[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5536409B2 - Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member - Google Patents

Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member Download PDF

Info

Publication number
JP5536409B2
JP5536409B2 JP2009230338A JP2009230338A JP5536409B2 JP 5536409 B2 JP5536409 B2 JP 5536409B2 JP 2009230338 A JP2009230338 A JP 2009230338A JP 2009230338 A JP2009230338 A JP 2009230338A JP 5536409 B2 JP5536409 B2 JP 5536409B2
Authority
JP
Japan
Prior art keywords
sic
mold
metal
composite member
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009230338A
Other languages
Japanese (ja)
Other versions
JP2010106362A (en
Inventor
功 岩山
太一郎 西川
義幸 高木
美里 草刈
由弘 中井
利哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Sumitomo Electric Industries Ltd
Original Assignee
ALMT Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2013102794947A priority Critical patent/CN103394668A/en
Priority to EP09817522.7A priority patent/EP2332674B1/en
Priority to CN200980139128.3A priority patent/CN102170986B/en
Priority to JP2009230338A priority patent/JP5536409B2/en
Priority to PCT/JP2009/005132 priority patent/WO2010038483A1/en
Application filed by ALMT Corp, Sumitomo Electric Industries Ltd filed Critical ALMT Corp
Priority to US13/122,365 priority patent/US9028959B2/en
Publication of JP2010106362A publication Critical patent/JP2010106362A/en
Application granted granted Critical
Publication of JP5536409B2 publication Critical patent/JP5536409B2/en
Priority to US14/684,206 priority patent/US20150225635A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、マグネシウム(いわゆる純マグネシウム)又はマグネシウム合金とSiCとが複合された複合材料からなる基板を具える複合部材、及びその製造方法、上記複合部材からなる放熱部材、この放熱部材を具える半導体装置に関するものである。特に、めっきが施し易い複合部材に関するものである。   The present invention includes a composite member including a substrate made of a composite material in which magnesium (so-called pure magnesium) or a magnesium alloy and SiC are combined, a manufacturing method thereof, a heat radiating member including the composite member, and a heat radiating member. The present invention relates to a semiconductor device. In particular, the present invention relates to a composite member that can be easily plated.

半導体素子の放熱部材(ヒートスプレッダ)の構成材料として、Al-SiCといった複合材料が利用されている。近年、放熱部材の軽量化を主目的として、アルミニウム(Al)よりも軽量であるマグネシウム(Mg)やその合金を母材とする複合材料が検討されている(特許文献1参照)。   A composite material such as Al—SiC is used as a constituent material of a heat dissipation member (heat spreader) of a semiconductor element. In recent years, a composite material using magnesium (Mg) or its alloy as a base material, which is lighter than aluminum (Al), has been studied mainly for the purpose of reducing the weight of the heat dissipation member (see Patent Document 1).

半導体素子を十分に冷却する必要がある場合、放熱部材と半導体素子同士や、放熱部材と冷却装置同士を半田により接合することがある。しかし、複合材料は、半田の濡れ性がよくない。また、Mgやその合金は、Alよりも耐食性に劣る。そこで、複合材料からなる基板の一面(半導体素子を実装する実装面)、又は両面(実装面、及びこの実装面に対向し、冷却装置に接触する冷却面)にニッケル(Ni)などのめっきを施して、半田との濡れ性を高めたり、耐食性を高めたりする。   When it is necessary to sufficiently cool the semiconductor element, the heat radiating member and the semiconductor element or the heat radiating member and the cooling device may be joined together by solder. However, the composite material does not have good solder wettability. Mg and its alloys are inferior in corrosion resistance to Al. Therefore, plating such as nickel (Ni) is applied to one surface of the substrate made of a composite material (mounting surface for mounting semiconductor elements) or both surfaces (the mounting surface and the cooling surface facing this mounting surface and contacting the cooling device). To improve the wettability with the solder and the corrosion resistance.

特開2006-299304号公報JP 2006-299304 A

しかし、従来の複合材料は、Niなどのめっきを施し難い。   However, conventional composite materials are difficult to plate with Ni or the like.

複合材料の表面は、SiCが点在することで凹凸が多く、均一的にめっきすることが難しい。上記凹凸を均すために、複合材料に表面研磨を施したり、圧延を施したりすることが考えられるが、SiCが高硬度であることから、これらの処理も難しい。   The surface of the composite material has many irregularities due to the interspersed with SiC, and it is difficult to plate uniformly. In order to level the unevenness, it is conceivable to subject the composite material to surface polishing or rolling, but these treatments are also difficult because SiC has high hardness.

また、生産性を考慮すると電気めっきが好ましいが、複合材料の表面に存在するSiCは、電気絶縁性が高いことから導通を取れない。そのため、電気めっきが実質的に行えない。無電解めっきは可能であるが、上述のように表面の凹凸によって均一的にめっきを施すことが難しい上に、コストの増大を招く。   In consideration of productivity, electroplating is preferable. However, SiC existing on the surface of the composite material cannot conduct because of its high electrical insulation. Therefore, electroplating cannot be performed substantially. Although electroless plating is possible, as described above, it is difficult to uniformly perform plating due to surface irregularities, and the cost is increased.

そこで、本発明の目的の一つは、Mg-SiC複合材料を主たる構成材料とする複合部材であって、電気めっきが施し易い複合部材を提供することにある。また、本発明の別の目的は、上記複合部材の製造に適した複合部材の製造方法を提供することにある。更に、本発明の他の目的は、上記複合部材から構成された放熱部材、及びこの放熱部材を具える半導体装置を提供することにある。   Therefore, one of the objects of the present invention is to provide a composite member that is mainly composed of an Mg—SiC composite material and that is easily electroplated. Another object of the present invention is to provide a method for manufacturing a composite member suitable for manufacturing the composite member. Furthermore, the other object of this invention is to provide the heat radiating member comprised from the said composite member, and the semiconductor device provided with this heat radiating member.

本発明は、複合材料からなる基板の少なくとも一面に金属被覆層を具えることで、上記目的を達成する。本発明複合部材は、マグネシウム又はマグネシウム合金とSiCとが複合された複合材料からなる基板と、この基板の少なくとも一面を覆う金属被覆層とを具える。上記基板は、SiCを50体積%以上含有する。   The present invention achieves the above object by providing a metal coating layer on at least one surface of a substrate made of a composite material. The composite member of the present invention includes a substrate made of a composite material in which magnesium or a magnesium alloy and SiC are combined, and a metal coating layer covering at least one surface of the substrate. The substrate contains 50% by volume or more of SiC.

本発明複合部材によれば、複合材料からなる基板の一面が導電性を有する金属被覆層により覆われていることで、導通がとれるため、電気めっきを施すことができる。また、金属被覆層を具える基板の少なくとも一面は、SiCの存在による凹凸が低減され、均一的にめっきを施し易い。更に、均一的にめっきが施せることで、本発明複合部材は、半田との濡れ性を高められる上に、耐食性をも高められる。従って、本発明複合部材は、放熱部材に好適に利用できる。   According to the composite member of the present invention, since one surface of the substrate made of the composite material is covered with the conductive metal coating layer, electrical conduction can be obtained, so that electroplating can be performed. Further, at least one surface of the substrate provided with the metal coating layer is reduced in unevenness due to the presence of SiC, and can be easily plated uniformly. Furthermore, since the plating can be performed uniformly, the composite member of the present invention can improve the wettability with the solder and also the corrosion resistance. Therefore, this invention composite member can be utilized suitably for a heat radiating member.

上記本発明複合部材は、例えば、以下の本発明製造方法により製造することができる。本発明複合部材の製造方法は、鋳型に収納されているSiC集合体に、溶融したマグネシウム又はマグネシウム合金を溶浸させて、上記マグネシウム又はマグネシウム合金とSiCとを複合した複合材料からなる基板を具える複合部材を製造する方法である。特に、本発明製造方法では、上記鋳型と上記SiC集合体との間にSiCが充填されない非充填領域を設け、この非充填領域に金属を存在させ、この金属により、上記基板の少なくとも一面を覆う金属被覆層を形成する。以下、この製造方法を複合一体法と呼ぶ。   The composite member of the present invention can be manufactured, for example, by the following manufacturing method of the present invention. The method for producing a composite member of the present invention comprises a substrate made of a composite material in which the magnesium or magnesium alloy and SiC are combined by infiltrating molten magnesium or a magnesium alloy into a SiC aggregate housed in a mold. Is a method of manufacturing a composite member. In particular, in the manufacturing method of the present invention, an unfilled region that is not filled with SiC is provided between the mold and the SiC aggregate, a metal is present in the unfilled region, and at least one surface of the substrate is covered with the metal. A metal coating layer is formed. Hereinafter, this manufacturing method is referred to as a composite integrated method.

或いは、別の本発明製造方法として、以下の方法が挙げられる。本発明複合部材の製造方法は、鋳型に収納されているSiC集合体に、溶融したマグネシウム又はマグネシウム合金を溶浸させて、上記マグネシウム又はマグネシウム合金とSiCとを複合した複合材料からなる基板を具える複合部材を製造する方法である。特に、本発明製造方法では、上記基板に金属板を重ね、この積層物を300℃以上の温度に加熱しながら、0.5ton/cm2以上の圧力で加圧する金属被覆層形成工程を具える。以下、この製造方法をホットプレス法と呼ぶ。 Alternatively, another method of the present invention includes the following method. The method for producing a composite member of the present invention comprises a substrate made of a composite material in which the magnesium or magnesium alloy and SiC are combined by infiltrating molten magnesium or a magnesium alloy into a SiC aggregate housed in a mold. Is a method of manufacturing a composite member. In particular, the production method of the present invention includes a metal coating layer forming step in which a metal plate is stacked on the substrate, and the laminate is heated to a temperature of 300 ° C. or higher and pressurized with a pressure of 0.5 ton / cm 2 or higher. Hereinafter, this manufacturing method is called a hot press method.

以下、本発明をより詳細に説明する。
[基板]
<金属成分>
複合材料からなる基板中の金属成分は、99.8質量%以上のMg及び不純物からなるいわゆる純マグネシウム、又は添加元素と残部がMg及び不純物からなるマグネシウム合金のいずれでもよい。上記金属成分が純マグネシウムであると、上記金属成分が合金である場合と比較して、複合部材の熱伝導率を高められる。上記金属成分がマグネシウム合金であると、液相線温度が低下するため、溶融する際の温度を低下できる上に、複合部材の耐食性や機械的特性(強度)を高められる。添加元素は、Li,Ag,Ni,Ca,Al,Zn,Mn,Si,Cu,及びZrの少なくとも1種が挙げられる。これらの元素は、含有量が多くなると熱伝導率の低下を招くため、合計で20質量%以下(上記基板中の金属成分を100質量%とする。以下、添加元素の含有量について同様)が好ましい。特に、Alは3質量%以下、Znは5質量%以下、その他の元素はそれぞれ10質量%以下が好ましい。Liを添加すると、複合部材の軽量化、及び加工性向上の効果がある。公知のマグネシウム合金、例えば、AZ系,AS系,AM系,ZK系,ZC系,LA系などでもよい。所望の組成となるように上記金属成分の原料を用意する。
The present invention will be described in detail below.
[substrate]
<Metal component>
The metal component in the substrate made of the composite material may be either so-called pure magnesium composed of 99.8% by mass or more of Mg and impurities, or a magnesium alloy composed of additive elements and the balance Mg and impurities. When the metal component is pure magnesium, the thermal conductivity of the composite member can be increased as compared with the case where the metal component is an alloy. When the metal component is a magnesium alloy, the liquidus temperature is lowered, so that the temperature at the time of melting can be lowered, and the corrosion resistance and mechanical properties (strength) of the composite member can be improved. Examples of the additive element include at least one of Li, Ag, Ni, Ca, Al, Zn, Mn, Si, Cu, and Zr. Since these elements cause a decrease in thermal conductivity when the content increases, the total amount is 20% by mass or less (the metal component in the substrate is 100% by mass. The same applies to the content of additive elements). preferable. In particular, Al is preferably 3% by mass or less, Zn is 5% by mass or less, and other elements are each preferably 10% by mass or less. Addition of Li has the effect of reducing the weight of the composite member and improving the workability. Known magnesium alloys such as AZ, AS, AM, ZK, ZC, and LA may be used. A raw material for the metal component is prepared so as to have a desired composition.

<SiC>
《形状、大きさ》
原料として、粒子状や繊維状のSiC粉末や、SiC粉末を焼結した焼結材、SiC粉末を成形した粉末成形体が利用できる。複合材料中に存在するSiCは、原料に用いたSiCの形状を概ね維持して存在する。SiC粉末を利用すると、各SiCの粒が概ね離散的に分散して存在し、焼結材を利用すると、SiCの粒同士が接した箇所(以下、この箇所をネットワーク部と呼ぶ)が存在することがある。特に、原料に粉末を用いると、流動性に優れるため、(1)鋳型や成形型に対する充填率を高め易く、SiC含有量が高い複合材料を形成できる、(2)鋳型や成形型に充填し易く、複合材料の生産性がよい、(3)複雑な形状の鋳型にも充填でき、複雑な形状の複合材料を簡便に作製できる、(4)形成した複合材料に放電加工や塑性加工を施し易く、加工性に優れる、といった効果が得られる。また、平均粒径が異なる複数種のSiC粉末を組み合わせて用いると、充填率を更に高め易い。一方、特に、焼結材を用いると、(1)SiC粉末を利用した場合よりもSiCの含有量が高い複合材料を得易い、(2)鋳型に容易に配置することができる、(3)高熱伝導率であるSiCのネットワーク部を具えることで、熱伝導性が高い複合材料を得易い、(4)低熱膨張係数であるSiCのネットワーク部を具えることで、熱膨張係数が小さい複合材料を得易い、といった効果が得られる。
<SiC>
《Shape and size》
As raw materials, particulate or fibrous SiC powder, a sintered material obtained by sintering SiC powder, or a powder molded body obtained by molding SiC powder can be used. The SiC present in the composite material exists while maintaining the shape of the SiC used as the raw material. When SiC powder is used, each SiC grain exists in a discrete manner, and when using a sintered material, there are places where the SiC grains are in contact (hereinafter referred to as the network part). Sometimes. In particular, when powder is used as a raw material, it is excellent in fluidity, so (1) it is easy to increase the filling rate for the mold and mold, and a composite material with a high SiC content can be formed. (2) Filling the mold and mold It is easy and the productivity of the composite material is good. (3) It is possible to fill a mold with a complicated shape, and it is possible to easily produce a composite material with a complicated shape. (4) The formed composite material is subjected to electric discharge machining or plastic working. The effect that it is easy and is excellent in workability is acquired. Further, when a plurality of types of SiC powders having different average particle diameters are used in combination, the filling rate can be further increased. On the other hand, particularly when using a sintered material, (1) it is easier to obtain a composite material having a higher SiC content than when using SiC powder, (2) it can be easily placed in a mold, (3) It is easy to obtain a composite material with high thermal conductivity by providing an SiC network part with high thermal conductivity. ( 4 ) By having an SiC network part with a low thermal expansion coefficient, a composite with a low thermal expansion coefficient. The effect that it is easy to obtain the material is obtained.

複合材料の原料とするSiC粒の平均粒径(繊維状の場合、平均短径)が1μm以上3000μm以下であると、金属成分中にSiC粒を均一的に分散させた状態に存在させ易かったり、成形体を形成し易い。特に、10μm以上200μm以下が好ましい。複合材料からなる基板中のSiCの形状や大きさは、例えば、当該基板の断面を光学顕微鏡や走査型電子顕微鏡(SEM)で観察することで確認することができる。   If the average particle size of SiC particles used as the raw material of the composite material (average short diameter in the case of a fiber) is 1 μm or more and 3000 μm or less, the SiC particles may be easily present in a uniformly dispersed state in the metal component. It is easy to form a molded body. In particular, the thickness is preferably 10 μm or more and 200 μm or less. The shape and size of SiC in a substrate made of a composite material can be confirmed, for example, by observing a cross section of the substrate with an optical microscope or a scanning electron microscope (SEM).

《含有量》
上記複合材料からなる基板中のSiCの含有量は、基板を100体積%とするとき、50体積%以上とする。基板中のSiCの含有量が多いと熱伝導率が高まる上、熱膨張係数(線熱膨張係数)αが小さくなり、半導体素子(4〜7ppm/K程度(例えば、Si:4.2ppm/K、GaAs:6.5ppm/K))やその周辺部品(金属パッケージやAlN(4.5ppm/K)、Al2O3(6.5ppm/K)などのセラミクスのパッケージ)の熱膨張係数に整合し易い。上記範囲でSiCを含有する基板は、熱特性に優れ、熱伝導率が180W/m・K以上、かつ熱膨張係数が4×10-6〜10×10-6/K(4〜10ppm/K)である。上述のように原料のSiCが基板中に概ねそのままSiCとして存在することから、基板中のSiCの含有量は、原料のSiC量に実質的に等しい。従って、基板が所望の熱特性となるように、原料のSiC量を調整するとよい。特に、SiCの含有量が70体積%以上、更に80体積%以上であると、熱膨張係数が4ppm/Kに近くなるため、半導体素子などの熱膨張係数に整合し易く好ましい。
"Content"
The content of SiC in the substrate made of the composite material is 50% by volume or more when the substrate is 100% by volume. When the SiC content in the substrate is large, the thermal conductivity increases, and the thermal expansion coefficient (linear thermal expansion coefficient) α decreases, and the semiconductor element (about 4-7 ppm / K (e.g., Si: 4.2 ppm / K, GaAs: 6.5 ppm / K)) and its peripheral parts (metal packages, ceramic packages such as AlN (4.5 ppm / K), Al 2 O 3 (6.5 ppm / K)), and the like. A substrate containing SiC in the above range has excellent thermal characteristics, a thermal conductivity of 180 W / mK or more, and a thermal expansion coefficient of 4 × 10 −6 to 10 × 10 −6 / K (4 to 10 ppm / K). ). As described above, since the raw material SiC is almost directly present in the substrate as SiC, the content of SiC in the substrate is substantially equal to the raw material SiC amount. Therefore, it is preferable to adjust the SiC amount of the raw material so that the substrate has desired thermal characteristics. In particular, when the SiC content is 70% by volume or more, and further 80% by volume or more, the thermal expansion coefficient is close to 4 ppm / K, which is preferable because it easily matches the thermal expansion coefficient of a semiconductor element or the like.

<金属被覆層>
《組成、組織》
本発明複合部材の最も特徴とするところは、上記基板の少なくとも一面に金属被覆層を具えることにある。金属被覆層の主機能は、Niなどの電気めっきを行うときの下地であるため、金属被覆層を構成する金属は、電気めっきに必要な導通が取れる程度の導電率を有する金属であればよく、上記複合材料からなる基板の金属成分(Mg又はMg合金)と同一組成でもよいし、異なる組成でもよい。特に、金属被覆層が純マグネシウムで構成される場合、Mgのヤング率が低いため、金属被覆層の厚さが厚くなっても、複合部材全体の熱膨張係数が変化し難いことから、低熱膨張係数の複合部材を得易い。
<Metal coating layer>
<Composition, organization>
The most characteristic feature of the composite member of the present invention is that a metal coating layer is provided on at least one surface of the substrate. Since the main function of the metal coating layer is a base for performing electroplating of Ni or the like, the metal constituting the metal coating layer may be any metal that has a conductivity sufficient to provide electrical conduction necessary for electroplating. The composition may be the same as or different from the metal component (Mg or Mg alloy) of the substrate made of the composite material. In particular, when the metal coating layer is composed of pure magnesium, the Young's modulus of Mg is low, so even if the thickness of the metal coating layer is thick, the thermal expansion coefficient of the entire composite member is unlikely to change. It is easy to obtain a composite member with a coefficient.

基板の金属成分と金属被覆層を構成する金属とが同一組成である場合、複合部材の製造工程において溶融した金属(Mg又はMg合金)とSiCとを複合化するときに、上記溶融した金属の一部を金属被覆層の形成に利用することで、基板の金属成分と金属被覆層を構成する金属とが連続する組織(鋳造組織)からなる複合部材とすることができる。   When the metal component of the substrate and the metal constituting the metal coating layer have the same composition, when the molten metal (Mg or Mg alloy) and SiC are combined in the manufacturing process of the composite member, By using a part for forming the metal coating layer, a composite member composed of a structure (cast structure) in which the metal component of the substrate and the metal constituting the metal coating layer are continuous can be obtained.

基板の金属成分と金属被覆層を構成する金属とが異なる組成である場合、金属成分と金属被覆層の構成金属とは、異なるMg合金でもよいし、金属被覆層の構成金属がMg及びMg合金以外の金属、例えば、アルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)、亜鉛(Zn)、ニッケル(Ni)、及びこれらの合金でもよい。特に、金属被覆層の構成金属は、純度が99%以上のMg,Al,Cu,Ni、及びMg,Al,Cu,Niを主成分とする合金(Mg,Al,Cu,Niを50質量%超含有する合金、以下同様)からなる群から選択される1種の金属が好ましい。上記金属は、基板の金属成分であるMgやMg合金の固相線温度と近いことで当該金属成分との密着性に優れたり、耐食性に優れることで、複合材料からなる基板の腐食を抑制できるといった効果を有する。   When the metal component of the substrate and the metal constituting the metal coating layer have different compositions, the metal component and the metal constituting the metal coating layer may be different Mg alloys, or the metal constituting the metal coating layer may be composed of Mg and Mg alloys. Other metals such as aluminum (Al), copper (Cu), silver (Ag), gold (Au), zinc (Zn), nickel (Ni), and alloys thereof may be used. In particular, the constituent metal of the metal coating layer is Mg, Al, Cu, Ni having a purity of 99% or more and an alloy containing Mg, Al, Cu, Ni as a main component (Mg, Al, Cu, Ni is 50% by mass) One metal selected from the group consisting of super-containing alloys, the same applies hereinafter) is preferred. The above metal is close to the solidus temperature of Mg or Mg alloy, which is a metal component of the substrate, so that it has excellent adhesion to the metal component, and excellent corrosion resistance, thereby suppressing corrosion of the substrate made of a composite material. It has such an effect.

《形成箇所》
金属被覆層は、複合材料からなる基板の一部の面、少なくともめっきが必要とされる面に存在していればよい。具体的には、少なくとも半導体素子が実装される実装面に金属被覆層を具えていればよい。その他、実装面と対向し、冷却装置に接触する冷却面にもめっきが必要な場合、実装面及び冷却面の双方に金属被覆層を具える。即ち、二層の金属被覆層を有する形態としてもよい。基板の側面(端面)は、通常、めっきが不要であるが、この側面を含む全面に金属被覆層を具えると、表面の凹凸を低減して、外観を良好にしたり、全面にめっきを施すことで、耐食性を高めたりすることができる。
<Formation point>
The metal coating layer should just exist in the one part surface of the board | substrate which consists of composite materials, and the surface which needs plating at least. Specifically, it is only necessary to provide a metal coating layer on at least a mounting surface on which a semiconductor element is mounted. In addition, when the cooling surface facing the mounting surface and contacting the cooling device also needs to be plated, a metal coating layer is provided on both the mounting surface and the cooling surface. That is, it is good also as a form which has two metal coating layers. The side surface (end surface) of the substrate usually does not need to be plated, but if the entire surface including this side surface is provided with a metal coating layer, the surface irregularities are reduced, the appearance is improved, or the entire surface is plated. Therefore, corrosion resistance can be improved.

《厚さ》
金属被覆層は、厚過ぎると、複合部材の熱伝導率の低下、熱膨張率の増加を招く。そのため、各金属被覆層の厚さは、2.5mm以下、更に1mm以下、とりわけ0.5mm以下が好ましい。上述のように基板の対向する二面のそれぞれに金属被覆層を具える場合、二層の金属被覆層の厚さの総和が2.5mm以下であれば、特にネットワーク部を有する場合に、基板と金属被覆層とを具える複合部材全体の熱膨張係数を8ppm/K以下とし易い。また、上記二層の金属被覆層の厚さの総和が0.5mm以下であれば、特にSiCが分散した形態である場合でも、基板と金属被覆層とを具える複合部材全体の熱膨張係数を8ppm/K以下とし易い。更に、各金属被覆層の厚さは、1μm以上、とりわけ0.05mm(50μm)以上0.1mm(100μm)以下であれば、めっきの下地としての機能を十分に果たす上に、複合部材の搬送時や実装時などで金属被覆層を破損し難いと考えられる。金属被覆層を厚く形成して、研磨などにより所望の厚さにしてもよい。この場合、外観に優れる複合部材が得られる。なお、金属被覆層を具える複合部材の熱膨張係数は、当該複合部材から試験片を作製して、市販の装置により測定すると簡単に求められる。上記複合部材を構成する各材料の剛性などを考慮して複合則により算出してもよい。
"thickness"
If the metal coating layer is too thick, the thermal conductivity of the composite member is lowered and the coefficient of thermal expansion is increased. Therefore, the thickness of each metal coating layer is preferably 2.5 mm or less, more preferably 1 mm or less, and particularly preferably 0.5 mm or less. When the metal coating layer is provided on each of the two opposing surfaces of the substrate as described above, if the total thickness of the two metal coating layers is 2.5 mm or less, particularly when the network portion is included, The overall coefficient of thermal expansion of the composite member including the metal coating layer is easily set to 8 ppm / K or less. Further, if the total thickness of the two metal coating layers is 0.5 mm or less, the coefficient of thermal expansion of the entire composite member including the substrate and the metal coating layer can be obtained even when SiC is dispersed. It is easy to make it 8ppm / K or less. In addition, if the thickness of each metal coating layer is 1 μm or more, particularly 0.05 mm (50 μm) or more and 0.1 mm (100 μm) or less, the metal coating layer can sufficiently function as a base for plating, and at the time of conveying a composite member The metal coating layer is unlikely to be damaged during mounting. A thick metal coating layer may be formed to have a desired thickness by polishing or the like. In this case, a composite member having excellent appearance can be obtained. The thermal expansion coefficient of a composite member having a metal coating layer can be easily obtained by preparing a test piece from the composite member and measuring it with a commercially available device. The calculation may be performed according to a composite law in consideration of the rigidity of each material constituting the composite member.

<用途>
上記複合部材により構成された放熱部材は、半導体素子の放熱部材に好適に利用することができる。特に、この放熱部材は、金属被覆層を具えることで電気めっきを容易に施せる上に、表面性状にも優れて商品価値が高い。また、上記放熱部材と、この放熱部材に搭載される半導体素子とを具える半導体装置は、各種の電子機器の部品に好適に利用することができる。
<Application>
The heat radiating member comprised by the said composite member can be utilized suitably for the heat radiating member of a semiconductor element. In particular, the heat dissipating member has a metal coating layer and can be easily electroplated, and has excellent surface properties and high commercial value. Moreover, the semiconductor device provided with the said heat radiating member and the semiconductor element mounted in this heat radiating member can be utilized suitably for the components of various electronic devices.

[製造方法]
本発明製造方法は、基本工程として、複合材料からなる基板を製造する工程、即ち、鋳型にSiC集合体を準備する工程→SiC集合体に溶融したMg又はMg合金(以下、溶融Mgと呼ぶことがある)を溶浸させて、溶融MgとSiCとを複合する工程→得られた複合物を冷却して金属成分(溶融Mg)を凝固させる工程を具える。鋳型は、所望の形状の複合部材形成箇所を具えるものを利用する。複合部材形成箇所と基板の金属成分となるMg又はMg合金(以下、母材金属と呼ぶことがある)の載置箇所とを一体に具える鋳型を用い、この鋳型を加熱することで母材金属を溶融してもよい。そして、本発明製造方法のうち、上記の複合一体法では、特に、鋳型(複合部材形成箇所)とSiC集合体との間に、SiCが充填されない非充填領域を設け、この非充填領域に存在させた金属により、基板の少なくとも一面に金属被覆層を形成する。
[Production method]
In the production method of the present invention, as a basic step, a step of producing a substrate made of a composite material, that is, a step of preparing a SiC aggregate in a mold → Mg or Mg alloy melted in the SiC aggregate (hereinafter referred to as molten Mg). And the step of compounding molten Mg and SiC → cooling the obtained composite to solidify the metal component (molten Mg). A mold having a composite member forming portion having a desired shape is used. By using a mold that integrally includes a composite member forming portion and a mounting location of Mg or Mg alloy (hereinafter sometimes referred to as a base metal) that is a metal component of the substrate, the base material is heated by heating the mold. The metal may be melted. Among the production methods of the present invention, in the above-mentioned composite integrated method, in particular, an unfilled region not filled with SiC is provided between the mold (composite member forming portion) and the SiC aggregate, and the non-filled region exists. A metal coating layer is formed on at least one surface of the substrate with the applied metal.

鋳型に準備するSiC集合体は、SiCを一纏まりにしたものとする。具体的には、ハンドリングが困難なもの、例えば、タッピングなどにより型にSiC粉末を充填しただけのものや、ハンドリング可能な程度の強度をもつ成形体が挙げられる。成形体の詳細は、後述する。   It is assumed that the SiC aggregate prepared for the mold is a group of SiC. Specific examples include those that are difficult to handle, such as those in which the mold is simply filled with SiC powder by tapping or the like, and molded articles that have a strength that allows handling. Details of the molded body will be described later.

非充填領域に存在させる金属は、溶融した母材金属(溶融Mg)、又は、別途用意した金属板が挙げられる。前者母材金属の場合、得られた複合部材は、金属被覆層の構成金属と基板の金属成分とが同一組成及び同一組織で構成される。後者金属板の場合、得られた複合部材は、金属被覆層の構成金属と基板の金属成分とが異なる組成や組織で構成される。   Examples of the metal to be present in the unfilled region include a molten base metal (molten Mg) or a separately prepared metal plate. In the case of the former base metal, in the obtained composite member, the constituent metal of the metal coating layer and the metal component of the substrate have the same composition and the same structure. In the case of the latter metal plate, the obtained composite member is comprised by the composition and structure | tissue from which the metal component of a metal coating layer and the metal component of a board | substrate differ.

前者母材金属の場合、非充填領域に溶融した母材金属(溶融Mg)を存在させて、金属被覆層を形成する方法として、以下の(1)〜(3)の方法が挙げられる。   In the case of the former base metal, the following methods (1) to (3) can be mentioned as a method for forming a metal coating layer by causing a molten base metal (molten Mg) to exist in an unfilled region.

(1) SiC粉末を用いて、鋳型の容積よりも小さい成形体を形成する(この成形体をSiC集合体とする)。この成形体を鋳型に配置して、鋳型と成形体との間に隙間を設ける(この隙間を非充填領域とする)。そして、成形体と溶融Mgとを複合化する際、上記隙間にも溶融Mgを流し込む。この隙間に流れ込む上記溶融したMg又はMg合金により金属被覆層を形成する。   (1) Using SiC powder, a compact smaller than the volume of the mold is formed (this compact is referred to as a SiC aggregate). This molded body is placed in a mold, and a gap is provided between the mold and the molded body (this gap is defined as an unfilled region). When the compact and the molten Mg are combined, the molten Mg is also poured into the gap. A metal coating layer is formed by the molten Mg or Mg alloy flowing into the gap.

