JP5532166B1 - 磁気センサおよび磁気センサシステム - Google Patents
磁気センサおよび磁気センサシステム Download PDFInfo
- Publication number
- JP5532166B1 JP5532166B1 JP2013073685A JP2013073685A JP5532166B1 JP 5532166 B1 JP5532166 B1 JP 5532166B1 JP 2013073685 A JP2013073685 A JP 2013073685A JP 2013073685 A JP2013073685 A JP 2013073685A JP 5532166 B1 JP5532166 B1 JP 5532166B1
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetization
- component
- layer
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
【課題】スピンバルブ型のMR素子を用いた磁気センサにおいて、自由層に印加される層間結合磁界による影響を低減する。
【解決手段】磁気センサ1は、MR素子10と磁石21,22を備えている。MR素子10は、X方向に平行な方向に磁化が固定された磁化固定層と、外部磁界のX方向の成分に応じて磁化が変化する自由層と、磁化固定層と自由層の間に配置された非磁性層を有している。磁化固定層、非磁性層および自由層は、Y方向に並ぶように積層されている。自由層には、磁化固定層に起因して、X方向に平行な方向の層間結合磁界Hinが印加されている。磁石21,22は、自由層に対してバイアス磁界Hbを印加する。バイアス磁界Hbは、層間結合磁界Hinの方向とは反対方向の第1の磁界成分Hb1と、Z方向の第2の磁界成分Hb2とを有している。
【選択図】図2
【解決手段】磁気センサ1は、MR素子10と磁石21,22を備えている。MR素子10は、X方向に平行な方向に磁化が固定された磁化固定層と、外部磁界のX方向の成分に応じて磁化が変化する自由層と、磁化固定層と自由層の間に配置された非磁性層を有している。磁化固定層、非磁性層および自由層は、Y方向に並ぶように積層されている。自由層には、磁化固定層に起因して、X方向に平行な方向の層間結合磁界Hinが印加されている。磁石21,22は、自由層に対してバイアス磁界Hbを印加する。バイアス磁界Hbは、層間結合磁界Hinの方向とは反対方向の第1の磁界成分Hb1と、Z方向の第2の磁界成分Hb2とを有している。
【選択図】図2
Description
本発明は、磁気抵抗効果素子を有する磁気センサ、ならびにこの磁気センサとスケールとを備えた磁気センサシステムに関する。
近年、種々の用途で、動作体の回転動作や直線的動作に関連する物理量を検出する磁気センサシステムが用いられている。一般的に、磁気センサシステムは、スケールと磁気センサとを備え、磁気センサによって、スケールと磁気センサとの相対的位置関係に関連する信号を生成するようになっている。このような磁気センサシステムは、例えば特許文献1ないし4に記載されている。
動作体が回転動作をするものである場合に用いられる磁気センサシステムのスケールは、一般的には、動作体に連動する回転体である。この回転体は、例えば、円周方向に交互に配列された複数組のN極とS極を有する多極着磁磁石や、磁性材料によって構成された複数の歯を有する歯車である。この場合、磁気センサシステムは、前記物理量として、回転体の回転位置や回転速度等を検出する。
動作体が直線的動作をするものである場合に用いられる磁気センサシステムのスケールは、例えば、交互に直線状に配列された複数組のN極とS極を有するリニアスケールである。この場合、リニアスケールと磁気センサの一方が動作体に連動し、磁気センサシステムは、前記物理量として、磁気センサに対するリニアスケールの相対的な位置や速度を検出する。
磁気センサは、感磁素子を含んでいる。特許文献1ないし3には、感磁素子として、いわゆるスピンバルブ型の磁気抵抗効果素子(以下、MR素子とも記す。)を用いた磁気センサが記載されている。スピンバルブ型のMR素子は、磁化が固定された磁化固定層と、外部磁界に応じて磁化の方向および大きさが変化する自由層と、磁化固定層と自由層の間に配置された非磁性層とを有している。スピンバルブ型のMR素子には、非磁性層がトンネルバリア層であるTMR素子と、非磁性層が非磁性導電層であるGMR素子とが含まれる。
特許文献1に記載されているように、スピンバルブ型のMR素子を用いた磁気センサでは、磁化固定層に起因して自由層に層間結合磁界が印加される場合がある。層間結合磁界の方向は、磁化固定層の磁化の方向と同じか反対方向である。自由層に層間結合磁界が印加されていると、外部磁界の方向によって外部磁界の大きさの変化に対するMR素子の抵抗値の変化量が異なったり、外部磁界の大きさの変化に対するMR素子の抵抗値の変化量が小さくなったりするという問題が生じる。
特許文献1には、層間結合磁界をゼロにすると磁気センサの出力波形が不安定になることが記載されている。また、特許文献1には、永久磁石を用いて、自由層に対して、磁化固定層の磁化の方向に直交する方向にバイアス磁界を印加することによって、磁気センサの出力波形を安定化する技術が記載されている。しかし、この技術では、層間結合磁界がゼロではない場合には、層間結合磁界による上述の問題を解決することはできない。
特許文献2には、MR素子の側方に軟磁性体を設けることによって、自由層に層間結合磁界が印加されていても、見かけ上、磁気センサの磁気検出感度を向上させる技術が記載されている。しかし、この技術は、層間結合磁界による影響を直接低減する訳ではない。
特許文献3,4には、MR素子にバイアス磁界を印加する技術が記載されている。しかし、特許文献3,4では、層間結合磁界による影響は考慮されていない。
本発明はかかる問題点に鑑みてなされたもので、その目的は、スピンバルブ型の磁気抵抗効果素子を用いた磁気センサおよび磁気センサシステムであって、自由層に印加される層間結合磁界による影響を低減できるようにした磁気センサおよび磁気センサシステムを提供することにある。
本発明の磁気センサは、外部磁界の第1の方向の成分を検出するものである。この磁気センサは、磁気抵抗効果素子と、バイアス磁界発生部とを備えている。磁気抵抗効果素子は、第1の方向に平行な方向に磁化が固定された磁化固定層と、外部磁界の第1の方向の成分に応じて磁化が変化する自由層と、磁化固定層と自由層の間に配置された非磁性層とを有している。磁化固定層、非磁性層および自由層は、第1の方向に直交する第2の方向に並ぶように積層されている。自由層には、磁化固定層に起因して、第1の方向に平行な方向の層間結合磁界が印加されている。バイアス磁界発生部は、少なくとも1つの磁石を有し、自由層に対してバイアス磁界を印加する。磁気抵抗効果素子と少なくとも1つの磁石は、第1および第2の方向に直交する第3の方向に並んでいる。少なくとも1つの磁石は、磁気抵抗効果素子に向いた端面を有している。少なくとも1つの磁石の磁化の方向は、前記端面に垂直な方向に対して傾いている。少なくとも1つの磁石の磁化は、第1の方向に平行な第1の磁化成分と、第3の方向に平行な第2の磁化成分とを有している。バイアス磁界は、層間結合磁界の方向とは反対方向の第1の磁界成分と、第3の方向に平行な第2の磁界成分とを有している。第1の磁界成分の方向は、第1の磁化成分の方向とは反対方向である。第2の磁界成分の方向は、第2の磁化成分の方向と同じである。
本発明の磁気センサにおいて、少なくとも1つの磁石は、磁気抵抗効果素子を挟むように配置された一対の磁石であってもよい。また、少なくとも1つの磁石の前記端面は、第3の方向に垂直であってもよい。
本発明の磁気センサシステムは、本発明の磁気センサと、磁気センサに対する相対的位置が第1の方向に変化し得るスケールとを備え、磁気センサに対するスケールの相対的位置が変化することによって、外部磁界の第1の方向の成分が変化するものである。
本発明の磁気センサおよび磁気センサシステムでは、バイアス磁界発生部によって自由層に印加されるバイアス磁界は、層間結合磁界の方向とは反対方向の第1の磁界成分と、第1および第2の方向に直交する第3の方向の第2の磁界成分とを有している。第1の磁界成分は、層間結合磁界を相殺するように作用する。第2の磁界成分は、外部磁界の第1の方向の成分がゼロであるときの自由層の磁化の方向を安定化させるように作用する。これらのことから、本発明によれば、スピンバルブ型の磁気抵抗効果素子を用いた磁気センサおよび磁気センサシステムにおいて、自由層に印加される層間結合磁界による影響を低減することができるという効果を奏する。
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図1を参照して、本発明の一実施の形態に係る磁気センサシステムの概略の構成について説明する。図1は、本実施の形態に係る磁気センサシステムの概略の構成を示す斜視図である。図1に示したように、本実施の形態に係る磁気センサシステムは、本実施の形態に係る磁気センサ1と、この磁気センサ1に対する相対的位置が第1の方向に変化し得るスケール30とを備えている。以下、第1の方向をX方向と言う。本実施の形態では特に、スケール30は、X方向に沿って交互に直線状に配列された複数組のN極とS極を有するリニアスケールである。スケール30は、X方向に平行な側面30aを有している。磁気センサ1は、側面30aに対向する位置に配置されている。磁気センサ1とスケール30の一方は、図示しない動作体に連動してX方向に移動する。これにより、磁気センサ1に対するスケール30の相対的位置がX方向に変化する。図1において、曲線の矢印は、スケール30が発生する磁束を表している。磁気センサ1は、外部磁界のX方向の成分を検出するものである。以下、外部磁界のX方向の成分を、記号Hxで表す。外部磁界は、スケール30によって発生される。磁気センサ1に対するスケール30の相対的位置が変化すると、外部磁界のX方向の成分Hxが変化する。
次に、図1および図2を参照して、磁気センサ1について説明する。図2は、磁気センサ1の平面図である。磁気センサ1は、基板2と、この基板2上に配置されたスピンバルブ型の磁気抵抗効果素子(以下、MR素子と記す。)10と、バイアス磁界発生部20とを備えている。MR素子10は、TMR素子でもよいし、GMR素子でもよい。バイアス磁界発生部20は、少なくとも1つの磁石を有している。少なくとも1つの磁石は、MR素子10に対して間隔を置いて配置されていてもよいし、MR素子10に接していてもよい。本実施の形態では特に、少なくとも1つの磁石は、MR素子10を挟むように配置された一対の磁石21,22である。磁石21,22は、いずれも、MR素子10に接するように、基板2上に配置されている。磁石21,22は、それぞれ、例えば直方体形状を有している。また、図1および図2には、MR素子10の形状が直方体形状である例を示している。しかし、MR素子10の形状は、円柱形状等の他の形状であってもよい。
次に、図3を参照して、MR素子10について説明する。図3は、MR素子10の構成の一例を示す側面図である。MR素子10は、少なくとも、X方向に平行な方向に磁化が固定された磁化固定層13と、外部磁界のX方向の成分Hxに応じて磁化が変化する自由層15と、磁化固定層13と自由層15の間に配置された非磁性層14とを有している。
図3に示した例では、MR素子10は、更に、下地層11、反強磁性層12および保護層16を有している。この例では、基板2の上に、下地層11、反強磁性層12、磁化固定層13、非磁性層14、自由層15および保護層16が、この順に積層されている。下地層11と保護層16は、導電性を有している。下地層11は、基板2の結晶軸の影響を排除し、下地層11の上に形成される各層の結晶性や配向性を向上させるために用いられる。下地層11の材料としては、例えばTaやRuが用いられる。反強磁性層12は、磁化固定層13との交換結合により、磁化固定層13における磁化の方向を固定する層である。反強磁性層12は、IrMn、PtMn等の反強磁性材料によって形成されている。
磁化固定層13では、反強磁性層12との界面における交換結合により、磁化の方向が固定されている。図3に示した例では、磁化固定層13は、反強磁性層12の上に順に積層されたアウター層131、非磁性中間層132およびインナー層133を有し、いわゆるシンセティック固定層になっている。アウター層131とインナー層133は、例えば、CoFe、CoFeB、CoNiFe等の軟磁性材料によって形成されている。アウター層131は、反強磁性層12との交換結合により、磁化の方向が固定されている。アウター層131とインナー層133は、反強磁性的に結合し、磁化の方向が互いに逆方向に固定されている。非磁性中間層132は、アウター層131とインナー層133の間に反強磁性交換結合を生じさせ、アウター層131の磁化の方向とインナー層133の磁化の方向を互いに逆方向に固定する。非磁性中間層132は、Ru等の非磁性材料によって形成されている。磁化固定層13がアウター層131、非磁性中間層132およびインナー層133を有する場合には、磁化固定層13の磁化の方向とは、インナー層133の磁化の方向を指す。図3では、磁化固定層13の磁化を、記号Mpinを付した矢印で表している。この矢印が示す方向が、磁化固定層13の磁化の方向である。
MR素子10がTMR素子である場合には、非磁性層14はトンネルバリア層である。トンネルバリア層は、例えば、マグネシウム層の一部または全体を酸化させて形成したものであってもよい。MR素子10がGMR素子である場合には、非磁性層14は非磁性導電層である。自由層15は、例えば、CoFe、CoFeB、NiFe、CoNiFe等の軟磁性材料によって形成されている。保護層16は、その下の各層を保護するための層である。保護層16の材料としては、Ta、Ru、W、Ti等が用いられる。
磁化固定層13、非磁性層14および自由層15は、X方向に直交する第2の方向に並ぶように積層されている。以下、第2の方向をY方向と言う。本実施の形態では、Y方向は、スケール30の側面30aに垂直な方向である。
MR素子10では、自由層15に印加される磁界に応じて、自由層15の磁化が変化する。より詳しく説明すると、自由層15に印加される磁界の方向および大きさに応じて、自由層15の磁化の方向および大きさが変化する。MR素子10の抵抗値は、自由層15の磁化の方向および大きさによって変化する。例えば、自由層15の磁化の大きさが一定の場合には、自由層15の磁化の方向が磁化固定層13の磁化の方向と同じであるときに、MR素子10の抵抗値は最小値となり、自由層15の磁化の方向が磁化固定層13の磁化の方向とは反対方向であるときに、MR素子10の抵抗値は最大値となる。
MR素子10がGMR素子である場合には、MR素子10は、MR素子10を構成する各層の面と交差する方向、例えばMR素子10を構成する各層の面に対して垂直な方向に電流を流すCPP(Current Perpendicular to Plane)タイプでもよいし、MR素子10を構成する各層の面に対してほぼ平行な方向に電流を流すCIP(Current In Plane)タイプでもよい。MR素子10がTMR素子である場合には、MR素子10は、CPPタイプになる。
MR素子10がCPPタイプである場合には、例えば、下地層11と保護層16に、それぞれ図示しない電極が接続され、これらの電極によって、磁気センサ1がMR素子10の抵抗値に対応した信号を生成するための電流が、MR素子10に供給される。この電流は、MR素子10を構成する各層の面と交差する方向、例えばMR素子10を構成する各層の面に対して垂直な方向に流れる。例えば、MR素子10に一定値の電流を供給する場合には、MR素子10の両端間の電位差によって、MR素子10の抵抗値に対応した信号を生成することができる。MR素子10がCIPタイプである場合には、例えば、保護層16における互いに離れた2つの位置に図示しない2つの電極が接続され、これらの電極によって上記の電流がMR素子10に供給される。この電流は、MR素子10を構成する各層の面に対してほぼ平行な方向に流れる。この場合も、上記と同様にしてMR素子10の抵抗値に対応した信号を生成することができる。
本実施の形態では、自由層15と磁化固定層13の間では、非磁性層14を介した磁気的層間結合が生じる。これにより、自由層15には、磁化固定層13に起因して、X方向に平行な方向の層間結合磁界Hinが印加されている。層間結合磁界Hinの方向は、磁化固定層13の磁化の方向と同じか反対方向である。図3では、層間結合磁界Hinを、記号Hinを付した矢印で表している。この矢印が示す方向が、層間結合磁界Hinの方向である。図3には、層間結合磁界Hinの方向が、磁化固定層13の磁化Mpinの方向と同じである例を示している。
図2に示したように、MR素子10と、一対の磁石21,22は、X方向およびY方向に直交する第3の方向に並んでいる。以下、第3の方向をZ方向と言う。より詳しく説明すると、図2に示したように、Y方向から見たときに、MR素子10と磁石21,22のそれぞれの中心は、Z方向に延びる同一直線L上に位置している。
なお、本出願において用いるX方向、Y方向、Z方向は、いずれも、図1において双方向の矢印で示したように、特定の一方向とその反対方向とを含むものとして定義される。一方、磁界の方向や磁化の方向は、特定の一方向のみを表すものとして定義される。
磁石21は、MR素子10に向いた端面21aを有している。磁石22は、MR素子10に向いた端面22aを有している。これら端面21a,22aは、Z方向に垂直である。図2に示した例では、端面21aに磁石21のN極が現れ、端面22aに磁石22のS極が現れている。磁石21,22間の距離、すなわち端面21a,22a間の距離を、記号Gで表す。
磁石21の磁化の方向は、端面21aに垂直な方向に対して傾いている。図2では、磁石21の磁化を、記号M21を付した矢印で表している。この矢印が示す方向が、磁石21の磁化の方向である。磁石21の磁化M21は、X方向に平行な第1の磁化成分M21xと、Z方向に平行な第2の磁化成分M21zとを有している。
磁石22の磁化の方向は、端面22aに垂直な方向に対して傾いている。図2では、磁石22の磁化を、記号M22を付した矢印で表している。この矢印が示す方向が、磁石22の磁化の方向である。磁石22の磁化M22は、X方向に平行な第1の磁化成分M22xと、Z方向に平行な第2の磁化成分M22zとを有している。磁化成分M22xの方向は、磁化成分M21xの方向と同じである。磁化成分M22zの方向は、磁化成分M21zの方向と同じである。
磁石21は、後に磁石21となる磁性材料による成型体を着磁することによって形成することができる。磁石21の磁化の方向は、成型体を着磁する際に成型体に印加する磁界の方向によって設定することができる。磁石22も、これと同様の方法で形成することができる。
バイアス磁界発生部20、すなわち一対の磁石21,22は、自由層15に対してバイアス磁界Hbを印加する。バイアス磁界Hbは、層間結合磁界Hinの方向とは反対方向の第1の磁界成分Hb1と、Z方向の第2の磁界成分Hb2とを有している。磁界成分Hb1の方向は、磁化成分M21x,M22xの方向とは反対方向である。磁界成分Hb2の方向は、磁化成分M21z,M22zの方向と同じである。磁界成分Hb1の方向が磁化成分M21x,M22xの方向とは反対方向になる現象については、後で詳しく説明する。
次に、本実施の形態に係る磁気センサ1および磁気センサシステムの作用および効果について説明する。本実施の形態に係る磁気センサシステムでは、スケール30によって、磁気センサ1が検出する外部磁界が発生される。磁気センサ1に対するスケール30の相対的位置が変化すると、外部磁界のX方向の成分Hxが変化する。より詳しく説明すると、磁気センサ1に対するスケール30の相対的位置が変化すると、磁気センサ1から見て、外部磁界は、その方向がZ方向の軸を中心として回転するように変化する。その結果、外部磁界のX方向の成分Hxが変化する。成分Hxは、磁化固定層13の磁化Mpinの方向と同じ方向に向いているときと、磁化Mpinの方向とは反対方向に向いているときがある。以下、成分Hxが磁化Mpinの方向とは反対方向に向いているときの成分Hxの大きさを正の値で表し、成分Hxが磁化Mpinの方向と同じ方向に向いているときの成分Hxの大きさを負の値で表す。
磁気センサ1は、スピンバルブ型のMR素子10を備えている。MR素子10の抵抗値は、外部磁界のX方向の成分Hxに応じて変化する。磁気センサ1は、MR素子10の抵抗値に対応した信号を生成する。この信号によって、動作体の直線的動作に関連する物理量、例えば、磁気センサ1に対するスケール30の相対的な位置や速度を検出することが可能になる。
MR素子10では、磁化固定層13に起因して、自由層15に、X方向に平行な方向の層間結合磁界Hinが印加されている。ここで、本実施の形態におけるバイアス磁界発生部20が設けられていない場合について考える。この場合には、外部磁界のX方向の成分Hxの方向によって成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が異なったり、成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が小さくなってMR素子10の感度が低くなったりするという問題が生じる。以下、これについて、図4を参照して詳しく説明する。
図4は、外部磁界のX方向の成分HxとMR素子10の抵抗値との関係の一例を示す特性図である。図4において、横軸は外部磁界のX方向の成分Hxを示し、縦軸はMR素子10の抵抗値を示している。横軸の単位はOe(1Oe=79.6A/m)であり、縦軸の単位はオームである。図4に示したように、MR素子10の抵抗値の最大値をRmaxとし、MR素子10の抵抗値の最小値をRminとし、RmaxとRminの中央の値(Rmax+Rmin)/2をRcとする。成分HxがゼロのときにMR素子10の抵抗値がRcであれば、成分Hxの方向によって成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が異ならず、また、成分Hxがゼロの近傍において成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が大きくなってMR素子10の感度が高くなる。しかし、自由層15に層間結合磁界Hinが印加されていると、MR素子10の抵抗値がRcとなるときの成分Hxの値が、層間結合磁界Hinの分だけゼロからずれる。その結果、成分Hxの方向によって成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が異なり、また、成分Hxがゼロの近傍において成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が小さくなってMR素子10の感度が低くなる。
なお、本実施の形態において、バイアス磁界発生部20が設けていない状態で、図4に示したような成分HxとMR素子10の抵抗値との関係を求め、更に、MR素子10の抵抗値がRcとなるときの成分Hxの値を求めることにより、自由層15に印加されている層間結合磁界Hinの方向と大きさを求めることが可能である。
図2に示したように、本実施の形態に係る磁気センサ1は、自由層15に対してバイアス磁界Hbを印加するバイアス磁界発生部20を備えている。バイアス磁界Hbは、層間結合磁界Hinの方向とは反対方向の第1の磁界成分Hb1と、Z方向の第2の磁界成分Hb2とを有している。第1の磁界成分Hb1は、層間結合磁界Hinを相殺するように作用する。
ここで、第1の磁界成分Hb1の上記の作用を確認した実験の結果を示す。実験では、バイアス磁界発生部20(磁石21,22)を設けていない状態と、バイアス磁界発生部20を設けた状態とについて、外部磁界のX方向の成分HxとMR素子10の抵抗値との関係を求めた。実験で用いたMR素子10のY方向から見たときの形状は、一辺が4μmの正方形である。実験で用いた磁石21,22のY方向から見たときの形状は、Z方向の寸法が3μm、Y方向の寸法が5μmの長方形である。バイアス磁界発生部20(磁石21,22)を設けた状態では、磁石21,22はMR素子10に接し、磁石21,22間の距離Gは4μmである。図5は、実験の結果を示している。図5おける横軸と縦軸は、図4と同様である。図5において、破線は、バイアス磁界発生部20を設けていない状態における成分HxとMR素子10の抵抗値との関係を示し、実線は、バイアス磁界発生部20を設けた状態における成分HxとMR素子10の抵抗値との関係を示している。図5に示したように、バイアス磁界発生部20を設けた状態では、成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が、成分Hxが正の値の領域と成分Hxが負の値の領域とで、ほぼ等しくなっている。また、バイアス磁界発生部20を設けていない状態に比べて、バイアス磁界発生部20を設けた状態では、成分Hxがゼロの近傍において成分Hxの大きさの変化に対するMR素子10の抵抗値の変化量が大きくなってMR素子10の感度が高くなっている。
また、バイアス磁界Hbの第2の磁界成分Hb2は、外部磁界のX方向の成分Hxがゼロであるときの自由層15の磁化の方向を安定化させるように作用する。これにより、第1の磁界成分Hb1によって層間結合磁界Hinが相殺されたことによって磁気センサ1の出力信号の波形が不安定になることを防止することができる。
以上のことから、本実施の形態によれば、スピンバルブ型のMR素子10を用いた磁気センサ1および磁気センサシステムにおいて、自由層15に印加される層間結合磁界Hinによる影響を低減することができる。
以下、図2に示したように磁界成分Hb1の方向が磁化成分M21x,M22xの方向とは反対方向になる現象について、詳しく説明する。始めに、図6および図7を参照して、端面に垂直な方向に対して傾いた方向の磁化を有する磁石が発生する磁界について調べたシミュレーションの結果について説明する。シミュレーションでは、図6および図7に示した磁石40を想定した。この磁石40は、Z方向の両端に位置する端面40a,40bを有している。端面40a,40bは、Z方向に対して垂直である。磁石40の磁化の方向は、端面40a,40bに垂直な方向(Z方向)に対して傾いている。端面40aには磁石40のN極が現れ、端面40bには磁石40のS極が現れている。磁石40は、図2に示した磁石21または磁石22に対応する。磁石40を磁石21に対応させた場合には、端面40aが端面21aに対応する。磁石40を磁石22に対応させた場合には、端面40bが端面22aに対応する。
シミュレーションでは、端面40a,40bの近傍の空間における磁界のX方向の成分の強度と磁界の方向とを調べた。シミュレーションでは、磁界のX方向の成分の強度は、磁界のX方向の成分が図6および図7おける右側に向いている場合に正の値で表し、磁界のX方向の成分が図6および図7おける左側に向いている場合に負の値で表した。また、シミュレーションでは、図6および図7に示したXZ平面内において、下から上に向かう方向を基準方向とし、磁化および磁界の方向を、基準方向に対してなす角度で表した。角度は、基準方向から時計回り方向については正の値で表し、基準方向から反時計回り方向について負の値で表した。磁石40の磁化の方向は45度である。
図6は、端面40a,40bの近傍の空間における磁界のX方向の成分の強度の分布を示している。図6において、記号R10,R20は、磁界のX方向の成分の強度が0mTの領域を示し、記号R11,R22は、磁界のX方向の成分の強度が−4mT以上0mT未満の領域を示し、記号R12,R21は、磁界のX方向の成分の強度が0mTより大きく4mT以下の領域を示している。各領域内の矢印は、磁界のX方向の成分の方向を示している。また、記号L10は、Y方向から見たときの磁石40の中心を通り、Z方向に延びる直線を示している。
図7は、端面40a,40bの近傍の空間における磁界の方向の分布を示している。図7において、記号R30,R40は、磁界の方向が0度の領域を示し、記号R31,R42は、磁界の方向が−10度以上0度未満の領域を示し、記号R32,R41は、磁界の方向が0度より大きく10度以下の領域を示している。各領域内の矢印は、磁界の方向を示している。
図6に示したように、端面40aの近傍の、X方向について磁石40と同じ幅を有する空間では、領域R10が直線L10の右側に位置し、領域R11が領域R12よりも広い。また、図7に示したように、端面40aの近傍の、X方向について磁石40と同じ幅を有する空間では、領域R30が直線L10の右側に位置し、領域R31が領域R32よりも広い。これらのことから、Y方向から見たときに、MR素子10の中心が直線L10上に位置するように、端面40aの近傍にMR素子10を配置した場合には、自由層15に印加される磁界の方向は、負の角度を有することになる。
また、図6に示したように、端面40bの近傍の、X方向について磁石40と同じ幅を有する空間では、領域R20が直線L10の左側に位置し、領域R22が領域R21よりも広い。また、図7に示したように、端面40bの近傍の、X方向について磁石40と同じ幅を有する空間では、領域R40が直線L10の左側に位置し、領域R42が領域R41よりも広い。これらのことから、Y方向から見たときに、MR素子10の中心が直線L10上に位置するように、端面40bの近傍にMR素子10を配置した場合には、自由層15に印加される磁界の方向は、負の角度を有することになる。
図6および図7に示した現象は、定性的には以下のように説明することができる。図6および図7に示したように、磁石40の磁化の方向が正の角度を有する場合、端面40aを通過する磁束の中心は直線L10の右側に位置し、端面40bを通過する磁束の中心は直線L10の左側に位置する。端面40aの近傍における磁束は、端面40aから離れるに従って広がり、端面40bの近傍における磁束は、端面40bから離れるに従って広がる。その結果、端面40a,40bの近傍の空間における磁界のX方向の成分の強度と磁界の方向の分布は、図6および図7に示したようになる。
以上のシミュレーションの結果から、図2に示したように、バイアス磁界Hbの磁界成分Hb1の方向が、磁石21の磁化M21の磁化成分M21xおよび磁石22の磁化M22の磁化成分M22xの方向とは反対方向になることが分かる。
本実施の形態では、図2に示したように、Y方向から見たときに、MR素子10と磁石21,22のそれぞれの中心がZ方向に延びる同一直線L上に位置するようにMR素子10と磁石21,22を配置しながら、磁石21,22の磁化M21,M22の方向を制御するだけで、バイアス磁界Hbの方向を制御することが可能である。そのため、本実施の形態によれば、前述の効果に加えて、MR素子10と磁石21,22の位置決めが容易になるという効果を奏する。
なお、本発明は、上記実施の形態に限定されず、種々の変更が可能である。例えば、バイアス磁界発生部20は、1つの磁石によって構成されていてもよい。この場合でも、1つの磁石によって、第1の磁界成分Hb1と第2の磁界成分Hb2とを有するバイアス磁界Hbを、自由層15に対して印加することが可能である。
また、スケールは、リニアスケールに限らず、円周方向に交互に配列された複数組のN極とS極を有する多極着磁磁石や、磁性材料によって構成された複数の歯を有する歯車等の回転体であってもよい。この場合には、第1の方向は、回転体の回転中心軸に垂直な断面において、回転体の外周に対する接線の方向である。
また、MR素子10は、下から、下地層11、自由層15、非磁性層14、磁化固定層13、反強磁性層12および保護層16の順に積層されて構成されていてもよい。
1…磁気センサ、10…MR素子、13…磁化固定層、14…非磁性層、15…自由層、20…バイアス磁界発生部、21,22…磁石、30…スケール。
Claims (4)
- 外部磁界の第1の方向の成分を検出する磁気センサであって、
磁気抵抗効果素子と、バイアス磁界発生部とを備え、
前記磁気抵抗効果素子は、前記第1の方向に平行な方向に磁化が固定された磁化固定層と、前記外部磁界の第1の方向の成分に応じて磁化が変化する自由層と、前記磁化固定層と前記自由層の間に配置された非磁性層とを有し、
前記磁化固定層、前記非磁性層および前記自由層は、前記第1の方向に直交する第2の方向に並ぶように積層され、
前記自由層には、前記磁化固定層に起因して、前記第1の方向に平行な方向の層間結合磁界が印加され、
前記バイアス磁界発生部は、少なくとも1つの磁石を有し、前記自由層に対してバイアス磁界を印加し、
前記磁気抵抗効果素子と前記少なくとも1つの磁石は、前記第1および第2の方向に直交する第3の方向に並び、
前記少なくとも1つの磁石は、前記磁気抵抗効果素子に向いた端面を有し、
前記少なくとも1つの磁石の磁化の方向は、前記端面に垂直な方向に対して傾いており、
前記少なくとも1つの磁石の磁化は、前記第1の方向に平行な第1の磁化成分と、第3の方向に平行な第2の磁化成分とを有し、
前記バイアス磁界は、前記層間結合磁界の方向とは反対方向の第1の磁界成分と、前記第3の方向に平行な第2の磁界成分とを有し、
前記第1の磁界成分の方向は、前記第1の磁化成分の方向とは反対方向であり、
前記第2の磁界成分の方向は、前記第2の磁化成分の方向と同じであることを特徴とする磁気センサ。 - 前記少なくとも1つの磁石は、前記磁気抵抗効果素子を挟むように配置された一対の磁石であることを特徴とする請求項1記載の磁気センサ。
- 前記少なくとも1つの磁石の前記端面は、前記第3の方向に垂直であることを特徴とする請求項1または2記載の磁気センサ。
- 請求項1ないし3のいずれかに記載の磁気センサと、
前記磁気センサに対する相対的位置が前記第1の方向に変化し得るスケールとを備え、
前記磁気センサに対する前記スケールの相対的位置が変化することによって、前記外部磁界の第1の方向の成分が変化することを特徴とする磁気センサシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013073685A JP5532166B1 (ja) | 2013-03-29 | 2013-03-29 | 磁気センサおよび磁気センサシステム |
US14/177,602 US9244136B2 (en) | 2013-03-29 | 2014-02-11 | Magnetic sensor with reduced effect of interlayer coupling magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013073685A JP5532166B1 (ja) | 2013-03-29 | 2013-03-29 | 磁気センサおよび磁気センサシステム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5532166B1 true JP5532166B1 (ja) | 2014-06-25 |
JP2014199183A JP2014199183A (ja) | 2014-10-23 |
Family
ID=51175863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013073685A Active JP5532166B1 (ja) | 2013-03-29 | 2013-03-29 | 磁気センサおよび磁気センサシステム |
Country Status (2)
Country | Link |
---|---|
US (1) | US9244136B2 (ja) |
JP (1) | JP5532166B1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5843079B2 (ja) * | 2013-03-29 | 2016-01-13 | Tdk株式会社 | 磁気センサおよび磁気センサシステム |
US10091594B2 (en) | 2014-07-29 | 2018-10-02 | Cochlear Limited | Bone conduction magnetic retention system |
JP2016176911A (ja) * | 2015-03-23 | 2016-10-06 | Tdk株式会社 | 磁気センサ |
US10130807B2 (en) | 2015-06-12 | 2018-11-20 | Cochlear Limited | Magnet management MRI compatibility |
US20160381473A1 (en) | 2015-06-26 | 2016-12-29 | Johan Gustafsson | Magnetic retention device |
US9872115B2 (en) | 2015-09-14 | 2018-01-16 | Cochlear Limited | Retention magnet system for medical device |
US10917730B2 (en) | 2015-09-14 | 2021-02-09 | Cochlear Limited | Retention magnet system for medical device |
JP6512141B2 (ja) * | 2016-03-09 | 2019-05-15 | Tdk株式会社 | 磁石および変位検出装置 |
US11595768B2 (en) | 2016-12-02 | 2023-02-28 | Cochlear Limited | Retention force increasing components |
JP6586974B2 (ja) * | 2017-04-10 | 2019-10-09 | Tdk株式会社 | 磁気抵抗効果素子 |
JP6485491B2 (ja) * | 2017-06-08 | 2019-03-20 | Tdk株式会社 | 磁気センサ及びカメラモジュール |
JP7534146B2 (ja) * | 2020-08-04 | 2024-08-14 | Tdk株式会社 | 磁気センサシステムおよびレンズ位置検出装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002357489A (ja) * | 2001-05-31 | 2002-12-13 | Matsushita Electric Ind Co Ltd | 応力センサー |
JP2008151759A (ja) * | 2006-12-20 | 2008-07-03 | Alps Electric Co Ltd | 磁気センサ及びそれを用いた磁気エンコーダ |
JP2010197399A (ja) * | 2010-04-01 | 2010-09-09 | Mitsubishi Electric Corp | 磁界検出装置およびそれを調整する方法 |
WO2011074488A1 (ja) * | 2009-12-15 | 2011-06-23 | アルプス電気株式会社 | 磁気センサ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3367230B2 (ja) | 1994-10-25 | 2003-01-14 | ソニー・プレシジョン・テクノロジー株式会社 | 位置検出装置 |
JP4132835B2 (ja) | 2002-01-23 | 2008-08-13 | 株式会社デンソー | 回転数検出装置 |
DE112007003025T5 (de) | 2006-12-13 | 2009-11-12 | Alps Electric Co., Ltd. | Magnetsensor und Magnetkodierer, der ihn nutzt |
US7615996B1 (en) * | 2009-01-21 | 2009-11-10 | Tdk Corporation | Examination method for CPP-type magnetoresistance effect element having two free layers |
-
2013
- 2013-03-29 JP JP2013073685A patent/JP5532166B1/ja active Active
-
2014
- 2014-02-11 US US14/177,602 patent/US9244136B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002357489A (ja) * | 2001-05-31 | 2002-12-13 | Matsushita Electric Ind Co Ltd | 応力センサー |
JP2008151759A (ja) * | 2006-12-20 | 2008-07-03 | Alps Electric Co Ltd | 磁気センサ及びそれを用いた磁気エンコーダ |
WO2011074488A1 (ja) * | 2009-12-15 | 2011-06-23 | アルプス電気株式会社 | 磁気センサ |
JP2010197399A (ja) * | 2010-04-01 | 2010-09-09 | Mitsubishi Electric Corp | 磁界検出装置およびそれを調整する方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2014199183A (ja) | 2014-10-23 |
US20140292321A1 (en) | 2014-10-02 |
US9244136B2 (en) | 2016-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5532166B1 (ja) | 磁気センサおよび磁気センサシステム | |
JP5843079B2 (ja) | 磁気センサおよび磁気センサシステム | |
US10989769B2 (en) | Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern | |
JP6202282B2 (ja) | 磁気センサ | |
JP5544502B2 (ja) | 電流センサ | |
JP5544501B2 (ja) | 電流センサ | |
JP5389005B2 (ja) | 磁気抵抗型積層構造体ならびに該構造体を備えたグラジオメータ | |
JP5295163B2 (ja) | 磁界検出装置およびそれを調整する方法 | |
JP2016176911A (ja) | 磁気センサ | |
JP2007064813A (ja) | 磁界検出装置およびそれを調整する方法 | |
JP6233722B2 (ja) | 磁界発生体、磁気センサシステムおよび磁気センサ | |
JP2010286236A (ja) | 原点検出装置 | |
JP4508058B2 (ja) | 磁界検出装置およびその製造方法 | |
JP4985522B2 (ja) | 磁界測定方法及び磁気センサ | |
JP2008151759A (ja) | 磁気センサ及びそれを用いた磁気エンコーダ | |
JP2010286237A (ja) | 原点検出装置 | |
JP6525314B2 (ja) | 磁界検出装置 | |
US20150198430A1 (en) | Magnetism detection element and rotation detector | |
JP4890401B2 (ja) | 原点検出装置 | |
JP6350841B2 (ja) | 磁界発生体および磁気センサ | |
CN109541503A (zh) | 磁传感器 | |
JP2014134479A (ja) | 回転検出装置及びその製造方法 | |
JP2019056685A (ja) | 磁気センサ | |
US20240142549A1 (en) | Magnetic sensor element, magnetic sensor, and magnetic sensor device | |
JP2014142297A (ja) | 近接センサおよび遊技機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140407 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5532166 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |