[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5527821B2 - Corrosion resistant material - Google Patents

Corrosion resistant material Download PDF

Info

Publication number
JP5527821B2
JP5527821B2 JP2010270849A JP2010270849A JP5527821B2 JP 5527821 B2 JP5527821 B2 JP 5527821B2 JP 2010270849 A JP2010270849 A JP 2010270849A JP 2010270849 A JP2010270849 A JP 2010270849A JP 5527821 B2 JP5527821 B2 JP 5527821B2
Authority
JP
Japan
Prior art keywords
corrosion
resistant member
aluminum nitride
coating film
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010270849A
Other languages
Japanese (ja)
Other versions
JP2012117141A (en
Inventor
正樹 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010270849A priority Critical patent/JP5527821B2/en
Publication of JP2012117141A publication Critical patent/JP2012117141A/en
Application granted granted Critical
Publication of JP5527821B2 publication Critical patent/JP5527821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体デバイスの製造工程に好適に使用される耐蝕性部材に関する。   The present invention relates to a corrosion-resistant member suitably used in a semiconductor device manufacturing process.

半導体製造工程において、シリコンウエハ上に酸化膜や配線のメタル膜等を形成するCVD装置で製膜するウエハ以外の該装置内の構成部材に付着した膜成分を除去する定期的なセルフクリーニングを行うために、あるいはエッチング装置の熱エッチングやプラズマエッチングにより形成した膜を除去するために、腐食性の高いNF、CF 、CF、SF、ClF、COF、F等のフッ素系ガスが用いられている。 In the semiconductor manufacturing process, periodic self-cleaning is performed to remove film components adhering to components in the apparatus other than the wafer formed by the CVD apparatus that forms an oxide film or a metal film of wiring on the silicon wafer. In order to remove a film formed by thermal etching or plasma etching of an etching apparatus, highly corrosive NF 3 , CF 4 , C 2 F 6 , SF 3 , ClF 3 , COF 2 , F 2, etc. A fluorine-based gas is used.

これらの高腐食性ガス中での厳しい条件下で使用される、ウエハを載置するサセプタやウエハの外周に設置されるフォーカスリング、ガスを供給するシャワープレート等の半導体装置の構成部材には、従来、シリコン(Si)や石英ガラス、炭化珪素等が用途に応じて適宜使用されてきた。 Components used in semiconductor devices such as a susceptor on which a wafer is placed, a focus ring installed on the outer periphery of the wafer, a shower plate for supplying gas, and the like, which are used under severe conditions in these highly corrosive gases, Conventionally, silicon (Si), quartz glass, silicon carbide, and the like have been appropriately used depending on the application.

しかし、従来用いられているこれらの材料においても種々の問題があった。例えば、石英ガラスは、反応性の高いフッ素系ガスの存在下では、フッ化珪素等の反応生成化合物の蒸気圧が高く、気体となって揮散するため、腐食が連続的に進行し、構成部材が損耗する。
また、炭化珪素は、基本的には石英ガラスよりも耐食性に優れているが、半導体製造装置に使用される炭化珪素は、主にシリコン含浸炭化珪素であるため、シリコン部が石英ガラスと同様にフッ素系ガスとの反応によって損耗し、その結果、構造組織が粗密化され、構成部材より炭化珪素が離脱し易くなるため、パーティクル発生の原因となっている。
However, these conventionally used materials have various problems. For example, quartz glass has a high vapor pressure of a reaction product compound such as silicon fluoride in the presence of a highly reactive fluorine-based gas, and vaporizes as a gas. Wear out.
Silicon carbide basically has better corrosion resistance than quartz glass, but silicon carbide used in semiconductor manufacturing equipment is mainly silicon-impregnated silicon carbide, so the silicon part is similar to quartz glass. It is worn out by reaction with the fluorine-based gas, and as a result, the structure is coarsened, and silicon carbide is easily detached from the constituent members, which causes generation of particles.

一方、石英ガラスや炭化珪素に比し、アルミニウム(金属)、酸化アルミニウム(アルミナ)、窒化アルミニウム等のアルミニウム系材料は、フッ素系ガスと反応して生成するフッ化アルミニウム(AlF)の蒸気圧が著しく低いことから、その使用が試みられている。
さらに、窒化アルミニウムからなる被覆膜と、さらにその上にアルミニウムフッ化物を設けた耐蝕性部材が提案されている(特許文献1参照)。また、目的は異なるが、表面の平滑性を改善するために窒化アルミニウム層を有する窒化アルミニウム焼結体も提案されている(特許文献2参照)。
On the other hand, compared with quartz glass and silicon carbide, aluminum-based materials such as aluminum (metal), aluminum oxide (alumina), and aluminum nitride are vapor pressures of aluminum fluoride (AlF 3 ) produced by reaction with fluorine-based gas. Has been attempted because of its extremely low.
Furthermore, a corrosion-resistant member has been proposed in which a coating film made of aluminum nitride and an aluminum fluoride is further provided thereon (see Patent Document 1). Moreover, although the object is different, an aluminum nitride sintered body having an aluminum nitride layer has been proposed in order to improve the smoothness of the surface (see Patent Document 2).

特許第3078671号Japanese Patent No. 3078671 特開平2-59474号公報Japanese Patent Laid-Open No. 2-59474

しかしながら、窒化アルミニウム被覆膜は、定期的なセルフクリーニングでの長時間使用を試みたところ、腐食性の高いNF、CF 、CF、SF、ClF、COF、F等のフッ素系ガスにより、表面から腐食が進行し、表面に微細なパーティクルが発生したため、実用化には至らなかった。
また、半導体デバイスに使用される構成部材は製法上の点から高価であり、窒化アルミニウム被覆膜の上にさらにアルミニウムフッ化物を設けることは、消耗品としては非常にコストが高くなり、半導体デバイスの製造コストに見合わないのが現状である。そこで、さらなる長寿命の構成部材が望まれていた。
However, when the aluminum nitride coating film is used for a long period of time by regular self-cleaning, it is highly corrosive NF 3 , CF 4 , C 2 F 6 , SF 3 , ClF 3 , COF 2 , F 2. Since corrosion progressed from the surface by the fluorine-based gas such as, and fine particles were generated on the surface, it was not put into practical use.
In addition, the components used in the semiconductor device are expensive in terms of manufacturing method, and providing an aluminum fluoride further on the aluminum nitride coating film is very expensive as a consumable product. The current situation is that it is not commensurate with the manufacturing cost. Therefore, a component having a longer life has been desired.

本発明は、上記問題に鑑み、ハロゲン系腐蝕性ガスへの曝露に対して、各種構造部材として使用可能な、特に、半導体製造装置の構成部材として好適な、長時間に亘って耐蝕性を有する耐蝕性部材を提供することを目的としている。 In view of the above problems, the present invention can be used as various structural members against exposure to a halogen-based corrosive gas, and is particularly suitable as a constituent member of a semiconductor manufacturing apparatus and has corrosion resistance over a long period of time. It aims at providing a corrosion-resistant member.

本発明者は、窒化アルミニウム被覆膜について鋭意検討したところ、該被覆膜のスピン密度によってはフッ素系ガスに対する耐蝕性が大きく異なり、その数値によっては膜表面に微細パーティクルが多く発生したり、被覆膜にクラックが発生したりすることを見出し、特には、上記被覆膜のスピン密度を5×1015spins/g以上、1×1019spins/g以下とすることにより、耐蝕性が大きく改善されることを見出し、本発明を完成した。 The present inventor has intensively studied the aluminum nitride coating film, and the corrosion resistance to the fluorine-based gas varies greatly depending on the spin density of the coating film, and depending on the numerical value, many fine particles are generated on the film surface, It is found that cracks are generated in the coating film, and in particular, the corrosion resistance is improved by setting the spin density of the coating film to 5 × 10 15 spins / g or more and 1 × 10 19 spins / g or less. The present invention was completed by finding that it was greatly improved.

すなわち、本発明の耐蝕性部材は、耐熱性部材の全体あるいは一部が窒化アルミニウムを主成分とする被覆膜によって覆われた耐蝕性部材であって、前記被覆膜のスピン密度が5×1015spins/g以上、1×1019spins/g以下であることを特徴としている。 That is, the corrosion-resistant member of the present invention is a corrosion-resistant member in which the whole or a part of the heat-resistant member is covered with a coating film containing aluminum nitride as a main component, and the spin density of the coating film is 5 × It is characterized by being 10 15 spins / g or more and 1 × 10 19 spins / g or less.

前記耐熱性部材は、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、熱分解窒化硼素コートグラファイト、窒化アルミニウム、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト及び高融点金属のうちのいずれかを主成分としている。
前記耐蝕性部材は、半導体デバイス製造装置の構成部材として好適に用いられる。
The heat-resistant member is pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, pyrolytic boron nitride coated graphite, aluminum nitride, rare earth oxide, aluminum oxide, silicon oxide, zirconia, sialon, graphite and high melting point One of the metals is the main component.
The said corrosion-resistant member is used suitably as a structural member of a semiconductor device manufacturing apparatus.

本発明によれば、ハロゲン系腐蝕性ガスによる微細パーティクルの発生を抑えることができ、長寿命な耐蝕性部材を提供することができる、また、半導体デバイスの製造コストに見合う半導体製造装置の構成部材を提供することができる、等の優れた効果が得られる。 ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the fine particle by halogen type corrosive gas can be suppressed, a long-life corrosion-resistant member can be provided, and the structural member of the semiconductor manufacturing apparatus corresponding to the manufacturing cost of a semiconductor device It is possible to provide excellent effects such as

本発明の1実施例である、内部にウエハを加熱するヒータが内蔵された静電チャックの表面を窒化アルミニウム被覆膜で保護した耐蝕性部材を示す概略断面図である。It is a schematic sectional drawing which shows the corrosion-resistant member which protected the surface of the electrostatic chuck with the heater which heats a wafer inside which is one Example of this invention with the aluminum nitride coating film. 本発明の他の実施例である、試料ホルダ(ウエハホルダ)の表面を窒化アルミニウム被覆膜で保護した耐蝕性部材を示す概略断面図である。It is a schematic sectional drawing which shows the corrosion-resistant member which protected the surface of the sample holder (wafer holder) which is another Example of this invention with the aluminum nitride coating film. 本発明の他の実施例である、リング部品の表面を窒化アルミニウム被覆膜で保護した耐蝕性部材を示す概略断面図である。It is a schematic sectional drawing which shows the corrosion-resistant member which protected the surface of the ring component by the aluminum nitride coating film which is another Example of this invention. 電子スピン共鳴法(ESR)によるスピン密度の信号強度の求め方を説明する図である。It is a figure explaining how to obtain | require the signal strength of a spin density by an electron spin resonance method (ESR). 電子スピン共鳴法(ESR)による測定結果を示す図である。It is a figure which shows the measurement result by an electron spin resonance method (ESR).

本発明の耐蝕性部材は、耐熱性部材の全体あるいは一部を覆うようにして、スピン密度が5×1015spins/g以上、1×1019spins/g以下となるように調整した窒化アルミニウム被覆膜を備えた部材とすることにより、微細パーティクルの発生を抑えることができ、該部材の寿命を延ばすことができる。 The corrosion-resistant member of the present invention is aluminum nitride adjusted so that the spin density is 5 × 10 15 spins / g or more and 1 × 10 19 spins / g or less so as to cover all or part of the heat-resistant member. By using a member provided with a coating film, generation of fine particles can be suppressed, and the life of the member can be extended.

なお、上記スピン密度が5×1015spins/g未満では、表面に微細パーティクルが多く発生し、被覆膜表面にフッ化アルミニウムが生成し、その微細粉がウエハ上に飛散するため好ましくない。他方、1×1019spins/gを超えると、窒化アルミニウム構造中にフッ素が大量に取り込まれて窒化アルミニウム被覆膜にクラックが発生し、被覆膜の母材である耐熱性部材にまで腐食性ガスが浸透し、母材を腐食して被覆膜が剥れ、パーティクルが大量に発生する。より好ましくは2×1016spins/g以上、3×1018spins/g以下である。 If the spin density is less than 5 × 10 15 spins / g, many fine particles are generated on the surface, aluminum fluoride is generated on the surface of the coating film, and the fine powder is scattered on the wafer. On the other hand, if it exceeds 1 × 10 19 spins / g, a large amount of fluorine is taken into the aluminum nitride structure and cracks occur in the aluminum nitride coating film, and even the heat-resistant member that is the base material of the coating film is corroded. The gas penetrates, corrodes the base material, peels off the coating film, and generates a large amount of particles. More preferably, it is 2 × 10 16 spins / g or more and 3 × 10 18 spins / g or less.

耐熱性部材に窒化アルミニウム被覆膜を形成するには、化学気相成長法により、2重管構造の管状部材から反応炉内に、2重管のいずれか一方からアンモニア、別の一方から塩化アルミニウムまたはアルミニウムの有機金属化合物を気体状で供給すればよく、反応温度、原料の供給速度及び反応圧力を種々調整することで、上記被覆膜のスピン密度を容易に5×1015spins/g以上、1×1019spins/g以下に調整することができる。 In order to form an aluminum nitride coating film on the heat-resistant member, chemical vapor deposition is used, from a tubular member having a double-pipe structure into the reactor, ammonia from one of the double tubes, and chlorination from the other. Aluminum or an organometallic compound of aluminum may be supplied in a gaseous state, and the spin density of the coating film can be easily adjusted to 5 × 10 15 spins / g by variously adjusting the reaction temperature, the supply rate of raw materials, and the reaction pressure. As described above, it can be adjusted to 1 × 10 19 spins / g or less.

ベースとなる耐熱性部材は、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、窒化アルミニウム、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト、及び高融点金属のいずれかを主成分とすることにより、500℃以上のプロセスにも十分に対応できる。
上記希土類酸化物としては、ジルコニア、酸化セリウム等が例示される。また、上記高融点金属としては、タングステン、タンタル、モリブデン、ニオブ、鉄、ニッケル等が例示される。
The base heat resistant member is any one of pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, aluminum nitride, rare earth oxide, aluminum oxide, silicon oxide, zirconia, sialon, graphite, and refractory metal By using as a main component, it can sufficiently handle processes at 500 ° C. or higher.
Examples of the rare earth oxide include zirconia and cerium oxide. Examples of the refractory metal include tungsten, tantalum, molybdenum, niobium, iron, nickel, and the like.

また、本発明の耐蝕性部材は、半導体ウエハを載置する静電チャック、半導体ウエハ加熱用のヒータ、ウエハを直接載置する載置台、ウエハの外周に配置するリング、導体デバイス製造装置の絶縁部品や、半導体デバイス製造装置で使用される耐蝕用部材として極めて有益な効果を奏し、成膜工程において半導体不良の原因となるパーティクルやコンタミネーションの発生を防止できる。   Further, the corrosion-resistant member of the present invention includes an electrostatic chuck for mounting a semiconductor wafer, a heater for heating the semiconductor wafer, a mounting table for directly mounting the wafer, a ring disposed on the outer periphery of the wafer, and an insulation for a conductor device manufacturing apparatus. As a corrosion-resistant member used in parts and semiconductor device manufacturing apparatuses, it has an extremely beneficial effect, and it is possible to prevent generation of particles and contamination that cause semiconductor defects in the film forming process.

前記窒化アルミニウム被覆膜の厚さは1μm以上500μm以下とすることで、使用条件により十分な耐蝕性を発揮できる。より好ましくは10μm以上300μm以下である。前記1μm未満では、部分的に欠陥があった場合に、耐熱部材が腐食されてパーティクルが発生する危険性があり、500μmを超えると被覆膜が耐熱部材との境界で分離する危険性があることに加え、成膜に膨大な時間を要し、コスト的に見合わない。   By setting the thickness of the aluminum nitride coating film to 1 μm or more and 500 μm or less, sufficient corrosion resistance can be exhibited depending on use conditions. More preferably, it is 10 μm or more and 300 μm or less. If the thickness is less than 1 μm, there is a risk that the heat-resistant member is corroded and particles are generated if there is a partial defect. If the thickness exceeds 500 μm, the coating film may be separated at the boundary with the heat-resistant member. In addition, it takes an enormous amount of time for film formation and is not cost effective.

次に、本発明の耐蝕性部材の具体例について、図面を用いて説明する。
図1に示す例は、ウエハを加熱するため内部にヒータ部材105が内蔵されており、静電チャック用電極104a、104bを備えた耐熱性部材101である静電チャックの表面を窒化アルミニウム被覆膜103で保護した耐蝕性部材100(図中、106は冷却用ガス孔)であり、図2に示す例は、耐熱性部材101である試料ホルダ(ウエハホルダ)の表面を窒化アルミニウム被覆膜103で保護した耐蝕性部材100である。図3に示す例は、耐熱性部材101であるリング部品の表面を窒化アルミニウム被覆膜103で保護した耐蝕性部材100であり、いずれも実際の半導体製造プロセスで同等の耐蝕性を有し、長寿命かつパーティクルの発生が抑制された。
Next, specific examples of the corrosion-resistant member of the present invention will be described with reference to the drawings.
In the example shown in FIG. 1, a heater member 105 is built in to heat the wafer, and the surface of the electrostatic chuck, which is the heat-resistant member 101 including the electrostatic chuck electrodes 104a and 104b, is coated with aluminum nitride. The corrosion resistant member 100 (106 in the figure is a cooling gas hole) protected by the film 103. In the example shown in FIG. 2, the surface of the sample holder (wafer holder), which is the heat resistant member 101, is coated with the aluminum nitride coating film 103. Corrosion-resistant member 100 protected with The example shown in FIG. 3 is a corrosion-resistant member 100 in which the surface of a ring component, which is a heat-resistant member 101, is protected by an aluminum nitride coating film 103, both having equivalent corrosion resistance in an actual semiconductor manufacturing process. Long life and particle generation were suppressed.

なお、本発明においてスピン密度(spins/g)とは、窒化アルミニウムからなる被覆単体1g当たりのスピン数を電子スピン共鳴法(ESR法)で測定した値であり、スピン数が既知の標準試料(本測定では、イオン注入したポリエチレンフィルムを使用)の信号強度と比較して、下記の[数1]式により求める。

Figure 0005527821
In the present invention, the spin density (spins / g) is a value obtained by measuring the number of spins per gram of a single coating made of aluminum nitride by an electron spin resonance method (ESR method). In this measurement, the signal intensity is determined by the following [Equation 1] in comparison with the signal intensity of a polyethylene film into which ions are implanted.
Figure 0005527821

ESR法は、試料中の不対電子が磁場中に置かれたときに生じる結晶の準位間の遷移を観測する分光分析である。測定は、マイクロ波照射下で磁場を掃引して行われる。磁場(H)が大きくなるに従ってエネルギー間隔(△E)が増大し、これがマイクロ波のエネルギーと等しくなったときに吸収が観測される。
ESRスペクトルは、通常、微分曲線で得られ、1回積分すると吸収曲線になり、もう1回積分すると信号強度が得られる(図4参照)。
The ESR method is a spectroscopic analysis that observes transitions between crystal levels that occur when unpaired electrons in a sample are placed in a magnetic field. The measurement is performed by sweeping the magnetic field under microwave irradiation. As the magnetic field (H) increases, the energy interval (ΔE) increases, and absorption is observed when this becomes equal to the microwave energy.
The ESR spectrum is usually obtained by a differential curve, and if it is integrated once, it becomes an absorption curve, and if it is integrated once more, the signal intensity is obtained (see FIG. 4).

得られるパラメータにはg 値、線幅、スピン数などがある。g値は、マイクロ波周波数(ν)と共鳴磁場(H)を共鳴条件式(hν=gβH)に代入して求められる。ここでhはプランク定数、βはボーア磁子であるから、各値を代入すると下記の[数2]式が得られる。

Figure 0005527821
Parameters obtained include g value, line width, and spin number. The g value is obtained by substituting the microwave frequency (ν) and the resonance magnetic field (H) into the resonance condition (hν = gβH). Here, h is a Planck constant and β is a Bohr magneton. Therefore, when each value is substituted, the following [Equation 2] is obtained.
Figure 0005527821

以下、実施例及び比較例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらの態様に限定されず、様々な態様が可能である。
[実施例1〜8、比較例1、2]
反応器内に長さ30mm、幅15mm、厚さ0.5mmの窒化アルミニウム焼結体をセットし、その表面全体に熱CVD法により窒化アルミニウム被覆膜を設けた。
窒化アルミニウム被覆膜を成膜するに際し、原料は、アルミニウムの有機金属化合物として、トリメチルアルミニウム(TMA)をバブラー法にて供給し、アンモニアは加熱気化させて供給した。原料ガスを反応器内に導入するには、2重管構造の管状部材から供給するようにし、2重管の外側の管からアンモニア、内側の管からトリメチルアルミニウムを供給するようにした。排気側は、油回転真空ポンプで容器内ガスを排気して容器内を減圧し、成膜した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to these aspects, Various aspects are possible.
[Examples 1 to 8, Comparative Examples 1 and 2]
An aluminum nitride sintered body having a length of 30 mm, a width of 15 mm, and a thickness of 0.5 mm was set in the reactor, and an aluminum nitride coating film was provided on the entire surface by a thermal CVD method.
When forming the aluminum nitride coating film, trimethylaluminum (TMA) was supplied as a raw material as an organometallic compound of aluminum by a bubbler method, and ammonia was supplied after being evaporated by heating. In order to introduce the raw material gas into the reactor, ammonia was supplied from a tube outside the double tube, and trimethylaluminum was supplied from an inner tube. On the exhaust side, the gas inside the container was evacuated by an oil rotary vacuum pump, and the inside of the container was decompressed to form a film.

反応温度、原料のトリメチルアルミニウムの供給速度、反応圧力を種々変更させて調整し、結晶質窒化アルミニウム(AlN)からなる厚さ100μm、スピン密度が異なる被覆膜を設けた耐蝕性部材を作製した(実施例1〜8、比較例1、2。表1参照)。
得られた被覆膜を半分に分割し、15mm角のサンプルを2個作製し、1個はESR測定、他の1個はフッ素ガス系プラズマエッチング試験を行った。
Corrosion-resistant members were prepared by changing the reaction temperature, the feed rate of trimethylaluminum as a raw material, and the reaction pressure in various ways to provide a coating film made of crystalline aluminum nitride (AlN) with a thickness of 100 μm and different spin densities. (Examples 1 to 8, Comparative Examples 1 and 2. See Table 1).
The obtained coating film was divided in half, and two 15 mm square samples were prepared, one for ESR measurement and the other for fluorine gas plasma etching test.

ESRの測定は、作製した耐蝕性部材から窒化アルミニウム焼結体の部分を研磨除去し、窒化アルミニウム膜単体としてESR用サンプルとし、重量測定後にESR測定を行った。ESR装置は、BRUKER社製ESP350Eで、温度は室温で、マイクロ波条件9.46GHz、0.25mW、時定数327.68msの条件にて行った。
ESRスペクトルからg値を求めると、2.0030であった(図5参照)。この値から判断すると、観測されたESRシグナルは、窒素空孔に捕捉された電子に起因すると考えられる(文献3:Jpn.J.Appl.Phys.29,L652(1990)参照)。
The ESR measurement was performed by polishing and removing a portion of the aluminum nitride sintered body from the produced corrosion-resistant member, using the aluminum nitride film alone as an ESR sample, and performing ESR measurement after weight measurement. The ESR apparatus was ESP350E manufactured by BRUKER, temperature was room temperature, microwave conditions were 9.46 GHz, 0.25 mW, and time constant was 327.68 ms.
The g value obtained from the ESR spectrum was 2.0030 (see FIG. 5). Judging from this value, it is considered that the observed ESR signal is caused by electrons trapped in the nitrogen vacancies (refer to Reference 3: Jpn.J.Appl.Phys.29, L652 (1990)).

他方、フッ素ガス系プラズマエッチング試験用のサンプルは、ウエハ上に被覆膜表面の一部をポリイミドテープでマスキングしてエッチング処理装置に搭載し、CFガスと酸素を50sccmずつ流しながら、圧力10Paとしてプラズマを発生させ、RFパワーを500Wに調整し、10時間連続して耐蝕性部材のエッチング試験を行った。次に、エッチング装置から耐蝕性部材を取り出し、マスキングした箇所とエッチングされた箇所の段差を測定し、かつ、エッチング後の表面状態変化を目視し、さらに走査型電子顕微鏡(SEM)観察を行った。 On the other hand, a sample for a fluorine gas plasma etching test is mounted on an etching processing apparatus by masking a part of the surface of a coating film on a wafer with a polyimide tape, and a pressure of 10 Pa while flowing CF 4 gas and oxygen at 50 sccm at a time. The plasma was generated, the RF power was adjusted to 500 W, and the etching test of the corrosion resistant member was continuously performed for 10 hours. Next, the corrosion-resistant member was taken out from the etching apparatus, the level difference between the masked part and the etched part was measured, the surface state change after etching was visually observed, and further, the scanning electron microscope (SEM) observation was performed. .

その結果を表1にまとめて示した。なお、走査型電子顕微鏡で観察した表面状態は、膜にクラック、または表面荒れの発生が認められたものを“×”印で、変化のなかったものを“○”印で表示した。
表1から分かるように、スピン密度とエッチング後の表面状態は密接な関係にあることが分かった。

Figure 0005527821
The results are summarized in Table 1. The surface state observed with a scanning electron microscope was indicated by “x” marks when cracks or surface roughness were observed in the film, and “◯” marks when there was no change.
As can be seen from Table 1, the spin density and the surface state after etching were found to be closely related.
Figure 0005527821

なお、スピン密度(spins/g)が5.0×1015以上、1.0×1019以下の場合は、プラズマ中の活性を有するフッ素イオンが窒素空孔部に入り固溶されて、窒化アルミニウム被覆膜がフッ素侵入型の固溶体となり、表面の耐性を上げているのではないかと考えられる。スピン密度が5.0×1015(spins/g)未満ではフッ素の固溶量が少なく、表面でアルミニウムフッ化物が析出して表面荒れが発生したものと考えられる。他方、スピン密度が1.0×1019(spins/g)を超えると固溶量が多くなり、被覆膜表面の構造変化に伴う膨張による残留応力によって、クラックが発生したものと考えられる。 In addition, when the spin density (spins / g) is 5.0 × 10 15 or more and 1.0 × 10 19 or less, fluorine ions having activity in the plasma enter into the nitrogen vacancies and are dissolved, and the aluminum nitride coating film Is considered to be a fluorine interstitial solid solution that increases the surface resistance. When the spin density is less than 5.0 × 10 15 (spins / g), it is considered that the amount of solid solution of fluorine is small, and aluminum fluoride is precipitated on the surface, resulting in surface roughness. On the other hand, when the spin density exceeds 1.0 × 10 19 (spins / g), the amount of solid solution increases, and it is considered that cracks were generated due to residual stress due to expansion accompanying structural change of the coating film surface.

100 耐蝕性部材
101 耐熱性部材
103 窒化アルミニウム被覆膜
104a、104b 静電チャック用電極
105 ヒータ部材
106 冷却用ガス孔
DESCRIPTION OF SYMBOLS 100 Corrosion-resistant member 101 Heat-resistant member 103 Aluminum nitride coating film 104a, 104b Electrostatic chuck electrode 105 Heater member 106 Cooling gas hole

Claims (8)

耐熱性部材の全体あるいは一部が窒化アルミニウムを主成分とする被覆膜によって覆われた耐蝕性部材であって、反応温度600〜1200℃、トリメチルアルミニウムの供給速度0.10〜0.20mol/hr、反応圧力100〜120Paの条件下での熱CVD法により形成された、前記被覆膜のスピン密度が5×1015spins/g以上、1×1019spins/g以下であることを特徴とする耐蝕性部材。 A corrosion-resistant member in which all or part of the heat-resistant member is covered with a coating film mainly composed of aluminum nitride, having a reaction temperature of 600 to 1200 ° C., a trimethylaluminum supply rate of 0.10 to 0.20 mol / The spin density of the coating film formed by thermal CVD under the conditions of hr and reaction pressure of 100 to 120 Pa is 5 × 10 15 spins / g or more and 1 × 10 19 spins / g or less. A corrosion-resistant member characterized. 前記耐熱性部材が、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、熱分解窒化硼素コートグラファイト、窒化アルミニウム、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト及び高融点金属のうちのいずれかを主成分としてなる請求項1に記載の耐蝕性部材。 The heat-resistant member is pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, pyrolytic boron nitride coated graphite, aluminum nitride, rare earth oxide, aluminum oxide, silicon oxide, zirconia, sialon, graphite and high melting point The corrosion-resistant member according to claim 1, comprising any one of metals as a main component. 前記耐蝕性部材が、静電チャックである請求項1又は2に記載の耐蝕性部材。 The corrosion-resistant member according to claim 1, wherein the corrosion-resistant member is an electrostatic chuck. 前記耐蝕性部材が、加熱部材を内蔵している請求項1乃至3のいずれか1項に記載の耐蝕性部材。 The corrosion-resistant member according to any one of claims 1 to 3, wherein the corrosion-resistant member includes a heating member. 前記耐蝕性部材が、ウエハを直接載置する載置台である請求項1乃至4のいずれか1項に記載の耐蝕性部材。 The corrosion-resistant member according to any one of claims 1 to 4, wherein the corrosion-resistant member is a mounting table on which a wafer is directly mounted. 前記耐蝕性部材が、ウエハの外周に配置するリングである請求項1又は2に記載の耐蝕性部材。 The corrosion-resistant member according to claim 1, wherein the corrosion-resistant member is a ring disposed on the outer periphery of the wafer. 前記耐蝕性部材が、導体デバイス製造装置の絶縁部品である請求項1又は2に記載の耐蝕性部材。 The corrosion-resistant member according to claim 1, wherein the corrosion-resistant member is an insulating component of a conductor device manufacturing apparatus. 請求項1乃至7のいずれか1項に記載の耐蝕性部材を構成部材としてなることを特徴とする半導体デバイス製造装置。 A semiconductor device manufacturing apparatus comprising the corrosion-resistant member according to claim 1 as a constituent member.
JP2010270849A 2010-12-03 2010-12-03 Corrosion resistant material Expired - Fee Related JP5527821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270849A JP5527821B2 (en) 2010-12-03 2010-12-03 Corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270849A JP5527821B2 (en) 2010-12-03 2010-12-03 Corrosion resistant material

Publications (2)

Publication Number Publication Date
JP2012117141A JP2012117141A (en) 2012-06-21
JP5527821B2 true JP5527821B2 (en) 2014-06-25

Family

ID=46500325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270849A Expired - Fee Related JP5527821B2 (en) 2010-12-03 2010-12-03 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP5527821B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519544B1 (en) 2017-12-07 2023-04-07 삼성전자주식회사 Wafer loading apparatus and film forming apparatus
CN114197038B (en) * 2021-12-10 2024-06-07 中国电子科技集团公司第四十六研究所 Protection device for improving ultraviolet transmittance of aluminum nitride epitaxial layer and use method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016272A (en) * 2005-07-06 2007-01-25 Ge Speciality Materials Japan Kk Protective film covered on substrate, and its manufacturing method
WO2008018302A1 (en) * 2006-08-07 2008-02-14 Tokuyama Corporation Aluminum nitride sintered body and method for producing the same
JP2010228965A (en) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd Corrosion resistant member

Also Published As

Publication number Publication date
JP2012117141A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP4996868B2 (en) Plasma processing apparatus and plasma processing method
JP4643478B2 (en) Manufacturing method of ceramic covering member for semiconductor processing equipment
US6783863B2 (en) Plasma processing container internal member and production method thereof
JP5313227B2 (en) Aluminum plating component of semiconductor material processing apparatus and method of manufacturing the component
JP5324029B2 (en) Ceramic coating for semiconductor processing equipment
JP3894313B2 (en) Fluoride-containing film, coating member, and method for forming fluoride-containing film
JP2009081223A (en) Electrostatic chuck member
JP2010228965A (en) Corrosion resistant member
JP5527821B2 (en) Corrosion resistant material
JP5031259B2 (en) Corrosion resistant member, method for manufacturing the same, and semiconductor / liquid crystal manufacturing apparatus using the same
JP2003321760A (en) Interior member of plasma processing container and manufacturing method
CN113891960B (en) Corrosion resistant member
JPWO2009069650A1 (en) Corrosion resistant material
JP2006045026A (en) Substrate coated with electric conductive diamond
JP2007107100A (en) Composite film-covered member in plasma treatment container and method for manufacturing the same
JP4018856B2 (en) Vacuum chamber components
JP3078671B2 (en) Corrosion resistant member, method of using the same and method of manufacturing the same
JP5876259B2 (en) Method for manufacturing member covered with aluminum nitride film
JP2006097114A (en) Corrosion-resistant spray deposit member
CN118326314A (en) Method for preparing thermal spraying coating and yttrium-based thermal spraying coating prepared by using same
JP2007126752A (en) Member in plasma treatment vessel and its production method
JP2012129549A (en) Electrostatic chuck member
JP2007119924A (en) High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5527821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees