JP5531536B2 - Method for recovering iron and phosphorus from steelmaking slag - Google Patents
Method for recovering iron and phosphorus from steelmaking slag Download PDFInfo
- Publication number
- JP5531536B2 JP5531536B2 JP2009226594A JP2009226594A JP5531536B2 JP 5531536 B2 JP5531536 B2 JP 5531536B2 JP 2009226594 A JP2009226594 A JP 2009226594A JP 2009226594 A JP2009226594 A JP 2009226594A JP 5531536 B2 JP5531536 B2 JP 5531536B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphorus
- steelmaking slag
- iron
- slag
- steelmaking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 329
- 239000002893 slag Substances 0.000 title claims description 265
- 229910052698 phosphorus Inorganic materials 0.000 title claims description 247
- 239000011574 phosphorus Substances 0.000 title claims description 247
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 246
- 238000009628 steelmaking Methods 0.000 title claims description 170
- 229910052742 iron Inorganic materials 0.000 title claims description 163
- 238000000034 method Methods 0.000 title claims description 84
- 229910052751 metal Inorganic materials 0.000 claims description 95
- 239000002184 metal Substances 0.000 claims description 95
- 230000009467 reduction Effects 0.000 claims description 60
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 55
- 230000008569 process Effects 0.000 claims description 44
- 238000007670 refining Methods 0.000 claims description 30
- 229910000831 Steel Inorganic materials 0.000 claims description 26
- 239000010959 steel Substances 0.000 claims description 26
- 238000001816 cooling Methods 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- 238000005261 decarburization Methods 0.000 claims description 20
- 230000004907 flux Effects 0.000 claims description 19
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 19
- 238000011084 recovery Methods 0.000 claims description 17
- 238000000926 separation method Methods 0.000 claims description 17
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 13
- 238000004064 recycling Methods 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000003638 chemical reducing agent Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 238000007873 sieving Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 3
- 229910001392 phosphorus oxide Inorganic materials 0.000 claims description 3
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 238000011946 reduction process Methods 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 238000006722 reduction reaction Methods 0.000 description 51
- 235000013980 iron oxide Nutrition 0.000 description 20
- 239000002245 particle Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000003723 Smelting Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 239000003337 fertilizer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 3
- 238000007885 magnetic separation Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- -1 conventionally Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003017 phosphorus Chemical class 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910000462 iron(III) oxide hydroxide Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Furnace Details (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
本発明は、溶銑の予備脱燐処理によって生成される脱燐スラグなどの燐を含有する製鋼スラグから、該製鋼スラグに含有される鉄及び燐を回収する方法に関する。 The present invention relates to a method for recovering iron and phosphorus contained in steelmaking slag from steelmaking slag containing phosphorus such as dephosphorization slag produced by preliminary dephosphorization treatment of hot metal.
鉄鉱石の成分に起因して、高炉で溶製される溶銑(「高炉溶銑」と呼ぶ)には燐(P)が含有される。燐は鋼材にとって有害成分であるので、従来から、鉄鋼製品の材料特性向上のために、製鋼過程において脱燐処理が行われている。この脱燐処理では、一般的に、溶銑中或いは溶鋼中の燐は、酸素ガスや酸化鉄によって酸化され、その後、酸化された燐がCaOを主成分とするスラグ中へと固定されることによって除去されている。溶鋼中の燐を酸素ガスによって酸化する際には鉄も酸化され、酸化鉄を添加しない場合であっても、スラグ中には鉄も酸化鉄の形態で含有される。脱燐処理や転炉での溶銑の脱炭精錬などで発生する、燐を含有する製鋼スラグ(「燐含有製鋼スラグ」と呼ぶ)は、従来、土木用材料などとして鉄鋼製造過程の系外に排出されており、燐含有製鋼スラグ中の燐及び鉄は回収されることはなかった。 Due to the iron ore component, the hot metal melted in the blast furnace (referred to as “blast furnace hot metal”) contains phosphorus (P). Since phosphorus is a harmful component for steel materials, conventionally, phosphorus removal treatment has been performed in the steel making process in order to improve the material properties of steel products. In this dephosphorization process, in general, phosphorus in molten iron or molten steel is oxidized by oxygen gas or iron oxide, and then the oxidized phosphorus is fixed in slag mainly composed of CaO. Has been removed. When phosphorus in the molten steel is oxidized with oxygen gas, iron is also oxidized, and even when iron oxide is not added, iron is also contained in the form of iron oxide in the slag. Steelmaking slag containing phosphorus (referred to as “phosphorus-containing steelmaking slag”) generated by dephosphorization and decarburization and refining of hot metal in a converter has been conventionally excluded from the steel manufacturing process as a civil engineering material. The phosphorus and iron in the steel slag containing phosphorus were not recovered.
近年、環境対策及び省資源の観点から、製鋼スラグのリサイクル使用を含めて、製鋼スラグの発生量を削減することが実施されている。例えば、予備脱燐処理された溶銑を用いた転炉脱炭精錬で発生したスラグ(転炉脱炭精錬において発生するスラグを「転炉スラグ」という)は、酸化鉄含有量及びCaO含有量が高い上に燐含有量が少ないことから、鉄源及び造滓剤用のCaO源として、焼結過程を経て高炉にリサイクルされることが行われている。 In recent years, from the viewpoint of environmental measures and resource saving, reducing the amount of steelmaking slag generated, including the recycling of steelmaking slag. For example, slag generated by converter decarburization refining using hot metal that has been subjected to preliminary dephosphorization treatment (slag generated in converter decarburization refining is referred to as “converter slag”) has an iron oxide content and a CaO content. Since it is high and has a low phosphorus content, it is recycled to a blast furnace through a sintering process as an iron source and a CaO source for a slagging agent.
予備脱燐処理が施された溶銑(「脱燐溶銑」ともいう)、特に鉄鋼製品の燐濃度レベルまで予備脱燐処理された脱燐溶銑を用いた転炉脱炭精錬で発生する転炉スラグは、燐をほとんど含有せず、高炉ヘリサイクルすることによる溶銑中燐濃度の増加は危惧する必要はない。しかしながら、予備脱燐処理時に発生するスラグや、予備脱燐処理されていない溶銑(「通常溶銑」ともいう)或いは予備脱燐処理されていても燐濃度が鉄鋼製品の燐濃度レベルまで低下していない脱燐溶銑を用いた転炉脱炭精錬で発生する転炉スラグのように、燐を含有するスラグを高炉ヘリサイクルした場合には、酸化物として高炉にリサイクルされた燐が、高炉内で還元されて溶銑の燐含有量を増加させ、その結果、溶銑からの脱燐の負荷が増加するという悪循環に陥る。そこで、燐を含有する製鋼スラグのリサイクルについては、燐のピックアップを防止するべく、種々の提案がなされている。 Slag generated in converter decarburization and refining using pre-dephosphorized hot metal (also called “dephosphorized hot metal”), especially dephosphorized hot metal pre-dephosphorized to the phosphorus concentration level of steel products. Contains almost no phosphorus, and there is no need to worry about an increase in phosphorus concentration in hot metal by recycling to blast furnace. However, the slag generated during preliminary dephosphorization, hot metal that has not been preliminarily dephosphorized (also referred to as “normal hot metal”), or even if it has been preliminarily dephosphorized, the phosphorus concentration has dropped to the phosphorus concentration level of the steel product. When the slag containing phosphorus is recycled to the blast furnace, such as the converter slag generated in the decarburization and refining of the converter using no dephosphorizing hot metal, phosphorus recycled to the blast furnace as oxide is It is reduced to increase the phosphorus content of the hot metal, resulting in a vicious circle in which the load of dephosphorization from the hot metal is increased. Therefore, various proposals have been made regarding the recycling of steelmaking slag containing phosphorus in order to prevent the pickup of phosphorus.
例えば、特許文献1には、クロム鉱石の溶融還元製錬工程と、該溶融還元製錬によって溶製された含クロム溶銑の転炉脱炭精錬工程との組み合せによってステンレス溶鋼を溶製する際に、前記含クロム溶銑の脱燐処理により発生した脱燐スラグに炭材を加えて加熱し、脱燐スラグに気化脱燐処理を施し、気化脱燐処理後の脱燐スラグを前記溶融還元製錬工程にリサイクルする技術が開示されている。 For example, in Patent Document 1, when melting molten stainless steel by a combination of a smelting reduction smelting process of chromium ore and a converter decarburization refining process of chromium-containing hot metal melted by the smelting reduction smelting process, The carbon material is added to the dephosphorization slag generated by the dephosphorization treatment of the chromium-containing hot metal and heated, and the dephosphorization slag is vaporized and dephosphorized, and the dephosphorized slag after the vaporization and dephosphorization treatment is subjected to the smelting reduction smelting A technique for recycling to a process is disclosed.
