[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5535559B2 - Peroxidase - Google Patents

Peroxidase Download PDF

Info

Publication number
JP5535559B2
JP5535559B2 JP2009205130A JP2009205130A JP5535559B2 JP 5535559 B2 JP5535559 B2 JP 5535559B2 JP 2009205130 A JP2009205130 A JP 2009205130A JP 2009205130 A JP2009205130 A JP 2009205130A JP 5535559 B2 JP5535559 B2 JP 5535559B2
Authority
JP
Japan
Prior art keywords
peroxide
medium
enzyme
lactic acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009205130A
Other languages
Japanese (ja)
Other versions
JP2011050366A (en
Inventor
昭夫 渡邊
洋一 新村
信治 川崎
俊弘 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Corp
Original Assignee
Taiyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Corp filed Critical Taiyo Corp
Priority to JP2009205130A priority Critical patent/JP5535559B2/en
Publication of JP2011050366A publication Critical patent/JP2011050366A/en
Application granted granted Critical
Publication of JP5535559B2 publication Critical patent/JP5535559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

本発明は、乳酸菌が産生する過酸化物分解酵素に関する。   The present invention relates to a peroxide-degrading enzyme produced by lactic acid bacteria.

生体内外の過酸化物を除去するために、生物は様々な過酸化物分解酵素を有しており、代表的な過酸化物分解酵素として、例えば、グルタチオンペルオキシダーゼが挙げられる。   In order to remove peroxides inside and outside the living body, organisms have various peroxide-degrading enzymes, and examples of typical peroxide-degrading enzymes include glutathione peroxidase.

グルタチオンペルオキシダーゼは、動物をはじめとする生物全般に広く存在し、グルタチオンを介した複数段階の反応によって下記一般式(1)に示されるように、過酸化物をアルコール類と水に変換する(非特許文献1〜4参照)。   Glutathione peroxidase is widely present in all living organisms including animals, and converts peroxide into alcohols and water as shown in the following general formula (1) by a multi-step reaction via glutathione (non- (See Patent Documents 1 to 4).

このように、過酸化物分解酵素は動植物をはじめとする生物に広く存在し、強酸、強アルカリ、加熱等による変性失活のおそれがない限り、抗酸化能力を有する。   Thus, peroxide-degrading enzymes are widely present in organisms including animals and plants, and have an antioxidant ability as long as there is no fear of denaturation and deactivation due to strong acids, strong alkalis, heating, or the like.

吉川敏一、他3名、「活性酸素・フリーラジカルの全て」、丸善株式会社、p.85-92Toshikazu Yoshikawa and three others, “All about active oxygen and free radicals”, Maruzen Co., Ltd., p.85-92 谷口直之、「活性酸素実験プロトコール」、秀潤社、p.84-95Naoyuki Taniguchi, “Reactive Oxygen Experiment Protocol”, Shujunsha, p.84-95 二木鋭雄,他2名、「抗酸化物質」、学会出版センター、p79-86、p321-323Akio Futaki, two others, "Antioxidants", Society Press, p79-86, p321-323 国際生化学連合酵素委員会報告 「酵素名・酵素反応記号一覧」共立出版株式会社、p70-88International Biochemical Union Enzyme Committee Report "List of Enzyme Names and Enzyme Reaction Symbols" Kyoritsu Publishing Co., Ltd., p70-88

ところで、ヨーグルトなど広く発酵食品に利用されている乳酸菌の一部は抗酸化酵素を有していると言われているが、その諸性質については不明な点が多く、そのため前記酵素の諸性質を明らかにすることが求められている。   By the way, some lactic acid bacteria widely used in fermented foods such as yogurt are said to have antioxidant enzymes, but there are many unclear points about their properties, so the properties of the enzymes are There is a need to clarify.

そこで、本発明者らは、種々の発酵食品から乳酸菌を分離し、該乳酸菌の培養菌体の諸性質について鋭意検討したところ、ラクトバチルス属(Lactobacillus)に属する乳酸菌が産生する酵素が過酸化物に対して分解特性を示すことを見出し、本発明を完成した。   Therefore, the present inventors have isolated lactic acid bacteria from various fermented foods and conducted extensive studies on the properties of the cultured lactic acid bacteria. As a result, the enzyme produced by lactic acid bacteria belonging to the genus Lactobacillus is peroxide. The present invention has been completed.

すなわち、本発明の要旨は以下のとおりである。
〔1〕 ラクトバチルス・プランタラム(Lactobacillus plantarum) TY-1572株(NITE P-90)由来で、下記の理化学的性質を有する過酸化物分解酵素、
(1)基質特異性
NAD(P)Hの存在下、過酸化物に高い反応性を示し、かつ過酸化水素にも反応する
(2)分子量
43kDa(SDSポリアクリルアミドゲル電気泳動による測定)
〔2〕 ラクトバチルス・プランタラム(Lactobacillus plantarum) TY-1572株(NITE P-90)由来で、下記の理化学的性質を有する過酸化物分解酵素、
(1)基質特異性
NAD(P)Hの存在下、過酸化物に高い反応性を示し、かつ過酸化水素にも反応する
(2)分子量
48kDa(SDSポリアクリルアミドゲル電気泳動による測定)
〔3〕 前記〔1〕及び/又は〔2〕記載の過酸化物分解酵素を含有する飲食品、または化粧品。
That is, the gist of the present invention is as follows.
[1] A peroxide-degrading enzyme derived from Lactobacillus plantarum TY-1572 (NITE P-90) and having the following physicochemical properties:
(1) Substrate specificity In the presence of NAD (P) H, it exhibits high reactivity with peroxides and also reacts with hydrogen peroxide. (2) Molecular weight 43 kDa (measured by SDS polyacrylamide gel electrophoresis)
[2] A peroxide-degrading enzyme derived from Lactobacillus plantarum TY-1572 (NITE P-90) and having the following physicochemical properties:
(1) Substrate specificity In the presence of NAD (P) H, it exhibits high reactivity with peroxides and also reacts with hydrogen peroxide. (2) Molecular weight 48 kDa (measured by SDS polyacrylamide gel electrophoresis)
[3] A food or drink containing the peroxide-degrading enzyme according to [1] and / or [2], or a cosmetic.

本発明によれば、乳酸菌のうち、ラクトバチルス・プランタラム(Lactobacillus plantarum) TY-1572株(NITE P-90)に由来する新規な過酸化物分解酵素を提供することができる。また、前記酵素を飲食品、または化粧品に含有させることにより、該酵素が有する過酸化物除去能力を活用することが期待できる。 According to the present invention, a novel peroxide-degrading enzyme derived from Lactobacillus plantarum TY-1572 strain (NITE P-90) among lactic acid bacteria can be provided. In addition, by incorporating the enzyme into a food or drink or cosmetics, it can be expected to utilize the peroxide removing ability of the enzyme.

酵素Aの電気泳動図である。2 is an electrophoretic diagram of enzyme A. FIG. 酵素Bの電気泳動図である。FIG. 6 is an electrophoretic diagram of enzyme B.

本発明の過酸化物分解酵素の製造に用いられる乳酸菌は、ラクトバチルス・プランタラム(Lactobacillus plantarum) TY-1572株(NITE P-90)である。本発明者らが検討したところ、該菌株は本発明において「酵素A」および「酵素B」と称する2種類の過酸化物分解酵素を産生する。酵素Aは、(1)基質特異性として、NAD(P)Hの存在下、過酸化物に高い反応性を示し、かつ過酸化水素にも反応し、(2)分子量として、SDSポリアクリルアミドゲル電気泳動(SDS−PAGE)による測定で43kDaを示す。酵素Bは、(1)基質特異性として、NAD(P)Hの存在下、過酸化物に高い反応性を示し、かつ過酸化水素にも反応し、(2)分子量として、SDSポリアクリルアミドゲル電気泳動(SDS−PAGE)による測定で48kDaを示す。すなわち、酵素A,Bはともに同様の基質特異性を示す一方、分子量が異なるものである。   The lactic acid bacterium used for the production of the peroxide-degrading enzyme of the present invention is Lactobacillus plantarum TY-1572 strain (NITE P-90). When the present inventors examined, this strain produces two types of peroxide-degrading enzymes called “enzyme A” and “enzyme B” in the present invention. In the presence of NAD (P) H, enzyme A is highly reactive with peroxides and also reacts with hydrogen peroxide. (2) As a molecular weight, enzyme A is an SDS polyacrylamide gel. 43 kDa is shown by measurement by electrophoresis (SDS-PAGE). Enzyme B has (1) substrate specificity, high reactivity to peroxide in the presence of NAD (P) H, and also to hydrogen peroxide, and (2) molecular weight, SDS polyacrylamide gel 48 kDa is shown by measurement by electrophoresis (SDS-PAGE). That is, enzymes A and B both show the same substrate specificity, but have different molecular weights.

なお、本発明において過酸化水素とは、水素原子に過酸基を有する過酸化物であり、過酸化物とは、通常の過酸化脂質(例えば、過酸化リノール酸など)の他、炭化水素基に過酸基を有する過酸化物(例えば、過酸化ブチル、過酸化クメンなど)を含む概念であり、過酸化水素は含まれない。また、上記の酵素反応において、過酸化物はアルコール類と水に分解(還元)されていると推測され、過酸化水素は水に分解(還元)されていると推測される。   In the present invention, hydrogen peroxide is a peroxide having a peracid group on a hydrogen atom, and the peroxide is a hydrocarbon other than normal lipid peroxide (eg, linoleic peroxide). This is a concept including a peroxide having a peracid group (for example, butyl peroxide, cumene peroxide, etc.) and does not include hydrogen peroxide. In the above enzyme reaction, it is presumed that the peroxide is decomposed (reduced) into alcohols and water, and that hydrogen peroxide is decomposed (reduced) into water.

過酸化物に対して分解特性を示すラクトバチルス・プランタラム(Lactobacillus plantarum) TY-1572株(NITE P-90)は次のようにしてスクリーニングすることができる。すなわち、まず、各種発酵食品を分離源とし、該分離源を固形培地で培養して乳酸菌を単離し、該単離した乳酸菌を液体培地で培養して得られる培養物から菌体を回収し、次いで該菌体を含有する菌体懸濁液を被検液として、該被検液が、過酸化物に対する分解特性を有するか否か調べることによりスクリーニングすることができる。   Lactobacillus plantarum TY-1572 strain (NITE P-90), which exhibits decomposition characteristics for peroxide, can be screened as follows. That is, first, various fermented foods as a separation source, the separation source is cultured in a solid medium to isolate lactic acid bacteria, and the cells are collected from a culture obtained by culturing the isolated lactic acid bacteria in a liquid medium, Subsequently, screening can be carried out by examining whether or not the test liquid has a decomposition property against peroxide, using the cell suspension containing the bacterial cells as the test liquid.

本発明において発酵食品とは、一般的に乳酸菌が含まれている動物性および植物性の発酵食品をいい、代表的な発酵食品を例示すれば、例えば、散麹、豆麹、餅麹、麹漬、味噌漬け、糠漬、野沢菜漬、すんき漬、ベッタラ漬、味噌、醤油、酒粕、納豆、米酢、バルサミコ酢、リンゴ酢、キムチ、腐乳、ナンプラー、とうふよう、ワイン粕、酒粕、ヨーグルト、ベジマイト、クワス、クミス、ギビヤック、ピクルス、クミス、サワークラウト等が挙げられる。そして、培養に際して、前記発酵食品を破砕し、例えば生理食塩水で希釈した食品懸濁液とすることが好ましい。   In the present invention, the fermented food generally refers to animal and plant fermented foods containing lactic acid bacteria. Examples of typical fermented foods include, for example, miso, soybean cake, koji, koji. Pickled, miso pickled, pickled cucumber, pickled in Nozawa, pickled with sunflower, bettara, miso, soy sauce, sake lees, natto, rice vinegar, balsamic vinegar, apple vinegar, kimchi, milk, nanpura, tofuyo, wine lees, sake lees, yogurt , Vegemite, Kvass, Kumis, Givyac, Pickles, Kumis, Sawarout. In the culture, the fermented food is preferably crushed and, for example, a food suspension diluted with physiological saline.

固形培地としては、乳酸菌の培養に通常用いられる培地であればよく、代表的なものを例示すれば、例えば、酵母エキスペプトン培地、ブドウ糖培地、フェネチルアルコール培地、アセテート培地、GYP培地、MRS培地、TITG培地、SL培地、システイン・ミルク培地、LBS培地、TATAC培地、MG培地、食塩18%-硝酸カリ培地、麹汁培地、BCP培地、チオグリコレイト培地、稀釈ブドウ果汁培地、ESY培地、吉栖氏培地、耐塩性乳酸菌用培地、耐塩性乳酸菌用醤油培地、上野培地、飯塚・山里培地、TYG培地、ラクチック培地、M17培地、Lactic streptococciの分別培地、クエン酸を発酵するLactic streptococciの分別培地、PPYL培地、YPG培地、酸性トマト培地、Mayeux&ColmerのLeuconostoc検出培地、浜本らのLeuconostoc検出培地、Pearce&HaliganのLeuconostoc計測培地、APT培地、Briggsのトマトジュース培地、Rogosa培地、NAP培地等に、固形化剤として0.5〜2.0%の寒天を添加したものが挙げられる。また、培地上に乳酸菌を選択的に増殖させるため、好気性菌の発育を阻害する物質(例えば、アジ化ナトリウム)、グラム陰性菌の発育を阻害する物質(例えば、ポリミキシンB)、真菌の発育を阻害する物質(例えば、シクロヘキシミド)などを適宜組み合わせて前記固形培地に含有させてもよい。また、液体培地としては、乳酸菌の培養に通常用いられる培地であればよく、代表的なものを例示すれば、例えば、酵母エキスペプトン培地、ブドウ糖培地、フェネチルアルコール培地、アセテート培地、GYP培地、MRS培地、TITG培地、SL培地、システイン・ミルク培地、LBS培地、TATAC培地、MG培地、食塩18%-硝酸カリ培地、麹汁培地、BCP培地、チオグリコレイト培地、稀釈ブドウ果汁培地、ESY培地、吉栖氏培地、耐塩性乳酸菌用培地、耐塩性乳酸菌用醤油培地、上野培地、飯塚・山里培地、TYG培地、ラクチック培地、M17培地、Lactic streptococciの分別培地、クエン酸を発酵するLactic streptococciの分別培地、PPYL培地、YPG培地、酸性トマト培地、Mayeux&ColmerのLeuconostoc検出培地、浜本らのLeuconostoc検出培地、Pearce&HaliganのLeuconostoc計測培地、APT培地、Briggsのトマトジュース培地、Rogosa培地、NAP培地等が挙げられる。   The solid medium may be any medium that is usually used for culturing lactic acid bacteria, and representative examples include, for example, yeast extract peptone medium, glucose medium, phenethyl alcohol medium, acetate medium, GYP medium, MRS medium, TITG medium, SL medium, cysteine milk medium, LBS medium, TATAC medium, MG medium, sodium chloride 18% -potassium nitrate medium, broth medium, BCP medium, thioglycolate medium, diluted grape juice medium, ESY medium, Yoshitake Mr. medium, salt-resistant lactic acid bacteria medium, soy sauce medium for salt-resistant lactic acid bacteria, Ueno medium, Iizuka-Yamazato medium, TYG medium, lactic medium, M17 medium, Lactic streptococci fractionation medium, Lactic streptococci fractionation medium for fermenting citric acid, PPYL medium, YPG medium, acidic tomato medium, Mayeux & Colmer Leuconostoc detection medium, Hamamoto et al. Leuconostoc detection medium, Pearce & Halig An an Leuconostoc measuring medium, an APT medium, a Briggs tomato juice medium, a Rogosa medium, a NAP medium and the like are added with 0.5 to 2.0% agar as a solidifying agent. In addition, since lactic acid bacteria are selectively grown on the medium, substances that inhibit the growth of aerobic bacteria (for example, sodium azide), substances that inhibit the growth of gram-negative bacteria (for example, polymyxin B), and fungal growth A substance that inhibits (for example, cycloheximide) or the like may be appropriately combined and contained in the solid medium. The liquid medium may be any medium that is usually used for culturing lactic acid bacteria. Typical examples include, for example, yeast extract peptone medium, glucose medium, phenethyl alcohol medium, acetate medium, GYP medium, MRS. Medium, TITG medium, SL medium, cysteine milk medium, LBS medium, TATAC medium, MG medium, sodium chloride 18% -potassium nitrate medium, broth medium, BCP medium, thioglycolate medium, diluted grape juice medium, ESY medium, Yoshihiro's medium, salt-resistant lactic acid bacteria medium, soy sauce medium for salt-resistant lactic acid bacteria, Ueno medium, Iizuka / Yamazato medium, TYG medium, lactic medium, M17 medium, Lactic streptococci fractionation medium, Lactic streptococci fractionation that ferments citric acid Medium, PPYL medium, YPG medium, acidic tomato medium, Mayeux & Colmer Leuconostoc detection medium, Hamamoto et al. Leuconostoc detection medium, Pea Examples include rce & Haligan's Leuconostoc measurement medium, APT medium, Briggs' tomato juice medium, Rogosa medium, and NAP medium.

乳酸菌の培養は、常法にしたがって行えばよく、例えば、30〜40℃、10〜40時間の条件で好気的培養、静置培養または中和培養などを行えばよい。   The lactic acid bacteria may be cultured according to a conventional method, for example, aerobic culture, stationary culture or neutralization culture under conditions of 30 to 40 ° C. and 10 to 40 hours.

培養終了後、乳酸菌のコロニーを1コロニーずつ単離し、常法にしたがって純化することが好ましい。そして、前記単離した乳酸菌株を常法にしたがって培養し、得られた培養物を遠心分離して菌体を回収し、該菌体に緩衝液を加えてOD660nm=1.5〜1.7に濃度調節した菌体懸濁液を調製し、該菌体懸濁液が、過酸化物に対する分解特性を示すか否か調べ、過酸化物に対する分解特性を示す乳酸菌株を本発明の目的に適した乳酸菌とする。 After completion of the culture, it is preferable to isolate colonies of lactic acid bacteria one by one and purify them according to a conventional method. Then, the isolated lactic acid strain is cultured according to a conventional method, and the obtained culture is centrifuged to recover the cells, and a buffer solution is added to the cells to adjust the concentration to OD 660 nm = 1.5 to 1.7. Lactic acid bacteria suitable for the purpose of the present invention are prepared by examining whether or not the bacterial cell suspension exhibits degradation characteristics against peroxides. And

過酸化物に対する分解特性は、例えば、前記菌体懸濁液に過酸化物(終濃度1.0〜3.0mM)、および必要に応じて糖類(例えば、グルコース)(終濃度30〜100mM)をそれぞれ添加して、37℃で3時間反応させ、反応終了後の反応液を遠心分離し、上清に含まれる過酸化物残量を測定することにより評価される。なお、前記糖類は、乳酸菌株の代謝によるエネルギーを供与するために添加するものであるが、必ずしも添加しなくてもよい。   Decomposition characteristics for peroxide include, for example, peroxide (final concentration: 1.0 to 3.0 mM) and, if necessary, saccharide (for example, glucose) (final concentration: 30 to 100 mM) in the cell suspension. Each is added, reacted at 37 ° C. for 3 hours, the reaction solution after completion of the reaction is centrifuged, and the remaining amount of peroxide contained in the supernatant is measured. In addition, although the said saccharide | sugar is added in order to provide the energy by metabolism of a lactic acid strain, it does not necessarily need to add.

以上のようにして分離した乳酸菌株の過酸化物分解特性を評価することにより、過酸化物分解特性を示すものとして、乳酸菌TY-1572株を選択することができる。そして、菌学的性質および遺伝学的特性の結果から、乳酸菌TY-1572株は、ラクトバチルス・プランタラム(Lactobacillus plantarum)と同定された。上記菌株は、ラクトバチルス・プランタラム(Lactobacillus plantarum)TY1572(NITE P-90)として独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託されている。   By evaluating the peroxide decomposition characteristics of the lactic acid strain isolated as described above, the lactic acid bacteria TY-1572 strain can be selected as exhibiting peroxide decomposition characteristics. From the results of mycological properties and genetic characteristics, the lactic acid bacterium strain TY-1572 was identified as Lactobacillus plantarum. The above strain is deposited as Lactobacillus plantarum TY1572 (NITE P-90) in the National Institute of Technology and Evaluation Patent Microorganism Depositary.

本発明では、上述のようにして単離した乳酸菌TY-1572株を常法にしたがって培養し、得られた培養物を遠心分離して菌体を回収し、該菌体に緩衝液を加えた菌体懸濁液や、該菌体懸濁液を機械的方法、酵素的方法等で破砕して得られる無細胞抽出液など粗酵素の状態で利用することができる。該粗酵素中には本発明に係る酵素A,Bは共存しているため、粗酵素の状態で利用する場合、酵素A,Bは併用されることになる。また、該粗酵素液を被覆保護材(例えば、レシチン、キチン等)でミセル化してカプセルとして、あるいは賦形剤(例えば、デキストリン等)で吸着させて粉末として利用してもよい。さらに、前記粗酵素液は、常法にしたがい、凍結乾燥,噴霧乾燥などを行い、乾燥品としても利用可能である。   In the present invention, the lactic acid bacterium strain TY-1572 isolated as described above was cultured according to a conventional method, and the resulting culture was centrifuged to recover the cells, and a buffer solution was added to the cells. It can be used in a crude enzyme state such as a bacterial cell suspension or a cell-free extract obtained by crushing the bacterial cell suspension by a mechanical method, an enzymatic method or the like. Since the enzymes A and B according to the present invention coexist in the crude enzyme, the enzymes A and B are used together when used in the state of the crude enzyme. Further, the crude enzyme solution may be used as a capsule by being micellized with a coating protective material (eg, lecithin, chitin, etc.) or adsorbed with an excipient (eg, dextrin, etc.) and used as a powder. Further, the crude enzyme solution can be used as a dried product by lyophilization, spray drying and the like according to a conventional method.

酵素A,Bをそれぞれ単独使用する場合は、前記粗酵素液を精製して使用すればよい。該粗酵素液の精製にあたっては、例えば、前記菌体懸濁液を破砕して得られる無細胞抽出液に遠心処理を行い、該無細胞抽出液から未破砕菌体を除去したものが粗酵素液として用いられる。そして、この粗酵素液に、例えば、硫酸アンモニウム、硫酸ナトリウム等の塩析処理、および疎水ブチルカラム、弱陰イオン交換カラム、ゲルろ過カラム、アフィニティーカラム等のクロマトグラフィーを適宜組み合わせることで精製酵素を得ることができる。精製された酵素A,Bは、SDS−PAGEでそれぞれほぼ単一のバンドを示す程度に純化されている。   When the enzymes A and B are used individually, the crude enzyme solution may be purified and used. In the purification of the crude enzyme solution, for example, a cell-free extract obtained by crushing the cell suspension is subjected to a centrifugal treatment, and uncrushed cells are removed from the cell-free extract. Used as a liquid. Then, a purified enzyme is obtained by appropriately combining, for example, salting-out treatment of ammonium sulfate, sodium sulfate, etc. and chromatography such as a hydrophobic butyl column, a weak anion exchange column, a gel filtration column, an affinity column, etc. with this crude enzyme solution. Can do. The purified enzymes A and B are purified to such an extent that each of them shows a substantially single band by SDS-PAGE.

なお、上記の各種クロマト法を適用した際に得られる各画分については、各画分の過酸化物分解活性、およびタンパク質のピークパターンを分析することで酵素AまたはBを含有する画分が回収される。過酸化物分解活性は、各画分に電子供与体であるNADHまたはNADPH(以下、「NAD(P)H」という場合がある)および電子受容体である過酸化物を添加し、37℃で3分間反応させ、反応後におけるNAD(P)H濃度と過酸化物濃度を測定することで評価される。NAD(P)H濃度は340nmの吸光度により測定され、過酸化物濃度は公知のチオシアン酸−鉄錯体による発色法により測定される。   In addition, about each fraction obtained when said various chromatographic methods are applied, the fraction containing enzyme A or B is analyzed by analyzing the peroxide decomposition activity of each fraction and the peak pattern of protein. Collected. Peroxide decomposition activity was determined by adding NADH or NADPH (hereinafter sometimes referred to as “NAD (P) H”) as an electron donor and peroxide as an electron acceptor to each fraction at 37 ° C. The reaction is evaluated for 3 minutes, and the NAD (P) H concentration and peroxide concentration after the reaction are measured. The NAD (P) H concentration is measured by absorbance at 340 nm, and the peroxide concentration is measured by a color development method using a known thiocyanate-iron complex.

上記のようにして得られる酵素Aは以下の理化学的性質を示す。
(1)基質特異性
NAD(P)Hの存在下、過酸化物に高い反応性を示し、かつ過酸化水素にも反応する。
(2)分子量
43kDa(SDSポリアクリルアミドゲル電気泳動による測定)。
なお、過酸化水素分解活性は、酵素Aの方が酵素Bよりも低い。
Enzyme A obtained as described above exhibits the following physicochemical properties.
(1) Substrate specificity In the presence of NAD (P) H, it exhibits high reactivity with peroxides and also reacts with hydrogen peroxide.
(2) Molecular weight 43 kDa (measured by SDS polyacrylamide gel electrophoresis).
In addition, the hydrogen peroxide decomposition activity is lower in enzyme A than in enzyme B.

また、酵素Bは以下の理化学的性質を示す。
(1)基質特異性
NAD(P)Hの存在下、過酸化物に高い反応性を示し、かつ過酸化水素にも反応する。
(2)分子量
48kDa(SDSポリアクリルアミドゲル電気泳動による測定)。
In addition, enzyme B exhibits the following physicochemical properties.
(1) Substrate specificity In the presence of NAD (P) H, it exhibits high reactivity with peroxides and also reacts with hydrogen peroxide.
(2) Molecular weight 48 kDa (measured by SDS polyacrylamide gel electrophoresis).

本発明に係る酵素A,Bはそれぞれ単独でまたは両者を共存させて、例えば、飲食品、化粧品に含有させた状態で用いることができる。前記酵素を飲食品等に含有させることにより、該酵素が有する過酸化物除去能力を活用することが期待できる。
Enzymes A and B according to the present invention can be used alone or in the presence of both, for example, in a state where they are contained in foods and beverages and cosmetics. By containing the enzyme in food or drink, it can be expected to utilize the peroxide removing ability of the enzyme.

以下に実施例を示して本発明を詳細に説明するが、本発明は当該実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.

1.乳酸菌のスクリーニング
1-1.食品懸濁液の調製
乳酸菌の分離源として、散麹、豆麹、餅麹、麹漬、味噌漬け、糠漬、野沢菜漬、すんき漬、ベッタラ漬、味噌、醤油、酒粕、納豆、米酢、バルサミコ酢、リンゴ酢、キムチ、腐乳、ナンプラー、とうふよう、ワイン粕、酒粕、ヨーグルト、ベジマイト、クワス、クミス、ギビヤック、ピクルス、クミス、サワークラウト、果実、野菜、海藻、魚類を入手し、前記食品をそれぞれ破砕した後、生理食塩水で希釈して食品懸濁液とした。
1. Screening for lactic acid bacteria
1-1. Preparation of food suspension As sources for separating lactic acid bacteria, Koji, bean paste, koji, koji pickled, miso pickled, koji pickled, Nozawa nazuke, sunki zuke, bettara pickled, miso, soy sauce, sake lees, Natto, rice vinegar, balsamic vinegar, apple vinegar, kimchi, roasted milk, nanpura, tofuyo, wine lees, sake lees, yogurt, vegemite, quas, cumis, gibiyac, pickles, kumis, sauerkraut, fruit, vegetables, seaweed, fish After obtaining and crushing each of the foods, it was diluted with physiological saline to obtain a food suspension.

1-2.スクリーニング
GYP培地(1% グルコース,1% 酵母エキス,0.5% ペプトン,0.2% 酢酸ナトリウム・3H20,20ppm MgSO4・7H20,1ppm MnSO4・4H20,1ppm FeSO4・7H20,1ppm NaCl,50ppm Tween80)にアジ化ナトリウム(終濃度30ppm)、ポリミキシンB(終濃度30ppm)およびシクロヘキシミド(終濃度30ppm)を含む選択寒天培地に前記「1-1.食品懸濁液の調製」で調製した食品懸濁液をそれぞれ添加し、30℃で16時間静置培養した。培養終了後、前記「1-1.食品懸濁液の調製」に記載の分離源から調製した食品懸濁液添加試料からコロニーが生育していることが確認され、1コロニーずつ単離した。そして、得られた乳酸菌株のコロニーをGYP寒天培地上に植菌して常法にしたがい純化した。そして、上記食品群から分離した乳酸菌株をTY-1572株と命名した。
1-2. Screening GYP medium (1% glucose, 1% yeast extract, 0.5% peptone, 0.2% sodium acetate · 3H 2 0,20ppm MgSO 4 · 7H 2 0,1ppm MnSO 4 · 4H 2 0,1ppm FeSO 4 · 7H 2 0,1ppm NaCl, 50ppm Tween80 sodium azide) (final concentration 30 ppm), polymyxin B (the on selective agar medium containing final concentration 30 ppm) and cycloheximide (final concentration 30 ppm) "1-1. food suspension Each of the food suspensions prepared in “Preparation” was added and statically cultured at 30 ° C. for 16 hours. After completion of the culture, it was confirmed that colonies had grown from the food suspension-added sample prepared from the separation source described in “1-1. Preparation of food suspension”, and each colony was isolated. The obtained colonies of lactic acid strains were inoculated on a GYP agar medium and purified according to a conventional method. And the lactic acid strain isolate | separated from the said food group was named TY-1572 strain.

2.乳酸菌の菌学的性質
前記「1-2.スクリーニング」で分離した乳酸菌株(TY-1572株)の菌学的性質を、乳酸菌実験マニュアル(小崎道雄監修、内村泰、岡田早苗著、朝倉書店)にしたがって検討した。結果を表1に示す。
2. Bacteriological properties of lactic acid bacteria The bacteriological properties of the lactic acid bacteria strain (TY-1572) isolated in the above “1-2. Screening” are shown in the lactic acid bacteria experiment manual (supervised by Michio Kosaki, Yasushi Uchimura, Sanae Okada, Asakura). (Bookstore). The results are shown in Table 1.

3.乳酸菌の遺伝学的特性
前記「1-2.スクリーニング」で分離したTY-1572株について、常法にしたがい16S rDNAの塩基配列を決定し、BLASTプログラムおよびClustal Wプログラムを使用して、既存の乳酸菌のうちどの菌種の配列に最も近いか検索した。その結果、乳酸菌TY-1572株の16S rDNAの塩基配列がラクトバチルス・プランタラム(Lactobacillus plantarum)の16S rDNAの塩基配列と100%一致した。以上の結果から、乳酸菌TY-1572株はラクトバチルス・プランタラム(Lactobacillus plantarum)と同定された。
3. Genetic characteristics of lactic acid bacteria For TY-1572 strain isolated in “1-2. Screening”, the base sequence of 16S rDNA was determined according to the conventional method, and the existing lactic acid bacteria were analyzed using BLAST program and Clustal W program. We searched which bacterial species was closest to the sequence. As a result, the base sequence of 16S rDNA of lactic acid bacteria strain TY-1572 was 100% identical to the base sequence of 16S rDNA of Lactobacillus plantarum. From the above results, lactic acid bacteria strain TY-1572 was identified as Lactobacillus plantarum.

4.乳酸菌の過酸化物分解特性
前記「3.乳酸菌の遺伝学的特性」で同定されたTY-1572株の菌体懸濁液に過酸化物を添加し、所定時間経過後の反応液中に残存する過酸化物の残量を測定して、過酸化物に対する分解特性を調べた。
4). Peroxide degradation characteristics of lactic acid bacteria Peroxide is added to the cell suspension of TY-1572 strain identified in “3. Genetic characteristics of lactic acid bacteria” and remains in the reaction solution after a predetermined time. The remaining amount of peroxide to be measured was measured, and the decomposition characteristics against peroxide were examined.

4-1.菌体懸濁液の調製
TY-1572株の菌株をそれぞれGYP培地に接種して37℃で約24時間静置培養した。培養終了後、培養物を8,000rpmで10分間遠心分離し、上清を除去することにより菌体を集菌した。次いで、集菌した菌体をリン酸緩衝液に懸濁し、OD660nm=1.6に濃度調節したものを菌体懸濁液とした。
4-1. Preparation of cell suspension
Each strain of TY-1572 strain was inoculated into GYP medium and cultured at 37 ° C. for about 24 hours. After completion of the culture, the culture was centrifuged at 8,000 rpm for 10 minutes, and the cells were collected by removing the supernatant. Next, the collected bacterial cells were suspended in a phosphate buffer solution, and the concentration adjusted to OD 660 nm = 1.6 was used as the bacterial cell suspension.

4-2.過酸化物に対する分解特性
前記「4-1.菌体懸濁液の調製」で調製した菌体懸濁液に過酸化物(過酸化クメンまたは過酸化t−ブチル)(終濃度3.0mM)とグルコース(終濃度50mM)をそれぞれ加え、水平震盪機にて37℃で3時間反応させた。反応終了後、卓上遠心機にて反応液を遠心処理し、上清に含まれる未反応の前記過酸化物濃度を測定した。
4-2. Decomposition characteristics for peroxides Peroxide (cumene peroxide or t-butyl peroxide) (final concentration) in the cell suspension prepared in “4-1. Preparation of cell suspension”. 3.0 mM) and glucose (final concentration 50 mM) were added, respectively, and reacted at 37 ° C. for 3 hours on a horizontal shaker. After completion of the reaction, the reaction solution was centrifuged using a tabletop centrifuge, and the unreacted peroxide concentration contained in the supernatant was measured.

過酸化物の濃度測定には、ヘモグロビン存在下における過酸化物とメチレンブルー誘導体の等モル呈色反応を利用した八木別法を用いた。測定方法は八木別法測定キットであるデタミナーLPO(協和メデックス)の説明書に準ずる。得られたデータに基づいて過酸化物の分解量を算出したところ、過酸化クメンについては約2800μMであり、過酸化t−ブチルについては約800μMであった。   For the measurement of the peroxide concentration, the Yagi method using the equimolar color reaction of peroxide and methylene blue derivative in the presence of hemoglobin was used. The measurement method follows the instructions of Determiner LPO (Kyowa Medex), which is a Yagi method. When the decomposition amount of peroxide was calculated based on the obtained data, it was about 2800 μM for cumene peroxide and about 800 μM for t-butyl peroxide.

4-3.過酸化物に対する分解特性
前記「4-2.過酸化物に対する分解特性」で使用した過酸化物に代えてリノール酸由来の過酸化物(過酸化リノール酸)を実験に供した。過酸化物は、リノール酸溶液にリポキシゲナーゼを加えて湯浴中(30℃)で約5分間、酸素を吹き込みながら激しく撹拌して得られたものを使用した。なお、過酸化リノール酸の確認には薄層クロマトグラフィーを用いた(参考文献:過酸化脂質実験法、金田尚志、植田伸夫編集、医歯薬出版株式会社、Agric.Biol.Chem. 45,P587−593,1981、汎用衛生試験法と解説、日本薬学会編、南山堂、P33、脂質分析法入門、藤野安彦、学会出版センター、P100)。実験に際しては、得られた過酸化リノール酸を乳化分散させたものを使用した。乳化分散した過酸化リノール酸液の過酸化物濃度は、約1000μMであった。
4-3. Decomposition characteristics for peroxides In place of the peroxides used in “4-2. Decomposition characteristics for peroxides”, peroxides derived from linoleic acid (linoleic peroxide) were used in the experiments. . The peroxide was obtained by adding lipoxygenase to a linoleic acid solution and stirring vigorously while blowing oxygen in a hot water bath (30 ° C.) for about 5 minutes. In addition, thin layer chromatography was used for the confirmation of peroxidic linoleic acid (Reference: Experimental method for lipid peroxide, Naoshi Kaneda, Nobuo Ueda, Ishigaku Publishing Co., Ltd., Agric. Biol. Chem. 45, P587. -593,1981, General hygiene test method and explanation, edited by Japan Pharmaceutical Association, Nanzando, P33, Introduction to Lipid Analysis, Yasuhiko Fujino, Academic Publishing Center, P100). In the experiment, an emulsified dispersion of the obtained linoleic peroxide was used. The peroxide concentration of the emulsified and dispersed linoleic acid peroxide solution was about 1000 μM.

そして、前記「4-2.過酸化物に対する分解特性」で調製した菌体懸濁液に上述した過酸化リノール酸水溶液(終濃度1mM)とグルコース(終濃度50mM)をそれぞれ加え、水平震盪機にて37℃で3時間反応させた。反応終了後、卓上遠心機にて反応液を遠心分離し、上清に含まれる未反応の過酸化リノール酸濃度を測定した。過酸化リノール酸濃度の測定方法は前記「4-2.過酸化物に対する分解特性」に準じて行った。得られたデータに基づいて過酸化リノール酸の分解量を算出したところ、約850μMであった。   Then, the above-described aqueous linoleic acid aqueous solution (final concentration 1 mM) and glucose (final concentration 50 mM) were added to the cell suspension prepared in “4-2. For 3 hours at 37 ° C. After completion of the reaction, the reaction solution was centrifuged with a tabletop centrifuge, and the unreacted linoleic acid concentration in the supernatant was measured. The measuring method of the concentration of peroxylinoleic acid was performed according to the above-mentioned “4-2. Decomposition characteristics for peroxide”. When the decomposition amount of linoleic peroxide was calculated based on the obtained data, it was about 850 μM.

5.過酸化物分解酵素の精製
過酸化物分解酵素の精製を次のようにして行った。なお、各精製段階における、NADH濃度、過酸化クメン(過酸化物として)濃度、タンパク質濃度およびSDS−PAGEは下記の方法にて測定した。
5. Purification of peroxide-degrading enzyme The peroxide-degrading enzyme was purified as follows. In each purification step, NADH concentration, cumene peroxide (as peroxide) concentration, protein concentration and SDS-PAGE were measured by the following methods.

(NADH濃度)
NADHの濃度測定には、該物質が有する吸光波長(λ=340nm)の減少にて活性を測定した。具体的には、マイクロブラックセルに約10mM、pH無調製トリス緩衝液500μlに溶解した終濃度150μM NADH、終濃度500μM 過酸化クメン、1/100倍容 被検試料(無細胞抽出液又は各精製段階で得られた各画分)を予め3分間37℃にて加温し、順次添加しその都度転換混和した。ダブルビーム吸光度計(ε340=6.220 M−1cm−1)にて本酵素の活性を37℃で経時的にNADHの減少量として測定した。過酸化クメンの分解に伴うNADH減少活性は、過酸化クメンを添加した際の初速から添加直後の前記被検試料の初速を引いて算出した。必要に応じてNADHの代わりにNADPHを用いて測定した。
(NADH concentration)
In measuring the concentration of NADH, the activity was measured by decreasing the absorption wavelength (λ = 340 nm) of the substance. Specifically, about 10 mM in a micro black cell, final concentration 150 μM NADH dissolved in 500 μl of pH unadjusted Tris buffer, final concentration 500 μM cumene peroxide, 1 / 100-fold test sample (cell-free extract or each purification) Each fraction obtained in the step) was preheated at 37 ° C. for 3 minutes in advance, added sequentially, and mixed by inversion each time. The activity of the enzyme was measured as a decrease in NADH over time at 37 ° C. using a double beam absorptiometer (ε 340 = 6.220 M −1 cm −1 ). The NADH decreasing activity accompanying the decomposition of cumene peroxide was calculated by subtracting the initial speed of the test sample immediately after the addition from the initial speed when the cumene peroxide was added. Measurement was performed using NADPH instead of NADH as necessary.

(過酸化クメン濃度)
過酸化クメンの濃度測定は、チオシアン酸−鉄錯体による発色法を用いた。前記「(NADH濃度)」と同じ実験系を用い、過酸化クメンと反応させた過酸化物分解酵素を適宜希釈し、500μl、2.0 mlエッペンドルフチューブに採取し、10%トリクロロ酢酸水溶液を500μl、0.01 N 硫酸にて溶解した硫酸アンモニウム鉄(II)10 mMを100μl、2.5 M チオシアン酸カリウムを500μl順次添加し、赤色に反応したサンプルを、ダブルビーム分光光度計にてλ=480nmにて測定した。
(Cumene peroxide concentration)
The measurement of the concentration of cumene peroxide was performed by a color development method using a thiocyanate-iron complex. Using the same experimental system as the “(NADH concentration)”, the peroxide-degrading enzyme reacted with cumene peroxide was appropriately diluted and collected in a 500 μl, 2.0 ml Eppendorf tube, and 10% trichloroacetic acid aqueous solution was added in 500 μl, 0.01%. N 100 mL of ammonium iron (II) sulfate dissolved in sulfuric acid and 100 μL of 2.5 M potassium thiocyanate were sequentially added, and the sample that reacted in red was measured at λ = 480 nm with a double beam spectrophotometer.

(タンパク質濃度)
過酸化クメン分解活性を有する各画分のタンパク質濃度は、ブラッドフォード法と呼ばれる常法を用いて算出した。測定原理はクマシーブリリアントブルー(CBB)という色素がタンパク質と結合した際の赤紫色から青への変色を利用したものである。タンパク質の濃度の定量を行う際には、既知のタンパク質である鶏卵白アルブミンにて検量線を作製し、タンパク質濃度を算出した。
(Protein concentration)
The protein concentration of each fraction having a cumene peroxide decomposition activity was calculated using a conventional method called the Bradford method. The measurement principle uses the color change from red purple to blue when a dye called Coomassie Brilliant Blue (CBB) binds to a protein. When quantifying the protein concentration, a calibration curve was prepared with chicken egg white albumin, which is a known protein, and the protein concentration was calculated.

(SDS−PAGE)
酵素精製過程における精製度の確認や、回収に際し有用な画分の判断には、SDS−PAGEを使用した。酵素の解析には、「初歩からのバイオ実験」(大山 徹、渡部 俊弘編著、三共出版)を参考に実施し、必要に応じて前著の変法を用いている。
(SDS-PAGE)
SDS-PAGE was used for confirmation of the degree of purification in the enzyme purification process and determination of fractions useful for collection. Enzyme analysis is performed with reference to “Bio-experiment from the beginning” (Toru Oyama, Toshihiro Watanabe, Sankyo Publishing), and uses the modified method of the previous book as necessary.

アクリルアミド29.2g、N,N’-メチレンビスアクリルアミド0.8g、100ml蒸留水にて調製したゲル作製ストック溶液A液、pH8.8に調整した1.5Mトリス緩衝液に0.4%SDSを溶解せしめたゲル作製ストック溶液B液、pH6.8に調整した0.5Mトリス緩衝液に0.4%SDSを溶解せしめたゲル作製ストック溶液C液、および10%過硫酸アンモニウム溶液からなるゲル作製ストック溶液D液をそれぞれ調製し作成用プレートに分注した。分離用SDSポリアクリルアミドゲルの硬化後、濃縮用SDSポリアクリルアミドゲルを重層した。   Gel preparation stock solution A solution prepared with 29.2 g of acrylamide, 0.8 g of N, N'-methylenebisacrylamide, 100 ml distilled water, and gel preparation with 0.4% SDS dissolved in 1.5 M Tris buffer adjusted to pH 8.8 Stock solution B, gel preparation stock solution C prepared by dissolving 0.4% SDS in 0.5M Tris buffer adjusted to pH 6.8, and gel preparation stock solution D comprising 10% ammonium persulfate solution were prepared and prepared. Dispense into plates. After the separation SDS polyacrylamide gel was cured, the concentration SDS polyacrylamide gel was overlaid.

作製したゲルプレートを泳動用緩衝液で満たした泳動槽にセットし濃縮ゲル部分では7.5〜10mA、濃縮ゲル通過後は15〜20mAに電流を印加し電気泳動を行った。電気泳動はゲルプレート下端手前約1cmにて泳動を停止し、染色工程に移行した。   The prepared gel plate was set in an electrophoresis tank filled with a buffer for electrophoresis, and electrophoresis was performed by applying a current of 7.5 to 10 mA in the concentrated gel portion and 15 to 20 mA after passing through the concentrated gel. Electrophoresis stopped at about 1 cm before the lower end of the gel plate and moved to the staining step.

泳動終了後のポリアクリルアミドゲルをクマシーブリリアントブルー(CBB) 染色液にて染色し、その後明瞭な染色バンドが得られるまで脱色作業を行った。   The polyacrylamide gel after the electrophoresis was stained with Coomassie Brilliant Blue (CBB) staining solution, and then decolorization was performed until a clear staining band was obtained.

5-1.粗酵素液の調製
乳酸菌を培養する方法については、当業者が用いる常法に従って行った。乳酸菌の培養に通常用いられるGYP液体培地20 l にラクトバチルス・プランタラム(Lactobacillus plantarum)TY-1572株(NITE P-90)を接種し、ジャーファーメンターにて37℃、13〜14時間培養した。対数増殖期後期に培養菌体を遠心処理にて回収した。回収培養菌体についてはpH7.0、50mMリン酸緩衝液にて培養菌体を洗浄した。
5-1. Preparation of Crude Enzyme Solution The method for culturing lactic acid bacteria was performed according to a conventional method used by those skilled in the art. Lactobacillus plantarum (LITEobacillus plantarum) TY-1572 strain (NITE P-90) was inoculated into 20 l of a GYP liquid medium normally used for lactic acid bacteria culture and cultured at 37 ° C. for 13 to 14 hours in a jar fermenter. . In the late logarithmic growth phase, the cultured cells were collected by centrifugation. The collected cultured cells were washed with pH 7.0, 50 mM phosphate buffer.

該菌体懸濁液をリゾチーム処理、超音波処理による破砕、超高圧細胞破砕機による破砕にて得られたものを粗酵素液とした。   A crude enzyme solution was obtained by lysozyme treatment, disruption by ultrasonic treatment, and disruption by an ultrahigh pressure cell disrupter.

5-2.塩析処理、脱核酸処理およびクロマトグラフィー
上述の操作で得られた粗酵素液に硫酸アンモニウムによる塩析処理、ストレプトマイシン硫酸塩による脱核酸処理を行った。本工程で得られた上清をカラムに供して精製を実施した。
5-2. Salting-out treatment, denucleic acid treatment and chromatography The crude enzyme solution obtained by the above operation was subjected to salting-out treatment with ammonium sulfate and denucleic acid treatment with streptomycin sulfate. The supernatant obtained in this step was applied to a column for purification.

上述の操作で得られた粗酵素液の上清を疎水ブチルカラム、弱陰イオン交換カラム、ゲル濾過カラムに供して酵素Aを得た。画分回収の判断はAbs280nmによるタンパク回収量と、過酸化クメンに対する分解活性を指標として判断した。画分は回収毎に透析処理を行った。回収画分中に特に過酸化クメンの分解能力が高く、精製されているバンドをSDS−PAGEにかけたところ、約43kDaの位置に単一バンドの存在を確認し、本画分を精製酵素とした。電気泳動の結果を示す(図1)。 The supernatant of the crude enzyme solution obtained by the above operation was subjected to a hydrophobic butyl column, a weak anion exchange column, and a gel filtration column to obtain enzyme A. Fraction collection was judged using the protein recovery amount by Abs 280nm and the degradation activity against cumene peroxide as indicators. The fraction was dialyzed for each collection. In the recovered fraction, the ability to decompose cumene peroxide was particularly high, and the purified band was subjected to SDS-PAGE. As a result, the presence of a single band at a position of about 43 kDa was confirmed, and this fraction was used as a purified enzyme. . The result of electrophoresis is shown (FIG. 1).

上述の操作で得られた粗酵素液の上清を疎水ブチルカラム、アフィニティーカラムに供して酵素Bを得た。画分回収の判断はAbs280nmによるタンパク回収量と、過酸化クメンの分解活性を指標として判断した。画分は回収毎に透析処理を行った。 The supernatant of the crude enzyme solution obtained by the above operation was applied to a hydrophobic butyl column and an affinity column to obtain enzyme B. Fraction collection was judged using the protein recovery amount by Abs 280 nm and the decomposition activity of cumene peroxide as indicators. The fraction was dialyzed for each collection.

回収画分中に特に過酸化クメンの分解能力が高く、精製されているバンドをSDS−PAGEにかけたところ、約48kDaの位置に単一バンドの存在を確認し、本画分を精製酵素とした。電気泳動の結果を示す(図2)。   In the recovered fraction, the ability to decompose cumene peroxide was particularly high, and the purified band was subjected to SDS-PAGE. As a result, the presence of a single band was confirmed at about 48 kDa, and this fraction was used as a purified enzyme. . The result of electrophoresis is shown (FIG. 2).

6.基質特異性
前記「5.過酸化物分解酵素の精製 (NADH濃度)」の実験系のうち、被検試料として精製した酵素AおよびBを使用し、過酸化クメンに代えて過酸化水素を使用した以外は前記と同様に酵素反応を行わせることにより、酵素A,Bの過酸化水素に対する分解活性を調べた。過酸化水素の濃度測定は、前記「5.過酸化物分解酵素の精製 (過酸化クメン濃度)」に準じて行った。測定の結果、酵素A,Bはともに過酸化水素にも反応し、過酸化水素分解活性は、酵素Aの方が酵素Bよりも低かった。
6). Substrate specificity In the experimental system of “5. Purification of peroxide-degrading enzyme (NADH concentration)”, purified enzymes A and B were used as test samples, and hydrogen peroxide was used instead of cumene peroxide. Except for the above, the enzymatic reaction was carried out in the same manner as described above to examine the decomposition activity of enzymes A and B against hydrogen peroxide. The concentration of hydrogen peroxide was measured according to “5. Purification of peroxide-degrading enzyme (cumene peroxide concentration)”. As a result of the measurement, both enzymes A and B reacted with hydrogen peroxide, and the hydrogen peroxide decomposition activity of enzyme A was lower than that of enzyme B.

また、精製した酵素AおよびBを使用し、過酸化クメンの存在下において阻害剤の検討を行った。阻害剤は、KCN、NaOH、pCMB、HgCl2、エタノール、quinine、quinacrineを使用した。試験条件は前記「5.過酸化物分解酵素の精製 (NADH濃度)」の実験系に準ずるが、阻害剤は終濃度2mMとし、過酸化クメン濃度は終濃度500μM、NADH濃度は終濃度150μMとした。測定の結果、酵素A,Bともに、KCN、pCMB、HgCl2、quinine、quinacrineを添加した際に過酸化物分解反応阻害効果が確認できた。 In addition, using purified enzymes A and B, inhibitors were examined in the presence of cumene peroxide. Inhibitors were used KCN, NaOH, pCMB, HgCl 2, ethanol, quinine, and Quinacrine. The test conditions are the same as in the experimental system described in “5. Purification of peroxide-degrading enzyme (NADH concentration)”, but the inhibitor is a final concentration of 2 mM, the cumene peroxide concentration is 500 μM, and the NADH concentration is 150 μM. did. As a result of the measurement, when KCN, pCMB, HgCl 2 , quinine, and quinacrine were added to both enzymes A and B, the peroxide decomposition reaction inhibitory effect could be confirmed.

7.過酸化物分解酵素の用途
7-1.過酸化物分解粗酵素液の製造例
水97.5重量部、ブドウ糖1重量部、大豆ペプチド0.5重量部および酵母エキス1重量部から構成される培地にTY-1572株を接種して、30℃で16時間静置培養し、培養後の培養物を遠心処理によって菌体を採取した。この菌体を湿重量に対し5倍容のリン酸緩衝液に懸濁し、270MPa以上の高圧処理にて菌体を破砕し、これを過酸化物分解粗酵素液とした。
7). Uses of peroxide-degrading enzymes
7-1. Production Example of Peroxide Degrading Crude Enzyme Solution Inoculate TY-1572 strain into a medium composed of 97.5 parts by weight of water, 1 part by weight of glucose, 0.5 part by weight of soybean peptide and 1 part by weight of yeast extract, The cells were statically cultured at 30 ° C. for 16 hours, and the cultured cells were collected by centrifugation. This microbial cell was suspended in a phosphate buffer solution having a volume 5 times the wet weight, and the microbial cell was crushed by a high-pressure treatment of 270 MPa or more to obtain a peroxide-decomposing crude enzyme solution.

7-2.ヨーグルトの製造例
水44.36重量部、ゼラチン0.1重量部、砂糖8.2重量部、乳酸菌スターター0.05重量部、脱脂粉乳5.81重量部、牛乳41.4重量部、過酸化物分解粗酵素液0.03重量部、香料0.05重量部を混合してヨーグルトを得た。なお、過酸化物分解粗酵素液は前記で製造したものを使用した。
7-2.Production example of yogurt 44.36 parts by weight of water, 0.1 part by weight of gelatin, 8.2 parts by weight of sugar, 0.05 part by weight of lactic acid bacteria starter, 5.81 parts by weight of skim milk powder, 41.4 parts by weight of milk, 0.03 part by weight of peroxide-degrading crude enzyme solution Then, 0.05 part by weight of a fragrance was mixed to obtain yogurt. In addition, the peroxide decomposition | disassembly crude enzyme liquid used what was manufactured above.

7-3.アイスクリームの製造例
水55.85重量部、砂糖8.0重量部、水飴8.0重量部、液糖4.0重量部、植物油脂13.0重量部、脱脂粉乳8.5重量部、加糖卵黄(20%卵黄分)2.0重量部、過酸化物分解粗酵素液0.05重量部、安定剤0.5重量部および香料0.1重量部を混合してアイスクリームを得た。なお、過酸化物分解粗酵素液は前記で製造したものを使用した。
7-3. Production Example of Ice Cream 55.85 parts by weight of water, 8.0 parts by weight of sugar, 8.0 parts by weight of starch syrup, 4.0 parts by weight of liquid sugar, 13.0 parts by weight of vegetable oil and fat, 8.5 parts by weight of skim milk powder, sweetened egg yolk (20% egg yolk content) An ice cream was obtained by mixing 2.0 parts by weight, 0.05 parts by weight of a peroxide-degrading crude enzyme solution, 0.5 parts by weight of a stabilizer, and 0.1 parts by weight of a fragrance. In addition, the peroxide decomposition | disassembly crude enzyme liquid used what was manufactured above.

7-4.化粧水の製造例
水73.89重量部、グリセリン5重量部、可溶化剤5重量部、界面活性剤1重量部、エタノール15.0重量部、過酸化物分解粗酵素液0.1重量部、防腐剤0.005重量部および香料0.005重量部を混合して化粧水を製造した。なお、過酸化物分解粗酵素液は前記で製造したものを使用した。
7-4. Example of lotion preparation 73.89 parts by weight of water, 5 parts by weight of glycerin, 5 parts by weight of solubilizer, 1 part by weight of surfactant, 15.0 parts by weight of ethanol, 0.1 part by weight of peroxide-degrading crude enzyme solution, antiseptic A lotion was prepared by mixing 0.005 parts by weight of the agent and 0.005 parts by weight of the fragrance. In addition, the peroxide decomposition | disassembly crude enzyme liquid used what was manufactured above.

Claims (3)

ラクトバチルス・プランタラム(Lactobacillus plantarum) TY-1572株(NITE P-90)の菌体懸濁液を破砕して得られる粗酵素液由来で、過酸化クメンに対する分解活性を指標として精製される2種類の過酸化物分解酵素のうち、下記の理化学的性質を有する過酸化物分解酵素。
(1)基質特異性
NAD(P)Hの存在下、過酸化物に高い反応性を示し、過酸化水素にも反応する。
(2)分子量
43kDa(SDSポリアクリルアミドゲル電気泳動による測定)。
Lactobacillus plantarum (Lactobacillus plantarum) TY-1572 strain (NITE P-90) derived from a crude enzyme solution obtained by crushing the cell suspension 2 Among the types of peroxide-degrading enzymes, peroxide-degrading enzymes having the following physicochemical properties:
(1) Substrate specificity In the presence of NAD (P) H, it exhibits high reactivity with peroxides and also reacts with hydrogen peroxide.
(2) Molecular weight 43 kDa (measured by SDS polyacrylamide gel electrophoresis).
ラクトバチルス・プランタラム(Lactobacillus plantarum) TY-1572株(NITE P-90)の菌体懸濁液を破砕して得られる粗酵素液由来で、過酸化クメンに対する分解活性を指標として精製される2種類の過酸化物分解酵素のうち、下記の理化学的性質を有する過酸化物分解酵素。
(1)基質特異性
NAD(P)Hの存在下、過酸化物に高い反応性を示し、かつ過酸化水素にも反応する。
(2)分子量
48kDa(SDSポリアクリルアミドゲル電気泳動による測定)。
Lactobacillus plantarum (Lactobacillus plantarum) TY-1572 strain (NITE P-90) derived from a crude enzyme solution obtained by crushing the cell suspension 2 Among the types of peroxide-degrading enzymes, peroxide-degrading enzymes having the following physicochemical properties:
(1) Substrate specificity In the presence of NAD (P) H, it exhibits high reactivity with peroxides and also reacts with hydrogen peroxide.
(2) Molecular weight 48 kDa (measured by SDS polyacrylamide gel electrophoresis).
請求項1及び/又は2記載の過酸化物分解酵素を含有する飲食品、または化粧品。 Food / beverage products or cosmetics containing the peroxide-degrading enzyme according to claim 1 and / or 2.
JP2009205130A 2009-09-04 2009-09-04 Peroxidase Active JP5535559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205130A JP5535559B2 (en) 2009-09-04 2009-09-04 Peroxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205130A JP5535559B2 (en) 2009-09-04 2009-09-04 Peroxidase

Publications (2)

Publication Number Publication Date
JP2011050366A JP2011050366A (en) 2011-03-17
JP5535559B2 true JP5535559B2 (en) 2014-07-02

Family

ID=43940046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205130A Active JP5535559B2 (en) 2009-09-04 2009-09-04 Peroxidase

Country Status (1)

Country Link
JP (1) JP5535559B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387972B2 (en) * 2005-04-14 2009-12-24 大洋香料株式会社 Antioxidant

Also Published As

Publication number Publication date
JP2011050366A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
Backes et al. Laccases in food processing: Current status, bottlenecks and perspectives
KR100404154B1 (en) Lactobacillus helveticus bacterium having high capability of producing tripeptide, fermented milk product, and process for preparing the same
Rodríguez et al. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T
Bettin et al. Growth kinetics, production, and characterization of extracellular laccases from Pleurotus sajor-caju PS-2001
Abd El-Rahim et al. Highly efficient fungal pectinase and laccase producers among isolates from flax retting liquor
Kitayska et al. Purification and properties of a new thermostable cyclodextrin glucanotransferase from Bacillus pseudalcaliphilus 8SB
Kurt et al. Influence of different bacteria species in chemical composition and sensory properties of fermented Spirulina
JP4423284B2 (en) Peroxidase
JP2013165725A (en) Process for producing thioredoxin
JP4387972B2 (en) Antioxidant
CN115466705A (en) Lactobacillus helveticus fermentation product with high biological preservative property and preparation method and application thereof
Wang et al. Co-cultivation effects of Lactobacillus helveticus SNA12 and Kluveromyces marxiensis GY1 on the probiotic properties, flavor, and digestion in fermented milk
JP2012023996A (en) Method for producing hyaluronic acid
KR950006812B1 (en) Quality improving method for alcoholic liquors
JP5535559B2 (en) Peroxidase
JP4325834B2 (en) Alcohol-containing beverage and method for producing the same
JP4423283B2 (en) Hydrogen peroxide-degrading enzyme
Jameel et al. Determination of the optimum conditions for biosurfactant production by local isolate of Lactobacillus plantarum and evaluate its antimicrobial activity.
Louaileche et al. Carbon dioxide effects on the growth and metabolites of morphological variants of Streptococcus thermophilus
Stasiak-Różańska et al. Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone
KR20010106497A (en) Yunnan strain sl-001
JP5466453B2 (en) Aliphatic aldehyde-degrading microorganisms
Omeroglu et al. Microbial conversion of waste baklava syrup to biofuels and bioproducts
KR102560141B1 (en) Manufacturingt method of fermentates containg gaba and fermented food manufactured by the methdo
Shrestha et al. Isolation and characterization of khaman fermenting microorganisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250