(2) 鋳型の複合部材形成箇所にスペーサを配置する(このスペーサを非充填領域とする)。スペーサを配置した上記複合部材形成箇所に上記SiC集合体を配置した後、上記スペーサを加熱して気化することで除去する。このスペーサの除去により、鋳型(複合部材形成箇所)とSiC集合体との間に隙間を生じさせる。そして、SiC集合体と溶融Mgとを複合化する際、上記隙間(スペーサが存在した空間)にも溶融Mgを流し込む。この隙間に流れ込む上記溶融したMg又はMg合金により金属被覆層を形成する。   (2) A spacer is arranged at the position where the composite member is formed on the mold (this spacer is used as a non-filling region). After the SiC aggregate is disposed at the composite member forming portion where the spacer is disposed, the spacer is removed by heating and vaporizing. By removing this spacer, a gap is formed between the mold (composite member forming portion) and the SiC aggregate. Then, when the SiC aggregate and molten Mg are combined, molten Mg is also poured into the gap (space where the spacer exists). A metal coating layer is formed by the molten Mg or Mg alloy flowing into the gap.

或いは、(2’)スペーサを気化、昇華などにより除去しない形態とすることができる。この場合、SiC集合体として上記成形体を利用することが好ましい。具体的には、本発明製造方法の一形態として、例えば、以下が挙げられる。   Alternatively, the (2 ′) spacer can be removed without being removed by vaporization or sublimation. In this case, it is preferable to use the molded body as the SiC aggregate. Specifically, the following is mentioned as one form of this invention manufacturing method, for example.

SiC粉末を用いて、上記鋳型の容積よりも小さい成形体を形成し、この成形体を上記SiC集合体とし、上記鋳型の複合部材形成箇所に上記成形体を配置すると共に、当該成形体と上記鋳型との間に隙間が維持されるようにスペーサを配置して、この隙間を上記非充填領域とし、上記金属被覆層は、上記隙間に流れ込む上記溶融したMg又はMg合金により形成する。   Using SiC powder, a molded body smaller than the volume of the mold is formed, the molded body is used as the SiC aggregate, and the molded body is disposed at the composite member forming portion of the mold, and the molded body and the above-mentioned A spacer is arranged so that a gap is maintained between the mold and the gap, and the gap is used as the unfilled region. The metal coating layer is formed of the molten Mg or Mg alloy flowing into the gap.

上記形態では、スペーサと金属被覆層とが一体化された複合部材が得られる。スペーサをそのまま残しておき、スペーサを具える複合部材としてもよいし、スペーサ部分を切削などの機械加工により除去した複合部材としてもよい。スペーサを残存させる場合、除去工程が不要であり、製造性に優れる。上記形態では、金属被覆層の形成時にスペーサが存在するため、上記隙間を確実に維持して、金属被覆層を安定して形成することができる。スペーサの構成材料は、耐熱性に優れ、Mg又はMg合金の溶湯により除去されない材質、代表的には気化し難かったり、昇華し難かったり、溶解し難い材質、例えば、カーボン、その他、Fe、ステンレス鋼(SUS)、Nb、Ta、Moといった金属材料などが挙げられる。ステンレス鋼は、任意の規格のものが使用できるが、上記溶湯の純度を維持することができ、熱伝導率を高める目的から、Niを含有しない規格、例えば、SUS430などがより好ましい。スペーサの大きさ及び形状は、金属被覆層の厚さなどを考慮して適宜選択することができる。例えば、板状体や線状体(ワイヤ)が挙げられる。線状体を利用する場合、形成する金属被覆層よりも若干細径の線状体を用意し、この線状体により成形体を鋳型に固定するなどして成形体と鋳型との間に隙間を設けてもよい。この場合、線状体の大部分が金属被覆層に埋設され、線状体を残存させていても、良好な外観の複合部材が得られる。   In the said form, the composite member with which the spacer and the metal coating layer were integrated is obtained. The spacer may be left as it is, and it may be a composite member having the spacer, or a composite member in which the spacer portion is removed by machining such as cutting. When the spacer is left, a removal process is unnecessary and the productivity is excellent. In the said form, since a spacer exists at the time of formation of a metal coating layer, the said clearance gap can be maintained reliably and a metal coating layer can be formed stably. The spacer material is excellent in heat resistance and is not removed by molten Mg or Mg alloy. Typically, it is difficult to vaporize, sublimate, or difficult to melt, such as carbon, Fe, stainless steel, etc. Examples thereof include metal materials such as steel (SUS), Nb, Ta, and Mo. As the stainless steel, any standard can be used, but a standard not containing Ni, such as SUS430, is more preferable for the purpose of maintaining the purity of the molten metal and increasing the thermal conductivity. The size and shape of the spacer can be appropriately selected in consideration of the thickness of the metal coating layer and the like. For example, a plate-shaped body and a linear body (wire) are mentioned. When using a linear body, prepare a linear body that is slightly smaller in diameter than the metal coating layer to be formed, and fix the molded body to the mold with this linear body. May be provided. In this case, even if most of the linear body is embedded in the metal coating layer and the linear body remains, a composite member having a good appearance can be obtained.

(3) 鋳型(特に、複合部材形成箇所)として、SiC集合体との接触面と、SiCよりも熱膨張係数が大きい材料からなる熱膨張部とを具えるものを用いる。この鋳型に上記SiC集合体を配置し、このSiC集合体に上記溶融したMg又はMg合金を溶浸させるときの熱により上記熱膨張部を膨張させる。この熱膨張により、鋳型の接触面とSiC集合体との間に隙間を生じさせる(この隙間を非充填領域とする)。そして、この隙間に流れ込む上記溶融したMg又はMg合金により金属被覆層を形成する。   (3) As the mold (particularly, the location where the composite member is formed), a mold having a contact surface with the SiC aggregate and a thermal expansion portion made of a material having a larger thermal expansion coefficient than SiC is used. The SiC aggregate is disposed in the mold, and the thermal expansion portion is expanded by heat generated when the molten Mg or Mg alloy is infiltrated into the SiC aggregate. By this thermal expansion, a gap is generated between the contact surface of the mold and the SiC aggregate (this gap is defined as an unfilled region). Then, a metal coating layer is formed by the molten Mg or Mg alloy flowing into the gap.

上記(1)、(2’)の手法において成形体は、例えば、スリップキャスティングによる粉末成形体、加圧成形による粉末成形体、上記いずれかの粉末成形体を更に焼結した焼結材、タッピングなどの方法で型に充填したSiCを焼結した焼結材、その他、市販の焼結材などが利用できる。   In the above methods (1) and (2 ′), the molded body is, for example, a powder molded body by slip casting, a powder molded body by pressure molding, a sintered material obtained by further sintering any of the above powder molded bodies, and a tapping. For example, a sintered material obtained by sintering SiC filled in a mold by the above method, or a commercially available sintered material can be used.

スリップキャスティングでは、SiC粉末と水とを用いてスラリーを作製し、このスラリーを成形後、乾燥させることで粉末成形体を形成することができる。スラリーの流動性を高めるために分散剤を加えてもよい。分散剤には、一般的な界面活性剤が利用できる。   In slip casting, a powder compact can be formed by preparing a slurry using SiC powder and water, molding the slurry, and drying the slurry. A dispersant may be added to increase the fluidity of the slurry. A general surfactant can be used as the dispersant.

上記加圧成形では、粉末成形に利用されているバインダをSiCに適宜混合して加圧成形することで、より強固な粉末成形体を形成することができる。加圧成形時の圧力(成型圧)は、適宜調整するとよい。   In the above pressure molding, a stronger powder molded body can be formed by appropriately mixing a binder used for powder molding with SiC and performing pressure molding. The pressure during molding (molding pressure) may be adjusted as appropriate.

焼結材は、上記粉末成形体よりも強度が高く、鋳型に収納する際などで欠けなどが生じることを防止し易い。焼結の条件は、加熱温度:800℃〜2400℃、保持時間:2時間程度が挙げられる。保持温度は、加熱温度に応じて適宜調節するとよい。加熱温度が800℃〜1800℃の範囲では、SiC粒の表面の酸化物層などを介してSiC粒同士を結合させて、ネットワーク部を形成することができる。加熱温度が1800℃超〜2400℃の範囲では、SiC粒同士を直接結合させて、ネットワーク部を形成することができる。SiC粒同士を直接結合させた場合、焼結材の強度がより高くなる。また、SiC粒同士が結合した原料、特に直接結合した原料を用いると、複合材料中のSiCの含有量を高め易い上に、低熱膨張係数の骨組みを具えることで、熱膨張係数が更に小さい基板を作製することができる。また、高熱伝導率であるSiCのネットワーク部を介して、効率よく熱を伝えられるため、熱伝導性が更に高い基板を形成することができる。   The sintered material has a higher strength than the above-mentioned powder compact, and it is easy to prevent chipping and the like when it is stored in a mold. The sintering conditions include a heating temperature of 800 ° C. to 2400 ° C. and a holding time of about 2 hours. The holding temperature may be appropriately adjusted according to the heating temperature. When the heating temperature is in the range of 800 ° C. to 1800 ° C., the network part can be formed by bonding the SiC grains through an oxide layer on the surface of the SiC grains. When the heating temperature is in the range of over 1800 ° C. to 2400 ° C., the SiC grains can be directly bonded to form a network part. When the SiC grains are directly bonded, the strength of the sintered material becomes higher. In addition, using raw materials in which SiC grains are bonded together, especially raw materials that are directly bonded, it is easy to increase the SiC content in the composite material, and the thermal expansion coefficient is further reduced by providing a framework with a low thermal expansion coefficient. A substrate can be produced. In addition, since heat can be efficiently transmitted through the SiC network portion having high thermal conductivity, a substrate having higher thermal conductivity can be formed.

その他、SiC集合体は、鋳型(複合部材形成箇所)にSiC粉末を直接充填することでも作製することができる。代表的には、一定の振動を加える(タッピングする)ことで鋳型にSiC粉末を充填してSiC集合体を形成できる。タッピングによるSiC集合体は、上述した各種の成形体と比較して強度が低いため、鋳型に直接形成することが好ましい。上記(2),(3)の手法では、SiC集合体として、上述した各種の成形体や上記SiC粉末によるもののいずれを用いてもよい。   In addition, the SiC aggregate can also be produced by directly filling the mold (composite member forming portion) with SiC powder. Typically, by applying a certain vibration (tapping), the SiC powder can be filled in the mold to form a SiC aggregate. Since the SiC aggregate by tapping has a lower strength than the above-mentioned various molded bodies, it is preferably formed directly on the mold. In the above methods (2) and (3), any of the above-described various molded bodies and those made of the SiC powder may be used as the SiC aggregate.

また、原料に用いるSiC粉末として、その表面に酸化物層を有する被覆SiCを用いてSiC集合体を形成すると、酸化物層と上記溶融Mgとが十分に接触することで、SiCの周囲に溶融Mgが回り込み易くなり、気孔率が低い複合材料を形成することができる。具体的には、上記製造方法の一工程として、原料のSiCを700℃以上に加熱して、その表面に、上記原料のSiCに対する質量割合が0.4%以上1.5%以下を満たす酸化物層を具える被覆SiCを形成する酸化工程を具えることが挙げられる。上記被覆SiCにより形成されたSiC集合体を利用することで気孔率が3体積%未満という緻密な基板が得られ、この基板は、熱特性といった特性のばらつきが少なく、種々の特性を均一的に具えることができる。なお、焼結材を利用する場合、焼結後に上記酸化工程を追加してもよいし、焼結時の加熱により上記酸化物層を形成してもよい。   In addition, when a SiC aggregate is formed using coated SiC having an oxide layer on its surface as the SiC powder used as a raw material, the oxide layer and the molten Mg are sufficiently in contact with each other, thereby melting around the SiC. Mg can easily wrap around, and a composite material having a low porosity can be formed. Specifically, as one step of the manufacturing method, the raw material SiC is heated to 700 ° C. or higher, and an oxide layer is provided on the surface so that the mass ratio of the raw material to SiC is 0.4% to 1.5%. Providing an oxidation step to form a coated SiC. A dense substrate with a porosity of less than 3% by volume is obtained by using the SiC aggregate formed by the above-mentioned coated SiC, and this substrate has little variation in characteristics such as thermal characteristics, and various characteristics can be uniformly achieved. Can be prepared. In addition, when using a sintered material, the said oxidation process may be added after sintering and the said oxide layer may be formed by the heating at the time of sintering.

(2)の手法においてスペーサは、ナフタレン(昇華温度:218℃)やドライアイス(同:-78.5℃)、アントラセン(同:342℃)といった昇華性のある物質であると、スペーサの液化によるSiC集合体の変形を防止できる上に、鋳型に残留物(煤など)が残存し難く好ましい。   In the method (2), if the spacer is a sublimable substance such as naphthalene (sublimation temperature: 218 ° C), dry ice (same as -78.5 ° C), anthracene (same as 342 ° C), SiC due to liquefaction of the spacer In addition to preventing deformation of the aggregate, it is preferable that residues (such as wrinkles) hardly remain in the mold.

また、上記スペーサが複合材料の金属成分となるMg又はMg合金の液相線温度(融点)以下で気化する物質から構成されている場合、スペーサの融点以上上記Mg又はMg合金の固相線温度以下に鋳型を加熱することで、この加熱により鋳型に配置された上記スペーサを除去することができる。更に、この場合、上記鋳型の金属載置箇所に上記Mg又はMg合金を配置して、上記SiC集合体、上記スペーサ、及び上記Mg又はMg合金が配置された鋳型を上記Mg又はMg合金の固相線温度(融点)以上に加熱することで上記Mg又はMg合金を溶融して、上記鋳型の複合部材形成箇所に配置されたSiC集合体に溶浸させると共に、この加熱をスペーサの気化及び除去に利用することができる。この場合、一つの加熱工程で、上記Mg又はMg合金の溶融とスペーサの除去とを行えるため、スペーサを除去するための加熱工程を別途設ける必要がなく、複合部材の製造性に優れる。一方、スペーサを除去するための加熱工程を別途設けると、スペーサを確実に除去することができ、残存などの恐れが無い。また、スペーサの構成材料の融点や沸点を考慮せずにスペーサを選択できるため、スペーサの選択の自由度が高まる。   In addition, when the spacer is made of a material that vaporizes at or below the liquidus temperature (melting point) of Mg or Mg alloy that is a metal component of the composite material, the solidus temperature of the Mg or Mg alloy above the melting point of the spacer By heating the mold below, the spacer disposed on the mold can be removed by this heating. Further, in this case, the Mg or Mg alloy is disposed at the metal placement position of the mold, and the mold in which the SiC aggregate, the spacer, and the Mg or Mg alloy is disposed is fixed to the Mg or Mg alloy. The Mg or Mg alloy is melted by heating above the phase line temperature (melting point) and infiltrated into the SiC aggregate disposed at the composite member forming portion of the mold, and this heating is vaporized and removed from the spacer. Can be used. In this case, since the Mg or Mg alloy can be melted and the spacers can be removed in one heating step, there is no need to provide a separate heating step for removing the spacers, and the productivity of the composite member is excellent. On the other hand, if a separate heating step for removing the spacers is provided, the spacers can be reliably removed and there is no fear of remaining. Further, since the spacer can be selected without considering the melting point and boiling point of the constituent material of the spacer, the degree of freedom in selecting the spacer is increased.

上記スペーサは、基板の一面に所望の大きさ及び厚さの金属被覆層が形成できるように、大きさ及び厚さを調整する。このようなスペーサを利用することで、均一的な厚さの金属被覆層を形成し易く、所望の寸法の複合部材を精度よく製造できる。基板の両面に金属被覆層が形成されるように上記スペーサを配置させてもよい。   The spacer is adjusted in size and thickness so that a metal coating layer having a desired size and thickness can be formed on one surface of the substrate. By using such a spacer, it is easy to form a metal coating layer having a uniform thickness, and a composite member having a desired dimension can be accurately manufactured. The spacers may be arranged so that the metal coating layer is formed on both surfaces of the substrate.

なお、上記スペーサの除去後、鋳型に過度に振動を与えなければ、上述したタッピングによるSiC集合体であっても、崩れない程度に保形されて自立することができ、スペーサが存在した空間に生じた隙間を十分維持することができる。   In addition, after removing the spacer, if the mold is not excessively vibrated, even the SiC aggregate by the above-described tapping can be retained and retained to the extent that it does not collapse, and in the space where the spacer existed The generated gap can be sufficiently maintained.

(3)の手法において鋳型は、分割片を組み合わせて構成されるものとし、鋳型本体を構成する各分割片を熱膨張係数αが小さい材料(例えば、カーボン(α:3.0〜4.8ppm/K程度))で構成し、分割片を連結するネジやボルトといった連結部材をSiC(α:3.0〜6ppm/K程度)よりも熱膨張係数αが大きい材料、例えば、ステンレス鋼で構成したものが利用できる。熱膨張係数αが大きい連結部材を用いる場合、連結部材の膨張によって鋳型が破損しないように、ボルトやネジ、鋳型に設けるネジ穴などの一部を切削してもよい。このように熱膨張係数が異なる部材を利用することにより、SiC集合体に溶融したMg又はMg合金(溶融Mg)を溶浸するにあたり鋳型自体を加熱したり、溶融Mgに鋳型が接触したりした場合、熱膨張係数が小さい鋳型本体は熱膨張し難く、熱膨張部となる連結部材が膨張することで、分割片間に僅かな隙間を形成することができる。また、鋳型本体が熱によって変形し難い(伸縮量が少ない)ことから、所望の大きさの複合部材を精度よく形成することができる。   In the method of (3), the mold is configured by combining divided pieces, and each divided piece constituting the mold body is made of a material having a small thermal expansion coefficient α (for example, carbon (α: about 3.0 to 4.8 ppm / K). )), And connecting members such as screws and bolts connecting the split pieces can be made of a material having a thermal expansion coefficient α larger than SiC (α: about 3.0 to 6 ppm / K), for example, stainless steel. . When a connecting member having a large thermal expansion coefficient α is used, a part of a bolt, a screw, a screw hole provided in the mold, or the like may be cut so that the mold is not damaged by expansion of the connecting member. By using members having different coefficients of thermal expansion in this way, the mold itself was heated to infiltrate the molten Mg or Mg alloy (molten Mg) into the SiC aggregate, or the mold was in contact with the molten Mg. In this case, the mold main body having a small coefficient of thermal expansion is unlikely to thermally expand, and the connecting member serving as the thermal expansion portion expands, so that a slight gap can be formed between the divided pieces. Further, since the mold body is not easily deformed by heat (the amount of expansion and contraction is small), a composite member having a desired size can be formed with high accuracy.

例えば、SiC集合体(プリフォーム)の熱膨張係数をαS(ppm/K)、厚さをtS(mm)とし、鋳型(分割片)の熱膨張係数をαM(ppm/K)、鋳型の分割片を連結するネジの熱膨張係数をαN(ppm/K)、ネジのうち鋳型(分割片)に埋没している部分の長さをtN(mm)、母材金属(ここではマグネシウム)の融点を650℃、鋳型を加熱する前の室温を25℃とする。このとき、SiC集合体に溶融Mgを溶浸させると共に金属被覆層を形成すると、上記分割片間の隙間に形成される金属被覆層の大よその厚さtf(μm)は、以下の式(1)で表される。
tf=(650−25)×(αN×tN−αM(tN-tS)−αS×tS)×10-3(μm) …式(1)
例えば、αS=3(ppm/K)、tS=4.5(mm)、αM=4(ppm/K)、αN=17.3(ppm/K)、tN=10(mm)とすると、上記式(1)より、金属被覆層の厚さtfはtf=85(μm)と求められる。
For example, the thermal expansion coefficient of the SiC aggregate (preform) is α S (ppm / K), the thickness is t S (mm), and the thermal expansion coefficient of the mold (divided piece) is α M (ppm / K), Α N (ppm / K) is the thermal expansion coefficient of the screw that connects the divided pieces of the mold, t N (mm) is the length of the screw embedded in the mold (split piece), and the base metal (here In this case, the melting point of magnesium) is 650 ° C., and the room temperature before heating the mold is 25 ° C. At this time, when molten Mg is infiltrated into the SiC aggregate and a metal coating layer is formed, the approximate thickness t f (μm) of the metal coating layer formed in the gap between the divided pieces is expressed by the following equation: It is represented by (1).
t f = (650−25) × (α N × t N −α M (t N -t S ) −α S × t S ) × 10 -3 (μm) ... Equation (1)
For example, if α S = 3 (ppm / K), t S = 4.5 (mm), α M = 4 (ppm / K), α N = 17.3 (ppm / K), t N = 10 (mm), From the above formula (1), the thickness t f of the metal coating layer is obtained as t f = 85 (μm).

金属被覆層が所望の厚さとなるように、即ち、所望の隙間が形成されるように、基板の金属成分の組成やSiCの含有量、鋳型の材質、基板の厚さなどを考慮して、熱膨張部の材質、埋設長さを選択するとよい。例えば、4.5mm×100mm×200mm程度の大きさの基板に1μm〜100μm程度の金属被覆層を形成する場合、熱膨張部となる連結部材の構成材料は、SiCとの熱膨張係数の差が1ppm/K以上、確実性を考慮すると好ましくは3ppm/K以上のものが好適に利用することができる。   Considering the composition of the metal component of the substrate, the content of SiC, the material of the mold, the thickness of the substrate, etc., so that the metal coating layer has a desired thickness, that is, a desired gap is formed, The material of the thermal expansion part and the embedment length may be selected. For example, when a metal coating layer of about 1 μm to 100 μm is formed on a substrate having a size of about 4.5 mm × 100 mm × 200 mm, the constituent material of the connecting member that becomes the thermal expansion part has a difference in thermal expansion coefficient of 1 ppm from SiC. In consideration of certainty, more than 3 ppm / K can be preferably used.

非充填領域に存在させる金属として金属板を利用する場合、以下のようにして金属被覆層を形成することができる。まず、鋳型に金属板を配置する(この金属板を非充填領域とする)。そして、上記金属板を配置した鋳型に上記SiC集合体を配置し、このSiC集合体と溶融したMg又はMg合金とを複合化する際、この溶融したMg又はMg合金によってSiC集合体に金属板を接合することで、金属被覆層を形成する。金属板は、所望の組成、所望の大きさ及び厚さのものを適宜用意するとよい。金属板と基板との密着性をより高めるために、金属板における基板との接合面に、金属板の構成金属よりも固相線温度(融点)が低い低融点層を設けてもよい。金属板を用いた場合、基板の金属成分と金属被覆層の構成金属とを異なる組成としたり、表面が滑らかな金属被覆層を容易に形成することができる。この形態において上記SiC集合体は、上述した各種の成形体でも、SiC粉末によるものでもいずれも利用することができる。   When a metal plate is used as the metal to be present in the unfilled region, the metal coating layer can be formed as follows. First, a metal plate is placed on a mold (this metal plate is used as an unfilled region). Then, when the SiC aggregate is arranged in a mold on which the metal plate is arranged, and the SiC aggregate and molten Mg or Mg alloy are combined, the molten Mg or Mg alloy is used to form a metal plate on the SiC aggregate. Are joined to form a metal coating layer. A metal plate having a desired composition, a desired size and thickness may be appropriately prepared. In order to further improve the adhesion between the metal plate and the substrate, a low melting point layer having a solidus temperature (melting point) lower than that of the constituent metal of the metal plate may be provided on the joint surface of the metal plate with the substrate. When a metal plate is used, the metal component of the substrate and the constituent metal of the metal coating layer can have different compositions, or a metal coating layer having a smooth surface can be easily formed. In this embodiment, the SiC aggregate may be any of the above-described various molded bodies or those using SiC powder.

その他、本発明複合部材は、別途、基板を作製した後、金属被覆層を形成する金属板を接合することでも製造することができる。例えば、上述した本発明製造方法のうち、ホットプレス法を利用することができる。この形態では、複合材料からなる基板を別途作製することができるため、鋳型にスペーサや金属板を配置したり、特別な構成の鋳型を利用することなく、基本的な工程により基板を作製することができ、基板の製造性に優れる。また、ホットプレス法は、(1)Mgの融点以下の温度で実施できるため、金属被覆層の構成材料の選択の幅が広く、複合材料からなる基板の金属成分と金属被覆層の構成金属とが異種の金属である複合部材を簡単に形成することができる、(2)金属板は、塑性変形により上記基板の表面形状に沿って変形し、密着して接合されるため、上記基板と金属被覆層との接合強度に優れる、(3)金属板が塑性変形することで、上記基板に表面欠陥(外引け巣など)があっても金属被覆層を形成できる上に、上記欠陥を塞ぐことができ、表面性状に優れる複合部材が得られる、(4)上記基板中に気孔があっても、加圧により押し潰すことで低減でき、気孔が少ないことで複合部材の熱特性を向上できる、(5)ロウ付けのような介在物(ロウ)が不要であるため、熱伝導性に優れる複合部材が得られる、(6)厚さが薄い金属板を接合可能であり、薄い金属被覆層を具える複合部材が得られる上に、金属被覆層が薄いことで、金属被覆層を含めた複合部材全体の熱膨張係数を小さく抑えられる、といった種々の利点を有する。なお、基板の製造にあたり、上述した各種のSiCの成形体を利用してもよいし、SiC粉末を金型に直接充填させてもよい。   In addition, the composite member of the present invention can be produced by separately preparing a substrate and then joining a metal plate for forming a metal coating layer. For example, a hot press method can be utilized among the manufacturing methods of the present invention described above. In this embodiment, since a substrate made of a composite material can be separately produced, a substrate can be produced by a basic process without using spacers or metal plates in the mold or using a specially constructed mold. And is excellent in substrate manufacturability. In addition, since the hot pressing method can be performed at a temperature below the melting point of (1) Mg, there is a wide range of selection of the constituent material of the metal coating layer, and the metal component of the substrate made of the composite material and the constituent metal of the metal coating layer It is possible to easily form a composite member that is a different kind of metal. (2) Since the metal plate is deformed along the surface shape of the substrate by plastic deformation and is closely bonded, the metal is bonded to the substrate and the metal. Excellent bonding strength with the coating layer. (3) The metal plate is plastically deformed, so that the metal coating layer can be formed even if there is a surface defect (such as an outer shrinkage nest) on the substrate, and the defect is blocked. (4) Even if there are pores in the substrate, it can be reduced by crushing under pressure, and the thermal properties of the composite member can be improved by having fewer pores. (5) Since inclusions (brazing) such as brazing are not necessary, (6) It is possible to join a thin metal plate, and a composite member having a thin metal coating layer can be obtained. Further, it has various advantages such that the thermal expansion coefficient of the entire composite member can be kept small. In manufacturing the substrate, the above-described various SiC molded bodies may be used, or SiC powder may be directly filled in the mold.

上記基板と金属板との積層物の加熱温度や加圧圧力は、基板の金属成分の組成や、金属板の組成などにより適宜選択することができる。加熱温度が300℃未満及び加圧圧力が0.5ton/cm2未満では、上記積層物を十分に接合することが難しい。上記加熱温度が高いほど、また、上記加圧圧力が高いほど、接合性に優れる傾向にある。上記加熱温度が500℃以上であれば、加圧圧力が小さめでも十分に接合することができる。但し、加熱温度が高過ぎると、基板中の金属成分や金属板が溶解して基板や金属板が変形したり、加圧金型の隙間から流出したりするため、加熱温度は、基板の金属成分や金属板の固相線温度(融点)以下が好ましい。加圧圧力が高過ぎると、SiCの割れが発生するため、加圧圧力は、9ton/cm2以下程度が好ましい。また、加圧圧力が5ton/cm2超であると加圧金型の劣化が速まるため、加圧金型の寿命を考慮すると、加圧圧力は、5ton/cm2以下がより好ましいと考えられる。 The heating temperature and pressure of the laminate of the substrate and the metal plate can be appropriately selected depending on the composition of the metal component of the substrate, the composition of the metal plate, and the like. When the heating temperature is less than 300 ° C. and the pressing pressure is less than 0.5 ton / cm 2 , it is difficult to sufficiently bond the laminate. The higher the heating temperature and the higher the pressurizing pressure, the better the bondability. When the heating temperature is 500 ° C. or higher, sufficient bonding can be achieved even with a small applied pressure. However, if the heating temperature is too high, the metal components and the metal plate in the substrate melt and the substrate and the metal plate are deformed or flow out of the gap between the pressurizing molds. It is preferably below the solidus temperature (melting point) of the component or metal plate. If the pressurizing pressure is too high, SiC cracks occur, and the pressurizing pressure is preferably about 9 ton / cm 2 or less. In addition, when the pressurization pressure is over 5 ton / cm 2 , the pressurization mold deteriorates more rapidly. Therefore, considering the life of the pressurization mold, it is considered that the pressurization pressure is more preferably 5 ton / cm 2 or less. .

上記ホットプレスを行うにあたり、接合雰囲気が不活性雰囲気であると、金属板や基板の表面に酸化膜が生成されることを抑制でき、接合雰囲気が大気である場合と比較して、加熱温度や加圧圧力をより低くして接合することができる。不活性雰囲気は、例えば、Ar雰囲気、He雰囲気、N2雰囲気、真空雰囲気が挙げられる。大気雰囲気の場合、十分に加熱、加圧することで接合可能であり、不活性雰囲気の場合よりも設備を簡略化することができる。 In performing the hot press, when the bonding atmosphere is an inert atmosphere, it is possible to suppress the formation of an oxide film on the surface of the metal plate or the substrate, and compared with the case where the bonding atmosphere is air, the heating temperature and Bonding can be performed at a lower pressure. Examples of the inert atmosphere include Ar atmosphere, He atmosphere, N 2 atmosphere, and vacuum atmosphere. In the case of an air atmosphere, bonding can be performed by sufficiently heating and pressurizing, and the equipment can be simplified as compared with the case of an inert atmosphere.

上記金属板が純度が99%以上のMg,Al、及びMg,Alを主成分とする合金からなる群から選択される1種の金属から構成される場合、加熱温度を300℃以上とすると、上記積層物を十分に接合することができる。特に、大気雰囲気下では、加熱温度は400℃以上が好ましく、加熱温度:400℃以上500℃未満のとき、加圧圧力:5ton/cm2以上、加熱温度:500℃以上のとき、加圧圧力:0.5ton/cm2以上が好ましい。不活性雰囲気下では、加熱温度:300℃以上500℃未満のとき、加圧圧力:3ton/cm2以上、加熱温度:500℃以上のとき、加圧圧力:0.5ton/cm2以上が好ましい。 When the metal plate is composed of Mg, Al having a purity of 99% or more and one kind of metal selected from the group consisting of alloys containing Mg, Al as a main component, when the heating temperature is 300 ° C. or higher, The said laminated body can fully be joined. In particular, in an air atmosphere, the heating temperature is preferably 400 ° C. or higher. When the heating temperature is 400 ° C. or higher and lower than 500 ° C., the pressing pressure is 5 ton / cm 2 or higher, and the heating temperature is 500 ° C. or higher. : 0.5 ton / cm 2 or more is preferable. In an inert atmosphere, when the heating temperature is 300 ° C. or more and less than 500 ° C., the pressing pressure is 3 ton / cm 2 or more, and when the heating temperature is 500 ° C. or more, the pressing pressure is preferably 0.5 ton / cm 2 or more.

上記金属板が純度が99%以上のCu,Ni、及びCu,Niを主成分とする合金からなる群から選択される1種の金属から構成される場合、加熱温度を500℃以上とすると、上記積層物を十分に接合することができる。特に、大気雰囲気下では、加熱温度は600℃以上が好ましく、加熱温度:600℃以上645℃未満のとき、加圧圧力:3ton/cm2以上、加熱温度:645℃以上のとき、加圧圧力:0.5ton/cm2以上が好ましい。不活性雰囲気下では、加熱温度:500℃以上のとき、加圧圧力:0.5ton/cm2以上が好ましい。 When the metal plate is composed of Cu, Ni having a purity of 99% or more and one kind of metal selected from the group consisting of alloys containing Cu and Ni as a main component, when the heating temperature is 500 ° C. or more, The said laminated body can fully be joined. In particular, in an air atmosphere, the heating temperature is preferably 600 ° C. or higher. When the heating temperature is 600 ° C. or higher and lower than 645 ° C., the pressurizing pressure is 3 ton / cm 2 or higher, and the heating temperature is 645 ° C. or higher. : 0.5 ton / cm 2 or more is preferable. In an inert atmosphere, when the heating temperature is 500 ° C. or higher, the pressurizing pressure is preferably 0.5 ton / cm 2 or higher.

更に、ホットプレス法を行う場合、複合材料からなる基板の側面を適宜拘束しておくことで、基板の変形を抑えられ、寸法精度に特に優れる複合部材を生産することができる。また、ホットプレス法に利用する上下のパンチ面を適宜な曲面(凸面、凹面)とすることで、上記基板に所定の反りを付与することができる。   Furthermore, when performing the hot press method, by suitably restraining the side surface of the substrate made of the composite material, it is possible to produce a composite member that can suppress deformation of the substrate and that is particularly excellent in dimensional accuracy. Further, by making the upper and lower punch surfaces used for the hot press method appropriate curved surfaces (convex surfaces, concave surfaces), a predetermined warp can be imparted to the substrate.

上記ホットプレス法の他、複合材料からなる基板に金属板を接合する方法として、例えば、ロウ付け、超音波接合、鋳ぐるみ、圧延(クラッド圧延)、酸化物ソルダー法、無機接着剤による接合の少なくとも1つの手法が利用できる。   In addition to the above hot press method, as a method of bonding a metal plate to a substrate made of a composite material, for example, brazing, ultrasonic bonding, cast-in, rolling (clad rolling), oxide solder method, bonding with an inorganic adhesive, At least one approach can be used.

その他、上記製造方法の一工程として、上記基板、又は上記金属被覆層を具える複合部材を300℃以上、当該基板の金属成分及び金属被覆層の構成金属の固相線温度(融点)未満の温度に加熱しながら、1ton/cm2以上の圧力で加圧する圧縮処理工程を具えることが挙げられる。このようなホットプレスを基板や複合部材に施すことで、基板中の気孔を低減して、気孔率が低い緻密な基板や複合部材とすることができ、上述のように熱特性などの特性のばらつきを低減することができる。加熱温度及び加圧圧力は、高いほど気孔率を低減し易く、加熱温度は、600℃以上がより好ましく、加熱温度が高ければ、加圧圧力が小さめでも十分に気孔を低減することができる。 In addition, as one step of the manufacturing method, the substrate or the composite member comprising the metal coating layer is 300 ° C. or higher, the metal component of the substrate and the solidus temperature (melting point) of the constituent metal of the metal coating layer. It may be provided with a compression treatment step of pressurizing at a pressure of 1 ton / cm 2 or more while heating to a temperature. By applying such a hot press to the substrate or the composite member, pores in the substrate can be reduced, and a dense substrate or composite member having a low porosity can be obtained. Variations can be reduced. The higher the heating temperature and the pressurizing pressure, the easier it is to reduce the porosity. The heating temperature is more preferably 600 ° C. or higher. If the heating temperature is high, the pores can be sufficiently reduced even if the pressurizing pressure is small.

本発明複合部材及び本発明放熱部材は、金属被覆層を具えることで、電気めっきによりめっきを施すことができる。本発明複合部材の製造方法は、上記複合部材を製造することができる。本発明半導体装置は、上記本発明複合部材にめっきを施すことで半田との濡れ性に優れ、当該放熱部材と半導体素子とを十分に接合できる。   The composite member of the present invention and the heat radiating member of the present invention can be plated by electroplating by providing a metal coating layer. The manufacturing method of the composite member of the present invention can manufacture the composite member. The semiconductor device of the present invention is excellent in wettability with solder by plating the composite member of the present invention, and can sufficiently bond the heat radiating member and the semiconductor element.

図1は、試験例1で作製した複合部材の顕微鏡写真(100倍)である。FIG. 1 is a micrograph (100 ×) of the composite member produced in Test Example 1. 図2は、試験例1で用いた鋳型の概略構成図であり、図2(A)は、分解斜視図、図2(B)は、正面図である。2 is a schematic configuration diagram of a mold used in Test Example 1, FIG. 2 (A) is an exploded perspective view, and FIG. 2 (B) is a front view. 図3は、試験例1で用いた鋳型にSiC集合体及び基板の金属成分となる金属を配置した状態を説明する説明図である。FIG. 3 is an explanatory view for explaining a state in which the SiC aggregate and the metal as the metal component of the substrate are arranged in the mold used in Test Example 1.

(試験例1)
特定の材質からなる鋳型を用いて、複合部材を作製した。ここでは、原料として、99.8質量%以上のMg及び不純物からなる純マグネシウムのインゴット、及び粒子状のSiC粉末(粒径10〜170μm、平均粒径:120μm)を用意した。原料はいずれも市販のものを用いた。
(Test Example 1)
A composite member was produced using a mold made of a specific material. Here, pure magnesium ingot composed of Mg and impurities of 99.8% by mass or more and particulate SiC powder (particle size: 10 to 170 μm, average particle size: 120 μm) were prepared as raw materials. All the raw materials used were commercially available.

鋳型として、図2に示すように本体部11と蓋部12とを具え、ネジ13により両部11,12が一体化されるものを利用した。なお、図2(A)では、鋳型の内部構造を説明する便宜上、本体部の左右方向の寸法を誇張して示す。鋳型10は、有底の角筒体であり、矩形板状の蓋部12を本体部11に固定した状態において一面側が開口している。本体部11の内部は、階段状の空間を有しており、開口部からの深さが浅い空間が金属載置箇所であり、開口部からの深さが深い空間が複合部材形成箇所である。金属載置箇所において底面11bに平行な一面(金属載置面11m)に、基板の金属成分となるインゴットM(図3参照)を配置する。複合部材形成箇所は、底面11bに平行な一面(SiC載置面11s)と、両面11m,11sとを連結する連結面11cと、蓋部12の内側面12iとで囲まれる空間である(厚さt(ts):4.5mm、幅w:100mm、長さl(深さ方向の大きさ):200mm)。この複合部材形成空間にSiCの粉末を充填して、SiC集合体S(図3参照)を形成する。本体部11及び蓋部12は、カーボン製である(αM=4(ppm/K))。ネジ13は、SUS304製(熱膨張係数αN:17.3ppm/K)であり、長さ:15mmのうち、10mmが鋳型に埋没している(tN=10(mm))。 As the mold, as shown in FIG. 2, a mold having a main body part 11 and a lid part 12 and in which both parts 11 and 12 are integrated by a screw 13 was used. In FIG. 2A, for the sake of convenience in explaining the internal structure of the mold, the horizontal dimension of the main body is exaggerated. The mold 10 is a rectangular tube with a bottom, and one surface side is open in a state where the rectangular plate-shaped lid 12 is fixed to the main body 11. The interior of the main body 11 has a stepped space, a space where the depth from the opening is shallow is a metal placement location, and a space where the depth from the opening is deep is a composite member formation location . An ingot M (see FIG. 3) serving as a metal component of the substrate is arranged on one surface (metal placement surface 11m) parallel to the bottom surface 11b at the metal placement location. The composite member formation location is a space surrounded by one surface (SiC placement surface 11s) parallel to the bottom surface 11b, a connecting surface 11c that connects both surfaces 11m and 11s, and an inner surface 12i of the lid 12 (thickness). T (t s ): 4.5 mm, width w: 100 mm, length l (size in the depth direction): 200 mm). This composite member forming space is filled with SiC powder to form SiC aggregate S (see FIG. 3). The main body 11 and the lid 12 are made of carbon (α M = 4 (ppm / K)). The screw 13 is made of SUS304 (thermal expansion coefficient α N : 17.3 ppm / K), and 10 mm of the length: 15 mm is buried in the mold (t N = 10 (mm)).

本体部11に蓋部12をネジ13により固定して鋳型10を組み立て、複合部材形成空間に、タッピングしてSiC粉末を充填し、SiC集合体(αS=3(ppm/K))を作製した。次に、金属載置面11mに純マグネシウムのインゴットMを配置して、鋳型10を上記金属の融点以上に加熱して(ここでは875℃)、上記金属(純マグネシウム)を溶融した。溶融は、Ar雰囲気で大気圧で行った。この加熱により、熱膨張係数がSiCよりも大きいネジ13が本体部11及び蓋部12よりも膨張することで、SiC集合体と鋳型10(蓋部12の内側面12i)との間に僅かな隙間が生じ、この隙間に溶融した金属(純マグネシウム)が流れ込む。上記加熱状態を2時間保持してSiC集合体と上記溶融した純マグネシウムとを複合化した後、Ar雰囲気下で冷却を行った(ここでは水冷)。 The lid 12 is fixed to the main body 11 with screws 13 to assemble the mold 10, and the composite member forming space is tapped and filled with SiC powder to produce a SiC aggregate (α S = 3 (ppm / K)). did. Next, a pure magnesium ingot M was placed on the metal placement surface 11m, and the mold 10 was heated to the melting point of the metal or higher (here, 875 ° C.) to melt the metal (pure magnesium). Melting was performed at atmospheric pressure in an Ar atmosphere. Due to this heating, the screw 13 having a thermal expansion coefficient larger than that of SiC expands more than the main body 11 and the lid 12, so that there is a slight amount between the SiC aggregate and the mold 10 (the inner surface 12 i of the lid 12). A gap is formed, and molten metal (pure magnesium) flows into this gap. The above heated state was maintained for 2 hours to combine the SiC aggregate and the molten pure magnesium, and then cooled in an Ar atmosphere (water cooling here).

図1は、得られた複合部材の断面顕微鏡写真(100倍)である。図1において下方側の色の濃い領域は背景、上方側の色の薄い領域が複合部材である。複合部材中において、粒状のものがSiC、SiCの粒が存在する領域が基板、SiCの粒が存在しない領域が金属被覆層である。上記工程により、図1に示すように、純マグネシウムを母材とし、この母材中にSiCの粒が分散した基板(SiCの含有量:65体積%)の一面に、純マグネシウムからなる金属被覆層を具える複合部材が得られた。SiCの含有量は、複合部材の任意の断面を光学顕微鏡(50倍)で観察し、この観察像を市販の画像解析装置で画像処理して、この断面中のSiCの合計面積を求め、この合計面積を体積割合に換算した値をこの断面に基づく体積割合とし、n=3の断面の体積割合を求め、これらの平均値とした。   FIG. 1 is a cross-sectional micrograph (100 ×) of the obtained composite member. In FIG. 1, the darker region on the lower side is the background, and the lighter region on the upper side is the composite member. In the composite member, the granular material is SiC, the region where the SiC particles are present is the substrate, and the region where the SiC particles are not present is the metal coating layer. Through the above process, as shown in FIG. 1, pure magnesium is used as a base material, and a metal coating made of pure magnesium is provided on one surface of a substrate (SiC content: 65% by volume) in which SiC grains are dispersed. A composite member comprising a layer was obtained. The SiC content is determined by observing an arbitrary cross section of the composite member with an optical microscope (50 times), and processing this observation image with a commercially available image analyzer to obtain the total area of SiC in the cross section. A value obtained by converting the total area into a volume ratio was defined as a volume ratio based on this cross section, and a volume ratio of the cross section of n = 3 was obtained and averaged.

得られた複合部材の表面を確認したところ、金属被覆層を具える一面側は、金属被覆層を具えていない他面側と比較して凹凸が少なく、表面が滑らかであった。また、得られた複合部材において基板の母材(金属成分)と金属被覆層を構成する金属とは、連続する組織からなることが分かる。なお、上記母材及び金属被覆層の構成金属の組成をEDX装置により調べたところ、同一組成(純マグネシウム)であった。また、金属被覆層の厚さを断面写真により調べたところ、平均で約90μmであり、基板の一面に均一的に金属被覆層が形成されていた。この金属被覆層の厚さは、上述した式(1)で算出した結果とほぼ一致していた。また、得られた複合部材の熱伝導率及び熱膨張係数を市販の測定器により測定したところ、208W/m・K、8ppm/Kであった。なお、形成した金属被覆層を除去して複合材料からなる部分の熱伝導率及び熱膨張係数を同様にして測定したところ、210W/m・K、7.8ppm/Kであった。   When the surface of the obtained composite member was confirmed, the one surface side provided with the metal coating layer had less unevenness than the other surface side not provided with the metal coating layer, and the surface was smooth. Further, it can be seen that the base material (metal component) of the substrate and the metal constituting the metal coating layer in the obtained composite member are composed of a continuous structure. When the composition of the constituent metals of the base material and the metal coating layer was examined by an EDX apparatus, the same composition (pure magnesium) was obtained. Further, when the thickness of the metal coating layer was examined by a cross-sectional photograph, the average was about 90 μm, and the metal coating layer was uniformly formed on one surface of the substrate. The thickness of the metal coating layer almost coincided with the result calculated by the above formula (1). Further, the thermal conductivity and thermal expansion coefficient of the obtained composite member were measured by a commercially available measuring instrument, and were 208 W / m · K and 8 ppm / K. When the formed metal coating layer was removed and the thermal conductivity and thermal expansion coefficient of the portion made of the composite material were measured in the same manner, they were 210 W / m · K and 7.8 ppm / K.

上記複合部材に対して、電気めっきによりNiめっきを施したところ、金属被覆層の上に均一的なNiめっきを形成することができた。また、Niめっきを具える複合部材と、Niめっきを施していない複合部材に対して、耐食性及び半田との濡れ性を調べたところ、Niめっきを具える複合部材の方が、耐食性及び半田との濡れ性に優れていた。   When Ni plating was applied to the composite member by electroplating, uniform Ni plating could be formed on the metal coating layer. Moreover, when the corrosion resistance and the wettability with the solder were investigated for the composite member having Ni plating and the composite member not having Ni plating, the composite member having Ni plating was more resistant to corrosion and solder. Excellent wettability.

