[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5535097B2 - Manufacturing method of spark plug metal shell and manufacturing method of spark plug - Google Patents

Manufacturing method of spark plug metal shell and manufacturing method of spark plug Download PDF

Info

Publication number
JP5535097B2
JP5535097B2 JP2011005409A JP2011005409A JP5535097B2 JP 5535097 B2 JP5535097 B2 JP 5535097B2 JP 2011005409 A JP2011005409 A JP 2011005409A JP 2011005409 A JP2011005409 A JP 2011005409A JP 5535097 B2 JP5535097 B2 JP 5535097B2
Authority
JP
Japan
Prior art keywords
metal shell
tip
manufacturing
spark plug
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011005409A
Other languages
Japanese (ja)
Other versions
JP2012143801A (en
Inventor
光成 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011005409A priority Critical patent/JP5535097B2/en
Publication of JP2012143801A publication Critical patent/JP2012143801A/en
Application granted granted Critical
Publication of JP5535097B2 publication Critical patent/JP5535097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)
  • Forging (AREA)

Description

本発明は、スパークプラグ用主体金具の製造方法およびスパークプラグの製造方法に関する。   The present invention relates to a method for manufacturing a spark plug metal shell and a method for manufacturing a spark plug.

ガソリンエンジンなどの内燃機関の点火に使用されるスパークプラグは、一般に、中心電極と、中心電極の外側に設けられた絶縁体と、絶縁体の外側に設けられた主体金具と、主体金具に取り付けられて中心電極との間に火花放電ギャップを形成する接地電極(「外側電極」とも呼ばれる)とを備えている。   A spark plug used for ignition of an internal combustion engine such as a gasoline engine is generally attached to a center electrode, an insulator provided outside the center electrode, a metal fitting provided outside the insulator, and a metal fitting. And a ground electrode (also referred to as an “outer electrode”) that forms a spark discharge gap with the center electrode.

スパークプラグの構成部品としての主体金具は、外周面にネジが形成された円筒形状のネジ部と、ネジ部に隣接しネジ部より小径の円筒形状の先端円筒部と、ネジ部に対して先端円筒部とは反対側に位置する工具係合部とを有していると共に、絶縁体を収容する軸線方向に沿った貫通孔を有している。エンジンヘッドにスパークプラグを取り付ける際には、主体金具の工具係合部に工具を嵌合してスパークプラグを回転させることにより、主体金具のネジ部に形成されたネジがエンジンヘッドのネジ孔に螺合する。   The metal shell as a component of the spark plug has a cylindrical screw part with a screw formed on the outer peripheral surface, a cylindrical tip cylindrical part adjacent to the screw part and having a smaller diameter than the screw part, and a tip with respect to the screw part. It has a tool engaging part located on the opposite side to the cylindrical part, and has a through hole along the axial direction for accommodating the insulator. When attaching the spark plug to the engine head, the tool is fitted into the tool engaging portion of the metal shell and the spark plug is rotated so that the screw formed on the screw portion of the metal shell is inserted into the screw hole of the engine head. Screw together.

主体金具の製造の際には、金属製の出発材料に対する金型を用いた複数回の鍛造加工によって主体金具となるべき主体金具中間体が成形され、成形された主体金具中間体に対するネジ転造等が行われて主体金具が製造される(例えば特許文献1参照)。   When manufacturing the metal shell, the metal shell intermediate to be the metal shell is formed by multiple forgings using a metal mold for the starting material, and thread rolling is performed on the formed metal shell intermediate. Etc. are performed to manufacture the metal shell (see, for example, Patent Document 1).

特開2009−95854号公報JP 2009-95854 A

主体金具の製造の際に、鍛造加工にて先端円筒部(または先端円筒部となるべき部位、以下同様)を成形すると、切削加工にて先端円筒部を成形する場合と比較して、切削加工量を低減できる上に先端円筒部の表面硬度が向上するため、好ましい。   When manufacturing the metal shell, if the tip cylindrical part (or the part that should become the tip cylindrical part, the same shall apply hereinafter) is formed by forging, cutting is performed compared to the case where the tip cylindrical part is formed by cutting. This is preferable because the amount can be reduced and the surface hardness of the tip cylindrical portion is improved.

しかし、鍛造加工にて先端円筒部を成形すると、先端円筒部の先端面が平坦な形状にならない場合があった。先端円筒部の先端面が平坦な形状にならないと、先端面に接地電極を接合する際に十分な接合強度を確保することができない場合があり、好ましくない。   However, when the tip cylindrical portion is formed by forging, the tip surface of the tip cylindrical portion may not be flat. If the distal end surface of the distal end cylindrical portion does not have a flat shape, it may not be possible to secure sufficient bonding strength when bonding the ground electrode to the distal end surface, which is not preferable.

本発明は、上述の課題を解決するためになされたものであり、スパークプラグ用主体金具の製造において、鍛造加工にて成形される先端円筒部の先端面の平坦性を向上させることを目的とする。   The present invention has been made to solve the above-described problems, and aims to improve the flatness of the tip surface of the tip cylindrical portion formed by forging in the manufacture of the spark plug metal shell. To do.

上記課題の少なくとも一部を解決するために、本発明は、以下の形態または適用例として実現することが可能である。   In order to solve at least a part of the above problems, the present invention can be realized as the following forms or application examples.

[適用例1]外周面にネジが形成された円筒形状のネジ部と、前記ネジ部に隣接する前記ネジ部より小径の円筒形状の先端円筒部と、を有すると共に軸線方向に貫通孔を有するスパークプラグ用主体金具の製造方法であって、
金属製の出発材料に対するm回(mは2以上の自然数)の鍛造加工により、主体金具となるべき第m主体金具中間体を成形する鍛造工程を備え、
前記鍛造工程は、前記m回の鍛造加工の内のn回目(n≦m−1、nは自然数)の鍛造加工により第n主体金具中間体を得る第n主体金具中間体成形工程と、前記m回の鍛造加工の内の(n+1)回目の鍛造加工により前記先端円筒部の先端面又は前記先端円筒部となるべき部位の先端面を成形する先端面成形工程と、を有し、
前記第n主体金具中間体の先端部の側を前記第n主体金具中間体の軸線方向先端側としたとき、前記第n主体金具中間体の先端部の内周側部位が、前記第n主体金具中間体の先端部の外周側部位より前記軸線方向先端側に突出していることを特徴とする、スパークプラグ用主体金具の製造方法。
Application Example 1 A cylindrical screw portion having a screw formed on the outer peripheral surface and a cylindrical tip cylindrical portion having a smaller diameter than the screw portion adjacent to the screw portion and a through hole in the axial direction A method of manufacturing a spark plug metal shell,
A forging step of forming an m-th metal shell intermediate to be a metal shell by forging a metal starting material m times (m is a natural number of 2 or more);
The forging step includes an n-th metal shell intermediate forming step for obtaining an n-th metal shell intermediate by n-th (n ≦ m−1, n is a natural number) forging of the m times of forging, a tip surface forming step of forming the tip surface of the tip cylindrical portion or the tip surface of the portion to be the tip cylindrical portion by the (n + 1) -th forging process of m times of forging,
When the tip end side of the n-th metal shell intermediate body is the front end side in the axial direction of the n-th metal shell intermediate body, the inner peripheral side portion of the tip portion of the n-th metal shell intermediate body is the n-th metal shell intermediate body. A method for producing a metal shell for a spark plug, characterized in that the metal shell projects from the outer peripheral side portion of the tip of the metal fitting intermediate to the tip in the axial direction.

この方法では、n回目の鍛造加工により成形される第n主体金具中間体の先端部の内周側部位が外周側部位より軸線方向先端側に突出しているため、(n+1)回目の鍛造加工により先端円筒部の先端面(又は先端円筒部となるべき部位の先端面)を成形する際に、第n主体金具中間体の先端部の外周側部位が内側に向かって絞り成形され、先端部の形状が成形の進行に伴い平坦に近くなり、最終的に平坦な先端面が成形される。従って、この方法では、鍛造加工にて成形される先端円筒部の先端面の平坦性を向上させることができる。   In this method, since the inner peripheral side portion of the tip of the n-th metal shell intermediate formed by the n-th forging process protrudes from the outer peripheral side to the axial front end side, the (n + 1) -th forging process When forming the tip surface of the tip cylindrical part (or the tip surface of the part to be the tip cylindrical part), the outer peripheral side part of the tip part of the n-th metal shell intermediate is drawn inward, The shape becomes nearly flat as the molding proceeds, and finally a flat tip surface is molded. Therefore, in this method, the flatness of the tip surface of the tip cylindrical portion formed by forging can be improved.

[適用例2]適用例1に記載のスパークプラグ用主体金具の製造方法であって、
前記第n主体金具中間体成形工程において、第(n−1)主体金具中間体(n=1のときの第0主体金具中間体は前記出発材料を示す)の先端部を受ける端部を備えると共に、前記第n主体金具中間体成形工程後に前記第n主体金具中間体を取り出すために前記軸線方向に沿って移動可能な受け部材が使用され、
前記受け部材の端部は、前記第n主体金具中間体の先端部における前記外周側部位及び前記内周側部位に対応する形状を有している、スパークプラグ用主体金具の製造方法。
[Application Example 2] A method of manufacturing a spark plug metal shell according to Application Example 1,
The n-th metal shell intermediate forming step includes an end portion for receiving a tip of a (n-1) metal shell intermediate (the 0th metal shell intermediate when n = 1 indicates the starting material). In addition, a receiving member that is movable along the axial direction is used to take out the n-th metal shell intermediate after the n-th metal shell intermediate molding step,
The method of manufacturing a spark plug metal shell, wherein an end portion of the receiving member has a shape corresponding to the outer peripheral side portion and the inner peripheral side portion at a distal end portion of the nth metal shell intermediate body.

この方法では、第n主体金具中間体成形工程において使用される受け部材の端部が、第n主体金具中間体の先端部における外周側部位及び内周側部位に対応する形状を有しているため、第n主体金具中間体の先端部を、内周側部位が外周側部位より軸線方向先端側に突出した形状に成形することができ、鍛造加工にて成形される先端円筒部の先端面の平坦性を向上させることができる。   In this method, the end portion of the receiving member used in the n-th metal shell intermediate forming step has a shape corresponding to the outer peripheral side portion and the inner peripheral side portion at the distal end portion of the n-th metal shell intermediate body. Therefore, the front end surface of the front end cylindrical portion formed by forging can be formed in a shape in which the front end portion of the nth metal shell intermediate body protrudes from the outer peripheral side portion to the front end side in the axial direction. The flatness of the film can be improved.

[適用例3]適用例2に記載のスパークプラグ用主体金具の製造方法であって、
前記受け部材は、少なくとも前記軸線方向先端側に開口する孔部を前記第n主体金具中間体の先端部に成形するパンチの外周に配置される、スパークプラグ用主体金具の製造方法。
[Application Example 3] A method of manufacturing a spark plug metal shell according to Application Example 2,
The method of manufacturing a spark plug metal shell, wherein the receiving member is disposed on an outer periphery of a punch that molds at least a hole opening at the tip end side in the axial direction at a tip portion of the n-th metal shell intermediate body.

この方法では、少なくとも軸線方向先端側に開口する孔部を第n主体金具中間体の先端部に成形するパンチの外周に配置された受け部材を利用して、第n主体金具中間体の先端部を、内周側部位が外周側部位より軸線方向先端側に突出した形状に成形することができ、鍛造加工にて成形される先端円筒部の先端面の平坦性を向上させることができる。   In this method, the front end portion of the n-th metal shell intermediate is formed by using a receiving member disposed on the outer periphery of the punch for forming a hole opening at least on the front end side in the axial direction on the front-end portion of the n-th metal shell intermediate. Can be formed into a shape in which the inner peripheral side portion protrudes from the outer peripheral side portion toward the distal end side in the axial direction, and the flatness of the tip surface of the tip cylindrical portion formed by forging can be improved.

なお、本発明は、種々の態様で実現することが可能であり、例えば、主体金具の製造方法および製造装置、スパークプラグの製造方法および製造装置、等の形態で実現することができる。   In addition, this invention can be implement | achieved in various aspects, for example, can be implement | achieved with forms, such as the manufacturing method and manufacturing apparatus of a metal fitting, the manufacturing method and manufacturing apparatus of a spark plug.

本発明の実施例におけるスパークプラグ100の構成を示す説明図である。It is explanatory drawing which shows the structure of the spark plug 100 in the Example of this invention. 本実施例における主体金具50の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the metal shell 50 in a present Example. 本実施例における主体金具50の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the metal shell 50 in a present Example. 本実施例における主体金具50の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the metal shell 50 in a present Example. 本実施例における主体金具50の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the metal shell 50 in a present Example. 本実施例における主体金具50の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the metal shell 50 in a present Example. 本実施例における主体金具50の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the metal shell 50 in a present Example. 比較例における主体金具50の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the metal shell 50 in a comparative example.

次に、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.実施例:
A−1.スパークプラグの構成:
A−2.主体金具の製造方法:
B.変形例:
Next, embodiments of the present invention will be described in the following order based on examples.
A. Example:
A-1. Spark plug configuration:
A-2. Manufacturing method of metal shell:
B. Variations:

A.実施例:
A−1.スパークプラグの構成:
図1は、本発明の実施例におけるスパークプラグ100の構成を示す説明図である。図1において、スパークプラグ100の中心軸である軸線OLの右側にはスパークプラグ100の側面構成を示しており、軸線OLの左側にはスパークプラグ100の断面構成を示している。なお、以下では、図1における軸線OLに沿った上側(接地電極30が配置されている側)をスパークプラグ100の先端側と呼び、下側(端子金具40が配置されている側)を後端側と呼ぶものとする。
A. Example:
A-1. Spark plug configuration:
FIG. 1 is an explanatory diagram showing the configuration of a spark plug 100 in an embodiment of the present invention. In FIG. 1, the side surface configuration of the spark plug 100 is shown on the right side of the axis OL that is the central axis of the spark plug 100, and the cross-sectional configuration of the spark plug 100 is shown on the left side of the axis OL. In the following, the upper side (the side on which the ground electrode 30 is disposed) along the axis OL in FIG. 1 is referred to as the distal end side of the spark plug 100, and the lower side (the side on which the terminal fitting 40 is disposed) is the rear. It shall be called the end side.

図1に示すように、スパークプラグ100は、絶縁碍子10と、中心電極20と、接地電極(外側電極)30と、端子金具40と、主体金具50と、を備えている。中心電極20は絶縁碍子10によって保持され、絶縁碍子10は主体金具50によって保持される。接地電極30は、主体金具50の先端側に取り付けられ、端子金具40は絶縁碍子10の後端側に取り付けられている。   As shown in FIG. 1, the spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode (outer electrode) 30, a terminal fitting 40, and a metal shell 50. The center electrode 20 is held by the insulator 10, and the insulator 10 is held by the metal shell 50. The ground electrode 30 is attached to the front end side of the metal shell 50, and the terminal metal fitting 40 is attached to the rear end side of the insulator 10.

絶縁碍子10は、中心電極20および端子金具40を収容する軸孔12が中心に形成された筒状の絶縁体であり、例えばアルミナを始めとするセラミックス材料を焼成して形成されている。絶縁碍子10の軸方向に沿った中央付近には他の部分より外径の大きい中央胴部19が形成されている。中央胴部19よりも後端側には、端子金具40と主体金具50との間を絶縁する後端側胴部18が形成されている。中央胴部19よりも先端側には、先端側胴部17が形成され、先端側胴部17のさらに先端側には、先端側胴部17より外径が小さい脚長部13が形成されている。   The insulator 10 is a cylindrical insulator having a shaft hole 12 that accommodates the center electrode 20 and the terminal fitting 40 at the center, and is formed by firing a ceramic material such as alumina. In the vicinity of the center of the insulator 10 along the axial direction, a central body portion 19 having a larger outer diameter than other portions is formed. A rear end side body portion 18 that insulates between the terminal metal fitting 40 and the metal shell 50 is formed on the rear end side of the central body portion 19. A front end body portion 17 is formed on the front end side of the central body portion 19, and a leg length portion 13 having an outer diameter smaller than that of the front end side body portion 17 is formed further on the front end side of the front end side body portion 17. .

主体金具50は、軸線方向に沿った貫通孔59を有し、絶縁碍子10の後端側胴部18の一部から脚長部13にわたる部位を貫通孔59内に収容する略円筒形状の金具であり、例えば低炭素鋼といった金属により形成されている。主体金具50は、略円筒形状のネジ部52と、ネジ部52の先端側に隣接しネジ部52より小径の略円筒形状の先端円筒部53と、ネジ部52に対して先端円筒部53とは反対側に位置する工具係合部51と、を有している。なお、先端円筒部53がネジ部52より小径であるとは、先端円筒部53の径がネジ部52のネジ谷部における径より小さいことを意味する。先端円筒部53の先端側の端面である先端面57は、中空円形状であり、先端面57の中空部分から絶縁碍子10の脚長部13の先端が突出している。ネジ部52の側面には、スパークプラグ100をエンジンヘッドに取り付ける際にエンジンヘッドのネジ孔に螺合するネジ山が形成されている。工具係合部51は、例えば六角形断面形状であり、スパークプラグ100をエンジンヘッドに取り付ける際に工具が嵌合する。主体金具50は、また、ネジ部52と工具係合部51との間に、鍔状に形成されたシール部54を有している。シール部54とエンジンヘッドとの間には、板体を折り曲げて形成した環状のガスケット5が嵌挿される。   The metal shell 50 has a through hole 59 along the axial direction, and is a substantially cylindrical metal fitting that accommodates a portion extending from a part of the rear end side body portion 18 of the insulator 10 to the leg long portion 13 in the through hole 59. For example, it is made of metal such as low carbon steel. The metal shell 50 includes a substantially cylindrical screw portion 52, a substantially cylindrical distal cylindrical portion 53 that is adjacent to the distal end side of the screw portion 52 and has a smaller diameter than the screw portion 52, and the distal cylindrical portion 53 with respect to the screw portion 52. Has a tool engaging portion 51 located on the opposite side. Note that the fact that the tip cylindrical portion 53 is smaller in diameter than the screw portion 52 means that the diameter of the tip cylindrical portion 53 is smaller than the diameter of the screw valley portion of the screw portion 52. The distal end surface 57 that is the end surface on the distal end side of the distal end cylindrical portion 53 has a hollow circular shape, and the distal end of the leg long portion 13 of the insulator 10 protrudes from the hollow portion of the distal end surface 57. A screw thread is formed on the side surface of the screw portion 52 to be screwed into a screw hole of the engine head when the spark plug 100 is attached to the engine head. The tool engaging portion 51 has, for example, a hexagonal cross-sectional shape, and the tool is fitted when the spark plug 100 is attached to the engine head. The metal shell 50 also has a seal portion 54 formed in a hook shape between the screw portion 52 and the tool engagement portion 51. An annular gasket 5 formed by bending a plate is fitted between the seal portion 54 and the engine head.

中心電極20は、有底筒状に形成された被覆材21の内部に、被覆材21よりも熱伝導性に優れる芯材25を埋設した略棒状形状の電極である。本実施例では、被覆材21は、ニッケルを主成分とするニッケル合金により形成されており、芯材25は、銅または銅を主成分とする合金により形成されている。中心電極20は、被覆材21の先端側が絶縁碍子10の脚長部13の軸孔12から突出した状態で絶縁碍子10の軸孔12内に収容されており、セラミック抵抗3およびシール体4を介して、絶縁碍子10の後端に設けられた端子金具40に電気的に接続されている。   The center electrode 20 is a substantially rod-shaped electrode in which a core material 25 having better thermal conductivity than the covering material 21 is embedded in a covering material 21 formed in a bottomed cylindrical shape. In this embodiment, the covering material 21 is made of a nickel alloy containing nickel as a main component, and the core member 25 is made of copper or an alloy containing copper as a main component. The center electrode 20 is accommodated in the shaft hole 12 of the insulator 10 with the front end side of the covering material 21 protruding from the shaft hole 12 of the leg long portion 13 of the insulator 10, and the center electrode 20 is interposed through the ceramic resistor 3 and the seal body 4. In addition, the insulator 10 is electrically connected to the terminal fitting 40 provided at the rear end.

接地電極30は、屈曲した略棒状形状の電極である。本実施例では、接地電極30も、中心電極20と同様に、ニッケルを主成分とするニッケル合金により形成された被覆材と、銅または銅を主成分とする合金により形成された芯材と、の二層により構成されている。接地電極30は、一方の端部が主体金具50の先端面57に抵抗溶接によって接合されており、他方の端部が中心電極20の先端部と対向するように屈曲されている。接地電極30の自由端と中心電極20の先端との間には、火花ギャップが形成される。   The ground electrode 30 is a bent substantially rod-shaped electrode. In the present embodiment, the ground electrode 30 is also formed of a coating material formed of a nickel alloy containing nickel as a main component, and a core material formed of copper or an alloy containing copper as a main component, like the center electrode 20; It consists of two layers. One end of the ground electrode 30 is joined to the front end surface 57 of the metal shell 50 by resistance welding, and the other end is bent so as to face the front end of the center electrode 20. A spark gap is formed between the free end of the ground electrode 30 and the tip of the center electrode 20.

A−2.主体金具の製造方法:
図2は、本実施例における主体金具50の製造方法を示すフローチャートである。また、図3ないし図7は、本実施例における主体金具50の製造方法を示す説明図である。
A-2. Manufacturing method of metal shell:
FIG. 2 is a flowchart showing a method for manufacturing the metal shell 50 in the present embodiment. 3-7 is explanatory drawing which shows the manufacturing method of the metal shell 50 in a present Example.

主体金具50の製造の際には、まず初めに出発材料Mが準備される(図2のステップS110)。図3(a)には出発材料Mの側面構成を示しており、図3(b)には出発材料Mの平面構成を示している。出発材料Mは、中心軸Amを中心とした略円柱形状の金属材料である。この出発材料Mは、例えば金属製の線材を所定の長さにせん断することにより得られる。   When manufacturing the metal shell 50, first, the starting material M is prepared (step S110 in FIG. 2). 3A shows a side configuration of the starting material M, and FIG. 3B shows a planar configuration of the starting material M. The starting material M is a substantially cylindrical metal material centered on the central axis Am. This starting material M is obtained, for example, by shearing a metal wire to a predetermined length.

次に、出発材料Mに対する金型を用いた複数回の(多段の)鍛造加工が実行される(図2のステップS120)。本実施例では、鍛造加工の回数(本発明におけるmに相当)は4回である。図4(a)ないし図4(d)には、各回の鍛造加工の概要を示している。図4(a)ないし図4(d)において、中心軸Adの右側には、各回の鍛造加工前の状態を示しており、中心軸Adの左側には、各回の鍛造加工後の状態を示している。なお、鍛造加工に用いられる各金型の孔において、成形対象物を挿入する側を軸方向に沿った手前側と呼び、成形対象物を押し出す方向の側を軸方向に沿った奥側と呼ぶ。また、図5(a)ないし図5(e)には、各回の鍛造加工により成形される成形体102の構成を示している。図5(a)ないし図5(e)において、中心軸Adの右側には、各成形体102の断面構成を示しており、中心軸Adの左側には、各成形体102の側面構成を示している。なお、出発材料Mおよび各成形体102において、主体金具50の先端面57となる側を軸方向に沿った先端側と呼び、反対側を軸方向に沿った後端側と呼ぶ。   Next, a plurality of (multistage) forging processes using a mold for the starting material M are executed (step S120 in FIG. 2). In this embodiment, the number of forging processes (corresponding to m in the present invention) is four. 4 (a) to 4 (d) show the outline of each forging process. 4 (a) to 4 (d), the right side of the central axis Ad shows the state before each forging process, and the left side of the central axis Ad shows the state after each forging process. ing. In addition, in the hole of each die used for forging, the side into which the molding object is inserted is called the near side along the axial direction, and the side in the direction in which the molding object is pushed out is called the back side along the axial direction. . 5A to 5E show the configuration of the molded body 102 formed by each forging process. 5A to 5E, the cross-sectional configuration of each molded body 102 is shown on the right side of the central axis Ad, and the side configuration of each molded body 102 is shown on the left side of the central axis Ad. ing. In the starting material M and each molded body 102, the side that becomes the front end surface 57 of the metal shell 50 is referred to as the front end side along the axial direction, and the opposite side is referred to as the rear end side along the axial direction.

図4(a)に示す1回目の鍛造加工では、出発材料Mの先端側を受ける略円筒形状のスリーブ221kと、スリーブ221kの中空内に挿入され出発材料Mの先端側に軸方向に沿った孔部を成形するための略円柱形状のピン(「パンチ」とも呼ばれる、以下同様)221bとが第1回鍛造加工用の金型DIaの孔の奥側に設置された状態で、金型DIaの孔内に挿入された出発材料Mが略円柱形状のピン221aによって押し出し成形され、図5(a)に示す成形体102aが製造される。押し出し成形後、スリーブ221kを金型DIaの孔の手前側に移動して、製造された成形体102aを金型DIaの孔内から取り出す。1回目の鍛造加工では、主に、出発材料Mの外径より小さい外径の略円柱形状の素材径部MRが成形される。素材径部MRは、後にネジ部52および先端円筒部53が形成される部分である。また、ピン221bによって、成形体102aの先端側に小径孔SHが形成される。小径孔SHの内径は、ピン221bの外径に対応した径である。なお、ピン(パンチ)221bがスリーブ221kの中空内に挿入されるとは、スリーブ221kがピン221bの外周に配置されるとも表現できる。   In the first forging process shown in FIG. 4 (a), a substantially cylindrical sleeve 221k that receives the leading end side of the starting material M, and a sleeve 221k that is inserted into the hollow of the sleeve 221k along the leading end side of the starting material M along the axial direction. In a state where a substantially cylindrical pin (also referred to as “punch”, hereinafter the same) 221b for forming the hole is installed on the back side of the hole of the first forging die DIa, the die DIa The starting material M inserted into the holes is extruded by a substantially cylindrical pin 221a, and a molded body 102a shown in FIG. 5A is manufactured. After the extrusion molding, the sleeve 221k is moved to the front side of the hole of the mold DIa, and the manufactured molded body 102a is taken out from the hole of the mold DIa. In the first forging process, a substantially cylindrical material diameter portion MR having an outer diameter smaller than the outer diameter of the starting material M is mainly formed. The material diameter portion MR is a portion where the screw portion 52 and the tip cylindrical portion 53 are formed later. Further, the pin 221b forms a small-diameter hole SH on the distal end side of the molded body 102a. The inner diameter of the small diameter hole SH is a diameter corresponding to the outer diameter of the pin 221b. The pin (punch) 221b being inserted into the hollow of the sleeve 221k can also be expressed as the sleeve 221k being disposed on the outer periphery of the pin 221b.

図4(b)に示す2回目の鍛造加工では、同様に、スリーブ222kおよびピン222bが第2回鍛造加工用の金型DIbの孔の奥側に設置された状態で、1回目の鍛造成形により製造された成形体102aが金型DIbの孔内に挿入されてピン222aによって押し出し成形され、図5(b)に示す成形体102bが製造される。押し出し成形後、スリーブ222kを金型DIbの孔の手前側に移動して、製造された成形体102bを金型DIbの孔内から取り出す。2回目の鍛造加工では、主に、シール部54が成形される。また、ピン222aにより、成形体102bの後端側には大径孔LHが成形される。大径孔LHの内径は、ピン222aの外径に対応した径である。本実施例では、大径孔LHの径は、小径孔SHの径より大きい。なお、本実施例における2回目の鍛造加工は、本発明における第(n−1)主体金具中間体成形工程に相当し、2回目の鍛造加工で成形される成形体102bは、本発明における第(n−1)主体金具中間体に相当する。   In the second forging process shown in FIG. 4B, similarly, the first forging process is performed in a state where the sleeve 222k and the pin 222b are installed at the back side of the hole of the die DIb for the second forging process. The molded body 102a manufactured by the above method is inserted into the hole of the mold DIb and extruded by the pins 222a, whereby the molded body 102b shown in FIG. 5B is manufactured. After the extrusion molding, the sleeve 222k is moved to the front side of the hole of the mold DIb, and the manufactured molded body 102b is taken out from the hole of the mold DIb. In the second forging process, the seal portion 54 is mainly formed. Further, the pin 222a forms a large-diameter hole LH on the rear end side of the molded body 102b. The inner diameter of the large-diameter hole LH is a diameter corresponding to the outer diameter of the pin 222a. In the present embodiment, the diameter of the large diameter hole LH is larger than the diameter of the small diameter hole SH. The second forging process in the present example corresponds to the (n-1) metal shell intermediate forming step in the present invention, and the molded body 102b formed by the second forging process is the first in the present invention. (N-1) It corresponds to a metal shell intermediate.

図4(c)に示す3回目の鍛造加工では、同様に、スリーブ223kおよびピン223bが第3回鍛造加工用の金型DIcの孔の奥側に設置された状態で、2回目の鍛造成形により製造された成形体102bが金型DIcの孔内に挿入されてピン223aによって押し出し成形され、図5(c)に示す成形体102cが製造される。押し出し成形後、スリーブ223kを金型DIcの孔の手前側に移動して、製造された成形体102cを金型DIcの孔内から取り出す。3回目の鍛造加工では、主に、ピン223aにより、小径孔SHと大径孔LHとの間に位置する中径孔MHが成形される。中径孔MHの内径は、ピン223aの先端部の外径に対応した径である。本実施例では、中径孔MHの径は、大径孔LHの径より小さく、小径孔SHの径より大きい。なお、本実施例における3回目の鍛造加工は、本発明における第n主体金具中間体成形工程に相当し、3回目の鍛造加工で成形される成形体102cは、本発明における第n主体金具中間体に相当する。   Similarly, in the third forging process shown in FIG. 4C, the second forging process is performed in a state where the sleeve 223k and the pin 223b are installed on the back side of the hole of the die DIc for the third forging process. The molded body 102b manufactured by the above method is inserted into the hole of the mold DIc and extruded by the pins 223a, whereby the molded body 102c shown in FIG. 5C is manufactured. After the extrusion molding, the sleeve 223k is moved to the front side of the hole of the mold DIc, and the manufactured molded body 102c is taken out from the hole of the mold DIc. In the third forging process, the medium diameter hole MH located between the small diameter hole SH and the large diameter hole LH is mainly formed by the pin 223a. The inner diameter of the medium diameter hole MH is a diameter corresponding to the outer diameter of the tip of the pin 223a. In the present embodiment, the diameter of the medium diameter hole MH is smaller than the diameter of the large diameter hole LH and larger than the diameter of the small diameter hole SH. Note that the third forging process in this example corresponds to the n-th metal shell intermediate forming step in the present invention, and the molded body 102c formed in the third forging process is the n-th metal shell intermediate in the present invention. Corresponds to the body.

図6には、図4(c)に示す3回目の鍛造加工の際の成形体102の先端部付近(X1部)を拡大して示している。図6に示すように、3回目の鍛造加工に用いられるスリーブ223kにおける成形体102cを受ける端部は、外周側部位OSが内周側部位ISより軸方向後端側に突出している。そのため、3回目の鍛造加工で成形される成形体102cの先端部は、内周側部位IPが外周側部位OPより軸方向先端側に突出した形状となる。より詳細には、成形体102cの先端部の内周側部位IPは軸方向に略直交する平面形状であり、外周側部位OPは内周側部位IPとの境界から外側に向けて軸方向後端側に傾斜したテーパー形状である。なお、本実施例における3回目の鍛造加工に使用されるスリーブ223kは、本発明における受け部材に相当する。   FIG. 6 shows an enlarged view of the vicinity of the tip portion (X1 portion) of the molded body 102 in the third forging process shown in FIG. 4C. As shown in FIG. 6, in the end portion of the sleeve 223k used for the third forging process that receives the molded body 102c, the outer peripheral side portion OS protrudes from the inner peripheral side portion IS toward the rear end side in the axial direction. Therefore, the front end portion of the molded body 102c formed by the third forging process has a shape in which the inner peripheral side portion IP protrudes from the outer peripheral side portion OP toward the axial front end side. More specifically, the inner peripheral side portion IP of the tip portion of the molded body 102c has a planar shape substantially orthogonal to the axial direction, and the outer peripheral side portion OP is axially rearward from the boundary with the inner peripheral side portion IP. It has a tapered shape inclined toward the end side. The sleeve 223k used in the third forging process in the present embodiment corresponds to the receiving member in the present invention.

3回目の鍛造加工の後、成形体102cにおける小径孔SHと中径孔MHとの間にある壁体124cが図示しない打ち抜きピンによって打ち抜かれる。図5(d)には、打ち抜きにより小径孔SHと中径孔MHとが連通した成形体102c’を示している。   After the third forging process, the wall body 124c between the small diameter hole SH and the medium diameter hole MH in the molded body 102c is punched by a punching pin (not shown). FIG. 5D shows a molded body 102 c ′ in which the small diameter hole SH and the medium diameter hole MH are communicated by punching.

図4(d)に示す4回目の鍛造加工では、同様に、スリーブ224kおよびピン224bが第4回鍛造加工用の金型DIdの孔の奥側に設置された状態で、成形体102c’が金型DIdの孔内に挿入されてピン224aおよび外側型224cによって押し出し成形され、図5(e)に示す成形体102dが製造される。押し出し成形後、スリーブ224kを金型DIdの孔の手前側に移動して、製造された成形体102dを金型DIdの孔内から取り出す。4回目の鍛造加工では、主に、工具係合部51が成形される。また、4回目の鍛造加工では、使用する金型DIdの孔の奥側の位置に孔の内径が小さくなる段部CP2が設けられているため、成形体102c’の先端部が段部CP2に押されて径が小さくなるように変形し、先端円筒部53および先端面57が成形される。図5(e)に示すように、素材径部MRの内の先端円筒部53を除く部分がネジ部52となる。なお、4回目の鍛造加工は、本発明における先端面成形工程に相当する。   In the fourth forging process shown in FIG. 4D, similarly, the molded body 102c ′ is placed in a state where the sleeve 224k and the pin 224b are installed on the back side of the hole of the die DId for the fourth forging process. The molded body 102d shown in FIG. 5 (e) is manufactured by being inserted into the hole of the mold DId and extruded by the pins 224a and the outer mold 224c. After the extrusion molding, the sleeve 224k is moved to the front side of the hole of the mold DId, and the manufactured molded body 102d is taken out from the hole of the mold DId. In the fourth forging process, the tool engaging portion 51 is mainly formed. Further, in the fourth forging process, a step portion CP2 having a small inner diameter is provided at a position on the back side of the hole of the die DId to be used, and therefore, the tip end portion of the molded body 102c ′ becomes the step portion CP2. The tip cylindrical portion 53 and the tip surface 57 are formed by being deformed so that the diameter is reduced by being pushed. As shown in FIG. 5 (e), a portion of the material diameter portion MR excluding the tip cylindrical portion 53 becomes a screw portion 52. Note that the fourth forging process corresponds to the tip surface forming step in the present invention.

図7には、図4(d)に示す4回目の鍛造加工の際の成形体102の先端部付近(X2部)を拡大して示している。図7(a)には、成形体102の先端部がまだ段部CP2の位置に達していない状態を示している。上述したように、この時点では、成形体102の先端部は、内周側部位IPが外周側部位OPより軸方向先端側に突出した形状となっている。図7(b)には、成形体102の先端部が段部CP2の位置を通過した状態を示している。段部CP2による先端円筒部53および先端面57の成形の際には、成形体102の先端部の外周側部位OPが内側に向かって絞り成形されるため、図7(b)に示すように、外周側部位OPおよび内周側部位IPの先端位置が成形に伴い揃ってきて、成形体102の先端部の形状が平坦に近くなってくる。図7(c)には、成形体102の先端部がスリーブ224kの端部まで達した状態を示している。成形体102の先端部には、スリーブ224kの平坦な端部により、平坦な先端面57が成形される。   FIG. 7 shows an enlarged view of the vicinity of the tip portion (X2 portion) of the molded body 102 in the fourth forging process shown in FIG. 4 (d). FIG. 7A shows a state where the tip of the molded body 102 has not yet reached the position of the stepped portion CP2. As described above, at this time point, the distal end portion of the molded body 102 has a shape in which the inner peripheral side portion IP protrudes from the outer peripheral side portion OP toward the axial front end side. FIG. 7B shows a state in which the tip portion of the molded body 102 has passed the position of the step portion CP2. When the tip cylindrical portion 53 and the tip surface 57 are molded by the stepped portion CP2, the outer peripheral side portion OP of the tip portion of the molded body 102 is drawn inward, as shown in FIG. 7B. The tip positions of the outer peripheral part OP and the inner peripheral part IP are aligned with the molding, and the shape of the tip part of the molded body 102 becomes nearly flat. FIG. 7C shows a state in which the tip of the molded body 102 has reached the end of the sleeve 224k. A flat front end surface 57 is formed at the front end of the molded body 102 by the flat end of the sleeve 224k.

複数回の鍛造加工が完了すると、鍛造加工により製造された成形体102d(図5(e)参照)に対する切削加工が行われる(図2のステップS130)。切削加工では、工具係合部51の周辺部分等の切削が行われる。次に、成形体102dのネジ部52における外周面にネジを形成する加工(転造加工)が実行される(ステップS140)。以上の工程により、主体金具50の製造が完了する。その後、製造された主体金具50と他の構成部品とが組み立てられて、スパークプラグ100(図1)が製造される。   When the forging process is completed a plurality of times, a cutting process is performed on the formed body 102d (see FIG. 5E) manufactured by the forging process (step S130 in FIG. 2). In the cutting process, the peripheral portion of the tool engaging portion 51 is cut. Next, the process (rolling process) which forms a screw in the outer peripheral surface in the screw part 52 of the molded body 102d is executed (step S140). The manufacture of the metal shell 50 is completed through the above steps. Thereafter, the manufactured metal shell 50 and other components are assembled to manufacture the spark plug 100 (FIG. 1).

ここで、上述したように、本実施例の主体金具50の製造方法では、鍛造加工により先端円筒部53および先端面57が成形されるため、切削加工にて先端円筒部53および先端面57が成形される場合と比較して、切削工程(図2のステップS130)における切削量を低減できる上に、先端円筒部53および先端面57の表面硬度を向上させることができる。そのため、本実施例の主体金具50の製造方法では、主体金具50の製造時間の短縮、製造コストの低減を図ることができると共に、先端円筒部53および先端面57を打痕に対して強くすることができる。   Here, as described above, in the manufacturing method of the metal shell 50 of the present embodiment, the distal end cylindrical portion 53 and the distal end surface 57 are formed by forging, and therefore the distal end cylindrical portion 53 and the distal end surface 57 are formed by cutting. Compared to the case of molding, the amount of cutting in the cutting process (step S130 in FIG. 2) can be reduced, and the surface hardness of the tip cylindrical portion 53 and the tip surface 57 can be improved. Therefore, in the manufacturing method of the metal shell 50 according to the present embodiment, the manufacturing time of the metal shell 50 can be shortened and the manufacturing cost can be reduced, and the tip cylindrical portion 53 and the tip surface 57 are made strong against the dent. be able to.

さらに、本実施例の主体金具50の製造方法では、以下に説明する比較例の主体金具50の製造方法と比較して、先端円筒部53の先端面57の平坦性を向上させることができる。   Furthermore, in the manufacturing method of the metallic shell 50 of the present embodiment, the flatness of the distal end surface 57 of the distal cylindrical portion 53 can be improved as compared with the manufacturing method of the metallic shell 50 of the comparative example described below.

図8は、比較例における主体金具50の製造方法を示す説明図である。図8には、図7と同様に、図4(d)に示す4回目の鍛造加工の際の成形体102の先端部付近(X2部)を拡大して示している。図8(a)には、成形体102の先端部がまだ段部CP2の位置に達していない状態を示している。比較例では、成形体102cの先端部の形状は、内周側部位IPと外周側部位OPとの位置が揃った平坦形状である。図8(b)には、成形体102の先端部が段部CP2の位置を通過した状態を示している。段部CP2による先端円筒部53および先端面57の成形の際には、成形体102の先端部の外周側部位OPが内側に向かって絞り成形されるため、図8(b)に示すように、成形に伴い外周側部位OPが金属の塑性流動によって飛び出し、外周側部位OPが内周側部位IPより軸方向先端側に突出した形状となる。図8(c)には、成形体102の先端部がスリーブ224kの端部まで達した状態を示している。成形体102の先端部は、外周側部位OPが内周側部位IPより軸方向先端側に突出した形状となっているため、外周側部位OPは先にスリーブ224kの端部に接触して平坦に変形するが、内周側部位IPの位置では材料充填不足となる。そのため、成形体102dにおける先端円筒部53の先端面57は、平坦形状にならず、内周側部位IP側が凹んだ形状となる。   FIG. 8 is an explanatory view showing a method of manufacturing the metal shell 50 in the comparative example. FIG. 8 is an enlarged view of the vicinity of the tip portion (X2 portion) of the molded body 102 in the fourth forging process shown in FIG. FIG. 8A shows a state where the tip of the molded body 102 has not yet reached the position of the stepped portion CP2. In the comparative example, the shape of the front end portion of the molded body 102c is a flat shape in which the positions of the inner peripheral portion IP and the outer peripheral portion OP are aligned. FIG. 8B shows a state where the tip of the molded body 102 has passed the position of the stepped portion CP2. When the tip cylindrical portion 53 and the tip surface 57 are molded by the stepped portion CP2, the outer peripheral side portion OP of the tip portion of the molded body 102 is drawn inward, as shown in FIG. 8B. With the molding, the outer peripheral side portion OP pops out due to the plastic flow of the metal, and the outer peripheral side portion OP has a shape protruding from the inner peripheral side portion IP to the tip side in the axial direction. FIG. 8C shows a state in which the tip of the molded body 102 has reached the end of the sleeve 224k. The distal end portion of the molded body 102 has a shape in which the outer peripheral side portion OP protrudes toward the distal end side in the axial direction from the inner peripheral side portion IP. Therefore, the outer peripheral side portion OP first contacts the end portion of the sleeve 224k and is flat. However, the material is insufficiently filled at the position of the inner peripheral portion IP. Therefore, the front end surface 57 of the front end cylindrical portion 53 in the molded body 102d does not have a flat shape but a shape in which the inner peripheral side portion IP side is recessed.

一方、本実施例の主体金具50の製造方法では、先端円筒部53および先端面57を成形するための鍛造加工(すなわち4回目の鍛造加工)の1つ前の鍛造加工(すなわち3回目の鍛造加工)で成形される成形体102cの先端部が、内周側部位IPが外周側部位OPより軸方向先端側に突出した形状であるため、先端円筒部53および先端面57の成形の際に成形体102の先端部の外周側部位OPが内側に向かって絞り成形され、成形体102の先端部の形状が成形の進行に伴い平坦に近くなり、最終的に平坦な先端面57が成形される。従って、本実施例の主体金具50の製造方法では、先端円筒部53の先端面57の平坦性を向上させることができる。   On the other hand, in the manufacturing method of the metal shell 50 of the present embodiment, the forging process (that is, the third forging process) immediately before the forging process (that is, the fourth forging process) for forming the distal end cylindrical portion 53 and the distal end surface 57 is performed. The tip portion of the molded body 102c molded in the processing) has a shape in which the inner peripheral side portion IP protrudes from the outer peripheral side portion OP toward the axial front end side. Therefore, when the tip cylindrical portion 53 and the tip face 57 are formed. The outer peripheral side portion OP of the distal end portion of the molded body 102 is drawn inward, the shape of the distal end portion of the molded body 102 becomes nearly flat as the molding progresses, and finally a flat distal end surface 57 is molded. The Therefore, in the manufacturing method of the metal shell 50 of the present embodiment, the flatness of the distal end surface 57 of the distal end cylindrical portion 53 can be improved.

なお、本実施例の主体金具50の製造方法では、複数回の鍛造加工における最後の鍛造加工(4回目の鍛造加工)により先端円筒部53(および先端面57)が成形されるため、2回目および3回目の鍛造加工用の金型は先端円筒部53を成形するための段部を有しておらず、これらの金型を先端円筒部53とシール部54との距離が異なる複数種類の主体金具50の製造に共通して使用することができる。また、図4(b)に示すように、2回目の鍛造加工では、金型DIbにシール部54を成形するための段部が設けられているが、先端円筒部53を成形するための段部は設けられていないため、成形体102におけるシール部54と先端面との距離を、スリーブ222kを軸方向に沿ってずらすことにより自在に微調整することができる。3回目の鍛造加工においても同様である。このように、本実施例の主体金具50の製造方法では、異なる種類の主体金具50の製造に共通の金型を使用することができる場合を増加させることができ、鍛造加工に用いる金型の汎用性を向上させることができる。また、スリーブを軸方向に沿ってずらすことにより、金型の寸法を変更することなく主体金具50の軸方向に沿った製造寸法を微調整することができる。   In the manufacturing method of the metal shell 50 of the present embodiment, the distal end cylindrical portion 53 (and the distal end surface 57) is formed by the last forging process (fourth forging process) in a plurality of forging processes. The third forging die does not have a step portion for forming the tip cylindrical portion 53, and these molds are of a plurality of types with different distances between the tip cylindrical portion 53 and the seal portion 54. It can be used in common for manufacturing the metal shell 50. Further, as shown in FIG. 4B, in the second forging process, a step portion for forming the seal portion 54 is provided in the mold DIb, but a step for forming the tip cylindrical portion 53 is provided. Since the portion is not provided, the distance between the seal portion 54 and the tip surface of the molded body 102 can be finely adjusted freely by shifting the sleeve 222k along the axial direction. The same applies to the third forging process. Thus, in the manufacturing method of the metal shell 50 of the present embodiment, the number of cases where a common mold can be used for manufacturing different types of metal shells 50 can be increased. Versatility can be improved. Further, by shifting the sleeve along the axial direction, the manufacturing dimension along the axial direction of the metal shell 50 can be finely adjusted without changing the dimension of the mold.

B.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
B. Variations:
The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.

上記実施例におけるスパークプラグ100およびその構成部品としての主体金具50の構成は、あくまで一例であり、種々変形可能である。   The configuration of the spark plug 100 and the metal shell 50 as its component in the above embodiment is merely an example, and can be variously modified.

また、上記実施例における主体金具50の製造方法は、あくまで一例であり、種々変形可能である。例えば、上記実施例では、鍛造加工工程(図2のステップS120)が4回の鍛造加工により構成されるとしているが、鍛造加工工程において実施される鍛造加工の回数(段数)はm回(mは2以上の自然数)であればよい。また、上記実施例では、4回の鍛造加工の内の最後(4回目)の鍛造加工において先端円筒部53および先端面57が成形されるとしているが、n回目(n≦m−1、nは自然数)の鍛造加工により先端部の内周側部位IPが外周側部位OPより軸線方向先端側に突出した成形体102(第n主体金具中間体)を成形し、第n主体金具中間体を対象とした(n+1)回目の鍛造加工により先端円筒部53の先端面57を成形するとすればよい。   Moreover, the manufacturing method of the metal shell 50 in the above embodiment is merely an example, and various modifications can be made. For example, in the above embodiment, the forging process (step S120 in FIG. 2) is configured by four forging processes, but the number of forging processes (stages) performed in the forging process is m times (m Is a natural number of 2 or more). Moreover, in the said Example, although the front-end | tip cylindrical part 53 and the front end surface 57 are shape | molded in the last (fourth) forging process of four times of forging processes, it is nth (n <= m-1, n Is a natural number) to form a molded body 102 (n-th metal shell intermediate) in which the inner peripheral side portion IP of the tip protrudes from the outer peripheral side portion OP toward the front end in the axial direction. What is necessary is just to shape | mold the front end surface 57 of the front-end | tip cylindrical part 53 by the forging process of (n + 1) th time made into object.

また、上記実施例では、3回目の鍛造加工により成形される成形体102cの先端部の形状は、内周側部位IPが軸方向に略直交する平面形状であり、外周側部位OPが内周側部位IPとの境界から外側に向けて軸方向後端側に傾斜したテーパー形状であるとしているが、成形体102cの先端部の形状は、内周側部位IPが外周側部位OPより軸方向先端側に突出した形状であれば他の形状であってもよい。   Moreover, in the said Example, the shape of the front-end | tip part of the molded object 102c shape | molded by the forging process of the 3rd time is a planar shape in which the inner peripheral side part IP is substantially orthogonal to an axial direction, and the outer peripheral side part OP is inner periphery. Although it is assumed that the tapered shape is inclined toward the rear end side in the axial direction toward the outside from the boundary with the side portion IP, the shape of the tip portion of the molded body 102c is such that the inner peripheral portion IP is more axial than the outer peripheral portion OP. Other shapes may be used as long as the shape protrudes toward the tip side.

また、上記実施例では、先端部の内周側部位IPが外周側部位OPより軸線方向先端側に突出した成形体102を成形するための鍛造加工において、そのような内周側部位IPおよび外周側部位OPの形状に対応する形状の端部を有するスリーブ223kが用いられるとしているが、そのような内周側部位IPおよび外周側部位OPの形状に対応する形状の端部を有する部材であれば、スリーブ223kに限らず他の部品を用いてもよい。   Moreover, in the said Example, in the forge process for shape | molding the molded object 102 in which the inner peripheral side part IP of the front-end | tip part protruded from the outer peripheral side part OP to the axial direction front end side, such inner peripheral side part IP and outer periphery The sleeve 223k having the end corresponding to the shape of the side portion OP is used. However, the sleeve 223k may be a member having the end corresponding to the shapes of the inner peripheral portion IP and the outer peripheral portion OP. For example, not only the sleeve 223k but also other parts may be used.

また、鍛造加工により先端円筒部53および/または工具係合部51となるべき部分が成形され、このような部分に対する加工(例えば切削加工)が行われて、先端円筒部53および/または工具係合部51が形成されるとしてもよい。   Further, a portion to be the tip cylindrical portion 53 and / or the tool engaging portion 51 is formed by forging, and processing (for example, cutting) is performed on such a portion, so that the tip cylindrical portion 53 and / or the tool engagement is performed. A joint portion 51 may be formed.

また、上述した実施形態における本発明の構成要素のうち、独立請求項に記載された要素以外の要素は、付加的な要素であり、適宜省略、または、組み合わせが可能である。   In addition, among the constituent elements of the present invention in the above-described embodiments, elements other than the elements described in the independent claims are additional elements, and can be omitted or combined as appropriate.

3…セラミック抵抗
4…シール体
5…ガスケット
10…絶縁碍子
12…軸孔
13…脚長部
17…先端側胴部
18…後端側胴部
19…中央胴部
20…中心電極
21…被覆材
25…芯材
30…接地電極
40…端子金具
50…主体金具
51…工具係合部
52…ネジ部
53…先端円筒部
54…シール部
57…先端面
59…貫通孔
100…スパークプラグ
102…成形体
302…成形体
DESCRIPTION OF SYMBOLS 3 ... Ceramic resistance 4 ... Sealing body 5 ... Gasket 10 ... Insulator 12 ... Shaft hole 13 ... Leg long part 17 ... Front end side trunk | drum 18 ... Rear end side trunk | drum 19 ... Center trunk | drum 20 ... Center electrode 21 ... Covering material 25 ... Core material 30 ... Ground electrode 40 ... Terminal fitting 50 ... Metal fitting 51 ... Tool engaging portion 52 ... Screw portion 53 ... Cylinder tip portion 54 ... Seal portion 57 ... Front end surface 59 ... Through hole 100 ... Spark plug 102 ... Molded body 302 ... Molded body

Claims (4)

外周面にネジが形成された円筒形状のネジ部と、前記ネジ部に隣接する前記ネジ部より小径の円筒形状の先端円筒部と、を有すると共に軸線方向に貫通孔を有するスパークプラグ用主体金具の製造方法であって、
金属製の出発材料に対するm回(mは2以上の自然数)の鍛造加工により、主体金具となるべき第m主体金具中間体を成形する鍛造工程を備え、
前記鍛造工程は、前記m回の鍛造加工の内のn回目(n≦m−1、nは自然数)の鍛造加工により第n主体金具中間体を得る第n主体金具中間体成形工程と、前記m回の鍛造加工の内の(n+1)回目の鍛造加工により前記先端円筒部の先端面又は前記先端円筒部となるべき部位の先端面を成形する先端面成形工程と、を有し、
前記第n主体金具中間体の先端部の側を前記第n主体金具中間体の軸線方向先端側としたとき、前記第n主体金具中間体の先端部の内周側部位が、前記第n主体金具中間体の先端部の外周側部位より前記軸線方向先端側に突出していることを特徴とする、スパークプラグ用主体金具の製造方法。
A metal shell for a spark plug having a cylindrical screw portion having a screw formed on an outer peripheral surface, a cylindrical tip cylindrical portion having a smaller diameter than the screw portion adjacent to the screw portion, and having a through hole in the axial direction. A manufacturing method of
A forging step of forming an m-th metal shell intermediate to be a metal shell by forging a metal starting material m times (m is a natural number of 2 or more);
The forging step includes an n-th metal shell intermediate forming step for obtaining an n-th metal shell intermediate by n-th (n ≦ m−1, n is a natural number) forging of the m times of forging, a tip surface forming step of forming the tip surface of the tip cylindrical portion or the tip surface of the portion to be the tip cylindrical portion by the (n + 1) -th forging process of m times of forging,
When the tip end side of the n-th metal shell intermediate body is the front end side in the axial direction of the n-th metal shell intermediate body, the inner peripheral side portion of the tip portion of the n-th metal shell intermediate body is the n-th metal shell intermediate body. A method for producing a metal shell for a spark plug, characterized in that the metal shell projects from the outer peripheral side portion of the tip of the metal fitting intermediate to the tip in the axial direction.
請求項1に記載のスパークプラグ用主体金具の製造方法であって、
前記第n主体金具中間体成形工程において、第(n−1)主体金具中間体(n=1のときの第0主体金具中間体は前記出発材料を示す)の先端部を受ける端部を備えると共に、前記第n主体金具中間体成形工程後に前記第n主体金具中間体を取り出すために前記軸線方向に沿って移動可能な受け部材が使用され、
前記受け部材の端部は、前記第n主体金具中間体の先端部における前記外周側部位及び前記内周側部位に対応する形状を有している、スパークプラグ用主体金具の製造方法。
It is a manufacturing method of the metal shell for spark plugs according to claim 1,
The n-th metal shell intermediate forming step includes an end portion for receiving a tip of a (n-1) metal shell intermediate (the 0th metal shell intermediate when n = 1 indicates the starting material). In addition, a receiving member that is movable along the axial direction is used to take out the n-th metal shell intermediate after the n-th metal shell intermediate molding step,
The method of manufacturing a spark plug metal shell, wherein an end portion of the receiving member has a shape corresponding to the outer peripheral side portion and the inner peripheral side portion at a distal end portion of the nth metal shell intermediate body.
請求項2に記載のスパークプラグ用主体金具の製造方法であって、
前記受け部材は、少なくとも前記軸線方向先端側に開口する孔部を前記第n主体金具中間体の先端部に成形するパンチの外周に配置される、スパークプラグ用主体金具の製造方法。
It is a manufacturing method of the metal shell for spark plugs according to claim 2,
The method of manufacturing a spark plug metal shell, wherein the receiving member is disposed on an outer periphery of a punch that molds at least a hole opening at the tip end side in the axial direction at a tip portion of the n-th metal shell intermediate body.
請求項1ないし請求項3のいずれかに記載のスパークプラグ用主体金具の製造方法を用いて前記主体金具を製造する工程を備える、スパークプラグの製造方法。   A method for manufacturing a spark plug, comprising the step of manufacturing the metal shell using the method for manufacturing a metal shell for a spark plug according to claim 1.
JP2011005409A 2011-01-14 2011-01-14 Manufacturing method of spark plug metal shell and manufacturing method of spark plug Expired - Fee Related JP5535097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005409A JP5535097B2 (en) 2011-01-14 2011-01-14 Manufacturing method of spark plug metal shell and manufacturing method of spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005409A JP5535097B2 (en) 2011-01-14 2011-01-14 Manufacturing method of spark plug metal shell and manufacturing method of spark plug

Publications (2)

Publication Number Publication Date
JP2012143801A JP2012143801A (en) 2012-08-02
JP5535097B2 true JP5535097B2 (en) 2014-07-02

Family

ID=46787915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005409A Expired - Fee Related JP5535097B2 (en) 2011-01-14 2011-01-14 Manufacturing method of spark plug metal shell and manufacturing method of spark plug

Country Status (1)

Country Link
JP (1) JP5535097B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658351A (en) * 2013-10-14 2016-06-08 日本特殊陶业株式会社 Manufacturing method of primary metal fitting molded article for spark plug, manufacturing method of primary metal fitting for spark plug, and spark plug manufacturing method
KR20180073632A (en) * 2015-11-24 2018-07-02 니뽄 도쿠슈 도교 가부시키가이샤 Manufacturing method of cold rolled steel for cold forging

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2141654A (en) * 1983-06-20 1985-01-03 Champion Spark Plug Co Method of forming spark plug shells
JPS6427735A (en) * 1987-07-22 1989-01-30 Nitto Kohki Co Heading method for hollow part
JPH0446652A (en) * 1990-06-12 1992-02-17 Ngk Spark Plug Co Ltd Manufacture of main fitting
JPH07241644A (en) * 1994-03-04 1995-09-19 Toyota Motor Corp Extrusion machine
JP4153880B2 (en) * 2004-01-30 2008-09-24 アイシン精機株式会社 Method and apparatus for manufacturing stepped hollow member
JP4925476B2 (en) * 2008-12-04 2012-04-25 アイダエンジニアリング株式会社 Molding method of flanged cup products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658351A (en) * 2013-10-14 2016-06-08 日本特殊陶业株式会社 Manufacturing method of primary metal fitting molded article for spark plug, manufacturing method of primary metal fitting for spark plug, and spark plug manufacturing method
CN105658351B (en) * 2013-10-14 2017-08-01 日本特殊陶业株式会社 The manufacture method of the base metal housing molding product of spark plug, the manufacture method and the manufacture method of spark plug of the base metal housing of spark plug
KR20180073632A (en) * 2015-11-24 2018-07-02 니뽄 도쿠슈 도교 가부시키가이샤 Manufacturing method of cold rolled steel for cold forging
KR102283076B1 (en) 2015-11-24 2021-07-28 니뽄 도쿠슈 도교 가부시키가이샤 Manufacturing method by cold forging of a cylindrical body with different diameters

Also Published As

Publication number Publication date
JP2012143801A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP6212349B2 (en) Spark plug metal shell manufacturing method, spark plug metal shell manufacturing method, and spark plug manufacturing method
JP2010201457A (en) Method of producing metallic shell for spark plug
JP5535097B2 (en) Manufacturing method of spark plug metal shell and manufacturing method of spark plug
JP5558021B2 (en) Metal glow plug sheath manufacturing method for diesel engine, metal glow plug manufacturing method, metal glow plug sheath for diesel engine, and metal glow plug for diesel engine
JPH0716693A (en) Manufacture of main metallic tool for spark plug
JP4220218B2 (en) Manufacturing method of center electrode for spark plug
JPH0620577B2 (en) Method for manufacturing spark plug terminal nut by plastic working
JP4880563B2 (en) Manufacturing method of metal shell for spark plug
JP6313673B2 (en) Fitting manufacturing method, spark plug manufacturing method, and sensor manufacturing method
KR101603468B1 (en) Glow plug and fabrication method for same
JP5526010B2 (en) Manufacturing method of spark plug metal shell and manufacturing method of spark plug
JP4342289B2 (en) Method for manufacturing spark plug metal shell and method for manufacturing spark plug
JP4210611B2 (en) Manufacturing method of metal shell for spark plug
JP5639118B2 (en) Manufacturing method of spark plug
JP2003019538A (en) Method for manufacturing main piece for spark plug
US10751923B2 (en) Spark plug insulator production method, insulator, molding die
JP5279870B2 (en) Spark plug electrode manufacturing method and spark plug manufacturing method
JP2020202111A (en) Manufacturing method of tubular metal fitting
JP2007059365A (en) Spark plug shell and its manufacturing method
JP5960869B1 (en) Spark plug
JP7157000B2 (en) Spark plug
JP6335770B2 (en) Method for manufacturing an insulator for a spark plug
JP6725566B2 (en) Hollow material manufacturing method
JP6675340B2 (en) Bar member
JP6077397B2 (en) Manufacturing method of spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5535097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees