち最も内側に位置する第一の円筒状構造体と前記第一の円筒状構造体の外側に位置する第二の円筒状構造体との間に前記バーナからの燃焼ガスが流れる燃焼ガス流路を形成し、前記第二の円筒状構造体と前記第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水蒸気と原料ガスとの混合ガスの供給により水蒸気改質反応を行い水素を含む改質ガスを生成する改質触媒層を備え、前記燃焼ガス流路を流れる前記燃焼ガスの流れ方向と、前記改質触媒層を流れる前記混合ガスと前記改質ガスとの流れる方向とが対向する円筒型の水素発生装置であって、前記燃焼ガス流路の間隔を維持するための突起またはスペーサを、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部と下流部とに、複数、前記第一の円筒状構造体の外周面または前記第二の円筒状構造体の内周面に備え、複数の前記突起またはスペーサの数が、前記上流部は前記下流部より多いことを特徴とする水素発生装置である。 1st invention has the multiple cylindrical structure body which is each arrange | positioned so that a diameter differs and a central axis may overlap, and the burner which heats the said cylindrical structure body, The innermost inside of the said multiple cylindrical structure body A combustion gas flow path through which combustion gas from the burner flows is formed between the first cylindrical structure located at the first cylindrical structure and the second cylindrical structure located outside the first cylindrical structure. A steam reforming reaction by supplying a mixed gas of steam and a raw material gas between the second cylindrical structure and a third cylindrical structure located outside the second cylindrical structure. A reforming catalyst layer for generating a reformed gas containing hydrogen, the flow direction of the combustion gas flowing through the combustion gas flow path, and the mixed gas and the reformed gas flowing through the reforming catalyst layer. A cylindrical hydrogen generator facing the flowing direction, wherein the combustion gas The projections or spacers for maintaining a distance between the flow path, into an upstream portion and a downstream portion of the flow of the combustion gas flowing through the combustion gas flow passage, a plurality, the outer peripheral surface or the of the first cylindrical structure provided on the inner peripheral surface of the second cylindrical structure, the number of the plurality of the protrusions or spacers, said upstream portion is a hydrogen generating apparatus characterized by greater than said downstream portion.

第2の発明は、特に、第1の発明において、複数の前記突起またはスペーサの数は、前記第一の円筒状構造体や前記第二の円筒状構造体の単位面積あたりの数において、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部は下流部より多いことを特徴とするものである。   According to a second aspect of the invention, in particular, in the first aspect of the invention, the number of the plurality of protrusions or spacers is the number per unit area of the first cylindrical structure or the second cylindrical structure. The upstream portion of the flow of the combustion gas flowing through the combustion gas flow path is more than the downstream portion.

第3の発明は、特に、第1または第2の発明において、複数の前記突起またはスペーサの数は、前記第一の円筒状構造体や前記第二の円筒状構造体の周方向の数において、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部は下流部より多いことを特徴とするものである。   According to a third invention, in particular, in the first or second invention, the number of the plurality of protrusions or spacers is the number in the circumferential direction of the first cylindrical structure or the second cylindrical structure. The upstream part of the flow of the combustion gas flowing through the combustion gas flow path is more than the downstream part.

第4の発明は、特に、第1〜3のいずれか1つの発明において、複数の前記突起またはスペーサの数は、前記突起またはスペーサを前記第一の円筒状構造体と前記第二の円筒状構造体の中心軸に平行に前記燃焼ガス流路の一端から前記燃焼ガス流路の他端まで見た場合に、見える前記突起またはスペーサの数において、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部は下流部より多いことを特徴とするものである。   In a fourth aspect of the present invention, in particular, in any one of the first to third aspects, the number of the plurality of protrusions or spacers may be the number of the protrusions or spacers, the first cylindrical structure and the second cylindrical shape. When viewed from one end of the combustion gas flow path to the other end of the combustion gas flow path in parallel to the central axis of the structure, the number of the protrusions or spacers that can be seen is the number of the combustion gas flowing through the combustion gas flow path. The upstream part of the flow is characterized by being more than the downstream part.

第5の発明は、特に、第3または第4の発明において、前記突起またはスペーサの周方向の数や、前記突起またはスペーサを前記第一の円筒状構造体と前記第二の円筒状構造体
の中心軸に平行に前記燃焼ガス流路の一端から前記燃焼ガス流路の他端まで見た場合に見える前記突起またはスペーサの数が、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部では4個から10個あることを特徴とするものである。
According to a fifth aspect of the invention, in particular, in the third or fourth aspect of the invention, the number of the protrusions or spacers in the circumferential direction, the protrusions or spacers are the first cylindrical structure and the second cylindrical structure. The number of protrusions or spacers seen when viewed from one end of the combustion gas flow path to the other end of the combustion gas flow path is parallel to the central axis of the combustion gas flow path upstream of the flow of the combustion gas flowing through the combustion gas flow path. the part is characterized in that it is 10 from 4.

第6の発明は、それぞれ径が異なり中心軸が重なるように配置された多重の円筒状構造体と前記円筒状構造体を加熱するバーナを有し、前記多重の円筒状構造体のうち最も内側に位置する第一の円筒状構造体と前記第一の円筒状構造体の外側に位置する第二の円筒状構造体との間に前記バーナからの燃焼ガスが流れる燃焼ガス流路を形成し、前記第二の円筒状構造体と前記第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水蒸気と原料ガスとの混合ガスの供給により水蒸気改質反応を行い水素を含む改質ガスを生成する改質触媒層を備え、前記燃焼ガス流路を流れる前記燃焼ガスの流れ方向と、前記改質触媒層を流れる前記混合ガスと前記改質ガスとの流れる方向とが対向する円筒型の水素発生装置であって、前記燃焼ガス流路の間隔を維持するための突起またはスペーサを、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部と下流部とに、複数、前記第一の円筒状構造体の外周面または前記第二の円筒状構造体の内周面に備え、前記燃焼ガス流路の間隔の寸法から複数の前記突起またはスペーサの高さ寸法を引いた値が、前記上流部は前記下流部より小さいことを特徴とする水素発生装置である。 A sixth invention includes a plurality of cylindrical structures each having a different diameter and arranged so that the central axes overlap with each other, and a burner for heating the cylindrical structures, and the innermost of the plurality of cylindrical structures. A combustion gas flow path through which combustion gas from the burner flows is formed between the first cylindrical structure located at the first cylindrical structure and the second cylindrical structure located outside the first cylindrical structure. A steam reforming reaction by supplying a mixed gas of steam and a raw material gas between the second cylindrical structure and a third cylindrical structure located outside the second cylindrical structure. A reforming catalyst layer for generating a reformed gas containing hydrogen, the flow direction of the combustion gas flowing through the combustion gas flow path, and the mixed gas and the reformed gas flowing through the reforming catalyst layer. A cylindrical hydrogen generator facing the flowing direction, wherein the combustion gas The projections or spacers for maintaining a distance between the flow path, into an upstream portion and a downstream portion of the flow of the combustion gas flowing through the combustion gas flow passage, a plurality, the outer peripheral surface or the of the first cylindrical structure provided on the inner peripheral surface of the second cylindrical structure, minus the plurality of height of the protrusions or spacers from the dimension of the interval of the combustion gas flow path, said upstream portion is less than said downstream portion Is a hydrogen generator characterized by

第7の発明は、特に、第1〜6のいずれか1つの発明において、前記突起またはスペーサは、前記第一の円筒状構造体や前記第二の円筒状構造体を片側から押し付けて略円錐状に変形させたものであったり、長さの短い丸棒を前記燃焼ガス流路を流れる前記燃焼ガスの流れ方向に前記丸棒の長さ方向が向くように配置したものであることを特徴とするものである。   In a seventh aspect of the invention, in particular, in any one of the first to sixth aspects of the invention, the protrusion or spacer presses the first cylindrical structure or the second cylindrical structure from one side to form a substantially conical shape. Or a round bar having a short length is arranged such that the length direction of the round bar is directed to the flow direction of the combustion gas flowing through the combustion gas flow path. It is what.

第8の発明は、特に、第1〜7のいずれか1つの発明において、前記第一の円筒状構造体の内側に前記バーナを有し、前記第二の円筒状構造体と前記第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水の供給により前記水蒸気を生成して前記原料ガスとの前記混合ガスを生成する水蒸発部と、前記水蒸発部の下流側に前記水蒸発部から送出された前記混合ガスが流入する前記改質触媒層を備え、前記第三の円筒状構造体と前記第三の円筒状構造体の外側に位置する第四の円筒状構造体との間に前記改質触媒層を通過した前記改質ガスが流れる改質ガス流路を有し、前記燃焼ガス流路を流れる前記燃焼ガスの流れの下流部で、前記燃焼ガスの流れ方向と、前記水蒸発部を流れる前記原料ガスと前記水と前記水蒸気と前記混合ガスの流れる方向が対向し、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部で、前記燃焼ガスの流れと前記改質触媒層を流れる前記混合ガスと前記改質ガスとの流れる方向とが対向し、前記改質触媒層を流れる前記原料ガスと前記水蒸気と前記改質ガスとの流れる方向と前記改質ガス流路を流れる前記改質ガスの流れる方向とが対向し、前記改質ガス流路を通過した前記改質ガス中のCOを低減するCO除去触媒層を備えたことを特徴とするものである。 In an eighth invention, in particular, in any one of the first to seventh inventions, the burner is provided inside the first cylindrical structure, and the second cylindrical structure and the second cylindrical structure are provided. A water evaporation section that generates the water vapor by supplying water to generate the mixed gas with the source gas between the third cylindrical structure located outside the cylindrical structure, and the water evaporation the said mixed gas delivered from said water vaporization part on the downstream side of the parts is provided with the reforming catalyst layer to flow, located outside of the third cylindrical structure and the third cylindrical structure A reformed gas flow path through which the reformed gas that has passed through the reformed catalyst layer flows between the four cylindrical structures, and at a downstream portion of the flow of the combustion gas flowing through the combustion gas flow path, The flow direction of the combustion gas, the raw material gas flowing through the water evaporation section, the water, the water vapor, and the mixing The flow direction of the combustion gas is opposed to each other, and in the upstream portion of the flow of the combustion gas flowing through the combustion gas flow path, the flow direction of the mixed gas and the reformed gas flowing through the combustion gas flow, the reforming catalyst layer And the flow direction of the raw material gas, the water vapor, and the reformed gas flowing through the reforming catalyst layer and the flow direction of the reformed gas flowing through the reformed gas flow path are opposed to each other. A CO removal catalyst layer for reducing CO in the reformed gas that has passed through the quality gas flow path is provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態を示すものである。図1において、燃料ガス供給部1
より供給された燃料ガスと空気供給部2から供給された空気とを混合して火炎を形成するバーナ3を有しており、バーナ3で生じた燃焼ガスは、バーナ3を内側に配置する第一の円筒状構造体100と、第一の円筒状構造体100の外側に隣接する第二の円筒状構造体101の間に形成される燃焼ガス流路4を流れ、排気口5より水素発生装置外に排気される。燃焼ガス流路4の外側、つまり第二の円筒状構造体101の外側には、原料ガス供給部6からの原料ガスと水供給部7からの水が供給される水蒸発部8が設けられている。水蒸発部8から送出される原料ガスと水蒸気の混合ガスは、第二の円筒状構造体101と第二の円筒状構造体101の外側に位置する第三の円筒状構造体102との間に改質触媒を充填してなる改質触媒層9に供給される。ここで、改質触媒層9内を流れる混合ガスや改質ガスの流れ方向は、燃焼ガス流路4を流れる燃焼ガスの流れの上流部で燃焼ガスの流れ方向と対向するように構成されている。また、水蒸発部内を流れる原料ガスや水や水蒸気や混合ガスの流れ方向は、燃焼ガス流路4を流れる燃焼ガスの流れの下流部で燃焼ガスの流れ方向と対向するように構成されている。改質触媒層9から送出される改質ガスは、第三の円筒状構造体102と第三の円筒状構造体102の外側に位置する第四の円筒状構造体103との間の改質ガス流路15を改質触媒層9内を流れる混合ガスや改質ガスの流れ方向と対向する方向に流れた後、水蒸発部8の外側に位置し、CO除去触媒が充填されたCO除去触媒層10に供給される。CO除去触媒層10から送出されたガスは、生成ガス出口11より高濃度の水素を含有する生成ガスとして水素発生装置から送出される。
(Embodiment 1)
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, a fuel gas supply unit 1
The fuel gas supplied from the air supply unit 2 and the air supplied from the air supply unit 2 are mixed to form a flame, and the combustion gas generated in the burner 3 is disposed in the burner 3 inside. Hydrogen flows from the exhaust port 5 through the combustion gas passage 4 formed between the one cylindrical structure 100 and the second cylindrical structure 101 adjacent to the outside of the first cylindrical structure 100. Exhausted out of the device. Outside the combustion gas flow path 4, that is, outside the second cylindrical structure 101, a water evaporation unit 8 to which the source gas from the source gas supply unit 6 and the water from the water supply unit 7 are supplied is provided. ing. The mixed gas of the raw material gas and water vapor delivered from the water evaporation unit 8 is between the second cylindrical structure body 101 and the third cylindrical structure body 102 located outside the second cylindrical structure body 101. Is supplied to the reforming catalyst layer 9 filled with the reforming catalyst. Here, the flow direction of the mixed gas or the reformed gas flowing in the reforming catalyst layer 9 is configured to face the flow direction of the combustion gas in the upstream portion of the flow of the combustion gas flowing in the combustion gas flow path 4. Yes. Further, the flow direction of the raw material gas, water, water vapor, and mixed gas flowing in the water evaporation section 8 is configured to face the flow direction of the combustion gas at the downstream portion of the flow of the combustion gas flowing in the combustion gas flow path 4. ing. The reformed gas delivered from the reforming catalyst layer 9 is reformed between the third cylindrical structure 102 and the fourth cylindrical structure 103 located outside the third cylindrical structure 102. After flowing in the gas flow path 15 in the direction opposite to the flow direction of the mixed gas or reformed gas flowing in the reforming catalyst layer 9, the CO removal located outside the water evaporation section 8 and filled with the CO removal catalyst It is supplied to the catalyst layer 10. The gas sent from the CO removal catalyst layer 10 is sent from the hydrogen generator as a product gas containing hydrogen at a high concentration from the product gas outlet 11.

ここで、第一の円筒状構造体100の外周面には突起12を複数個備え、突起12の第一の円筒状構造体100に対する周方向の数は、燃焼ガス流路4内の燃焼ガスの流れが改質触媒層9内の流れに対向して流れる上流部では8個、水蒸発部8内の流れに対向して流
れる下流部では4個と、改質触媒層9への伝熱を行う上流部の方が多くなっている。突起12の形状としては、第一の円筒状構造体100を内側から外側に向けて局所的に圧力を加えて変形させた先端が丸みを持った略円錐状のものなど(一般的にエンボス加工やダボ加工と呼ばれるもの)となっている。詳細には、図2(a)に示すような外観となっている。他には図2の(b)に示すような、長さの短い丸棒をスペーサとして第一の円筒状構造体100の外周面に燃焼ガスの流れ方向に丸棒の長さ方向が向くように溶接やロウ付けして用いる構成とすることもできる。(以下、この図2(b)も含めて「突起」と表現する)また、突起12の周方向の設置位置は、一周を略等角度で分割して設置しても、ランダムに設置しても、以下に示す効果が得られる配置であればどのような位置でも良い。さらには、第一の円筒状構造体100の外周面側ではなく、第二の円筒状構造体101の内周面側に、第二の円筒状構造体101を外側から内側に向けて局所的に圧力を加えて変形させた先端が丸みを持った略円錐状のものを形成したり、長さの短い丸棒を溶接やロウ付けして構成しても良い。
Here, a plurality of protrusions 12 are provided on the outer peripheral surface of the first cylindrical structure 100, and the number of protrusions 12 in the circumferential direction with respect to the first cylindrical structure 100 is the combustion gas in the combustion gas flow path 4. Heat transfer to the reforming catalyst layer 9 is eight in the upstream portion that flows opposite to the flow in the reforming catalyst layer 9 and four in the downstream portion that flows opposite to the flow in the water evaporation portion 8. There are more upstream areas where As the shape of the protrusion 12, the first cylindrical structure 100 is deformed by locally applying pressure from the inside to the outside, and the tip has a substantially conical shape with a rounded shape (generally embossing). And what is called dowel processing. Specifically, the appearance is as shown in FIG. In addition, as shown in FIG. 2B, a round bar having a short length is used as a spacer so that the length direction of the round bar is directed to the outer circumferential surface of the first cylindrical structure 100 in the flow direction of the combustion gas. It can also be set as the structure used by welding or brazing. (Hereinafter, this is also expressed as “projection” including FIG. 2B.) Moreover, the circumferential installation position of the projection 12 may be randomly installed even if the circumference is divided by a substantially equal angle. However, any position may be used as long as the following effects can be obtained. Further, the second cylindrical structure 101 is locally directed from the outer side to the inner side, not on the outer peripheral surface side of the first cylindrical structure 100 but on the inner peripheral surface side of the second cylindrical structure 101. Alternatively, it may be formed by forming a substantially conical shape with a rounded tip that is deformed by applying pressure, or by welding or brazing a round bar having a short length.

また、第一の円筒状構造体100、第二の円筒状構造体101、第三の円筒状構造体102そして第四の円筒状構造体103は、それぞれの中心軸をほぼ重なるように配置することで各流路や触媒層を構成している。   Further, the first cylindrical structure 100, the second cylindrical structure 101, the third cylindrical structure 102, and the fourth cylindrical structure 103 are arranged so that their central axes substantially overlap. Thus, each flow path and catalyst layer are configured.

なお、CO除去触媒層10は、変成触媒を用いたシフト反応させるものや、酸素を供給して混合し選択酸化触媒を用いて選択酸化反応させるものや、それらの反応を組み合わせたものとして構成することができる。   In addition, the CO removal catalyst layer 10 is configured as a shift reaction using a shift catalyst, a mixture of oxygen supplied and mixed to perform a selective oxidation reaction using a selective oxidation catalyst, or a combination of these reactions. be able to.

また、改質触媒層9に充填した改質触媒は、Pt、Ru、Rh、Pdなどの貴金属やNiなどが用いられる。CO除去触媒層10に充填する変成触媒としては、Ptなどの貴金属やFe−CrやCu−Znなど、選択酸化触媒としては、Pt、Ru、Rhなどが用いられる。   The reforming catalyst filled in the reforming catalyst layer 9 is made of a noble metal such as Pt, Ru, Rh, Pd, Ni, or the like. As the shift catalyst filled in the CO removal catalyst layer 10, a noble metal such as Pt, Fe—Cr, Cu—Zn, or the like is used. As the selective oxidation catalyst, Pt, Ru, Rh, or the like is used.

また、水蒸発部8内の原料ガスや水や混合ガスの流れ方向や、改質触媒層9内の混合ガスや改質ガスの流れ方向や、改質ガス流路15内の改質ガスの流れ方向は、実際には各部内に螺旋棒や螺旋パイプ、整流板などの配置により流れが周回していたり蛇行していたりしても良いが、本明細書での流れの方向とは、水蒸発部8や改質触媒層9や改質ガス流路15を入ってから出るまでの大きな流れの方向を示しており、図1における水蒸発部8では上から下、改質触媒層9でも上から下、改質ガス流路15では下から上を示している。   In addition, the flow direction of the raw material gas, water, and mixed gas in the water evaporation section 8, the flow direction of the mixed gas and reformed gas in the reforming catalyst layer 9, and the reformed gas flow in the reformed gas passage 15 Actually, the flow direction may be circulating or meandering depending on the arrangement of spiral rods, spiral pipes, rectifying plates, etc. in each part. 1 shows the direction of a large flow from entering the evaporator 8, the reforming catalyst layer 9, and the reformed gas flow path 15 to exiting. In the water evaporator 8 in FIG. From top to bottom, the reformed gas channel 15 shows from bottom to top.

また、燃料ガス供給部1や空気供給部2、原料ガス供給部6、水供給部7は各々の供給物(燃料ガス、空気、原料ガス、水)の流量を調整可能に構成されており、供給物の吐出流量が変更可能な供給ポンプ(駆動手段)であっても良く、また供給物の供給源と下流側の流路に設けられた供給物の流量調整用バルブとを組み合わせた流体調整機構であっても良い。   In addition, the fuel gas supply unit 1, the air supply unit 2, the raw material gas supply unit 6, and the water supply unit 7 are configured to be able to adjust the flow rate of each supply (fuel gas, air, raw material gas, water), It may be a supply pump (driving means) that can change the discharge flow rate of the supply, and the fluid adjustment is a combination of the supply source of the supply and the supply flow rate adjusting valve provided in the downstream flow path. It may be a mechanism.

次に、上記構成において水素発生装置の各部動作を説明する。   Next, the operation of each part of the hydrogen generator in the above configuration will be described.

バーナにおいて、燃料ガス供給部1からの燃料ガスと空気供給部2からの空気とを混合させ、高電圧による放電やヒータによる局所高温化(図示せず)などを行うことで火炎を形成する。火炎によりつくられた高温の燃焼ガスは、第一の円筒状構造体100の先端から、第一の円筒状構造体100と第二の円筒状構造体101の間に形成された燃焼ガス流路4を流れ、燃焼排ガスとして排気口5から水素発生装置外に排出される。高温の燃焼ガスの熱は第二の円筒状構造体101の外側に配置した水蒸発部8や改質触媒層9に伝熱する。燃焼ガスからの熱で高温化した水蒸発部8では水供給部7からの水を蒸発させて水蒸気とし、また原料ガス供給部6からの原料と水蒸気とを混合した後、混合ガスとして改質触媒層9に供給する。改質触媒層9は燃焼ガスにより600℃〜700℃に高温化しており、原料ガスと水蒸気との混合ガスが供給されることにより、改質触媒による水蒸気改質反応が起こり、水素や一酸化炭素、二酸化炭素などを含んだ改質ガスを生成する。改質触媒層9から送出される改質ガスは、第三の円筒状構造体102の先端で第三の円筒状構造体102と第四の円筒状構造体103との間に形成された流路を改質触媒層9内の流れ方向と対向する方向に流れる。その後、改質ガスはCO除去触媒層10に供給される。CO除去触媒層10では、変成触媒によるシフト反応や、酸素との混合後の選択酸化触媒による選択酸化反応によりCOの除去が行われ、高濃度の水素を含有する生成ガスとして生成ガス出口11から水素発生装置外へ送出される。 In the burner 3 , the fuel gas from the fuel gas supply unit 1 is mixed with the air from the air supply unit 2, and a flame is formed by performing discharge by high voltage, local high temperature (not shown) by a heater, or the like. . The combustion gas flow path formed between the first cylindrical structure 100 and the second cylindrical structure 101 from the tip of the first cylindrical structure 100 is a high-temperature combustion gas generated by the flame. 4 is discharged from the exhaust port 5 to the outside of the hydrogen generator as combustion exhaust gas. The heat of the high-temperature combustion gas is transferred to the water evaporation section 8 and the reforming catalyst layer 9 disposed outside the second cylindrical structure 101. In the water evaporation section 8 heated to high temperature by the heat from the combustion gas, water from the water supply section 7 is evaporated into steam, and the raw material and steam from the raw material gas supply section 6 are mixed and then reformed as a mixed gas. Supply to the catalyst layer 9. The reforming catalyst layer 9 is heated to 600 ° C. to 700 ° C. by the combustion gas, and by supplying a mixed gas of the raw material gas and steam, a steam reforming reaction occurs by the reforming catalyst, and hydrogen or monoxide A reformed gas containing carbon, carbon dioxide, etc. is generated. The reformed gas delivered from the reforming catalyst layer 9 is a flow formed between the third cylindrical structure 102 and the fourth cylindrical structure 103 at the tip of the third cylindrical structure 102. The path flows in a direction opposite to the flow direction in the reforming catalyst layer 9. Thereafter, the reformed gas is supplied to the CO removal catalyst layer 10. In the CO removal catalyst layer 10, CO is removed by a shift reaction using a shift catalyst or a selective oxidation reaction using a selective oxidation catalyst after mixing with oxygen, and a product gas containing a high concentration of hydrogen is generated from the product gas outlet 11. It is sent out of the hydrogen generator.

ここで、水素発生装置の効率や耐久性を向上させるためには、燃焼ガス流路4を流れる高温の燃焼ガスの熱を改質触媒層9に有効に、かつ均一に伝える必要がある。燃焼ガス流路4からの伝熱量は燃焼ガスの流速により変わる。つまり、燃焼ガス流路4の周方向の幅が不均一で広い箇所と狭い箇所があれば、燃焼ガスの流速に差が出る可能性がある。図3は、燃焼ガス流路4から改質触媒層9周辺部分をモデル化して数値解析した結果で、燃焼ガス流路幅と改質触媒層の特性(転化率)を示したものである。改質触媒層の特性である転化率は、原料ガスから水素を生成する性能を示すもので、転化率が大きい方が改質触媒層への伝熱量が多く、水素をたくさん生成していることを示している。図3より、流路幅が狭いほうが改質触媒層への伝熱量が増え、改質触媒層の転化率が高いことがわかる。逆に流路幅が広ければ伝熱量の低下により転化率が低い結果となり、流路幅がミリ単位で変化しただけで、特性がかなり変わることがわかる。したがって、燃焼ガス流路4の周方向の幅をミリ単位で管理しなければ、改質触媒層9への伝熱量に差が生じ、改質触媒層9の温度が場所により高くなったり低くなったりしてしまう。改質反応の反応性は温度に対して線形ではなく温度が高くなるほど反応性の向上割合は小さくなる。したがって、改質触媒が部分的に高温化すると、その箇所では熱が無駄に使用されてしまうことになり、一定の水素量を生成しようとする場合、バーナでの加熱量が多くなり、改質効率が悪くなってしまう。また、触媒は高温化しすぎるとシンタリングによる触媒活性が低下するため、触媒の耐久性が悪くなる可能性が生じてしまう。さらに、触媒が部分的に高温化するということは、燃焼ガス流路4と改質触媒層9との隔壁を形成する第二の円筒状構造体101も周方向に温度むらができ、部分的に高温化することになる。水素発生装置の構造体を形成している材料は高耐熱性のステンレス鋼などであるが、円筒状の軸対称な構成において周方向に温度むらを持つと構造体に生じる応力が大きくなる。特に高温状態ではその材料の許容応力値が小さくなるため、温度むらをもち高温部が生じることは構造体の耐久性悪化につながる可能性がある。   Here, in order to improve the efficiency and durability of the hydrogen generator, it is necessary to transmit the heat of the high-temperature combustion gas flowing through the combustion gas passage 4 effectively and uniformly to the reforming catalyst layer 9. The amount of heat transferred from the combustion gas flow path 4 varies depending on the flow velocity of the combustion gas. That is, if the circumferential width of the combustion gas flow path 4 is uneven and there are wide and narrow portions, there is a possibility that the flow velocity of the combustion gas will be different. FIG. 3 shows the result of modeling and numerically analyzing the periphery of the reforming catalyst layer 9 from the combustion gas channel 4 and shows the characteristics (conversion rate) of the combustion gas channel and the reforming catalyst layer. The conversion rate, which is a characteristic of the reforming catalyst layer, indicates the ability to generate hydrogen from the raw material gas. The higher the conversion rate, the greater the amount of heat transferred to the reforming catalyst layer, and the more hydrogen is generated. Is shown. From FIG. 3, it can be seen that the narrower the channel width, the greater the amount of heat transfer to the reforming catalyst layer, and the higher the conversion rate of the reforming catalyst layer. Conversely, if the channel width is wide, the conversion rate is low due to a decrease in the amount of heat transfer, and it can be seen that the characteristics change considerably only by changing the channel width in millimeters. Therefore, if the circumferential width of the combustion gas flow path 4 is not managed in millimeters, a difference occurs in the amount of heat transfer to the reforming catalyst layer 9, and the temperature of the reforming catalyst layer 9 becomes higher or lower depending on the location. I will. The reactivity of the reforming reaction is not linear with respect to the temperature, and the higher the temperature, the smaller the improvement rate of the reactivity. Therefore, if the temperature of the reforming catalyst partially rises, heat will be wasted at that location, and if a certain amount of hydrogen is to be generated, the amount of heating in the burner will increase and reforming will occur. Efficiency will be reduced. Further, if the temperature of the catalyst is excessively high, the catalytic activity due to sintering is lowered, and therefore the durability of the catalyst may be deteriorated. Furthermore, when the temperature of the catalyst is partially increased, the temperature of the second cylindrical structure 101 forming a partition wall between the combustion gas flow path 4 and the reforming catalyst layer 9 can also be uneven in the circumferential direction. The temperature will increase. The material forming the structure of the hydrogen generator is stainless steel having high heat resistance. However, if the temperature is uneven in the circumferential direction in a cylindrical axisymmetric configuration, the stress generated in the structure increases. In particular, since the allowable stress value of the material becomes small in a high temperature state, the occurrence of a high temperature portion with uneven temperature may lead to deterioration of the durability of the structure.

一方、燃焼ガス流路4を流れる燃焼ガスは改質触媒層9近傍を改質触媒層9側に熱を与えて通過するため、水蒸発部8近傍を通過する時には温度が低下している。そのため、燃焼ガスから水蒸発部8への伝熱にむらが生じ、第二の円筒状構造体101の温度むらにより第二の円筒状構造体101に応力が生じても、第二の円筒状構造体101の温度が低くなっているため許容応力値が高く、多少応力が生じても第二の円筒状構造体101の耐久性悪化にはつながらない。また、水素発生装置の改質効率は改質触媒層9の特性でほぼ決まるため、水蒸発部8への伝熱むらは改質効率に影響を及ぼさない。   On the other hand, since the combustion gas flowing through the combustion gas flow path 4 passes through the vicinity of the reforming catalyst layer 9 by applying heat to the reforming catalyst layer 9 side, the temperature is lowered when passing through the vicinity of the water evaporation section 8. Therefore, even if the heat transfer from the combustion gas to the water evaporation section 8 is uneven and the second cylindrical structure 101 is stressed due to the temperature unevenness of the second cylindrical structure 101, the second cylindrical shape Since the temperature of the structure 101 is low, the allowable stress value is high, and even if some stress is generated, the durability of the second cylindrical structure 101 is not deteriorated. Further, since the reforming efficiency of the hydrogen generator is substantially determined by the characteristics of the reforming catalyst layer 9, uneven heat transfer to the water evaporation unit 8 does not affect the reforming efficiency.

そこで、本構成では、燃焼ガス流路4の幅を規定するために、第一の円筒状構造体100の外周面に燃焼ガス流路4側に突起12を形成しているが、その個数を流路幅をより精度良く均一にする必要がある燃焼ガス流路4の燃焼ガスの流れの上流部では多くし、温度が低くあまり流路幅の精度を必要としない燃焼ガスの流れの下流部では少なくしている。   Therefore, in this configuration, in order to define the width of the combustion gas flow path 4, the protrusions 12 are formed on the outer peripheral surface of the first cylindrical structure 100 on the combustion gas flow path 4 side. The upstream portion of the combustion gas flow in the combustion gas passage 4 where the passage width needs to be made uniform with high accuracy is increased, and the downstream portion of the combustion gas flow that has a low temperature and does not require the accuracy of the passage width. Then it is less.

ここで、周方向の突起12の個数が多い方が、燃焼ガス流路4の周方向の幅をより均一に構成することができる理由を説明する。図4は第一の円筒状構造体100の外周面に周
方向に突起12を3個配置している構成((a1)、(a2))と、8個配置している構成((b1)、(b2))との燃焼ガス流路4の構成状態を比較している図である。なお、突起12としては丸棒を用い、突起12が設けられている円筒状構造体の断面を示した図である。
Here, the reason why the larger the number of the circumferential protrusions 12 can make the circumferential width of the combustion gas flow path 4 more uniform will be described. 4 shows a configuration in which three protrusions 12 are arranged in the circumferential direction on the outer peripheral surface of the first cylindrical structure 100 ((a1), (a2)) and a configuration in which eight protrusions are arranged ((b1)). (B2)) It is the figure which compares the structural state of the combustion gas flow path 4 with. In addition, it is the figure which used the round bar as the processus | protrusion 12, and showed the cross section of the cylindrical structure in which the processus | protrusion 12 is provided.

まず、突起12を3個用いた場合に、第一の円筒状構造体100と第二の円筒状構造体101がずれない時には図4(a1)のようになっているが、製造時や水素発生装置の運転時に何らかの影響で第一の円筒状構造体100と第二の円筒状構造体101の円筒がずれ、燃焼ガス流路4の幅が最小の箇所が生じた状態を想定すると図4の(a2)のようになる。つまり、隣り合う2つの突起12が第二の円筒状構造体101に接することで、その接している突起12間の流路幅が最小(Da1)となり、逆側の燃焼ガス流路4の幅が最大(Da2)となる。突起12が8個の場合には、第一の円筒状構造体100と第二の円筒状構造体101がずれがない時には図4(b1)のようになっているが、ずれが最も大きく生じた場合には図4(b2)のようになり、最小の流路幅(Db1)と、逆側の最大の流路幅(Db2)が形成される。ここで、流路幅は明らかに突起12の数が少ない3個の方が8個に比べて、流路幅が狭いところではより狭く(Da1<Db1)、流路幅が広いところではより広く(Da2>Db2)なっている。例えば、第一の円筒状構造体100の外径を100mm、第二の円筒型構造体101の内径を106mm、突起12の高さを2mmとした場合、Da1=1.05mm、Da2=4.95mm、Db1=1.92mm、Db2=4.08mmとなる。つまり、突起12の数が多い方が、流路幅が極端にずれても狭いところと広いところの差が小さく、燃焼ガス流路幅の均一性が高くなっている。したがって、できるだけ多くの突起を燃焼ガス流路内に設ければ流路幅の均一性を高めることができる。しかし、多くの突起を形成することは、より多くの突起形成のための加工を行うことになり製造時のコストが高くなったり、第一の円筒状構造体100と第二の円筒状構造体101を嵌めあう時に作業性が悪くなり作業時間が必要となり製造コストが高くなったりする可能性があるため、必要な流路幅精度に応じて突起の数を設定する必要がある。   First, when three projections 12 are used, when the first cylindrical structure 100 and the second cylindrical structure 101 do not deviate, as shown in FIG. Assuming a state in which the cylinders of the first cylindrical structure 100 and the second cylindrical structure 101 are displaced due to some influence during operation of the generator and the combustion gas passage 4 has a minimum width, FIG. (A2). That is, when two adjacent protrusions 12 are in contact with the second cylindrical structure 101, the flow path width between the contacted protrusions 12 is minimized (Da1), and the width of the combustion gas flow path 4 on the opposite side is reduced. Becomes the maximum (Da2). When the number of the protrusions 12 is eight, the first cylindrical structure 100 and the second cylindrical structure 101 are as shown in FIG. 4B1 when there is no deviation, but the deviation is the largest. In this case, as shown in FIG. 4 (b2), the minimum flow path width (Db1) and the reverse maximum flow path width (Db2) are formed. Here, the flow path width is clearly smaller in the case where the number of the protrusions 12 is small, that is, three is smaller than that in the case where the number of the protrusions 12 is eight (Da1 <Db1). (Da2> Db2). For example, when the outer diameter of the first cylindrical structure 100 is 100 mm, the inner diameter of the second cylindrical structure 101 is 106 mm, and the height of the protrusion 12 is 2 mm, Da1 = 1.05 mm, Da2 = 4. 95 mm, Db1 = 1.92 mm, and Db2 = 4.08 mm. That is, the larger the number of protrusions 12, the smaller the difference between the narrow portion and the wide portion even if the passage width is extremely shifted, and the uniformity of the combustion gas passage width is high. Therefore, if as many protrusions as possible are provided in the combustion gas flow path, the uniformity of the flow path width can be improved. However, forming a large number of protrusions results in a process for forming a larger number of protrusions, which increases the manufacturing cost, and the first cylindrical structure 100 and the second cylindrical structure. Since the workability is deteriorated when the 101 is fitted, the work time is required and the manufacturing cost may be increased. Therefore, it is necessary to set the number of protrusions according to the required flow path width accuracy.

図5は、周方向の必要な突起位置に対して、燃焼ガスの流れ方向のどこの位置に突起を設けるかを示した図である。   FIG. 5 is a diagram showing where the protrusion is provided in the flow direction of the combustion gas with respect to the required protrusion position in the circumferential direction.

突起を第一の円筒状構造体100と第二の円筒状構造体101の中心軸に平行に燃焼ガス流路4の一端から燃焼ガス流路4の他端まで見た場合、(以降、このような見方を「燃焼ガスの流れ方向に見た場合」と表現する)に、図5の(a)のような位置に周方向に8個の突起が必要な時、(b1)のように複数段設ける突起の全ての段に対して、必ず8個すべての突起を設けても良いが、それ以外にも(b2)〜(b4)のような構成のように、燃焼ガスの流れ方向に見た時に(a)のように8個の突起が構成されていれば、同等の効果が得られる。これは、第一の円筒状構造体100や第二の円筒状構造体101が高い真円度で作られておれば、第一の円筒状構造体100と第二の円筒状構造体101にゆがみや径の変化がなく、燃焼ガスの流れ方向に一箇所位置決めすれば円筒状構造体全体に対して位置決めでき、燃焼ガスの流れ方向に対して燃焼ガス流路幅は一定に維持される。したがって、燃焼ガスの流れ方向のどこかで流路幅を規制してやれば、円筒状構造体全体の位置を規定することが可能となる。しかし、高い真円度で作られていない場合は、円筒が歪んでいることも想定されるため、燃焼ガスの流れ方向の多くの場所で周方向に多くの突起を設けて流路幅を規制しなければ、燃焼ガス流路幅の精度が必要な箇所の燃焼ガス流路幅を均一にすることができなくなる可能性がある。したがって、円筒状構造体の製造精度に応じて突起の数や配置を決めてやれば、水素発生装置の性能を維持しながら製造コストの低減を実現することができる。   When the protrusion is viewed from one end of the combustion gas flow channel 4 to the other end of the combustion gas flow channel 4 in parallel to the central axes of the first cylindrical structure 100 and the second cylindrical structure 101 (hereinafter, this Such a view is expressed as “when viewed in the flow direction of the combustion gas”), and when eight protrusions are required in the circumferential direction at the position as shown in FIG. Although all the eight protrusions may be provided for all the protrusions provided in a plurality of stages, other than that, as in the constructions (b2) to (b4), in the combustion gas flow direction. If eight projections are configured as shown in (a) when viewed, the same effect can be obtained. If the first cylindrical structure body 100 and the second cylindrical structure body 101 are made with high roundness, the first cylindrical structure body 100 and the second cylindrical structure body 101 are There is no distortion or change in diameter, and if it is positioned at one position in the flow direction of the combustion gas, it can be positioned with respect to the entire cylindrical structure, and the width of the combustion gas passage is kept constant with respect to the flow direction of the combustion gas. Therefore, if the flow path width is regulated somewhere in the flow direction of the combustion gas, the position of the entire cylindrical structure can be defined. However, if it is not made with high roundness, it is assumed that the cylinder is distorted, so many projections are provided in the circumferential direction at many places in the flow direction of the combustion gas to regulate the flow path width. Otherwise, there is a possibility that the combustion gas passage width at a location where the accuracy of the combustion gas passage width is required cannot be made uniform. Therefore, if the number and arrangement of the protrusions are determined according to the manufacturing accuracy of the cylindrical structure, the manufacturing cost can be reduced while maintaining the performance of the hydrogen generator.

なお、突起12の周方向の数、あるいは突起12を燃焼ガスの流れ方向に見た時の数は、水素発生装置の大きさや構成によるが、製造性や効果の状況から燃焼ガス流路4の燃焼ガスの流れの上流部では4個から10個、燃焼ガスの流れの下流部では8個以下とするこ
とができる。
Note that the number of protrusions 12 in the circumferential direction or the number of protrusions 12 when viewed in the flow direction of the combustion gas depends on the size and configuration of the hydrogen generator. The number may be 4 to 10 in the upstream portion of the combustion gas flow and 8 or less in the downstream portion of the combustion gas flow.

(実施の形態2)
図6は、本発明の第2の実施の形態を示すものである。第1の実施の形態において、燃焼ガス流路4の幅の寸法から突起12の高さを引いた値が、燃焼ガス流路4の燃焼ガスの流れの上流部では、下流部よりも小さくなる構成となっている。つまり、突起12は、燃焼ガス流路4の燃焼ガスの流れの上流部にある突起の高さがHaの突起A13と、燃焼ガスの流れの下流部にある突起の高さがHbの突起B14から成り立っており、燃焼ガス流路幅Dに対して、「D−Ha」<「D−Hb」が成り立っている。例えば、燃焼ガス流路幅3mmに対して、突起A13の高さが2.5mm、突起B14の高さが2mmとする寸法である。
(Embodiment 2)
FIG. 6 shows a second embodiment of the present invention. In the first embodiment, the value obtained by subtracting the height of the protrusion 12 from the width dimension of the combustion gas passage 4 is smaller in the upstream portion of the combustion gas flow in the combustion gas passage 4 than in the downstream portion. It has a configuration. That is, the protrusion 12 has a protrusion A13 whose height is Ha at the upstream portion of the combustion gas flow in the combustion gas flow path 4, and a protrusion B14 whose height is the protrusion Hb at the downstream portion of the combustion gas flow. For the combustion gas flow path width D, “D−Ha” <“D−Hb” is satisfied. For example, the height of the protrusion A13 is 2.5 mm and the height of the protrusion B14 is 2 mm with respect to the combustion gas flow path width of 3 mm.

本構成を用いれば、燃焼ガスの流路幅をできるだけ均一に構成したい燃焼ガスの流れの上流部では、第一の円筒状構造体100と第二の円筒状構造体101の位置関係がずれるようなことがあっても高さがHaである突起A13の存在により燃焼ガス流路4の幅を規制してずれ量を小さく抑えることができる。ここで、突起B14も突起A13と同等の高さとすれば、燃焼ガス流路4全体において燃焼ガス流路幅をより均一にすることが可能であるが、突起の製造時により高さの高い突起を作るための製造コストアップや、第一の円筒状構造体100と第二の円筒状構造体101を組み合わせる時の作業性の悪化などによる製造コストアップが想定されるので、燃焼ガス流路4の幅の均一性が必要とされる箇所のみ突起の高さを高くする構成とするのが良い。   If this configuration is used, the positional relationship between the first cylindrical structure 100 and the second cylindrical structure 101 is shifted in the upstream portion of the flow of the combustion gas where the flow path width of the combustion gas is desired to be made as uniform as possible. Even if this is the case, the width of the combustion gas passage 4 can be regulated by the presence of the projection A13 having a height of Ha, and the amount of deviation can be kept small. Here, if the protrusion B14 has the same height as the protrusion A13, it is possible to make the combustion gas flow path width more uniform in the entire combustion gas flow path 4, but the height of the protrusion is higher when the protrusion is manufactured. The production cost for manufacturing the product is increased, and the production cost is increased due to deterioration of workability when the first cylindrical structure 100 and the second cylindrical structure 101 are combined. It is preferable that the height of the protrusion is increased only in a portion where the uniformity of the width is required.

なお、突起12の形状としては、第2の実施の形態でも第1の実施の形態と同様に、図2のように第一の円筒状構造体100を内側から外側に向けて局所的に圧力を加えて変形させた先端が丸みを持った略円錐状のものであったり、長さの短い丸棒をスペーサとして第一の円筒状構造体100の外周面に燃焼ガスの流れ方向に丸棒の長さ方向が向くように溶接やロウ付けした構成としても良い。さらには、第一の円筒状構造体100の外周面側ではなく、第二の円筒状構造体101の内周面に、第二の円筒状構造体101を外側から内側に向けて局所的に圧力を加えて変形させた先端が丸みを持った略円錐状のものを形成したり、長さの短い丸棒を溶接やロウ付けして構成したものであっても良い。   As for the shape of the protrusion 12, in the second embodiment as well, as in the first embodiment, the first cylindrical structure 100 is locally pressurized from the inside to the outside as shown in FIG. The tip is deformed by adding a round shape to a substantially conical shape, or a round bar with a short length is used as a spacer on the outer peripheral surface of the first cylindrical structure 100 in the direction of combustion gas flow. It is good also as a structure welded or brazed so that the length direction may face. Further, the second cylindrical structure 101 is locally directed from the outside to the inside on the inner peripheral surface of the second cylindrical structure 101, not on the outer peripheral surface side of the first cylindrical structure 100. It may be formed by forming a substantially conical shape whose tip is deformed by applying pressure, or by welding or brazing a short bar having a short length.

本発明の水素発生装置は、高効率で高耐久な性能を小型の装置サイズにおいて製造性や製造コストに配慮して実現するものであり、例えば、家庭用の燃料電池発電装置への水素含有の生成ガスを供給する装置として有用である。   The hydrogen generator of the present invention realizes high efficiency and high durability performance in consideration of manufacturability and manufacturing cost in a small device size. For example, the hydrogen generator of a home fuel cell power generator It is useful as an apparatus for supplying product gas.

1 燃焼ガス供給部
2 空気供給部
3 バーナ
4 燃焼ガス流路
5 排気口
6 原料ガス供給部
7 水供給部
8 水蒸発部
9 改質触媒層
10 CO除去触媒層
11 生成ガス出口
12 突起
13 突起A
14 突起B
15 改質ガス流路
100 第一の円筒状構造体
101 第二の円筒状構造体
102 第三の円筒状構造体
103 第四の円筒状構造体
DESCRIPTION OF SYMBOLS 1 Combustion gas supply part 2 Air supply part 3 Burner 4 Combustion gas flow path 5 Exhaust port 6 Raw material gas supply part 7 Water supply part 8 Water evaporation part 9 Reforming catalyst layer 10 CO removal catalyst layer 11 Product gas outlet 12 Protrusion 13 Protrusion A
14 Protrusion B
15 reformed gas channel 100 first cylindrical structure 101 second cylindrical structure 102 third cylindrical structure 103 fourth cylindrical structure

Claims (8)

それぞれ径が異なり中心軸が重なるように配置された多重の円筒状構造体と前記円筒状構造体を加熱するバーナを有し、前記多重の円筒状構造体のうち最も内側に位置する第一の円筒状構造体と前記第一の円筒状構造体の外側に位置する第二の円筒状構造体との間に前記バーナからの燃焼ガスが流れる燃焼ガス流路を形成し、前記第二の円筒状構造体と前記第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水蒸気と原料ガスとの混合ガスの供給により水蒸気改質反応を行い水素を含む改質ガスを生成する改質触媒層を備え、前記燃焼ガス流路を流れる前記燃焼ガスの流れ方向と、前記改質触媒層を流れる前記混合ガスと前記改質ガスとの流れる方向とが対向する円筒型の水素発生装置であって、前記燃焼ガス流路の間隔を維持するための突起またはスペーサを、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部と下流部とに、複数、前記第一の円筒状構造体の外周面または前記第二の円筒状構造体の内周面に備え、複数の前記突起またはスペーサの数が、前記上流部は前記下流部より多いことを特徴とする水素発生装置。 A plurality of cylindrical structures each having a different diameter and arranged so that the central axes overlap with each other, and a burner for heating the cylindrical structures, and a first innermost one of the plurality of cylindrical structures. A combustion gas flow path through which combustion gas from the burner flows is formed between the cylindrical structure and the second cylindrical structure located outside the first cylindrical structure, and the second cylinder Between the cylindrical structure and the third cylindrical structure located outside the second cylindrical structure, a steam reforming reaction is performed by supplying a mixed gas of steam and a raw material gas to improve the hydrogen content. A reforming catalyst layer that generates a gaseous gas, and a flow direction of the combustion gas flowing through the combustion gas flow path is opposed to a flowing direction of the mixed gas and the reformed gas flowing through the reforming catalyst layer. A cylindrical hydrogen generator, wherein the interval between the combustion gas flow paths is The projections or spacers for lifting, in the upstream portion and the downstream portion of the flow of the combustion gas flowing through the combustion gas flow passage, a plurality, the outer peripheral surface of the first cylindrical structure or said second cylindrical provided on the inner peripheral surface of the structure, the number of the plurality of the protrusions or spacers, said upstream portion is a hydrogen generating apparatus, characterized in that more than the downstream portion. 複数の前記突起またはスペーサの数は、前記第一の円筒状構造体や前記第二の円筒状構造体の単位面積あたりの数において、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部は下流部より多いことを特徴とする請求項1に記載の水素発生装置。 The number of the plurality of protrusions or spacers is the upstream portion of the flow of the combustion gas flowing through the combustion gas flow path in the number per unit area of the first cylindrical structure or the second cylindrical structure. The hydrogen generator according to claim 1, wherein there are more than the downstream part. 複数の前記突起またはスペーサの数は、前記第一の円筒状構造体や前記第二の円筒状構造体の周方向の数において、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部は下流部より多いことを特徴とする請求項1または2に記載の水素発生装置。 The number of the plurality of protrusions or spacers is the number in the circumferential direction of the first cylindrical structure or the second cylindrical structure, and the upstream portion of the flow of the combustion gas flowing through the combustion gas flow path is The hydrogen generator according to claim 1, wherein the hydrogen generator is more than the downstream portion. 複数の前記突起またはスペーサの数は、前記突起またはスペーサを前記第一の円筒状構造体と前記第二の円筒状構造体の中心軸に平行に前記燃焼ガス流路の一端から前記燃焼ガス流路の他端まで見た場合に、見える前記突起またはスペーサの数において、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部は下流部より多いことを特徴とする請求項1〜3のいずれか1項に記載の水素発生装置。 The number of the plurality of protrusions or spacers is such that the protrusions or spacers flow from one end of the combustion gas flow path in parallel to the central axes of the first cylindrical structure and the second cylindrical structure. The number of the protrusions or spacers that can be seen when viewed to the other end of the path, the upstream portion of the flow of the combustion gas flowing through the combustion gas flow path is more than the downstream portion. The hydrogen generator of any one of Claims. 前記突起またはスペーサの周方向の数や、前記突起またはスペーサを前記第一の円筒状構造体と前記第二の円筒状構造体の中心軸に平行に前記燃焼ガス流路の一端から前記燃焼ガ
ス流路の他端まで見た場合に見える前記突起またはスペーサの数が、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部では4個から10個あることを特徴とする請求項3または4に記載の水素発生装置。
The number of the projections or spacers in the circumferential direction, or the projections or spacers from one end of the combustion gas flow path parallel to the central axis of the first cylindrical structure and the second cylindrical structure It claims the number of said protrusions or spacers seen when viewed to the other end of the flow path, characterized in that said upstream portion of the flow of the combustion gas flowing through the combustion gas flow passage is 10 from 4 3 Or the hydrogen generator of 4.
それぞれ径が異なり中心軸が重なるように配置された多重の円筒状構造体と前記円筒状構造体を加熱するバーナを有し、前記多重の円筒状構造体のうち最も内側に位置する第一の円筒状構造体と前記第一の円筒状構造体の外側に位置する第二の円筒状構造体との間に前記バーナからの燃焼ガスが流れる燃焼ガス流路を形成し、前記第二の円筒状構造体と前記第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水蒸気と原料ガスとの混合ガスの供給により水蒸気改質反応を行い水素を含む改質ガスを生成する改質触媒層を備え、前記燃焼ガス流路を流れる前記燃焼ガスの流れ方向と、前記改質触媒層を流れる前記混合ガスと前記改質ガスとの流れる方向とが対向する円筒型の水素発生装置であって、前記燃焼ガス流路の間隔を維持するための突起またはスペーサを、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部と下流部とに、複数、前記第一の円筒状構造体の外周面または前記第二の円筒状構造体の内周面に備え、前記燃焼ガス流路の間隔の寸法から複数の前記突起またはスペーサの高さ寸法を引いた値が、前記上流部は前記下流部より小さいことを特徴とする水素発生装置。 A plurality of cylindrical structures each having a different diameter and arranged so that the central axes overlap with each other, and a burner for heating the cylindrical structures, and a first innermost one of the plurality of cylindrical structures. A combustion gas flow path through which combustion gas from the burner flows is formed between the cylindrical structure and the second cylindrical structure located outside the first cylindrical structure, and the second cylinder Between the cylindrical structure and the third cylindrical structure located outside the second cylindrical structure, a steam reforming reaction is performed by supplying a mixed gas of steam and a raw material gas to improve the hydrogen content. A reforming catalyst layer that generates a gaseous gas, and a flow direction of the combustion gas flowing through the combustion gas flow path is opposed to a flowing direction of the mixed gas and the reformed gas flowing through the reforming catalyst layer. A cylindrical hydrogen generator, wherein the interval between the combustion gas flow paths is The projections or spacers for lifting, in the upstream portion and the downstream portion of the flow of the combustion gas flowing through the combustion gas flow passage, a plurality, the outer peripheral surface of the first cylindrical structure or said second cylindrical provided on the inner peripheral surface of the structure, minus the plurality of height of the protrusions or spacers from the dimension of the interval of the combustion gas flow path, said upstream portion being smaller than said downstream portion of hydrogen Generator. 前記突起またはスペーサは、前記第一の円筒状構造体や前記第二の円筒状構造体を片側から押し付けて略円錐状に変形させたものであったり、長さの短い丸棒を前記燃焼ガス流路を流れる前記燃焼ガスの流れ方向に前記丸棒の長さ方向が向くように配置したものであることを特徴とする請求項1〜6のいずれか1項に記載の水素発生装置。 The protrusion or spacer is formed by pressing the first cylindrical structure or the second cylindrical structure from one side and deforming it into a substantially conical shape, or by using a short round bar as the combustion gas. The hydrogen generator according to any one of claims 1 to 6, wherein the hydrogen generator is arranged so that a length direction of the round bar faces a flow direction of the combustion gas flowing through the flow path. 前記第一の円筒状構造体の内側に前記バーナを有し、前記第二の円筒状構造体と前記第二の円筒状構造体の外側に位置する第三の円筒状構造体との間に、水の供給により前記水蒸気を生成して前記原料ガスとの前記混合ガスを生成する水蒸発部と、前記水蒸発部の下流側に前記水蒸発部から送出された前記混合ガスが流入する前記改質触媒層を備え、前記第三の円筒状構造体と前記第三の円筒状構造体の外側に位置する第四の円筒状構造体との間に前記改質触媒層を通過した前記改質ガスが流れる改質ガス流路を有し、前記燃焼ガス流路を流れる前記燃焼ガスの流れの下流部で、前記燃焼ガスの流れ方向と、前記水蒸発部を流れる前記原料ガスと前記水と前記水蒸気と前記混合ガスの流れる方向が対向し、前記燃焼ガス流路を流れる前記燃焼ガスの流れの上流部で、前記燃焼ガスの流れと前記改質触媒層を流れる前記混合ガスと前記改質ガスとの流れる方向とが対向し、前記改質触媒層を流れる前記原料ガスと前記水蒸気と前記改質ガスとの流れる方向と前記改質ガス流路を流れる前記改質ガスの流れる方向とが対向し、前記改質ガス流路を通過した前記改質ガス中のCOを低減するCO除去触媒層を備えたことを特徴とする請求項1〜7のいずれか1項に記載の水素発生装置。 The burner is provided inside the first cylindrical structure, and between the second cylindrical structure and a third cylindrical structure located outside the second cylindrical structure. the the water evaporation portion where the supply of water to generate the steam to generate the mixed gas of the raw material gas, the mixed gas sent from the water evaporation unit downstream of the water evaporation unit flows The reforming catalyst layer is provided, and the modified catalyst layer that has passed through the reforming catalyst layer is interposed between the third cylindrical structure and a fourth cylindrical structure located outside the third cylindrical structure. A reformed gas flow path through which a quality gas flows, and at a downstream portion of the flow of the combustion gas flowing through the combustion gas flow path, the flow direction of the combustion gas, the raw material gas flowing through the water evaporation section, and the water The combustion gas flowing in the combustion gas flow path in which the flow direction of the water vapor and the mixed gas oppose each other In the upstream portion of the flow of gas, the flow of the combustion gas and the flow direction of the mixed gas and the reformed gas flowing through the reforming catalyst layer are opposed to each other, and the raw material gas flowing through the reforming catalyst layer and the The direction in which the water vapor and the reformed gas flow and the direction in which the reformed gas flowing through the reformed gas flow path face each other to reduce CO in the reformed gas that has passed through the reformed gas flow path. The hydrogen generator according to any one of claims 1 to 7, further comprising a CO removal catalyst layer.
JP2010038354A 2010-02-24 2010-02-24 Hydrogen generator Expired - Fee Related JP5640395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038354A JP5640395B2 (en) 2010-02-24 2010-02-24 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038354A JP5640395B2 (en) 2010-02-24 2010-02-24 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2011173751A JP2011173751A (en) 2011-09-08
JP5640395B2 true JP5640395B2 (en) 2014-12-17

Family

ID=44686999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038354A Expired - Fee Related JP5640395B2 (en) 2010-02-24 2010-02-24 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP5640395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190025379A (en) * 2017-09-01 2019-03-11 엘지전자 주식회사 Fuel reforming divice

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876287B2 (en) * 2011-12-20 2016-03-02 アイシン精機株式会社 Fuel cell device
JP6046891B2 (en) * 2011-12-20 2016-12-21 アイシン精機株式会社 Fuel cell device
JP5876313B2 (en) * 2012-01-31 2016-03-02 アイシン精機株式会社 Fuel cell device
JP2014005171A (en) * 2012-06-25 2014-01-16 Panasonic Corp Fuel treatment device and manufacturing method therefor
CN102829477B (en) * 2012-09-24 2014-10-29 济南同智创新科技有限公司 Nozzle of hydrogen production reforming furnace
JP6101169B2 (en) * 2013-07-19 2017-03-22 本田技研工業株式会社 Fuel cell module
JP2016152075A (en) * 2015-02-16 2016-08-22 株式会社デンソー Fuel battery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190025379A (en) * 2017-09-01 2019-03-11 엘지전자 주식회사 Fuel reforming divice
KR102432197B1 (en) * 2017-09-01 2022-08-12 엘지전자 주식회사 Fuel reforming divice

Also Published As

Publication number Publication date
JP2011173751A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5640395B2 (en) Hydrogen generator
JP5181155B2 (en) Catalytic combustor and fuel reformer
JP2007278690A (en) Catalyst conduit for catalytic reactor of turbine combustor and combustion method of catalyzed hydrocarbon fuel
JP2015517175A (en) Catalytically heated fuel processor including a replaceable structured support for supporting a catalyst for a fuel cell
JP5044048B2 (en) Hydrogen generator
JP4979354B2 (en) Hydrogen generator and fuel cell system
JP2008063193A (en) Hydrogen generator and fuel cell system
JP5301419B2 (en) Multi-cylinder steam reformer for fuel cells
JPH06219705A (en) Fuel reformer
WO2013061580A1 (en) Hydrodesulfurization device, hydrogen generation device, and fuel cell system
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
JP5958721B2 (en) Fuel processor
JP2008166233A (en) Fuel cell
JP2017048079A (en) Hydrogen generator and fuel cell system using the same
JP2009062223A (en) Reforming apparatus
KR101880553B1 (en) Fuel Reformer With Enhanced Partial Load Efficiency
JP4542205B2 (en) Fuel processor
JP2011098840A (en) Hydrogen production apparatus for fuel cell
US9114986B2 (en) Mixing device for a fuel reformer, fuel reformer and method for converting hydrocarbon fuels into hydrogen rich gas
JP2016044085A (en) Hydrogen generator
JP2003286003A (en) Reformer
JP2002025597A (en) Reforming device for fuel cell and its operating method
JP2015189648A (en) fuel reformer
JP2015010012A (en) Fuel treatment device
KR101480085B1 (en) Fuel reformer having gas distributor for uniform gas flow formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

LAPS Cancellation because of no payment of annual fees