なお、鋳型の加熱温度は、インゴットが溶融し、かつ沸騰しない温度、具体的には650℃以上1000℃以下が好ましい。また、得られた複合部材や基板にホットプレス(加熱温度:300℃以上、好ましくは600℃以上、加圧圧力:1ton/cm2以上)などを施して、気孔の低減を行ってもよい。更に、原料のSiCを700℃以上に加熱して原料のSiCに対する質量割合が0.4%以上1.5%以下を満たす酸化物層が形成された被覆SiCを利用してSiC集合体を形成し、SiCと溶融した金属(ここでは純マグネシウム)との濡れ性を高めてもよい。ここで述べた、鋳型の加熱温度、複合部材や基板へのホットプレス、被覆SiCを利用することは、以降の試験例についても適用することができる。 The heating temperature of the mold is preferably a temperature at which the ingot melts and does not boil, specifically 650 ° C. or more and 1000 ° C. or less. The obtained composite member or substrate may be subjected to hot pressing (heating temperature: 300 ° C. or higher, preferably 600 ° C. or higher, pressure applied pressure: 1 ton / cm 2 or higher) to reduce pores. Furthermore, the SiC of the raw material is heated to 700 ° C. or higher to form a SiC aggregate using the coated SiC in which the oxide layer satisfying the mass ratio of 0.4% to 1.5% with respect to the raw SiC is formed. You may improve wettability with the molten metal (here pure magnesium). The use of the heating temperature of the mold, the hot pressing of the composite member or the substrate, and the coated SiC described here can be applied to the following test examples.

また、上記試験では、SiC粉末を利用したが、後述する試験例のようにSiCの成形体を利用してもよい。更に、上記試験では、基板の一面に金属被覆層を具える例を説明したが、基板の対向する二面に金属被覆層を具える構成としてもよい。この場合、鋳型の本体部を更に二分割して、連結板を具える分割片と、SiC搭載面を具える分割片とを作製し、蓋部、及び両分割片をネジにて一体にするとよい。   Moreover, in the said test, although SiC powder was utilized, you may utilize the molded object of SiC like the test example mentioned later. Furthermore, in the above test, the example in which the metal coating layer is provided on one surface of the substrate has been described. In this case, when the mold body is further divided into two parts, a split piece having a connecting plate and a split piece having an SiC mounting surface are produced, and the lid part and both split pieces are integrated with a screw. Good.

(試験例2)
SiCの成形体を用いて複合部材を作製した。この試験では、以下の(I)〜(III)の成形体を用意した。
(Test Example 2)
Composite members were fabricated using SiC compacts. In this test, the following molded articles (I) to (III) were prepared.

(I) スリップキャスティングによる成形体
試験例1で用いた粒子状のSiC粉末、その他、界面活性剤及び水を用意し、体積割合で水:SiC粉末≒5:5とし、界面活性剤を添加してスラリーを作製した。ここでは、尿素20質量%水溶液(スラリー全体を100質量%とする)のスラリー、市販のポリカルボン酸系水溶液のスラリーを用意した。各スラリーを成形型に流し込んだ後、空気乾燥して粉末成形体を得た。
(I) Molded body by slip casting Prepare the particulate SiC powder used in Test Example 1, other surfactant and water, and make the volume ratio of water: SiC powder ≒ 5: 5, and add the surfactant. A slurry was prepared. Here, a slurry of urea 20 mass% aqueous solution (the whole slurry is 100 mass%) and a slurry of commercially available polycarboxylic acid aqueous solution were prepared. Each slurry was poured into a mold and then air-dried to obtain a powder compact.

(II) 加圧成型による成形体
試験例1で用いた粒子状のSiC粉末を用意し、バインダとして塩化アンモニウムを1〜10質量%の範囲で適宜添加して混合し、この混合物を成形型に充填して、3ton/cm2の圧力で加圧して、粉末成形体を得た。なお、バインダは、基板を作製中の熱により分解・気化して発散した。
(II) Molded body by pressure molding Prepare the particulate SiC powder used in Test Example 1, add ammonium chloride as a binder in the range of 1 to 10% by mass, and mix this mixture into the mold. Filled and pressurized at a pressure of 3 ton / cm 2 to obtain a powder compact. The binder was decomposed and vaporized by heat during the production of the substrate and was emitted.

(III) 焼結した成形体(焼結材)
上記(I),(II)で作製した粉末成形体を大気中で1000℃×2時間で焼結した焼結材A、及び真空中で2000℃×8時間で焼結した焼結材Bを用意した。また、市販のSiC焼結材α、βを用意した。真空中で焼結した焼結材B及び市販のSiC焼結材α、βをSEMで観察したところ、SiC同士が直接結合したネットワーク部の存在が認められ、大気中で焼結した焼結材Aを同様に観察したところ、酸化物層を介してSiCが結合したネットワーク部の存在が認められた。
(III) Sintered compact (sintered material)
Sintered material A obtained by sintering the powder compact produced in the above (I) and (II) in air at 1000 ° C. for 2 hours, and sintered material B sintered in vacuum at 2000 ° C. for 8 hours. Prepared. In addition, commercially available SiC sintered materials α and β were prepared. Sintered material B sintered in vacuum and commercially available SiC sintered materials α and β were observed by SEM. As a result, the presence of a network part in which SiC was directly bonded to each other was observed, and the sintered material sintered in the atmosphere. When A was observed in the same manner, the presence of a network portion in which SiC was bonded through the oxide layer was observed.

上記各成形体は、鋳型の複合部材形成空間の厚さt(ここでは5mm)よりも若干薄いものを用意した。また、鋳型として、図2,3に示すものと同様の形状であって、カーボン製のネジを用いたものを用意した。そして、この試験では、この鋳型の複合部材形成空間に各成形体のみを収納した試料、各成形体とスペーサとを収納した試料とを用意した。上記鋳型の複合部材形成空間に各成形体を収納した試料では、成形体と鋳型(蓋部の内側面)との間に僅かな隙間が生じる。一方、スペーサには、カーボンシート、ナフタレン板、ワイヤを用意した。カーボンシート及びナフタレン板は、厚さが50μm、100μm、200μm、500μm、1000μm、1500μmのものをそれぞれ用意した。そして、成形体と鋳型との間に、成形体の対向する二面を挟むように同じ厚さの一対のカーボンシート、又は同じ厚さの一対のナフタレン板を配置させ、上記成形体の一方の面と鋳型との間、及び他方の面と鋳型との間に、各スペーサの厚さに応じた隙間を生じさせた。ワイヤは、直径0.05mm(50μm)のSUS430製のものを用意し、鋳型における厚さ方向の中央部分に成形体を配置し、成形体の対向する二面のうち、一方の面と鋳型との間、及び他方の面と鋳型との間にそれぞれ所定の大きさの隙間(成形体の一面と鋳型との間の隙間の大きさ:50μm、100μm、200μm、500μm、1000μm、1500μm)が均等に設けられるように上記ワイヤにより成形体を鋳型に固定した。   Each molded body was prepared with a thickness slightly smaller than the thickness t (here 5 mm) of the composite member forming space of the mold. In addition, a mold having a shape similar to that shown in FIGS. 2 and 3 and using carbon screws was prepared. In this test, a sample in which only each molded body was stored in the composite member forming space of the mold and a sample in which each molded body and a spacer were stored were prepared. In the sample in which each molded body is housed in the composite member forming space of the mold, a slight gap is generated between the molded body and the mold (inner side surface of the lid). On the other hand, carbon sheets, naphthalene plates, and wires were prepared as spacers. Carbon sheets and naphthalene plates having thicknesses of 50 μm, 100 μm, 200 μm, 500 μm, 1000 μm, and 1500 μm were prepared. A pair of carbon sheets having the same thickness or a pair of naphthalene plates having the same thickness are disposed between the molded body and the mold so as to sandwich two opposing surfaces of the molded body, and one of the molded bodies is disposed. A gap corresponding to the thickness of each spacer was generated between the surface and the mold and between the other surface and the mold. A wire made of SUS430 with a diameter of 0.05 mm (50 μm) is prepared, and a molded body is arranged in the central part in the thickness direction of the mold, and one of the two opposing surfaces of the molded body and the mold And a gap of a predetermined size between the other surface and the mold (the size of the gap between one surface of the molded body and the mold: 50 μm, 100 μm, 200 μm, 500 μm, 1000 μm, 1500 μm) is evenly distributed. The formed body was fixed to the mold by the wire so as to be provided.

上述のように成形体や成形体及びスペーサを鋳型に収納した状態で、鋳型の金属載置面に試験例1と同様の純マグネシウムのインゴットを配置して、試験例1と同様の条件で上記インゴットを溶融して(Ar雰囲気、大気圧、875℃×2時間)、成形体(SiC集合体)に溶融した金属(純マグネシウム)を溶浸させて複合化すると共に、上記隙間に上記溶融した金属を流し込ませ、その後冷却した。なお、ナフタレン板は、鋳型の加熱時に昇華により消失した。また、カーボンシートなどのスペーサを利用する場合、成形体に対するスペーサの配置位置がずれることを防止するために、低融点ガラスや低融点塩、水ガラスなどでスペーサを成形体に接着してもよい。   In the state where the molded body and the molded body and the spacer are housed in the mold as described above, the same pure magnesium ingot as in Test Example 1 is placed on the metal placement surface of the mold, and the above conditions are the same as in Test Example 1. The ingot was melted (Ar atmosphere, atmospheric pressure, 875 ° C. × 2 hours), and the molten metal (pure magnesium) was infiltrated into the compact (SiC aggregate) to form a composite, and the melted in the gap. The metal was poured and then cooled. The naphthalene plate disappeared by sublimation when the mold was heated. In addition, when a spacer such as a carbon sheet is used, the spacer may be adhered to the molded body with a low melting point glass, a low melting point salt, water glass, or the like in order to prevent the spacer from being displaced with respect to the molded body. .

上記工程により、純マグネシウムとSiCと複合された基板の両面に、純マグネシウムからなる金属被覆層を具える複合部材(厚さ5mm)が得られた。特に、粉末成形体を利用した試料は、純マグネシウム中にSiCが分散した基板であった。   By the above process, a composite member (thickness 5 mm) having a metal coating layer made of pure magnesium on both surfaces of a substrate made of composite of pure magnesium and SiC was obtained. In particular, the sample using the powder compact was a substrate in which SiC was dispersed in pure magnesium.

得られた各試料を試験例1と同様に観察したところ、いずれの試料も、基板の両面に均一的に金属被覆層が形成されていた。カーボンシートを利用した試料では、金属被覆層の表面にカーボンシートの残存が目視により認められた。ナフタレン板を利用した試料では、金属被覆層の表面に異物が認められなかった。ワイヤを利用した試料では、金属被覆層の一部にワイヤの一部が目視により認められた。具体的には、成形体の一面と鋳型との間に設けた隙間がワイヤの直径にほぼ等しい試料(隙間:50μm)では、複合部材において金属被覆層を具える一対の主面、及び主面に直交する側面にワイヤの一部が残存しており、上記隙間がワイヤの直径よりも大きい試料(隙間:100μm、200μm、500μm、1000μm、1500μm)では、複合部材の側面にワイヤの一部が残存していたものの、複合部材の両主面には認められず、ワイヤは、金属被覆層に埋設されていた。試験例1と同様にして、各金属被覆層の厚さを調べたところ、スペーサを利用しなかった試料は、平均で200μmであった(両金属被覆層の厚さの総和:平均で0.4mm)。スペーサを利用した試料はいずれも、主面に具える各金属被覆層の厚さが、平均で50μm,100μm,200μm,500μm,1000μm,1500μm,であり(両金属被覆層の厚さの総和:平均で0.1mm、0.2mm、0.4mm、1mm、2mm、3mm)、成形体の一面と鋳型との間に設けた隙間の大きさと実質的に一致していた。また、試験例1と同様にして、母材及び金属被覆層の構成金属の組織を調べたところ、連続する組織であった。スペーサなどを利用することで、鋳型よりも小さい成形体を利用するだけの場合と比較して、成形板と鋳型との間に確実に隙間を設けられ、均一的な厚さの金属被覆層を形成することができる。また、上記スペーサの配置やワイヤの固定状態を適宜変更することで、基板の一面のみ、或いは対向する二面に金属被覆層を具える複合部材を簡単に形成することができる。   When each of the obtained samples was observed in the same manner as in Test Example 1, in each sample, the metal coating layer was uniformly formed on both surfaces of the substrate. In the sample using the carbon sheet, the carbon sheet remained visually on the surface of the metal coating layer. In the sample using a naphthalene plate, no foreign matter was observed on the surface of the metal coating layer. In the sample using the wire, a part of the wire was visually recognized as a part of the metal coating layer. Specifically, in a sample (gap: 50 μm) in which the gap provided between one surface of the molded body and the mold is substantially equal to the diameter of the wire, a pair of main surfaces including the metal coating layer in the composite member, and the main surface Part of the wire remains on the side surface orthogonal to the wire, and in the sample where the gap is larger than the diameter of the wire (gap: 100 μm, 200 μm, 500 μm, 1000 μm, 1500 μm) Although it remained, it was not recognized on both main surfaces of the composite member, and the wire was embedded in the metal coating layer. When the thickness of each metal coating layer was examined in the same manner as in Test Example 1, the samples that did not use the spacers had an average of 200 μm (total thickness of both metal coating layers: 0.4 mm on average. ). In all samples using spacers, the average thickness of each metal coating layer on the main surface is 50 μm, 100 μm, 200 μm, 500 μm, 1000 μm, 1500 μm (total thickness of both metal coating layers: The average size was 0.1 mm, 0.2 mm, 0.4 mm, 1 mm, 2 mm, 3 mm), which substantially coincided with the size of the gap provided between one surface of the molded body and the mold. Further, the structure of the constituent metals of the base material and the metal coating layer was examined in the same manner as in Test Example 1, and it was a continuous structure. By using spacers etc., compared to the case of using only a compact smaller than the mold, a gap is surely provided between the mold plate and the mold, and a metal coating layer with a uniform thickness is formed. Can be formed. Further, by appropriately changing the arrangement of the spacers and the fixed state of the wires, a composite member having a metal coating layer on only one surface of the substrate or on two opposing surfaces can be easily formed.

(I),(II)の成形体及びこれらの成形体を焼結した焼結材、市販の焼結材を用いて作製した各試料における基板のSiCの含有量、各試料の熱伝導率及び熱膨張係数、金属被覆層を除去した基板のみの熱伝導率及び熱膨張係数を試験例1と同様にして求めた。その結果を表1に示す。表1に示すように、両金属被覆層の厚さの総和が2.5mm以下、更に0.5mm以下であると、熱膨張係数が小さく、かつ熱伝導率が高い複合部材が得られることが分かる。また、成形体として焼結材を利用する場合、特にSiC同士が直接結合したネットワーク部を有する焼結材を利用すると、SiCの含有量が同じ場合でも、熱膨張係数が小さく、かつ熱伝導率が高い複合部材が得られることが分かる。   (I), (II) compacts and sintered materials obtained by sintering these compacts, the SiC content of the substrate in each sample prepared using commercially available sintered materials, the thermal conductivity of each sample and The thermal expansion coefficient, the thermal conductivity of only the substrate from which the metal coating layer was removed, and the thermal expansion coefficient were determined in the same manner as in Test Example 1. The results are shown in Table 1. As shown in Table 1, it can be seen that when the sum of the thicknesses of both metal coating layers is 2.5 mm or less, and further 0.5 mm or less, a composite member having a low thermal expansion coefficient and high thermal conductivity can be obtained. Also, when using a sintered material as a molded body, especially when using a sintered material having a network part in which SiC is directly bonded, even if the content of SiC is the same, the coefficient of thermal expansion is small and the thermal conductivity It can be seen that a composite member having a high value can be obtained.

(試験例3)
SiC粉末をタッピングしてSiC集合体を形成し、加熱により除去可能なスペーサを利用して複合部材を作製した。
(Test Example 3)
SiC composites were formed by tapping SiC powder, and composite members were fabricated using spacers that could be removed by heating.

スペーサとしてナフタレンからなる板(厚さtn:50μm、100μm、200μm、500μm(0.5mm)、1000μm、1500μm、幅wn:100mm、長さln:200mm)を用意した。また、試験例1で用いた粒子状のSiC粉末及び基板の金属成分となる純マグネシウムのインゴット、並びに試験例2で用いた鋳型(厚さt:5mm)を用意した。鋳型の蓋部の内側面、及び連結面にナフタレンの板を接するように配置し、この状態でタッピングによりSiC粉末を充填して、複合部材形成空間にSiC集合体を形成すると共に、SiC集合体の両面にナフタレンの板が接した状態にした。そして、金属載置面に純マグネシウムのインゴットを配置して、鋳型を純マグネシウムの融点(約650℃)以上に加熱した。この加熱途中でナフタレンの昇華温度に達するとナフタレンは昇華して、複合部材形成空間から除去され、ナフタレンの板が存在した空間に隙間ができた。即ち、SiC集合体と鋳型との間に隙間ができた。この状態で更に所定の温度(875℃)まで加熱を続けて、試験例1と同様の条件で上記インゴットを溶融して(Ar雰囲気、大気圧、875℃×2時間)、SiC集合体に溶融した金属(純マグネシウム)を溶浸させて複合化すると共に、上記隙間に上記溶融した金属を流し込ませ、その後冷却した。 A plate made of naphthalene (thickness t n : 50 μm, 100 μm, 200 μm, 500 μm (0.5 mm), 1000 μm, 1500 μm, width w n : 100 mm, length l n : 200 mm) was prepared as a spacer. In addition, the particulate SiC powder used in Test Example 1, the pure magnesium ingot serving as the metal component of the substrate, and the mold (thickness t: 5 mm) used in Test Example 2 were prepared. The naphthalene plate is placed in contact with the inner surface of the lid portion of the mold and the connecting surface, and in this state, SiC powder is filled by tapping to form a SiC assembly in the composite member forming space, and the SiC assembly. The naphthalene plate was in contact with both sides. Then, an ingot of pure magnesium was placed on the metal mounting surface, and the mold was heated to a melting point (about 650 ° C.) or higher of pure magnesium. When the sublimation temperature of naphthalene was reached during this heating, the naphthalene sublimated and removed from the composite member forming space, and a gap was formed in the space where the naphthalene plate was present. That is, a gap was formed between the SiC aggregate and the mold. In this state, further heating to a predetermined temperature (875 ° C.) was performed, and the above ingot was melted under the same conditions as in Test Example 1 (Ar atmosphere, atmospheric pressure, 875 ° C. × 2 hours) to melt into the SiC aggregate. The molten metal (pure magnesium) was infiltrated to form a composite, and the molten metal was poured into the gap, and then cooled.

上記工程により、試験例1と同様に、純マグネシウムを母材とし、この母材中にSiCの粒が分散した基板(SiCの含有量:65体積%)の両面に、純マグネシウムからなる金属被覆層を具える複合部材(厚さ:5mm)が得られた。また、上記各金属被覆層の厚さは、平均で50μm、100μm、200μm、500μm(0.5mm)、1000μm、1500μmであり(両金属被覆層の厚さの総和:平均で0.1mm、0.2mm、0.4mm、1mm、2mm、3mm)、利用したナフタレンの板の厚さに実質的に一致していた。複合部材の状態の確認、金属被覆層の厚さの測定、及び基板中のSiCの含有量の測定は、試験例1と同様にして行った。更に、各試料の熱伝導率及び熱膨張係数、金属被覆層を除去した基板のみの熱伝導率及び熱膨張係数を試験例1と同様にして求めた。その結果を表1に示す。   By the above process, as in Test Example 1, pure magnesium was used as the base material, and both sides of the substrate (SiC content: 65% by volume) in which the SiC grains were dispersed in this base material were coated with pure magnesium. A composite member (thickness: 5 mm) with layers was obtained. The thickness of each metal coating layer is 50 μm, 100 μm, 200 μm, 500 μm (0.5 mm), 1000 μm, 1500 μm on average (total thickness of both metal coating layers: 0.1 mm, 0.2 mm on average, 0.4mm, 1mm, 2mm, 3mm), which substantially matched the thickness of the naphthalene plate used. Confirmation of the state of the composite member, measurement of the thickness of the metal coating layer, and measurement of the content of SiC in the substrate were performed in the same manner as in Test Example 1. Further, the thermal conductivity and thermal expansion coefficient of each sample and the thermal conductivity and thermal expansion coefficient of only the substrate from which the metal coating layer was removed were determined in the same manner as in Test Example 1. The results are shown in Table 1.

(試験例4)
鋳型に金属板を配置して複合部材を作製した。
(Test Example 4)
A metal plate was placed on the mold to produce a composite member.

金属板としてAl板(JIS合金番号1050の純アルミニウムからなる板、厚さta:0.5mm、幅wa:100mm、長さla:200mm)を用意した。また、試験例1で用いた粒子状のSiC粉末及び基板の金属成分となる純マグネシウムのインゴット、並びに試験例2で用いた鋳型を用意した。鋳型の蓋部の内側面、又は連結面にAl板を接するように配置し、この状態でタッピングしてSiC粉末を充填し、複合部材形成空間にSiC集合体を形成すると共に、SiC集合体の一面にAl板が接した状態にした。そして、金属載置面に純マグネシウムのインゴットを配置して、試験例1と同様の条件で上記インゴットを溶融して(Ar雰囲気、大気圧、875℃×2時間)、SiC集合体に溶融した金属(純マグネシウム)を溶浸させて複合化すると共に、上記溶融した金属によりAl板をSiC集合体に接合させ、その後冷却した。 An Al plate (a plate made of pure aluminum of JIS alloy number 1050, thickness t a : 0.5 mm, width w a : 100 mm, length l a : 200 mm) was prepared as a metal plate. In addition, the particulate SiC powder used in Test Example 1, the pure magnesium ingot serving as the metal component of the substrate, and the mold used in Test Example 2 were prepared. Place the Al plate in contact with the inner surface of the lid part of the mold or the connecting surface, tapping in this state, filling with SiC powder, forming the SiC aggregate in the composite member formation space, and the SiC aggregate The Al plate was in contact with the entire surface. Then, a pure magnesium ingot was placed on the metal mounting surface, and the above ingot was melted under the same conditions as in Test Example 1 (Ar atmosphere, atmospheric pressure, 875 ° C. × 2 hours), and melted into the SiC aggregate. Metal (pure magnesium) was infiltrated to form a composite, and the Al plate was joined to the SiC aggregate by the molten metal, and then cooled.

上記工程により、純マグネシウムを母材とし、この母材中にSiCの粒が分散した基板(SiCの含有量:65体積%)の一面に、母材と異なる組成の金属からなる金属被覆層(ここでは純アルミニウム)を具える複合部材が得られた。また、上記金属被覆層の厚さは、平均で0.5mmであり、利用したAl板の厚さに実質的に一致していた。複合部材の状態の確認、金属被覆層の厚さの測定、及び基板中のSiCの含有量の測定は、試験例1と同様にして行った。   Through the above process, pure magnesium is used as a base material, and a metal coating layer made of a metal having a composition different from that of the base material (SiC content: 65% by volume) on one side of a substrate in which SiC grains are dispersed in the base material ( Here, a composite member comprising pure aluminum) was obtained. Moreover, the thickness of the metal coating layer was 0.5 mm on average, and substantially coincided with the thickness of the Al plate used. Confirmation of the state of the composite member, measurement of the thickness of the metal coating layer, and measurement of the content of SiC in the substrate were performed in the same manner as in Test Example 1.

(試験例5)
複合材料からなる基板に金属板をホットプレス法により接合して複合部材を作製した。
(Test Example 5)
A metal plate was joined to the substrate made of the composite material by a hot press method to produce a composite member.

この試験では、試験例1で用いた基板の金属成分となる純マグネシウムのインゴット、及び試験例2で用いた鋳型(但し、厚さt:4mm)、並びに市販のSiC焼結材(厚さ:4.0mm、幅:100mm、長さ:200mm)を用意した。そして、鋳型の複合部材形成空間に上記SiC焼結材(SiC集合体)を配置し、金属載置面に純マグネシウムのインゴットを配置して、試験例1と同様の条件で上記インゴットを溶融して(Ar雰囲気、大気圧、875℃×2時間)、SiC焼結材に溶融した金属(純マグネシウム)を溶浸させて複合化して、複合材料からなる基板を作製する。上記工程により、純マグネシウムとSiCとが複合された基板(SiCの含有量:84体積%、厚さ:4.0mm、幅:100mm、長さ:200mm)が得られた。基板中のSiCの含有量は、試験例1と同様にして求めた。   In this test, pure magnesium ingot as a metal component of the substrate used in Test Example 1, and the mold used in Test Example 2 (thickness t: 4 mm), and commercially available SiC sintered material (thickness: 4.0mm, width: 100mm, length: 200mm). Then, the SiC sintered material (SiC aggregate) is arranged in the composite member forming space of the mold, the pure magnesium ingot is arranged on the metal mounting surface, and the ingot is melted under the same conditions as in Test Example 1. (Ar atmosphere, atmospheric pressure, 875 ° C. × 2 hours), a molten metal (pure magnesium) is infiltrated into a SiC sintered material to form a composite, and a substrate made of the composite material is manufactured. Through the above process, a substrate in which pure magnesium and SiC were combined (SiC content: 84 vol%, thickness: 4.0 mm, width: 100 mm, length: 200 mm) was obtained. The SiC content in the substrate was determined in the same manner as in Test Example 1.

また、この試験では、金属板として純度99%以上の純金属からなるMg板(MIS1)、Al板(JIS合金番号:1050)、Cu板(JIS番号:C1020)、Ni板(NAS Ni201)、いずれも厚さ:0.5mm、幅:100mm、長さ:200mmのものを2枚ずつ用意した。いずれの金属板も市販のものである。作製した基板を同じ組成の一対の金属板で挟んで積層物とし、この積層物を加熱可能な箱状の加圧金型に配置して、加圧金型を加熱することでこの積層物を加熱すると共に、上記加圧金型の開口部から露出された一方の金属板の表面にパンチを押圧した。上記積層物の加熱温度、加圧圧力、及び、加熱及び加圧時の接合雰囲気を表2に示す。また、上記加熱及び加圧後の積層物の接合状態を調べた。その結果を表2に示す。上記接合状態は、加熱及び加圧後の積層物を厚さ方向に切断し、その切断面において、基板と金属板との間に隙間がなく、全面が接合されている状態を○、基板から金属板が外れて、接合されていない状態を×と評価する。   In addition, in this test, Mg plate (MIS1), Al plate (JIS alloy number: 1050), Cu plate (JIS number: C1020), Ni plate (NAS Ni201), made of pure metal with a purity of 99% or more as a metal plate, In each case, two sheets each having a thickness of 0.5 mm, a width of 100 mm, and a length of 200 mm were prepared. All the metal plates are commercially available. The produced substrate is sandwiched between a pair of metal plates of the same composition to form a laminate, the laminate is placed in a heatable box-shaped pressure mold, and the pressure mold is heated to form the laminate. While heating, a punch was pressed against the surface of one metal plate exposed from the opening of the pressurizing mold. Table 2 shows the heating temperature, pressurizing pressure, and bonding atmosphere during heating and pressurization of the laminate. Moreover, the joining state of the laminated body after the said heating and pressurization was investigated. The results are shown in Table 2. In the above bonded state, the laminate after heating and pressurization is cut in the thickness direction, and the cut surface has no gap between the substrate and the metal plate, and the entire surface is bonded. The state where the metal plate is detached and not joined is evaluated as x.

表2に示すように、加熱及び加圧を行うことで、複合材料からなる基板に、基板の金属成分と同種の金属だけでなく異種の金属からなる金属板を接合できることが分かる。特に、金属板がMg,Al及びその合金からなる場合は、300℃以上に加熱することで、金属板がCu,Ni及びその合金からなる場合は、600℃以上に加熱することで、金属被覆層を具える複合部材が得られることが分かる。また、加圧圧力は、0.5ton/cm2以上が好ましいことが分かる。更に、基板と金属板とが接合された試料では、金属板が塑性変形することで基板に強固に接合されていた。加えて、この試験から、加熱及び加圧条件が同じ場合、接合雰囲気により接合状態が変化し、接合雰囲気は、大気よりもAr(アルゴン)の方が接合し易いと言える。なお、基板の両面に形成された各金属被覆層の厚さを試験例1と同様にし測定したところ、平均で0.5mmであり(両金属被覆層の厚さの総和:1mm、得られた複合部材の厚さ:5mm)、利用した金属板の厚さに実質的に一致していた。 As shown in Table 2, it can be seen that by performing heating and pressurization, a metal plate made of a dissimilar metal as well as the same kind of metal as the metal component of the substrate can be bonded to the substrate made of the composite material. In particular, when the metal plate is made of Mg, Al and its alloys, it is heated to 300 ° C or higher, and when the metal plate is made of Cu, Ni and its alloys, it is heated to 600 ° C or higher to cover the metal. It can be seen that a composite member comprising a layer is obtained. It can also be seen that the pressure applied is preferably 0.5 ton / cm 2 or more. Furthermore, in the sample in which the substrate and the metal plate were joined, the metal plate was firmly joined to the substrate by plastic deformation. In addition, from this test, it can be said that when the heating and pressurizing conditions are the same, the bonding state changes depending on the bonding atmosphere, and Ar (argon) is easier to bond in the bonding atmosphere than in the atmosphere. The thickness of each metal coating layer formed on both surfaces of the substrate was measured in the same manner as in Test Example 1, and the average was 0.5 mm (the total thickness of both metal coating layers: 1 mm, and the resulting composite The thickness of the member was 5 mm), which substantially matched the thickness of the metal plate used.

また、基板の両面に金属被覆層が形成された試料について、熱伝導率及び熱膨張係数を試験例1と同様にして求めた。その結果を表3に示す。表3に示すように、金属被覆層の組成を適宜変更することで、熱伝導率が更に高い複合部材が得られることが分かる。   Further, the thermal conductivity and the thermal expansion coefficient of the sample in which the metal coating layer was formed on both surfaces of the substrate were determined in the same manner as in Test Example 1. The results are shown in Table 3. As shown in Table 3, it can be seen that a composite member having higher thermal conductivity can be obtained by appropriately changing the composition of the metal coating layer.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、複合材料からなる基板中のSiCの含有量、大きさ、形状、金属成分の組成(例えば、マグネシウム合金)、基板の大きさ、金属被覆層(金属板)の組成、大きさなどを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the content, size and shape of SiC in the substrate made of a composite material, the composition of the metal component (for example, magnesium alloy), the size of the substrate, the composition and size of the metal coating layer (metal plate), etc. Can be changed.

本発明複合部材は、熱伝導性が高く、半導体素子やその周辺部品との熱膨張係数の整合性に優れ、かつ半田の下地となるめっきを施し易いことから、半導体素子のヒートスプレッダ(本発明放熱部材)に好適に利用することができる。本発明複合部材の製造方法は、上記複合部材の製造に好適に利用することができる。本発明半導体装置は、各種の電子機器の部品に好適に利用することができる。   The composite member of the present invention has high thermal conductivity, excellent matching of the thermal expansion coefficient with the semiconductor element and its peripheral components, and is easy to be plated as a solder base. Member). The manufacturing method of this invention composite member can be utilized suitably for manufacture of the said composite member. The semiconductor device of the present invention can be suitably used for parts of various electronic devices.

10 鋳型 11 本体部 11b 底面 11m 金属載置面 11s SiC載置面
11c 連結面 12 蓋部 12i 内側面 13 ネジ
M インゴット S SiC集合体
10 Mold 11 Body 11b Bottom 11m Metal placement surface 11s SiC placement surface
11c Connecting surface 12 Lid 12i Inside surface 13 Screw
M ingot S SiC aggregate

Claims (18)

マグネシウム又はマグネシウム合金とSiCとが複合された複合材料からなる基板で、SiCを70体積%以上(但し70体積%を除く)含有する基板と、
前記基板の少なくとも一面を覆う金属被覆層とを具え
前記基板は、前記SiC同士を直接結合したネットワーク部を具える複合部材。
A substrate made of a composite material in which magnesium or a magnesium alloy and SiC are combined, and a substrate containing SiC by 70 volume% or more (excluding 70 volume%) ;
A metal coating layer covering at least one surface of the substrate ;
The substrate is double interlockable components comprising a network part that combines the SiC to each other directly.
前記金属被覆層の厚さが2.5mm以下である請求項1に記載の複合部材。 Composite member according to Motomeko 1 thick Ru der less 2.5mm of the metallization layer. 前記複合材料の金属成分と前記金属被覆層を構成する金属とが連続する組織からなる請求項1又は請求項2に記載の複合部材。 Composite member according to Motomeko 1 or claim 2 ing from tissue and metal constituting the metal component and the metal coating layer of the composite material is continuous. 前記複合材料の金属成分と前記金属被覆層を構成する金属とが異なる組成からなる請求項1又は請求項2に記載の複合部材。 Composite member according to Motomeko 1 or claim 2 metal and is ing a different composition for the metal component and the metal coating layer of the composite material. 前記金属被覆層は、純度が99%以上のMg,Al,Cu,Ni、及びMg,Al,Cu,Niを主成分とする合金からなる群から選択される1種の金属から構成される請求項1〜請求項4のいずれか1項に記載の複合部材。 said metal coating layer has a purity of 99% or more of Mg, Al, Cu, Ni, and the Mg, Al, Cu, Ru is composed of one metal selected from the group consisting of an alloy mainly containing Ni 5. The composite member according to any one of claims 1 to 4. 前記基板の対向する二面に金属被覆層をそれぞれ具えており、両金属被覆層の厚さの総和が2.5mm以下である請求項1〜請求項5のいずれか1項に記載の複合部材。 And comprising respectively a metallic coating layer in two opposing surfaces of the substrate, the composite according to any one of the two metal sum of the thickness of the coating layer is Ru der less 2.5mm Motomeko 1 to claim 5 Element. 前記基板の対向する二面に金属被覆層をそれぞれ具えており、両金属被覆層の厚さの総和が0.5mm以下である請求項1〜請求項6のいずれか1項に記載の複合部材。 And comprising respectively a metallic coating layer in two opposing surfaces of the substrate, the composite according to any one of the two metallization sum of the thickness of the layer is Ru der less 0.5mm Motomeko 1 to claim 6 Element. 前記金属被覆層の厚さが0.05mm以上である請求項1〜請求項7のいずれか1項に記載の複合部材。 Composite member according to any one of the metal coating thickness of layer is Ru der than 0.05mm Motomeko 1 to claim 7. 請求項1〜請求項8のいずれか1項に記載の複合部材により構成される放熱部材。 It is that the heat-release member is constituted by a composite member according to any one of claims 1 to 8. 請求項9に記載の放熱部材と、この放熱部材に搭載される半導体素子とを具える半導体装置。 A heat radiation member according to claim 9, semiconductors devices Ru comprising a semiconductor element mounted on the heat radiation member. 鋳型に収納されているSiC集合体に、溶融したマグネシウム又はマグネシウム合金を溶浸させて、前記マグネシウム又はマグネシウム合金とSiCとを複合した複合材料からなる基板を具える複合部材を製造する複合部材の製造方法であって、
前記SiC集合体は、前記SiC同士が直接結合したネットワーク部を具える焼結材であり、
前記鋳型と前記SiC集合体との間にSiCが充填されない非充填領域を設け、この非充填領域に金属を存在させ、この金属により、前記基板の少なくとも一面を覆う金属被覆層を形成する複合部材の製造方法。
A composite member for producing a composite member comprising a substrate made of a composite material in which molten magnesium or magnesium alloy is infiltrated into a SiC aggregate housed in a mold and composited with the magnesium or magnesium alloy and SiC. A manufacturing method comprising:
The SiC aggregate is a sintered material comprising a network part in which the SiCs are directly bonded to each other,
The unfilled region SiC is not filled between the SiC aggregate and the mold is provided, this non-filling region the presence of a metal, this metal, double that to form a metal coating layer covering at least one surface of the substrate A method for manufacturing a composite member.
SiC粉末を用いて、前記鋳型の容積よりも小さい成形体を形成し、この成形体を前記SiC集合体とし、
前記成形体を前記鋳型に配置して、この鋳型と前記成形体との間に生じる隙間を前記非充填領域とし、
前記金属被覆層は、前記隙間に流れ込む前記溶融したマグネシウム又はマグネシウム合金により形成する請求項11に記載の複合部材の製造方法。
Using SiC powder, a molded body smaller than the volume of the mold is formed, and this molded body is used as the SiC aggregate,
The molded body is arranged in the mold, and a gap generated between the mold and the molded body is defined as the non-filling region,
The metal coating layer, the manufacturing method of the composite member according to Motomeko 11 you formed by the molten magnesium or magnesium alloy flows into the gap.
SiC粉末を用いて、前記鋳型の容積よりも小さい成形体を形成し、この成形体を前記SiC集合体とし、
前記鋳型の複合部材形成箇所に前記成形体を配置すると共に、前記成形体と前記鋳型との間に隙間が維持されるようにスペーサを配置して、この隙間を前記非充填領域とし、
前記金属被覆層は、前記隙間に流れ込む前記溶融したマグネシウム又はマグネシウム合金により形成する請求項11又は請求項12に記載の複合部材の製造方法。
Using SiC powder, a molded body smaller than the volume of the mold is formed, and this molded body is used as the SiC aggregate,
The molded body is disposed at the composite member forming portion of the mold, and a spacer is disposed so that a gap is maintained between the molded body and the mold, and this gap is set as the non-filling region,
The metal coating layer, the manufacturing method of the composite member according to Motomeko 11 or claim 12 wherein you formed by molten magnesium or magnesium alloy flows into the gap.
前記鋳型の複合部材形成箇所にスペーサを配置して、このスペーサを前記非充填領域とし、
前記スペーサを配置した前記複合部材形成箇所に前記SiC集合体を配置した後、前記スペーサを加熱して気化することで除去し、
前記金属被覆層は、前記スペーサが存在した空間に流れ込む前記溶融したマグネシウム又はマグネシウム合金により形成する請求項11又は請求項12に記載の複合部材の製造方法。
A spacer is disposed at the composite member forming portion of the mold, and this spacer is used as the non-filling region.
After disposing the SiC aggregate at the composite member forming portion where the spacer is disposed, the spacer is removed by heating and vaporizing,
The metal coating layer, the manufacturing method of the composite member according to Motomeko 11 or claim 12 you formed by the molten magnesium or magnesium alloy flows into the space where the spacer is present.
前記鋳型の金属載置箇所に前記マグネシウム又はマグネシウム合金を配置して、前記SiC集合体、前記スペーサ、及び前記マグネシウム又はマグネシウム合金が配置された鋳型を前記マグネシウム又はマグネシウム合金の液相線温度以上に加熱することで前記マグネシウム又はマグネシウム合金を溶融して、前記鋳型の複合部材形成箇所に配置されたSiC集合体に溶浸させると共に、この加熱により前記スペーサを除去する請求項14に記載の複合部材の製造方法。 The magnesium or magnesium alloy is disposed at the metal placement location of the mold, and the SiC aggregate, the spacer, and the mold on which the magnesium or magnesium alloy is disposed have a temperature equal to or higher than the liquidus temperature of the magnesium or magnesium alloy. and melting the magnesium or magnesium alloy by heating, with infiltrating the SiC aggregate arranged on the composite member formation portion of the mold, according to Motomeko 14 remove the spacer this heat A method for producing a composite member. 前記鋳型は、前記SiC集合体との接触面と、SiCよりも熱膨張係数が大きい材料からなる熱膨張部とを具えており、
前記鋳型に前記SiC集合体を配置し、このSiC集合体に前記溶融したマグネシウム又はマグネシウム合金を溶浸させるときの熱により前記熱膨張部を膨張させて、前記接触面と前記SiC集合体との間に隙間を生じさせ、この隙間を前記非充填領域とし、
前記金属被覆層は、前記隙間に流れ込む前記溶融したマグネシウム又はマグネシウム合金により形成する請求項11に記載の複合部材の製造方法。
The mold includes a contact surface with the SiC aggregate, and a thermal expansion portion made of a material having a larger thermal expansion coefficient than SiC,
The SiC aggregate is disposed in the mold, and the thermal expansion portion is expanded by heat when the molten magnesium or magnesium alloy is infiltrated into the SiC aggregate, so that the contact surface and the SiC aggregate Create a gap in between, this gap as the unfilled area,
The metal coating layer, the manufacturing method of the composite member according to Motomeko 11 you formed by the molten magnesium or magnesium alloy flows into the gap.
前記鋳型に金属板を配置して、この金属板を前記非充填領域とし、
前記金属板を配置した鋳型に前記SiC集合体を配置し、
前記金属被覆層は、前記溶融したマグネシウム又はマグネシウム合金によって前記SiC集合体に接合された前記金属板により形成する請求項11に記載の複合部材の製造方法。
A metal plate is disposed on the mold, and the metal plate is used as the unfilled region.
Arranging the SiC aggregate in a mold on which the metal plate is arranged,
The metal coating layer, the manufacturing method of the composite member according to Motomeko 11 you formed by the metal plate bonded to the SiC aggregate by said molten magnesium or magnesium alloy.
鋳型に収納されているSiC集合体に、溶融したマグネシウム又はマグネシウム合金を溶浸させて、前記マグネシウム又はマグネシウム合金とSiCとを複合した複合材料からなる基板を具える複合部材を製造する複合部材の製造方法であって、
前記SiC集合体は、前記SiC同士が直接結合したネットワーク部を具える焼結材であり、
前記基板に金属板を重ね、この積層物を300℃以上の温度に加熱しながら、0.5ton/cm2以上の圧力で加圧する金属被覆層形成工程を具える複合部材の製造方法。
A composite member for producing a composite member comprising a substrate made of a composite material in which molten magnesium or magnesium alloy is infiltrated into a SiC aggregate housed in a mold and composited with the magnesium or magnesium alloy and SiC. A manufacturing method comprising:
The SiC aggregate is a sintered material comprising a network part in which the SiCs are directly bonded to each other,
Superimposing a metal plate on the substrate, while heating the laminate to 300 ° C. or higher, the production method of the multi engagement member Ru comprising a metallization layer forming step of pressing at 0.5 ton / cm 2 or more pressures.
JP2009230338A 2008-10-03 2009-10-02 Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member Active JP5536409B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09817522.7A EP2332674B1 (en) 2008-10-03 2009-10-02 Composite member
CN200980139128.3A CN102170986B (en) 2008-10-03 2009-10-02 Composite member
JP2009230338A JP5536409B2 (en) 2008-10-03 2009-10-02 Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
PCT/JP2009/005132 WO2010038483A1 (en) 2008-10-03 2009-10-02 Composite member
CN2013102794947A CN103394668A (en) 2008-10-03 2009-10-02 Composite member
US13/122,365 US9028959B2 (en) 2008-10-03 2009-10-02 Composite member
US14/684,206 US20150225635A1 (en) 2008-10-03 2015-04-10 Composite member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008259000 2008-10-03
JP2008259000 2008-10-03
JP2009230338A JP5536409B2 (en) 2008-10-03 2009-10-02 Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member

Publications (2)

Publication Number Publication Date
JP2010106362A JP2010106362A (en) 2010-05-13
JP5536409B2 true JP5536409B2 (en) 2014-07-02

Family

ID=42296089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230338A Active JP5536409B2 (en) 2008-10-03 2009-10-02 Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member

Country Status (1)

Country Link
JP (1) JP5536409B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263324B2 (en) * 2011-02-18 2018-01-17 デンカ株式会社 Method for producing aluminum alloy-ceramic composite
JP2012197496A (en) * 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd Composite member
JP5807935B1 (en) 2014-10-09 2015-11-10 株式会社半導体熱研究所 Heat dissipation board and semiconductor module using it
JP2016180185A (en) * 2016-05-09 2016-10-13 デンカ株式会社 Aluminum alloy-ceramic composite, production method of the composite and stress buffer composed of the composite
JP7086109B2 (en) * 2018-01-10 2022-06-17 住友電気工業株式会社 Manufacturing method of composite member, heat dissipation member, semiconductor device, and composite member
CN117549616A (en) * 2019-04-02 2024-02-13 住友电气工业株式会社 Composite member and heat dissipation member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881722A (en) * 1994-09-14 1996-03-26 Suzuki Motor Corp Production of mg-base partially reinforced composite member
JPH11130568A (en) * 1997-10-24 1999-05-18 Denki Kagaku Kogyo Kk Composite material and heat sink using the same
JPH11277217A (en) * 1998-01-19 1999-10-12 Mitsubishi Materials Corp Substrate for heat radiation, and its manufacture
JP2001181066A (en) * 1999-12-27 2001-07-03 Sumitomo Electric Ind Ltd Silicon carbide-based porous body and composite material comprising aluminum and the same
JP2003183748A (en) * 2001-12-19 2003-07-03 Toyota Motor Corp Process for manufacturing magnesium-based, dispersion strengthened composite material, reinforcement particle used for this and its manufacturing process
JP4720981B2 (en) * 2005-04-15 2011-07-13 住友電気工業株式会社 Magnesium matrix composite
JP2007247058A (en) * 2006-02-14 2007-09-27 Akiyoshi Nishino Composite material and its production method

Also Published As

Publication number Publication date
JP2010106362A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
WO2010038483A1 (en) Composite member
JP5536409B2 (en) Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
US9347120B2 (en) Composite member including substrate made of composite material
JP6502950B2 (en) Heat dissipation member, and method of manufacturing heat dissipation member
JP5739873B2 (en) Magnesium-based composite member, heat dissipation member, and semiconductor device
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
JP2007535151A (en) Heat sink made of boron-containing diamond and copper composite
JP2004197153A (en) Diamond-metal composite material and method for manufacturing the same
TW202006152A (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JP2014001439A (en) Composite member, method for manufacturing composite member and semiconductor device
JP5531329B2 (en) Package based on semiconductor heat dissipation parts
JP2012144767A (en) Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member
JP2015140456A (en) Composite material, semiconductor device, and method for manufacturing composite material
US11919288B2 (en) Method for producing heat radiation member
TW201544588A (en) Aluminum-diamond composite, and heat dissipating component using same
JP7196193B2 (en) Heat dissipation material
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP2748629B2 (en) Semiconductor device housing and method of manufacturing the same
JP5513058B2 (en) Composite member manufacturing method, composite member, heat dissipation member, and semiconductor device
JPH0354182A (en) Process for metallizing graphite and parts produced thereby
JP2001217364A (en) Al-SiC COMPOSITE
JP2013245374A (en) Composite material, method for producing the same, and semiconductor device
JP5503474B2 (en) Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member
JP2001332668A (en) Al-SiC COMPOSITE UNIT
JP2003268478A (en) Al-SiC COMPOSITE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140424

R150 Certificate of patent or registration of utility model

Ref document number: 5536409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250