また、特許文献2には、溶融状態の高炉スラグと、溶融状態の転炉スラグとを混合し、この混合スラグ中に、炭素、珪素、マグネシウムの1種以上を添加すると同時に、酸素ガスを吹き込んで、混合スラグ中の燐酸化物を還元して燐蒸気とし、且つ、混合スラグ中の硫黄(S)をSO2とし、これらを揮発させて燐及び硫黄の少ないスラグとなし、このスラグを高炉または転炉にリサイクルする技術が開示されている。
In
更に、特許文献3には、アルカリ金属炭酸塩を主成分とする造滓剤を用いた、溶銑または溶鋼の脱燐処理で生成する脱燐スラグを、水及び炭酸ガスで処理してアルカリ金属リン酸塩を含む抽出液を得て、該抽出液にカルシウム化合物を添加して、燐を燐酸カルシウムとして析出させて分離回収する技術が開示されている。 Further, Patent Document 3 discloses that a dephosphorization slag produced by a dephosphorization treatment of hot metal or molten steel using a slagging agent mainly composed of an alkali metal carbonate is treated with water and carbon dioxide gas to obtain alkali metal phosphorus. A technique is disclosed in which an extract containing an acid salt is obtained, a calcium compound is added to the extract, and phosphorus is precipitated as calcium phosphate to be separated and recovered.
しかしながら、上記従来技術には以下の問題点がある。 However, the above prior art has the following problems.
即ち、特許文献1では、脱燐スラグは、燐が気化脱燐により除去されてリサイクル可能となるが、気化脱燐した燐は回収されておらず、燐資源の確保という観点からは効果的なリサイクル方法とはいえない。 That is, in Patent Document 1, the dephosphorization slag can be recycled after the phosphorus is removed by vaporization and dephosphorization, but the vaporized and dephosphorized phosphorus is not recovered and is effective from the viewpoint of securing phosphorus resources. It is not a recycling method.
特許文献2では、燐含有スラグである転炉スラグに、転炉スラグとほぼ同量の高炉スラグを混合させているが、近年、高炉スラグは、単なる産業副産物ではなく、CO2削減などの観点から利用価値の高い土木・建築資材として位置づけられており、このような高炉スラグを転炉スラグの希釈用として使用することは経済的に不利である。
In
また、特許文献3は湿式処理であり、湿式処理の場合、処理に必要な薬品が高価であるのみならず、大掛かりな処理設備が必要であり、設備費及び運転費ともに高価となる。 Further, Patent Document 3 is a wet process, and in the case of a wet process, not only chemicals necessary for the process are expensive, but also a large-scale processing facility is required, and both the equipment cost and the operation cost are expensive.
このような事情に鑑み、本発明者らは、脱燐スラグや転炉スラグなどの燐を含有する製鋼スラグのリサイクルにあたり、該製鋼スラグから燐及び鉄を安価に回収するとともに、回収した燐及び鉄をそれぞれ資源として有効活用することのできる、製鋼スラグからの鉄及び燐の回収について研究を進めてきた。そして、特願2008−331686として、「製鋼精錬過程において発生した燐を含有する製鋼スラグを、還元剤を用いて還元処理し、製鋼スラグ中の鉄酸化物及び燐酸化物を溶融状態の燐含有溶融鉄として製鋼スラグから還元・回収する第1の工程と、鉄酸化物及び燐酸化物が除去された製鋼スラグを、鉄鉱石の焼結過程におけるCaO源として使用し、製造された焼結鉱を高炉にリサイクルする第2の工程と、前記還元処理により回収した燐含有溶融鉄を、フッ素を含有しないCaO系フラックスを用いて、燐含有溶融鉄中の燐濃度が0.1質量%以下となるまで脱燐処理し、CaO系フラックス中に燐を濃縮させる第3の工程と、前記脱燐処理が施された、燐濃度が0.1質量%以下の燐含有溶融鉄を、鉄源として高炉から出銑された溶銑に混合する第4の工程と、を有する、製鋼スラグからの鉄及び燐の回収方法」を出願した。 In view of such circumstances, the present inventors, at the time of recycling steelmaking slag containing phosphorus such as dephosphorization slag and converter slag, recovered phosphorus and iron at low cost from the steelmaking slag, and recovered phosphorus and We have been researching the recovery of iron and phosphorus from steelmaking slag, which can effectively use iron as a resource. And, as Japanese Patent Application No. 2008-331686, “a steelmaking slag containing phosphorus generated in the steelmaking refining process is reduced using a reducing agent, and the iron oxide and the phosphorous oxide in the steelmaking slag are in a molten state containing phosphorus. The first step of reducing and recovering from steelmaking slag as iron and steelmaking slag from which iron oxide and phosphorous oxide have been removed are used as a CaO source in the iron ore sintering process, and the produced sintered ore is used as a blast furnace. Until the phosphorus concentration in the phosphorus-containing molten iron becomes 0.1% by mass or less using the CaO-based flux not containing fluorine. A third step of dephosphorizing and concentrating phosphorus in the CaO-based flux, and a phosphorus-containing molten iron having a phosphorus concentration of 0.1% by mass or less subjected to the dephosphorization treatment as an iron source from a blast furnace Got caught A fourth step of mixing the hot metal, and filed a recovery process "of iron and phosphorus from steelmaking slag.
上記発明は、資源の有効利用及び精錬負荷の軽減の観点から、極めて有効な手法である。但し、還元処理によって鉄酸化物及び燐酸化物を燐含有溶融鉄とした際に、冷却後、スラグと燐含有鉄とが密着し、両者を分離しがたいケースが発生することがあった。このような場合には、両者を剥離させるために破砕処理などが必要になり、追加的なエネルギーを要した。 The above invention is a very effective technique from the viewpoint of effective use of resources and reduction of refining load. However, when iron oxide and phosphorous oxide are converted to phosphorus-containing molten iron by reduction treatment, there are cases in which, after cooling, slag and phosphorus-containing iron are in close contact with each other, making it difficult to separate them. In such a case, a crushing process or the like is required to separate the two, and additional energy is required.
この結果を踏まえ、本発明者らは、エネルギーを含めた更なる資源効率の改善の余地があるとの考えに至り、製鋼スラグからの鉄及び燐の回収について更なる検討を加えた。 Based on this result, the present inventors came to the idea that there is room for further improvement in resource efficiency including energy, and further examined the recovery of iron and phosphorus from steelmaking slag.
本発明は、このような事情に鑑みてなされたもので、その目的とするところは、脱燐スラグや転炉スラグなどの燐を含有する製鋼スラグのリサイクルにあたり、該製鋼スラグから燐及び鉄を安価且つ容易に分別し回収する方法を提供するとともに、回収した燐及び鉄をそれぞれ資源として有効活用することのできる、製鋼スラグからの鉄及び燐の回収方法を提供することである。 The present invention has been made in view of such circumstances. The object of the present invention is to recycle phosphorus and iron from steelmaking slag when recycling steelmaking slag containing phosphorus such as dephosphorization slag and converter slag. An object of the present invention is to provide a method for recovering iron and phosphorus from steelmaking slag, which can provide a method for separating and recovering inexpensively and easily, and that can effectively use the recovered phosphorus and iron as resources.
本発明者らは、還元処理後の燐含有鉄とスラグとの分別・回収効率を抜本的に改善する方法について検討した。その結果、還元処理を施す製鋼スラグの特性、具体的には製鋼スラグの塩基度(質量%CaO/質量%SiO2)を或る特定範囲に制御することによって、分別・回収が大幅に改善されることを見出した。 The present inventors examined a method for drastically improving the separation and recovery efficiency of phosphorus-containing iron and slag after reduction treatment. As a result, the properties of the steel slag is subjected to a reduction treatment, in particular by controlling the basicity of the steel slag (mass% CaO / mass% SiO 2) to a particular range, it is significantly improved separation and recovery I found out.
本発明は、上記知見に基づいてなされたものであり、第1の発明に係る製鋼スラグからの鉄及び燐の回収方法は、製鋼精錬過程において発生した燐を含有する製鋼スラグを、塩基度(質量%CaO/質量%SiO2)が1.7以上2.1以下になるように調製する調製工程と、塩基度を調製した製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元処理して製鋼スラグ中の鉄酸化物及び燐酸化物を溶融状態の燐含有溶融鉄として製鋼スラグから還元する還元工程と、還元処理後の製鋼スラグ及び燐含有溶融鉄を放冷して還元処理後の製鋼スラグを粉化させる冷却工程と、を有することを特徴とする。 The present invention has been made on the basis of the above knowledge, and the method for recovering iron and phosphorus from steelmaking slag according to the first invention is characterized in that the steelmaking slag containing phosphorus generated in the steelmaking refining process is treated with basicity ( The preparation step of preparing so that the mass% CaO / mass% SiO 2 ) is 1.7 or more and 2.1 or less, and the steelmaking slag whose basicity is adjusted, containing one or more of carbon, silicon, and aluminum A reduction step of reducing iron oxide and phosphorous oxide in the steelmaking slag as molten phosphorus-containing molten iron from the steelmaking slag by using a reducing agent, and reducing steelmaking slag and phosphorus-containing molten iron And a cooling step of pulverizing the steelmaking slag after the reduction treatment.
第2の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1の発明において、前記製鋼精錬過程において発生した燐を含有する製鋼スラグが、転炉での溶銑の脱炭精練処理において発生したスラグ及び/または溶銑の予備脱燐処理において発生したスラグを含有することを特徴とする。 In the method for recovering iron and phosphorus from steelmaking slag according to the second invention, in the first invention, the steelmaking slag containing phosphorus generated in the steelmaking refining process is used in the decarburizing and refining treatment of hot metal in a converter. It is characterized by containing slag generated in the preliminary dephosphorization treatment of the generated slag and / or hot metal.
第3の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1の発明において、前記製鋼精錬過程において発生した燐を含有する製鋼スラグとして、転炉での溶銑の脱炭精練処理において発生したスラグと溶銑の予備脱燐処理において発生したスラグの2種のみを使用し、前記塩基度の調製工程ではこの2種のスラグの混合比の調整により塩基度を調製することを特徴とする。 In the method for recovering iron and phosphorus from steelmaking slag according to the third invention, in the first invention, as a steelmaking slag containing phosphorus generated in the steelmaking refining process, in the decarburization refining treatment of hot metal in a converter Using only two types of slag generated in the preliminary dephosphorization treatment of the generated slag and hot metal, the basicity is adjusted by adjusting the mixing ratio of the two types of slag in the basicity adjustment step. .
第4の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第3の発明の何れかにおいて、前記冷却工程後、更に、磁力選別して燐含有溶融鉄と粉化させた製鋼スラグとを分別・回収する分別・回収工程を有することを特徴とする。 The method for recovering iron and phosphorus from the steelmaking slag according to the fourth invention is the method of recovering iron and phosphorus from the steelmaking slag according to any one of the first to third inventions, and further, after the cooling step, further magnetically sorted to powder the molten iron containing phosphorus. It has a separation / collection process for separating and collecting steelmaking slag.
第5の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第3の発明の何れかにおいて、前記冷却工程後、更に、目開き寸法が5mm以上15mm以下の範囲の篩で篩い分けして燐含有溶融鉄と粉化させた製鋼スラグとを分別・回収する分別・回収工程を有することを特徴とする。 The method for recovering iron and phosphorus from the steelmaking slag according to the fifth invention is the method according to any one of the first to third inventions, wherein, after the cooling step, a sieve having a mesh size of 5 mm or more and 15 mm or less. It is characterized by having a separation / recovery step of separating and recovering phosphorus-containing molten iron and powdered steelmaking slag by sieving.
第6の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第4または第5の発明において、前記分別・回収工程後、更に、鉄酸化物及び燐酸化物が除去された製鋼スラグを、製鉄過程へCaO源としてリサイクルする工程と、前記還元処理により回収した燐含有溶融鉄を、フッ素を含有しないCaO系フラックスを用いて燐含有溶融鉄中の燐濃度が0.1質量%以下となるまで脱燐処理し、CaO系フラックス中に燐を濃縮させる工程と、前記脱燐処理が施された、燐濃度が0.1質量%以下の燐含有溶融鉄を、鉄源として高炉から出銑された溶銑に混合する工程と、を有することを特徴とする。 The method for recovering iron and phosphorus from the steelmaking slag according to the sixth invention is the method of recovering steelmaking slag from the fourth or fifth invention, wherein the iron oxide and the phosphorous oxide are further removed after the separation and recovery step. Recycling the iron-containing process as a CaO source and the phosphorus-containing molten iron recovered by the reduction treatment using a CaO-based flux not containing fluorine, the phosphorus concentration in the phosphorus-containing molten iron becomes 0.1% by mass or less. And the process of concentrating phosphorus in the CaO-based flux, and the phosphorus-containing molten iron having a phosphorus concentration of 0.1% by mass or less, which has been subjected to the dephosphorization process, discharged from the blast furnace as an iron source. And mixing with the molten iron produced.
第7の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第6の発明において、前記鉄酸化物及び燐酸化物が除去された製鋼スラグを、鉄鉱石の焼結過程または高炉での溶銑製造過程にCaO源としてリサイクルすることを特徴とする。 The method for recovering iron and phosphorus from steelmaking slag according to the seventh invention is the method of recovering iron and phosphorus from the steelmaking slag according to the sixth invention, wherein the steelmaking slag from which the iron oxide and phosphorous oxide have been removed is used in the iron ore sintering process or hot metal in a blast furnace. It is characterized by recycling as a CaO source in the manufacturing process.
第8の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第6または第7の発明において、燐が濃縮されたCaO系フラックスを、燐酸資源原料として回収することを特徴とする。 The method for recovering iron and phosphorus from steelmaking slag according to the eighth invention is characterized in that, in the sixth or seventh invention, the CaO-based flux enriched with phosphorus is recovered as a phosphoric acid resource raw material.
第9の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第8の発明の何れかにおいて、前記燐含有溶融鉄が、炭素を3質量%以上含有する溶銑であることを特徴とする。 In the method for recovering iron and phosphorus from steelmaking slag according to the ninth invention, in any one of the first to eighth inventions, the phosphorus-containing molten iron is a hot metal containing 3% by mass or more of carbon. Features.
第10の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第9の発明の何れかにおいて、前記還元処理を、高炉から出銑された溶銑の存在下で行うことを特徴とする。 The method for recovering iron and phosphorus from steelmaking slag according to the tenth invention is characterized in that, in any one of the first to ninth inventions, the reduction treatment is performed in the presence of hot metal discharged from a blast furnace. And
本発明によれば、溶銑の予備脱燐処理により発生する脱燐スラグや、通常溶銑或いは脱燐が十分でない脱燐溶銑を使用した転炉脱炭精錬により発生する転炉スラグなどの燐を含有する製鋼スラグから、当該製鋼スラグ中の鉄酸化物及び燐酸化物を燐含有溶融鉄として還元して分離し、冷却後に燐含有鉄として回収するにあたり、還元処理時の製鋼スラグの塩基度(質量%CaO/質量%SiO2)を1.7以上2.1以下に調製するので、鉄酸化物及び燐酸化物が除去された後の製鋼スラグの主成分は2CaO−SiO2となり、これが放冷時に低温域に至ったときに相変態を起こし、この相変態によって粉状に崩壊する。その結果、粉状のスラグと塊状の燐含有鉄とを容易に分離できるようになり、還元後のスラグと燐含有鉄との混合物に対して破砕処理などの特段の処理を施さなくても分別・回収が可能となり、製鋼スラグに含有される鉄及び燐をそれぞれ資源として低エネルギーコストで有効活用することが実現される。 According to the present invention, it contains phosphorus such as dephosphorization slag generated by the preliminary dephosphorization treatment of hot metal, and converter slag generated by converter decarburization refining using dephosphorization hot metal that is not sufficiently molten or dephosphorized. From the steelmaking slag, the iron oxide and phosphorous oxide in the steelmaking slag are reduced and separated as phosphorus-containing molten iron, and recovered as phosphorus-containing iron after cooling. (CaO / mass% SiO 2 ) is adjusted to 1.7 or more and 2.1 or less, so that the main component of the steelmaking slag after the removal of the iron oxide and phosphorous oxide is 2CaO—SiO 2 , and this is a low temperature when allowed to cool. When it reaches the zone, it undergoes a phase transformation, and it collapses into a powder form by this phase transformation. As a result, powdered slag and massive phosphorus-containing iron can be easily separated, and the mixture of reduced slag and phosphorus-containing iron can be separated without any special treatment such as crushing treatment. -Recovery becomes possible, and it is realized that iron and phosphorus contained in steelmaking slag are each effectively used as a resource at low energy costs.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明者らは、溶銑の予備脱燐処理時に発生する脱燐スラグや、通常溶銑或いは予備脱燐処理されていても予備脱燐処理後の燐濃度が鉄鋼製品の燐濃度レベルに比較して高い脱燐溶銑を使用した転炉脱炭精錬時に発生する転炉スラグなどの燐を含有する製鋼スラグ(燐含有製鋼スラグ)を、造滓剤用のCaO源として鉄鉱石の焼結過程や高炉での溶銑製造過程でリサイクル使用するにあたり、この燐含有製鋼スラグに含有される燐の溶銑への影響を解消することを検討した。 The present inventors have found that the dephosphorization slag generated during the preliminary dephosphorization treatment of the hot metal, and the phosphorus concentration after the predephosphorization treatment compared with the phosphorus concentration level of the steel product even though the hot metal or the predephosphorization treatment is performed. Steelmaking slag containing phosphorus, such as converter slag generated during decarburization and refining of converters using high dephosphorizing hot metal, and iron ore sintering processes and blast furnaces as a source of CaO for ironmaking agents In recycling process in hot metal manufacturing process in Japan, it was studied to eliminate the influence of phosphorus contained in this phosphorus-containing steelmaking slag on hot metal.
予め鉄鋼製品の燐濃度レベルまで予備脱燐処理された溶銑の脱炭精錬時に発生する転炉スラグは、溶銑の燐濃度のピックアップを来すことなく、鉄鉱石の焼結過程を経て高炉に造滓剤としてリサイクル使用されている。従って、燐含有製鋼スラグから燐を除去すれば、高炉へのリサイクル使用は可能になる。そこで、燐含有製鋼スラグからの燐の除去を検討した。 The converter slag generated during the decarburization and refining of hot metal, which has been pre-dephosphorized to the phosphorus concentration level of steel products, is produced in the blast furnace through the iron ore sintering process without picking up the phosphorus concentration of hot metal. Recycled as a glaze. Therefore, if phosphorus is removed from the phosphorus-containing steelmaking slag, it can be recycled into a blast furnace. Therefore, removal of phosphorus from the steel slag containing phosphorus was examined.
燐含有製鋼スラグには、燐はP2O5なる酸化物で含有されており、また、一般的に製鋼スラグはCaO及びSiO2を主成分としており、燐は、カルシウム(Ca)及び珪素(Si)に比較して酸素との親和力が弱いことから、燐含有製鋼スラグを、炭素、珪素、アルミニウムなどで還元すれば、燐含有製鋼スラグ中のP2O5は容易に還元されることが分かった。この場合、燐含有製鋼スラグには、鉄がFeOやFe2O3の形態(以下、まとめて「FeOX」と記す)の酸化物で含有されており、これらの鉄酸化物は酸素との親和力が燐と同等であるので、燐含有製鋼スラグを、炭素、珪素、アルミニウムなどで還元すると、製鋼スラグ中のFeOXが同時に還元されることが分かった。 In phosphorus-containing steelmaking slag, phosphorus is contained as an oxide of P 2 O 5 , and generally steelmaking slag is mainly composed of CaO and SiO 2 , and phosphorus is calcium (Ca) and silicon ( Since the affinity for oxygen is weak compared to Si), P 2 O 5 in phosphorus-containing steelmaking slag can be easily reduced if phosphorus-containing steelmaking slag is reduced with carbon, silicon, aluminum, or the like. I understood. In this case, the phosphorus-containing steelmaking slag contains iron in the form of FeO or Fe 2 O 3 (hereinafter collectively referred to as “FeO x ”), and these iron oxides contain oxygen. Since the affinity is equivalent to phosphorus, it has been found that when phosphorus-containing steelmaking slag is reduced with carbon, silicon, aluminum, etc., FeO x in the steelmaking slag is reduced simultaneously.
また、燐は鉄中への溶解度が高く、還元により生成した燐は、還元により生成した鉄に迅速に溶解することが分かった。ここで、本発明では、燐を燐含有製鋼スラグから除去し、燐含有量の低い製鋼スラグに改質することを目的としており、還元により生成した燐を製鋼スラグと迅速に分離するためには、還元により生成した鉄が溶融状態になるように、高温下で還元することが望ましいことが分かった。つまり、還元により生成した鉄が溶融状態であれば、溶融鉄とスラグとは分離し、また、この溶融鉄に生成した燐が溶解することで(生成される溶融鉄を「燐含有溶融鉄」と呼ぶ)、燐の製鋼スラグからの分離も迅速化することが分かった。 It was also found that phosphorus has high solubility in iron, and phosphorus produced by reduction dissolves rapidly in iron produced by reduction. Here, the present invention aims to remove phosphorus from the phosphorus-containing steelmaking slag and to reform it into a steelmaking slag having a low phosphorus content. In order to quickly separate the phosphorus produced by the reduction from the steelmaking slag. It has been found that it is desirable to reduce at a high temperature so that the iron produced by the reduction is in a molten state. In other words, if the iron produced by reduction is in a molten state, the molten iron and slag are separated, and the phosphorus produced in the molten iron is dissolved (the produced molten iron is “phosphorus-containing molten iron” It was found that the separation of phosphorus from the steelmaking slag was also accelerated.
この場合、生成される燐含有溶融鉄の融点が低いほど、燐含有溶融鉄とスラグとの分離が促進されることから、生成される燐含有溶融鉄に炭素を溶解させ、燐含有溶融鉄として燐を含有する溶銑を生成させることが好ましいことも分かった。具体的には、炭素濃度が3質量%以上になると、溶銑の液相線温度が1300℃以下になることから、生成される燐含有溶融鉄の炭素濃度を3質量%以上確保することが好ましいことが分かった。生成される燐含有溶融鉄に炭素を溶解させるには、炭素を還元剤として使用する、または、珪素やアルミニウムなどを還元剤とする場合には、炭素を製鋼スラグと共存させることにより、生成する溶融鉄は浸炭して自ずと溶銑(この溶銑を「高炉溶銑」と区別するために「高燐溶銑」と呼ぶ)になる。 In this case, the lower the melting point of the produced phosphorus-containing molten iron, the more the separation of the phosphorus-containing molten iron and slag is promoted. Therefore, carbon is dissolved in the produced phosphorus-containing molten iron to obtain phosphorus-containing molten iron. It has also been found preferable to produce hot metal containing phosphorus. Specifically, when the carbon concentration is 3% by mass or more, the liquidus temperature of the molten iron becomes 1300 ° C. or less, and therefore it is preferable to ensure the carbon concentration of the produced phosphorus-containing molten iron of 3% by mass or more. I understood that. In order to dissolve carbon in the phosphorus-containing molten iron to be produced, carbon is used as a reducing agent, or when silicon or aluminum is used as a reducing agent, it is produced by coexisting carbon with steelmaking slag. The molten iron is carburized into natural hot metal (this hot metal is called “high phosphorus hot metal” to distinguish it from “blast furnace hot metal”).
また、還元処理の際、高炉溶銑を同時に装入することも可能である。製鋼系スラグ中の地金は炭素含有量が低い場合もあり、比較的融点が高くなるが、溶銑を同時に入れることによって、比較的低温でも溶融状態を維持できるため、反応槽内で流動することが可能となり、融点が高い粒鉄が存在した場合でも、高炉溶銑に付着・合体することによって、効率的に溶融鉄として分離することが可能となる。つまり、高炉溶銑を準備できる条件であるならば、高炉溶銑を装入して燐含有製鋼スラグの還元処理を行うことが好ましいことが分かった。 In addition, during the reduction treatment, it is possible to simultaneously charge the blast furnace hot metal. Ingots in steelmaking slag may have a low carbon content and have a relatively high melting point, but since molten metal can be maintained at a relatively low temperature by adding molten iron at the same time, it must flow in the reaction vessel. Even when granular iron having a high melting point is present, it can be efficiently separated as molten iron by adhering and coalescing with the blast furnace hot metal. In other words, it has been found that it is preferable to perform reduction treatment of phosphorus-containing steelmaking slag by charging the blast furnace hot metal under conditions that allow preparation of the blast furnace hot metal.
還元反応を有効に推進させると、燐含有製鋼スラグは、還元処理前の組成に対して鉄酸化物と燐酸化物とが除去された状態の複合酸化物(還元処理後の製鋼スラグ)と、多量の燐を含有した燐含有溶融鉄とに分かれる。還元した鉄及び燐を分離回収するためには、還元処理後の製鋼スラグから燐含有溶融鉄を分離することが必要となる。 When the reduction reaction is effectively promoted, the phosphorus-containing steelmaking slag is composed of a complex oxide (steelmaking slag after reduction treatment) in which iron oxide and phosphorous oxide are removed from the composition before the reduction treatment, and a large amount. It is divided into phosphorus-containing molten iron containing phosphorus. In order to separate and recover the reduced iron and phosphorus, it is necessary to separate the phosphorus-containing molten iron from the steelmaking slag after the reduction treatment.
燐含有溶融鉄が大量に生成される場合には、両者の分離は比較的容易であるが、燐含有製鋼スラグを還元した場合には、残渣として残るスラグ量に対して燐含有溶融鉄の生成量は多くなく、燐含有溶融鉄のみを出湯して両者を分離することは困難であり、還元処理後の高温の溶融状態の両者をスラグポットやスラグヤードに排出して冷却した場合、通常、燐含有鉄と還元処理後の製鋼スラグとが混在する場合が多く、このような場合には両者を剥離するために破砕処理などの工程が必要となる。実際、転炉スラグは冷却された後に破砕され、その後磁選されて転炉スラグに混入する地金が回収されている。 When a large amount of phosphorus-containing molten iron is produced, it is relatively easy to separate the two. However, when phosphorus-containing steelmaking slag is reduced, the production of phosphorus-containing molten iron with respect to the amount of slag remaining as a residue. The amount is not large, it is difficult to separate only the phosphorus-containing molten iron by hot water, and when both the high-temperature molten state after the reduction treatment is discharged into a slag pot or slag yard and cooled, In many cases, phosphorus-containing iron and steelmaking slag after the reduction treatment coexist, and in such a case, a process such as a crushing treatment is required in order to separate the two. Actually, the converter slag is cooled and then crushed, and then magnetically selected to collect the metal that is mixed in the converter slag.
本発明者らは、工程を簡素化するべく、破砕処理などの両者を分離するための工程を省略することを検討した。様々な還元条件やスラグ組成について検討を進めていく中で、或る条件になると、還元処理後の冷却時、還元処理後の製鋼スラグが、高温状態から冷却し始めた直後は塊状であるのに対し、冷却の進行に伴って粉状に崩壊し、燐含有鉄と還元処理後の製鋼スラグとを容易に分離できる場合があることを見出した。 In order to simplify the process, the present inventors have considered omitting a process for separating both the crushing process and the like. While studying various reduction conditions and slag composition, when a certain condition is reached, the steelmaking slag after reduction treatment is agglomerated immediately after cooling from a high temperature state when cooling after reduction treatment. On the other hand, it has been found that there is a case where it collapses into powder as the cooling progresses, and the phosphorus-containing iron and the steelmaking slag after reduction can be easily separated.
図1に、還元処理後の製鋼スラグを大気中で常温まで放冷したときの、製鋼スラグの塩基度(質量%CaO/質量%SiO2)と、冷却後の製鋼スラグ中の1mm未満の粒子の質量比率との関係を示す。尚、製鋼スラグ中の1mm未満の粒子は、冷却後の製鋼スラグ全量を目開き寸法が1.0mmの篩で分別したものであり、また、製鋼スラグの塩基度は、2種以上の製鋼スラグや製鋼スラグと珪砂などとを混合した場合には、それぞれの塩基度と混合比率とを乗算した値を総和して求めた全体の平均値である。 Fig. 1 shows the basicity (mass% CaO / mass% SiO 2 ) of steelmaking slag when the steelmaking slag after reduction treatment is allowed to cool to room temperature in the atmosphere, and particles less than 1 mm in the steelmaking slag after cooling. The relationship with the mass ratio of is shown. In addition, the particle | grains less than 1 mm in steelmaking slag are what separated the whole amount of steelmaking slag after cooling with the sieve whose mesh size is 1.0 mm, and the basicity of steelmaking slag is 2 or more types of steelmaking slag. When steel slag, silica sand, and the like are mixed, the average value is obtained by summing the values obtained by multiplying the basicity and the mixing ratio.
図1に示すように、塩基度が1.6以下では、還元処理後の製鋼スラグの大部分は塊状であり、未破砕の状態では1mm未満の粒子はほとんど発生しない。また、塩基度が2.5を越えると、わずかに1mm未満の粒子が発生するが、大半は塊状である。これに対して、塩基度が1.7以上2.1以下の範囲では、80質量%を越える部分が1mm未満の粒子で占められることが分かった。このときの製鋼スラグの成分分析例を表1に示す。 As shown in FIG. 1, when the basicity is 1.6 or less, most of the steelmaking slag after the reduction treatment is massive, and particles less than 1 mm are hardly generated in an uncrushed state. On the other hand, when the basicity exceeds 2.5, particles slightly less than 1 mm are generated, but most of them are lumps. On the other hand, when the basicity is in the range of 1.7 or more and 2.1 or less, it was found that the portion exceeding 80% by mass is occupied by particles less than 1 mm. Table 1 shows an example of component analysis of the steelmaking slag at this time.
還元処理後の1mm未満のスラグは、鉄及び燐をほとんど含有しておらず、ほとんどが還元処理された製鋼スラグであることが分かった。即ち、還元処理対象の燐含有製鋼スラグの塩基度を1.7以上2.1以下に調製することによって、還元処理後の製鋼スラグの主成分は2CaO−SiO2となり、これが大気中での放冷時に低温域に至ったときに相変態を起こし、この相変態によって崩壊して粉化し、還元処理後の製鋼スラグと燐含有鉄との混在物に粉砕処理などを施すことなく、還元処理後の製鋼スラグと燐含有鉄とを分離できることを見出した。 It was found that the slag of less than 1 mm after the reduction treatment contained almost no iron and phosphorus, and most was a steelmaking slag that was reduced. That is, by adjusting the basicity of the phosphorus-containing steelmaking slag to be reduced to 1.7 or more and 2.1 or less, the main component of the steelmaking slag after the reduction treatment is 2CaO—SiO 2 , which is released in the atmosphere. When it reaches a low temperature range when it is cold, it undergoes a phase transformation, disintegrates and pulverizes, and after the reduction treatment, the mixture of steelmaking slag and phosphorus-containing iron after the reduction treatment is not subjected to grinding treatment. It was found that steelmaking slag and phosphorus-containing iron can be separated.
本発明は、上記試験結果に基づいてなされたものであり、燐含有製鋼スラグから鉄及び燐を回収するにあたり、燐含有製鋼スラグを、塩基度(質量%CaO/質量%SiO2)が1.7以上2.1以下になるように調製する調製工程と、塩基度を調製した燐含有製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元処理して燐含有製鋼スラグ中の鉄酸化物及び燐酸化物を溶融状態の燐含有溶融鉄として燐含有製鋼スラグから還元する還元工程と、還元処理後の製鋼スラグ及び燐含有溶融鉄を放冷して還元処理後の製鋼スラグを粉化させる冷却工程と、を有することを特徴とする。特に、還元処理後の製鋼スラグ及び燐含有溶融鉄の放冷は、還元処理容器から取り出し大気中で放冷することが好ましい。 The present invention has been made based on the above test results. In recovering iron and phosphorus from phosphorus-containing steel slag, the basicity (mass% CaO / mass% SiO 2 ) of the phosphorus-containing steel slag is 1. The preparation process prepared so that it may become 7 or more and 2.1 or less, and the phosphorus containing steelmaking slag which adjusted basicity are reduce-processed using the reducing agent containing 1 or more types in carbon, silicon, and aluminum. A reduction step of reducing iron oxide and phosphorous oxide in phosphorus-containing steelmaking slag from phosphorus-containing steelmaking slag as phosphorus-containing molten iron in a molten state, and reducing treatment by allowing the steelmaking slag and phosphorus-containing molten iron after reduction to cool. And a cooling step of pulverizing the later steelmaking slag. In particular, the steelmaking slag and phosphorus-containing molten iron after the reduction treatment are preferably allowed to cool from the reduction treatment container and allowed to cool in the atmosphere.
還元処理前の燐含有製鋼スラグの塩基度を1.7以上2.1以下となるように調製する方法は特に限定される理由はなく、例えば、転炉での溶銑の脱炭精練処理において発生したスラグ及び/または溶銑の予備脱燐処理において発生したスラグを含有させればよい。具体的には、塩基度が1.7よりも低い燐含有製鋼スラグに対してはCaO含有量の多い原材料を添加・混合すればよく、逆に、塩基度が2.1よりも高い燐含有製鋼スラグに対しては、SiO2含有量の多い原材料を添加・混合すればよい。この場合、溶融して均一化してもよいが、必ずしも均一化は必要ではなく、固体状態のまま混合した状態であればよい。 There is no particular limitation on the method for preparing the basicity of the phosphorus-containing steelmaking slag before the reduction treatment so as to be 1.7 or more and 2.1 or less. For example, it occurs in the decarburization and refining treatment of hot metal in a converter. The slag generated in the preliminary dephosphorization treatment of the molten slag and / or hot metal may be contained. Specifically, a phosphorus-containing steelmaking slag having a basicity lower than 1.7 may be added and mixed with a raw material having a high CaO content, and conversely, a phosphorus containing a basicity higher than 2.1. For steelmaking slag, raw materials having a high SiO 2 content may be added and mixed. In this case, it may be melted and homogenized, but homogenization is not necessarily required as long as it is mixed in a solid state.
但し、鉄及び燐を効率的に回収するためには、用いる原材料中に鉄酸化物及び燐酸化物が含まれていること、また、顕熱を保有している原材料ほど効率的に溶解・還元反応を実施できることから、転炉での溶銑の脱炭精練処理において発生したスラグと溶銑の予備脱燐処理において発生したスラグの2種のみを使用し、前記塩基度の調製工程ではこの2種のスラグの混合比の調整により塩基度を調製することが好ましい。つまり、塩基度が2.1よりも高い燐含有製鋼スラグとして、製鋼過程における転炉での脱炭精錬処理において発生する、燐を含有する転炉スラグを使用し、塩基度が1.7よりも低い燐含有製鋼スラグとして、製鋼過程における溶銑予備脱燐処理において発生する脱燐スラグを使用し、他の原材料を使用せずに、これらの混合比の調整により塩基度を調製することが好ましい。勿論、前記転炉スラグ或いは前記脱燐スラグが、単独でもその塩基度が1.7以上2.1以下である場合には、混合する必要はなく単独で使用しても構わない。 However, in order to efficiently recover iron and phosphorus, the raw materials used must contain iron oxides and phosphorous oxides, and the raw materials with sensible heat can be dissolved and reduced more efficiently. Therefore, only two types of slag generated in the decarburization and refining treatment of hot metal in the converter and slag generated in the preliminary dephosphorization treatment of hot metal are used, and these two types of slag are used in the basicity preparation step. It is preferable to adjust the basicity by adjusting the mixing ratio. That is, as the phosphorus-containing steelmaking slag having a basicity higher than 2.1, the converter slag containing phosphorus, which is generated in the decarburization refining process in the converter in the steelmaking process, is used, and the basicity is 1.7 or more. It is preferable to use the dephosphorization slag generated in the hot metal preliminary dephosphorization process in the steelmaking process as the low phosphorus-containing steelmaking slag, and to adjust the mixing ratio by adjusting these mixing ratios without using other raw materials. . Of course, the converter slag or the dephosphorization slag may be used alone without being mixed when the basicity is 1.7 or more and 2.1 or less.
また、本発明においては、鉄及び燐、並びに、還元処理後の製鋼スラグをCaO源として回収するために、冷却工程後、燐含有鉄と粉化した製鋼スラグとを分別・回収する。この分別・回収方法としては、磁力選別を用いることが好ましい。塊状で両者の分離が進んでいない場合には、磁力選別を実施してもスラグを同時に引き付けてしまい、燐含有鉄の品位が低下してしまうが、還元処理後のスラグ部分を粉化させたことによって、磁着物(燐含有鉄)と非磁着物(還元後の製鋼スラグ)とを容易且つ確実に分別・回収できるようになる。 Moreover, in this invention, in order to collect | recover iron and phosphorus and steelmaking slag after a reduction process as a CaO source, after a cooling process, phosphorus containing iron and powdered steelmaking slag are fractionated and collect | recovered. As this separation / recovery method, it is preferable to use magnetic separation. If the separation between the two has not progressed, even if the magnetic separation is carried out, the slag is attracted at the same time, and the quality of the phosphorus-containing iron is lowered, but the slag part after the reduction treatment is pulverized. As a result, it is possible to easily and reliably separate and collect the magnetized product (phosphorus-containing iron) and the non-magnetized product (steel slag after reduction).
この場合、磁力選別に代わって、篩による篩い分け方法も適用することができる。還元処理の条件に応じて燐含有鉄の大きさは変化するが15mm超えであり、一方、粉化する製鋼スラグの粒度分布は変化せず粒径は極めて細かい。粉化後の製鋼スラグの粒度分布は、その例を図2に示すように、平均粒径が20μmを下回っており、最大粒径も200μm程度である。従って、最大粒径を上回る目開き寸法の篩であれば、分別・回収することが可能である。但し、目開き寸法が、最大粒径を若干上回る程度の小さい場合には、篩い分け速度が遅く効率的な処理ができず、また、目詰まりなども起こり易くなることから、目開き寸法が5mm以上15mm以下の範囲の篩を使用することが好ましい。 In this case, a sieving method using a sieve can be applied instead of the magnetic separation. The size of the phosphorus-containing iron varies depending on the conditions of the reduction treatment but exceeds 15 mm. On the other hand, the particle size distribution of the steelmaking slag to be pulverized does not change and the particle size is extremely fine. As shown in FIG. 2, the particle size distribution of the steelmaking slag after pulverization has an average particle size of less than 20 μm and a maximum particle size of about 200 μm. Therefore, if the sieve has an opening size exceeding the maximum particle size, it can be separated and collected. However, if the opening size is small enough to be slightly larger than the maximum particle size, the sieving speed is slow and efficient processing cannot be performed, and clogging is likely to occur. Therefore, the opening size is 5 mm. It is preferable to use a sieve having a range of 15 mm or less.
分別・回収した、鉄酸化物及び燐酸化物が除去された製鋼スラグは、CaO分が高濃度で含まれており、CaO源の代替材としての利用が可能となる。特に、粉体であり、燐をほとんど含有していないことから、鉄鉱石の焼結過程で用いられるCaO源として用いることは、材料の輸送なども考慮したトータルエネルギーの観点からも望ましい。製造された焼結鉱は高炉に装入されることから、製鋼スラグが高炉での溶銑製造過程にリサイクルされることになるが、リサイクルされる製鋼スラグは燐が除去されているので、高炉で製造される溶銑は燐濃度のピックアップがなく、製鋼過程での脱燐精錬の負荷を高めることはない。 The steelmaking slag from which iron oxide and phosphorous oxide have been separated and recovered contains CaO at a high concentration, and can be used as a substitute for the CaO source. In particular, since it is a powder and contains almost no phosphorus, it is desirable to use it as a CaO source used in the iron ore sintering process from the viewpoint of total energy considering the transportation of materials. Since the produced ore is charged into the blast furnace, the steelmaking slag is recycled in the hot metal production process in the blast furnace. However, since the steelmaking slag to be recycled has phosphorus removed, The hot metal produced does not have a phosphorus concentration pickup and does not increase the load of dephosphorization in the steelmaking process.
一方、回収した燐含有鉄は燐濃度が高く、そのままでは鉄源として使用困難であり、そこで、本発明では、更に燐含有鉄を鉄部分と燐部分とに分離する。鉄部分と燐部分とに分離することにより、両者の有用活用が可能となる。 On the other hand, the recovered phosphorus-containing iron has a high phosphorus concentration and is difficult to use as an iron source as it is. Therefore, in the present invention, the phosphorus-containing iron is further separated into an iron portion and a phosphorus portion. By separating the iron part and the phosphorus part, it is possible to effectively use both.
例えば、炭素を含有させた燐含有鉄(=高燐溶銑)の化学成分は、炭素:4.3質量%、珪素:0.01質量%、マンガン:2.2質量%、燐:3.0質量%、硫黄:0.05質量%であり、このように燐含有鉄は燐濃度が極めて高いことから、この燐含有鉄に対して脱燐処理を実施することによって、燐濃度が高いスラグと燐濃度の低い鉄とに分離することが可能となる。 For example, the chemical components of phosphorus-containing iron containing carbon (= high phosphorus hot metal) are: carbon: 4.3% by mass, silicon: 0.01% by mass, manganese: 2.2% by mass, phosphorus: 3.0 Since the phosphorus-containing iron has an extremely high phosphorus concentration as described above, the phosphorus-containing iron is subjected to a dephosphorization treatment so that slag having a high phosphorus concentration can be obtained. It becomes possible to separate into iron having a low phosphorus concentration.
燐含有鉄の脱燐処理方法は、高炉溶銑の予備脱燐処理で一般的に行われている方法に準じて行うことができる。つまり、回収した燐含有鉄をアーク炉や誘導炉などで加熱・溶解し、好ましくは加炭して炭素濃度を高め、この燐含有溶融鉄に、酸素ガスまたは鉄鉱石などの酸素源を脱燐剤として吹き付けるまたはインジェクションして供給するとともに、CaO系フラックスを添加し、燐含有溶融鉄中の燐を供給する酸素源中の酸素により酸化してP2O5とし、このP2O5をCaO系フラックスに吸収させて固定し、脱燐するという方法である。 The method for dephosphorizing phosphorus-containing iron can be performed in accordance with a method generally used in the preliminary dephosphorization treatment of blast furnace hot metal. In other words, the recovered phosphorus-containing iron is heated and melted in an arc furnace or induction furnace, preferably carburized to increase the carbon concentration, and oxygen source such as oxygen gas or iron ore is dephosphorized in this phosphorus-containing molten iron. In addition to supplying by spraying or injecting as an agent, a CaO-based flux is added and oxidized by oxygen in an oxygen source for supplying phosphorus in phosphorus-containing molten iron to P 2 O 5, and this P 2 O 5 is converted into CaO. It is a method of absorbing and fixing to a system flux and dephosphorizing.
脱燐処理後の溶融鉄は、高炉溶銑に混合して鉄源としてリサイクル使用するので、燐濃度が高炉溶銑と同等の0.1質量%以下になるまで脱燐処理することが好ましい。逆に、溶融鉄中の燐濃度を0.1質量%以下になるまで脱燐処理することで、CaO系フラックス中に燐酸化物が高濃度に濃縮される。 Since the molten iron after the dephosphorization treatment is mixed with the blast furnace hot metal and recycled as an iron source, it is preferable to carry out the dephosphorization treatment until the phosphorus concentration becomes equal to or less than 0.1% by mass as the blast furnace hot metal. Conversely, the phosphorous oxide is concentrated at a high concentration in the CaO-based flux by performing the dephosphorization treatment until the phosphorus concentration in the molten iron becomes 0.1% by mass or less.
燐酸化物が高濃度に濃縮されたCaO系フラックスは、日本に資源がほとんどない燐鉱石の代替として、つまり燐酸資源原料として用いることができる。 A CaO-based flux enriched with a high concentration of phosphorous oxide can be used as a substitute for phosphate ore, which has almost no resources in Japan, that is, as a phosphate resource raw material.
尚、脱燐処理に用いるCaO系フラックスは、ホタル石などのフッ素源を5質量%程度添加することにより、CaOの滓化が促進されて脱燐反応が促進されることが知られているが、本発明においては、脱燐処理後のCaO系フラックス(脱燐スラグ)を、例えば燐肥料として使用することも想定され、この場合には、燐肥料(脱燐スラグ)からフッ素が土壌に溶出し、土壌環境基準に対してフッ素溶出値が問題となる恐れがあるため、本発明においてはフッ素を含有しないCaO系フラックスを用いて脱燐処理を実施することが好ましい。 Incidentally, it is known that the CaO-based flux used for the dephosphorization treatment is accelerated by the addition of about 5% by mass of a fluorine source such as fluorite to promote the hatching of CaO and the dephosphorization reaction. In the present invention, it is assumed that the CaO-based flux (dephosphorization slag) after the dephosphorization treatment is used as, for example, a phosphorus fertilizer. In this case, fluorine is eluted from the phosphorus fertilizer (dephosphorization slag) into the soil. However, since the fluorine elution value may be a problem with respect to the soil environment standard, it is preferable to carry out the dephosphorization treatment using a CaO-based flux not containing fluorine in the present invention.
このような構成の本発明によれば、溶銑の予備脱燐処理により発生する脱燐スラグや、通常溶銑或いは脱燐が十分でない脱燐溶銑を使用した転炉脱炭精錬により発生する転炉スラグなどの燐を含有する製鋼スラグから、当該製鋼スラグ中の鉄酸化物及び燐酸化物を燐含有溶融鉄として還元して分離し、冷却後に燐含有鉄として回収するにあたり、還元処理時の製鋼スラグの塩基度(質量%CaO/質量%SiO2)を1.7以上2.1以下に調製するので、鉄酸化物及び燐酸化物が除去された後の製鋼スラグの主成分は2CaO−SiO2となり、これが大気中での放冷時に低温域に至ったときに相変態を起こし、この相変態によって粉状に崩壊し、その結果、粉状のスラグと塊状の燐含有鉄とを容易に分別・回収できるようになり、還元処理後の製鋼スラグと燐含有鉄との混合物に対して破砕処理などの特段の処理を施さなくても分離が可能となり、製鋼スラグに含有される鉄及び燐をそれぞれ資源として低エネルギーコストで有効活用することが実現される。 According to the present invention having such a configuration, the dephosphorization slag generated by the preliminary dephosphorization treatment of the hot metal, or the converter slag generated by the converter decarburization refining using the normal hot metal or the dephosphorization hot metal that is not sufficiently dephosphorized. From the steelmaking slag containing phosphorus such as iron oxide and phosphorous oxide in the steelmaking slag, reduced and separated as phosphorus-containing molten iron, and recovered as phosphorus-containing iron after cooling, the steelmaking slag during the reduction treatment Since the basicity (mass% CaO / mass% SiO 2 ) is adjusted to 1.7 or more and 2.1 or less, the main component of the steelmaking slag after the iron oxide and phosphorous oxide are removed is 2CaO—SiO 2 , This causes a phase transformation when it reaches a low temperature range when it is allowed to cool in the atmosphere, and this phase transformation causes the powder to collapse. As a result, powdered slag and massive phosphorus-containing iron can be easily separated and recovered. Can be reduced Separation is possible without special treatment such as crushing of the mixture of steelmaking slag and phosphorus-containing iron afterwards, and iron and phosphorus contained in steelmaking slag can be used effectively as resources for low energy costs. Is realized.
尚、予め鉄鋼製品の燐濃度レベルまで予備脱燐処理が施された溶銑の脱炭精錬時に発生する転炉スラグも、燐の含有量はゼロでなく燐を含有する。従って、この転炉スラグにも本発明を適用することは可能であるが、当該スラグは燐の含有量が低く、そのまま高炉などにリサイクルしても、燐の影響は無視することができ、本発明を適用することにより却ってコスト上昇を招く。従って、本発明で対象とする、燐を含有する製鋼スラグとは、その製鋼スラグを高炉などにリサイクルすると溶銑または溶鋼の燐濃度が上昇し、通常の操業に対してコスト上昇を発生させる濃度以上の燐を含有する製鋼スラグである。 Note that the converter slag generated during the decarburization refining of the hot metal, which has been preliminarily dephosphorized to the phosphorus concentration level of the steel product, also contains phosphorus, not zero. Therefore, it is possible to apply the present invention to this converter slag, but the slag has a low phosphorus content, and even if recycled to a blast furnace as it is, the influence of phosphorus can be ignored. By applying the invention, the cost is increased. Therefore, the steel-making slag containing phosphorus, which is the subject of the present invention, is higher than the concentration that increases the phosphorus concentration of hot metal or molten steel when the steel-making slag is recycled to a blast furnace or the like, and causes an increase in cost for normal operations. This steelmaking slag contains phosphorus.
高炉から出銑された高炉溶銑をトーピードカーで受銑し、トーピードカーに収容された高炉溶銑に脱珪処理及び予備脱燐処理を施し、その後、高炉溶銑を溶銑鍋に移し替え、溶銑鍋内の高炉溶銑に機械攪拌式脱硫装置により脱硫処理を施し、この脱硫処理終了後の高炉溶銑を転炉に装入して転炉にて脱炭精錬を実施して、高炉溶銑から溶鋼を溶製する製鋼過程において、本発明を適用した。 The blast furnace hot metal discharged from the blast furnace is received by a torpedo car, the blast furnace hot metal contained in the torpedo car is subjected to desiliconization treatment and preliminary dephosphorization treatment, and then the blast furnace hot metal is transferred to the hot metal ladle and the blast furnace in the hot metal ladle. Steelmaking where the hot metal is desulfurized using a mechanical stirring desulfurization device, the blast furnace hot metal after the desulfurization treatment is loaded into the converter, and decarburization refining is performed in the converter, and the molten steel is melted from the blast furnace hot metal. In the process, the present invention was applied.
鉄及び燐の回収対象となる燐含有製鋼スラグとしては、通常溶銑或いは脱燐が十分でない脱燐溶銑を使用した転炉脱炭精錬により発生する転炉スラグを選択し、この転炉スラグの塩基度(質量%CaO/質量%SiO2)を、溶銑の予備脱燐処理により発生する脱燐スラグ及び珪砂、フライアッシュを用いて調製した。使用した原材料の主成分の組成を表2に示す。 As the phosphorus-containing steelmaking slag for which iron and phosphorus are to be recovered, converter slag generated by converter decarburization refining using normal hot metal or dephosphorized hot metal with insufficient dephosphorization is selected, and the base of this converter slag is selected. The degree (mass% CaO / mass% SiO 2 ) was prepared using dephosphorization slag, silica sand and fly ash generated by the preliminary dephosphorization treatment of hot metal. Table 2 shows the composition of the main components of the raw materials used.
100トンの転炉スラグに対し、塩基度が目標塩基度になるように脱燐スラグ、珪砂、フライアッシュを添加して混合物とし、還元剤としてのコークスとともにアーク炉に装入し、アークを発生させて装入した原材料を加熱・溶融して還元処理を実施した。30分間の還元処理後、装入した全量を炉から排出し、冷却ヤードに放流して大気中で放冷した。常温まで冷却後、ショベルカーで回収し、回収した、燐含有鉄混じりのスラグを磁力選別してスラグと燐含有鉄とに分別・回収した。 To 100 ton converter slag, dephosphorization slag, silica sand and fly ash are added so that the basicity becomes the target basicity to make a mixture and charged into the arc furnace together with coke as a reducing agent to generate an arc. The raw material charged in this manner was heated and melted for reduction treatment. After the reduction treatment for 30 minutes, the entire amount charged was discharged from the furnace, discharged to a cooling yard and allowed to cool in the atmosphere. After cooling to room temperature, it was recovered with a shovel car, and the recovered slag mixed with phosphorus-containing iron was magnetically sorted and separated into slag and phosphorus-containing iron.
回収したスラグの塩基度及び破砕処理なしでのメタル分離率を表3に示す。ここでメタル分離率とは、還元処理前の使用原料中のT.Fe値から還元により生成される鉄分を計算で求め、計算で求められた鉄分の質量に対する、磁力選別で回収された燐含有鉄の質量の比率である。比率が高いほど、還元後のスラグが粉化して燐含有鉄が回収されることを意味している。尚、T.Feとは、転炉スラグなどの使用原料中の全ての鉄酸化物の鉄分の合計値である。 Table 3 shows the basicity of the recovered slag and the metal separation rate without crushing treatment. Here, the metal separation rate is obtained by calculating the iron content generated by reduction from the T.Fe value in the raw material used before the reduction treatment, and the phosphorus content recovered by magnetic sorting with respect to the mass of the iron content determined by the calculation. It is the ratio of the mass of iron. A higher ratio means that the slag after reduction is pulverized and phosphorus-containing iron is recovered. T.Fe is the total iron content of all iron oxides in raw materials used such as converter slag.
試験No.5のように、一般的な転炉スラグの組成では、ほとんど粉状にならず、破砕処理無しでは燐含有鉄のスラグからの分離はできなかった。また、試験No.1のように、脱燐スラグの組成のままでは、破砕処理無しでは燐含有鉄の回収率は40質量%程度でしかなかった。これに対して、塩基度を調製した試験No.2,3、6,7の本発明例では、燐含有鉄の回収率は67〜87質量%であり、破砕処理無しでも、燐含有鉄の大部分が回収できた。 As in test No. 5, the composition of a general converter slag was hardly powdered, and the phosphorus-containing iron could not be separated from the slag without crushing treatment. Further, as in Test No. 1, with the composition of dephosphorized slag, the recovery rate of phosphorus-containing iron was only about 40% by mass without crushing treatment. On the other hand, in the present invention examples of tests No. 2, 3, 6 and 7 in which the basicity was adjusted, the recovery rate of phosphorus-containing iron was 67 to 87% by mass. Most of them were recovered.
試験No.1,4,5では、還元後の製鋼スラグを破砕するなどして燐含有鉄とスラグ分とを剥離する必要があるので、この段階で試験を中断した。 In Test Nos. 1, 4, and 5, since it was necessary to separate the iron-containing iron and the slag component by crushing the steelmaking slag after reduction, the test was interrupted at this stage.
一方、試験No.2,3、6,7の本発明例では、回収した還元処理後の粉化スラグは、鉄鉱石の焼結過程における造滓剤用のCaO源として使用し、製造した焼結鉱は、鉄源として高炉に装入し、高炉溶銑を製造した。製造された高炉溶銑の燐濃度は0.1質量%程度で、全く問題はなかった。尚、通常の製鋼過程において発生する転炉スラグをそのまま焼結過程のCaO源としてリサイクルした場合には、高炉から出銑される溶銑の燐濃度が高くなり、溶銑の予備脱燐処理における脱燐剤(酸素源及びCaO系フラックス)の原単位及び発生する脱燐スラグ量が約1.5倍になり、生産性は約20%低下することから、本発明を適用することで生産性が極めて良好となることが確認できた。 On the other hand, in the inventive examples of Test Nos. 2, 3, 6 and 7, the recovered powdered slag after the reduction treatment was used as a CaO source for a fossilizing agent in the sintering process of iron ore. The ore was charged into a blast furnace as an iron source to produce blast furnace hot metal. The phosphorus concentration of the produced blast furnace hot metal was about 0.1% by mass, and there was no problem at all. In addition, when the converter slag generated in the normal steelmaking process is recycled as it is as a CaO source in the sintering process, the phosphorus concentration of the hot metal discharged from the blast furnace becomes high, and dephosphorization in the preliminary dephosphorization treatment of the hot metal Since the basic unit of the agent (oxygen source and CaO-based flux) and the amount of dephosphorization slag generated are about 1.5 times and the productivity is reduced by about 20%, the productivity is extremely improved by applying the present invention. It was confirmed to be good.
また、試験No.2,3、6,7の本発明例で回収された燐含有鉄の代表的な成分は、炭素:4.5質量%、珪素:0.01質量%、マンガン:2.5質量%、燐:3.0質量%、硫黄:0.05質量%であり、炭素濃度が高く溶銑(高燐溶銑)の状態で回収されることが分かった。 In addition, typical components of phosphorus-containing iron recovered in the inventive examples of Test Nos. 2, 3, 6, and 7 are carbon: 4.5% by mass, silicon: 0.01% by mass, manganese: 2. 5% by mass, phosphorus: 3.0% by mass, and sulfur: 0.05% by mass, and it was found that the carbon concentration was high and recovered in a hot metal (high phosphorus hot metal) state.
この高燐溶銑をアーク炉で加熱・溶解し、溶解した高燐溶銑を取鍋に出湯し、取鍋内の高燐溶銑に対して、高炉溶銑に対して予備脱燐処理を実施する脱燐処理設備を用い、酸素ガス及び鉄鉱石を酸素源とし、P2O5吸収用のCaO系フラックスとしてフッ素を含有しないCaO系フラックスを使用して脱燐処理を実施した。この脱燐処理により、高燐溶銑の燐濃度は0.1質量%まで減少した。 This high phosphorus hot metal is heated and melted in an arc furnace, the molten high phosphorus hot metal is poured into a ladle, and the high phosphorus hot metal in the ladle is subjected to preliminary dephosphorization treatment on the blast furnace hot metal. Using a treatment facility, dephosphorization was performed using oxygen gas and iron ore as an oxygen source, and using a CaO-based flux not containing fluorine as a CaO-based flux for absorbing P 2 O 5 . By this dephosphorization treatment, the phosphorus concentration of the high phosphorus hot metal was reduced to 0.1% by mass.
この脱燐処理により得られた、CaO系フラックスを起源とする脱燐スラグは、CaO:62質量%、SiO2:2.2質量%、P:28質量%、FeOX:2.8質量%、MgO:4質量%、MnO:0.8質量%であり、肥料の公定分析法によって評価した結果、ク溶性燐酸が20質量%以上と極めて良好な肥料原料特性であることが確認できた。 The dephosphorization slag derived from the CaO flux obtained by this dephosphorization treatment is CaO: 62% by mass, SiO 2 : 2.2% by mass, P: 28% by mass, FeO X : 2.8% by mass. MgO: 4% by mass, MnO: 0.8% by mass. As a result of evaluation by an official analysis method of fertilizer, it was confirmed that the soluble ferric acid had a very good fertilizer raw material characteristic of 20% by mass or more.
脱燐処理により得られた溶銑は高炉溶銑に混合し、混合した溶銑に予備脱燐処理及び脱硫処理を施した後、転炉に装入して脱炭精錬を実施した。得られた溶鋼は通常の高炉溶銑から製造した溶鋼と全く同等であり、連続鋳造機で薄鋼板用のスラブ鋳片に鋳造した。 The hot metal obtained by the dephosphorization treatment was mixed with the blast furnace hot metal, and the mixed hot metal was subjected to preliminary dephosphorization treatment and desulfurization treatment, and then charged into a converter and subjected to decarburization refining. The obtained molten steel was exactly the same as the molten steel produced from ordinary blast furnace hot metal, and was cast into slab slabs for thin steel sheets using a continuous casting machine.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009226594A JP5531536B2 (en) | 2009-09-30 | 2009-09-30 | Method for recovering iron and phosphorus from steelmaking slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009226594A JP5531536B2 (en) | 2009-09-30 | 2009-09-30 | Method for recovering iron and phosphorus from steelmaking slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011074441A JP2011074441A (en) | 2011-04-14 |
JP5531536B2 true JP5531536B2 (en) | 2014-06-25 |
Family
ID=44018722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009226594A Active JP5531536B2 (en) | 2009-09-30 | 2009-09-30 | Method for recovering iron and phosphorus from steelmaking slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5531536B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5907834B2 (en) | 2012-07-25 | 2016-04-26 | 新日鐵住金株式会社 | Method for producing artificial phosphate rock |
UA110757C2 (en) | 2012-09-06 | 2016-02-10 | Лоеше Гмбх | Method of processing steel slag and mineral hydraulic binder |
JP7531273B2 (en) * | 2019-11-29 | 2024-08-09 | Jfeスチール株式会社 | How to treat by-products |
JP7531274B2 (en) * | 2019-11-29 | 2024-08-09 | Jfeスチール株式会社 | How to treat by-products |
CN114606379B (en) * | 2022-03-04 | 2023-07-18 | 中南大学 | Smelting method of high-phosphorus iron ore |
CN114574638B (en) * | 2022-03-19 | 2023-02-07 | 新源县渣宝环保技术有限公司 | Method for improving grade of steel slag fine powder |
-
2009
- 2009-09-30 JP JP2009226594A patent/JP5531536B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011074441A (en) | 2011-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5569174B2 (en) | Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material | |
JP5560947B2 (en) | Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material | |
CN102264919B (en) | Method for reclaiming iron and phosphorus from steelmaking slag | |
JP5531536B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
CN109022644B (en) | Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process | |
WO2015003669A1 (en) | Fluxing agent, process of its production, agglomeration mixture and use of slug from secondary metallurgy | |
JP5320680B2 (en) | Method for producing high phosphorus slag | |
JP5720497B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
JP2001192741A (en) | Method for utilizing steel making slag | |
CN112375856B (en) | Method for improving iron content of converter slag and nickel slag and/or copper slag by melt coupling modification | |
JP2019172548A (en) | High phosphorus-containing slag, manufacturing method of slag-based fertilizer, and phosphate fertilizer | |
JP5017846B2 (en) | Reuse of chromium-containing steel refining slag | |
JP5712747B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
JP5829788B2 (en) | Method for producing phosphoric acid resource raw material | |
JP3645818B2 (en) | How to recycle refractories | |
JP3711738B2 (en) | Effective use of slag | |
JP2019172547A (en) | Manufacturing method of phosphoric acid fertilizer, and phosphoric acid fertilizer | |
TW201812025A (en) | Molten steel production method | |
CN102899483A (en) | Recycling process of LF refining slag | |
JPH10265827A (en) | Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag | |
JP2014001456A (en) | Recovery method for iron and phosphorus from steel slag | |
CN112624070B (en) | Full utilization method of steel slag | |
JP3994988B2 (en) | Method of recovering and using metal components contained in slag slag containing chromium | |
RU2194082C2 (en) | Method of preparing agglomeration burden | |
JP2757707B2 (en) | Hot metal dephosphorization slag treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140407 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5531536 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |