JP5522133B2 - Regeneration method of slag - Google Patents
Regeneration method of slag Download PDFInfo
- Publication number
- JP5522133B2 JP5522133B2 JP2011185618A JP2011185618A JP5522133B2 JP 5522133 B2 JP5522133 B2 JP 5522133B2 JP 2011185618 A JP2011185618 A JP 2011185618A JP 2011185618 A JP2011185618 A JP 2011185618A JP 5522133 B2 JP5522133 B2 JP 5522133B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- hot metal
- sio
- water
- desulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims description 96
- 238000011069 regeneration method Methods 0.000 title description 5
- 238000006477 desulfuration reaction Methods 0.000 claims description 67
- 230000023556 desulfurization Effects 0.000 claims description 67
- 229910052751 metal Inorganic materials 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 40
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 26
- 229910052717 sulfur Inorganic materials 0.000 claims description 26
- 239000011593 sulfur Substances 0.000 claims description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 11
- 239000001569 carbon dioxide Substances 0.000 claims description 11
- 230000001172 regenerating effect Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 19
- 239000002244 precipitate Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- 238000007664 blowing Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000004062 sedimentation Methods 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000009628 steelmaking Methods 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000003009 desulfurizing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001144 powder X-ray diffraction data Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Processing Of Solid Wastes (AREA)
Description
本発明は、スラグの回生処理方法に関するものである。 The present invention relates to a slag regeneration processing method.
従来から、製鋼工程で発生するスラグは、コンクリート骨材や路盤材料などの土木用材料として広く利用されている。しかし、CaOを主成分とする脱硫剤を用いる脱硫工程にて発生した還元スラグは、一般に未反応のCaOが不可避的に残留し、膨張や強アルカリとなる問題があり、土木用素材として使用し難い面もある。 Conventionally, slag generated in a steelmaking process has been widely used as a civil engineering material such as a concrete aggregate and a roadbed material. However, the reduced slag generated in the desulfurization process using a desulfurizing agent containing CaO as a main component generally has the problem that unreacted CaO inevitably remains, which causes expansion and strong alkali. There are also difficult aspects.
スラグを土木用材料以外の用途に利用する技術として、例えば特許文献1には、電気炉製鋼法の二次精錬工程で発生する所謂、還元スラグの再利用法に関し、還元スラグを水と接触させて脱硫処理を行い、更に炭酸化処理を行って固化体とすることにより新たに造滓剤を得る方法が記載されている。 As a technique for utilizing slag for applications other than civil engineering materials, for example, Patent Document 1 relates to a so-called recycle method of reduced slag that occurs in the secondary refining process of an electric furnace steelmaking process, by bringing reduced slag into contact with water. A method of newly obtaining a faux former by performing a desulfurization treatment and further performing a carbonation treatment to obtain a solidified body is described.
特許文献1の方法は、二次精錬工程で発生するスラグ、すなわち、「溶鋼」の脱硫工程で発生したスラグを水と接触させてスラグの脱硫処理(下記式[化1])を行うものである。なお、以下の化学式においては、鉄冶金分野での慣例に従い、スラグ中に固溶した状態で存在する成分を( )付で示し、溶鉄中の溶解している成分を_付で、表している。
しかし、二次精錬工程における「溶鋼」の脱硫工程は、1600℃前後の高温化で行われ、これら溶鋼の脱硫工程では下記式[化2]による脱硫反応が進行するため、二次精錬工程で発生するスラグ中に存在する硫黄は、固体のCaSとしてではなく、液相スラグ中に希薄溶液として溶解した状態で存在する。
一方、上記の [化1]は、固体スラグ内の硫黄の拡散律速となる反応のため、硫黄が液相スラグ中に希薄溶液として溶解した状態で存在する条件下では、[化1]によるスラグの脱硫反応は極めて遅々としか進まず、実用性に欠くという問題があった。 On the other hand, the above [Chemical 1] is a reaction that controls the diffusion of sulfur in the solid slag, so that the slag produced by [Chemical 1] is present under the condition that sulfur exists in a dissolved state in the liquid phase slag. However, the desulfurization reaction did not proceed very slowly, and there was a problem of lack of practicality.
また、特許文献2には、硫黄含有量が増加した還元スラグを熱処理炉の中に存置させ、上記炉内を二酸化炭素ガス雰囲気にすると共に、900℃以上の温度にして1時間以上加熱して、還元スラグから硫黄成分以外の他の成分を変動させることなく、硫黄成分を除去し、上記還元スラグの脱硫能力を増加させ、再利用可能にする方法が記載されている。 In Patent Document 2, reduced slag having an increased sulfur content is placed in a heat treatment furnace, the inside of the furnace is set to a carbon dioxide gas atmosphere, and heated to 900 ° C. or higher for 1 hour or longer. In addition, a method is described in which a sulfur component is removed from the reduced slag without changing other components other than the sulfur component, thereby increasing the desulfurization capacity of the reduced slag so that it can be reused.
しかし、還元スラグ中のCaOは、不可避的に混入するSiO2分により、脱硫能力の低い2CaO・SiO2となっているものも多い。したがって、還元スラグ中の硫黄のみを除去しただけでは精錬材としての使用は困難であり、脱硫能力を高めるために、新たにCaO源を追加する必要が生じるので、却って系外排出スラグ量を増大させたり、スラグ量が増えることに伴う熱ロスが増加したり、コスト増加を招いたりするという問題もあった。 However, in many cases, CaO in the reduced slag is 2CaO · SiO 2 having a low desulfurization capacity due to the inevitable mixing of SiO 2 . Therefore, it is difficult to use it as a refining material by removing only sulfur in the reduced slag, and it is necessary to add a new CaO source to increase the desulfurization capacity. There is also a problem that the heat loss accompanying the increase in the amount of slag or the increase in cost is caused.
本発明の目的は前記の問題を解決し、製鋼工程で発生する溶銑脱硫スラグの系外排出量の削減を目的とする、溶銑脱硫スラグの再利用技術として、溶銑脱硫スラグ中の硫黄を速やかに分離し、かつ、新たにCaO源を追加することなく脱硫能力の回復を図ることができる技術を提供することである。 The object of the present invention is to solve the above-mentioned problems and to quickly remove sulfur in hot metal desulfurization slag as a technology for reusing hot metal desulfurization slag for the purpose of reducing the amount of hot metal desulfurization slag generated in the steelmaking process. It is intended to provide a technique capable of separating and recovering the desulfurization ability without newly adding a CaO source.
上記課題を解決するためになされた本発明のスラグの回生処理方法は、溶銑脱硫処理工程で発生した溶銑脱硫スラグを水中に懸濁させ、炭酸ガスを含有する水と接触させて、溶銑脱硫スラグ中の硫黄成分を下記式[化3]によりH2Sガスとして分離するとともに、溶銑脱硫スラグ中に不可避的に含まれる2CaO・SiO2を下記式[化4]により、各々、CaCO3、SiO2として沈降分離させることを特徴とするものである。
請求項2記載の発明は、請求項1記載のスラグの回生処理方法において、粒度2mm未満に分級した溶銑脱硫スラグを水中に懸濁させることを特徴とするものである。 The invention according to claim 2 is characterized in that in the slag regeneration treatment method according to claim 1, hot metal desulfurization slag classified to a particle size of less than 2 mm is suspended in water.
請求項3記載の発明は、請求項1記載のスラグの回生処理方法において、粒度2mm以上の溶銑脱硫スラグを、2mm未満に粉砕して水中に懸濁させることを特徴とするものである。 A third aspect of the invention is characterized in that in the slag regeneration treatment method of the first aspect, hot metal desulfurization slag having a particle size of 2 mm or more is pulverized to less than 2 mm and suspended in water.
溶銑脱硫スラグ中のCaOは、高炉スラグ由来で不可避的に混入するSiO2分により、脱硫能力の低い2CaO・SiO2となっているものも多いが、本発明に係るスラグの回生処理方法は、溶銑脱硫処理工程で発生した溶銑脱硫スラグを水中に懸濁させ、炭酸ガスを含有する水と接触させ、 [化4]により、各々、CaCO3、SiO2として沈降分離させることにより、脱硫能力の高いCaCO3を回収することができる。また、同時に、 [化3]により還元スラグ中の硫黄を速やかに分離することもできる。すなわち、本発明によれば、溶銑脱硫スラグ中の硫黄を速やかに分離し、かつ、新たにCaO源を追加することなく脱硫能力の回復を図ることができるため、回収したCaCO3を、再び脱硫剤、脱りん剤あるいは製銑工程で使用する石灰石の代替として有効利用することができ、製鋼工程で発生するスラグの系外排出量の大幅な削減が可能となる。 CaO in the hot metal desulfurization slag is derived from blast furnace slag and is inevitably mixed with SiO 2 , and many of them have low desulfurization ability 2CaO · SiO 2 , but the slag regeneration treatment method according to the present invention is The hot metal desulfurization slag generated in the hot metal desulfurization treatment process is suspended in water, brought into contact with water containing carbon dioxide gas, and subjected to sedimentation separation as CaCO 3 and SiO 2 according to [Chemical Formula 4], respectively. High CaCO 3 can be recovered. At the same time, sulfur in the reduced slag can be quickly separated by [Chemical Formula 3]. That is, according to the present invention, sulfur in the hot metal desulfurization slag can be quickly separated and the desulfurization capacity can be recovered without newly adding a CaO source. Therefore, the recovered CaCO 3 is desulfurized again. It can be effectively utilized as a substitute for limestone used in the agent, dephosphorizing agent, or iron making process, and it is possible to greatly reduce the out-of-system discharge of slag generated in the steel making process.
以下に本発明の好ましい実施形態を示す。図1には、所謂バッチ処理方式により、本発明の方法を実施する装置を示している。ただし、本発明の方法はバッチ処理方式に限定されるものではなく、連続処理方式によるものとしてもよい。 Preferred embodiments of the present invention are shown below. FIG. 1 shows an apparatus for carrying out the method of the present invention by a so-called batch processing method. However, the method of the present invention is not limited to the batch processing method, and may be a continuous processing method.
図1に示す反応容器1には水3が収容され、炭酸ガスを含むガス5を通気してCO2を溶解させている。このCO2を溶解した水3中に、溶銑の脱硫処理により生成したスラグ2(以下、溶銑脱硫スラグ)を投入する。溶銑脱硫スラグを投入した反応容器1中に、CO2を含むガスを連続的に通気しながら、インペラー12により攪拌を行う。 A reaction vessel 1 shown in FIG. 1 contains water 3, and a gas 5 containing carbon dioxide gas is passed through to dissolve CO 2 . Slag 2 (hereinafter referred to as hot metal desulfurization slag) generated by hot metal desulfurization treatment is put into water 3 in which CO 2 is dissolved. Stirring is performed by the impeller 12 while continuously supplying a gas containing CO 2 into the reaction vessel 1 charged with hot metal desulfurization slag.
本発明で処理対象とする溶銑脱硫スラグは、CaOを主要成分とする脱硫剤を用いて溶銑の脱硫処理を行った際に生じるスラグである。1250〜1400℃程度の低温で行われる溶銑脱硫処理工程では、基本的に、下記式[化5]の反応により、固体CaOによる脱硫反応が進行する。固体CaOによる脱硫反応は固体CaSを生成する反応である。したがって、当該反応により生じるスラグは、高濃度の硫黄を含むCaSが局所的に存在する極めて不均一なスラグとなる。
本発明では、このように高濃度の硫黄を含むCaSが局所的に存在する極めて不均一な溶銑脱硫スラグを、炭酸ガスを含有する水と接触させることにより、[化3]の反応の迅速な進行を可能としている。 In the present invention, the reaction of [Chemical Formula 3] can be rapidly carried out by bringing the extremely heterogeneous hot metal desulfurization slag, in which CaS containing a high concentration of sulfur locally exists, into contact with water containing carbon dioxide. Progress is possible.
排ガスであるH2SはH2S回収装置6に導き、回収する。未反応のCO2を含むガスはCO2分離装置7でCO2を分離、循環させ、反応容器1に戻し、残りのガスは排気塔13より系外に排出する。 The H 2 S that is the exhaust gas is guided to the H 2 S recovery device 6 and recovered. Gas containing CO 2 of unreacted separating CO 2 in the CO 2 separation device 7, is circulated back to the reaction vessel 1, the remaining gas is discharged out of the system from the exhaust tower 13.
CaOを主成分とする脱硫剤を用いる脱硫工程にて発生した溶銑脱硫スラグは、一般に未反応のCaOが不可避的に残留している。更に、溶銑脱硫スラグ中のCaOは、溶銑脱硫スラグ中に不可避的に混入するSiO2分(高炉スラグ由来)により、カルシウムシリケート化しているものも無視出来ないほど多い。カルシウムシリケートは2CaO・SiO2が主要成分である。従って溶銑脱硫スラグ中の硫黄のみを除去したとしても、溶銑脱硫スラグ中のCaO分が、脱りん、脱硫能力が低い2CaO・SiO2となっているので、実際にはリサイクル利用する価値は低い。このような場合には、スラグの脱りん、脱硫能力を高めるために、新たにCaO源を追加する必要が生じるので、却って系外排出スラグ量を増大させたり、スラグ量が増えることに伴う熱ロスが増加したり、コスト増加を招いたりする。従って、溶銑脱硫スラグ中の硫黄分を除去するのみでは不十分であり、相当量のCaO分を回生してリサイクル利用を目指す場合には、溶銑脱硫スラグ中のSiO2分を如何に除去するかが重要になる。 In the hot metal desulfurization slag generated in the desulfurization process using a desulfurizing agent containing CaO as a main component, unreacted CaO generally remains unavoidably. Furthermore, the amount of CaO in the hot metal desulfurization slag cannot be ignored due to the SiO 2 component (derived from the blast furnace slag) inevitably mixed in the hot metal desulfurization slag. Calcium silicate is mainly composed of 2CaO · SiO 2 . Therefore, even if only the sulfur in the hot metal desulfurization slag is removed, the CaO content in the hot metal desulfurization slag is 2CaO · SiO 2 having a low dephosphorization and desulfurization ability, so the value of recycling is actually low. In such a case, it is necessary to newly add a CaO source in order to increase the dephosphorization and desulfurization ability of the slag. Therefore, the heat accompanying the increase in the amount of slag discharged outside the system or the increase in the slag amount. Loss increases and costs increase. Therefore, it is not sufficient to remove only the sulfur content in the hot metal desulfurization slag, and how to remove the SiO 2 content in the hot metal desulfurization slag when regenerating a considerable amount of CaO and aiming for recycling. Becomes important.
本発明では、溶銑脱硫処理工程で発生した溶銑脱硫スラグを水中に懸濁させ、炭酸ガスを含有する水と接触させ、 [化4]により、各々、CaCO3、SiO2として沈降分離させることにより、脱硫能力の高いCaCO3の回収を行う。 In the present invention, hot metal desulfurization slag generated in the hot metal desulfurization treatment step is suspended in water, brought into contact with water containing carbon dioxide gas, and precipitated by CaCO 3 and SiO 2 according to [Chemical Formula 4], respectively. The recovery of CaCO 3 having a high desulfurization capacity is performed.
沈降速度の速い炭酸カルシウム10は速やかに反応容器内に沈殿するので、ゲートバルブ8を通して回収する。 Since the calcium carbonate 10 having a high sedimentation rate is quickly precipitated in the reaction vessel, it is collected through the gate valve 8.
沈降速度が遅いSiO211は、水中にコロイド状に存在した状態のまま、沈殿槽9に導いて、時間をかけて沈降分離させる。分離後の水は、反応容器に戻す。蒸発損失分の水を新たに導入し、所定時間の処理を行う。ここで、SiO2の沈降を促進するために、超音波発信器やマイクロバブル発生装置によるエアー吹き込みを行っても良い。 The SiO 2 11 having a slow sedimentation speed is guided to the sedimentation tank 9 while being colloidally present in water, and is settled and separated over time. The separated water is returned to the reaction vessel. Water for the evaporation loss is newly introduced and processing is performed for a predetermined time. Here, in order to promote sedimentation of SiO 2 , air blowing by an ultrasonic transmitter or a microbubble generator may be performed.
なお、溶銑脱硫スラグは繰り返し脱硫処理に使用したスラグでもよい。更に、本法により回収された炭酸化カルシウムの再利用の方法として、例えば、特開平2-200717公報の実施例にあるように、粉体底吹き転炉形式の溶銑脱りん炉の底吹き粉体として利用することが出来る。また、特開昭59-53611号公報に開示されているように溶銑の脱硫剤としての再使用も可能である。また、製銑工程で用いる石灰石の代替としての利用も可能である。この場合、硫黄が除去されているので、焼結工程で問題となる排煙の脱硫処理負荷を増やすことなく、焼結工程での再利用が可能になる。 Note that the hot metal desulfurization slag may be slag used repeatedly. Furthermore, as a method of reusing calcium carbonate recovered by this method, for example, as shown in the example of Japanese Patent Laid-Open No. 2-200717, the bottom blowing powder of a hot metal dephosphorization furnace of the powder bottom blowing converter type It can be used as a body. Further, as disclosed in JP 59-53611 A, the hot metal can be reused as a desulfurization agent. It can also be used as an alternative to limestone used in the iron making process. In this case, since sulfur is removed, the sulfur can be reused in the sintering process without increasing the load of desulfurization of flue gas which is a problem in the sintering process.
本願発明者らは、本発明に至る基礎実験において、 [表1]の組成、図2の粒度分布を持つ溶銑脱硫スラグを水中に懸濁した状態で、炭酸ガスを吹き込むことにより、H2Sとしての硫黄の除去および、CaCO3の分離回収を試みた。即ち、CO2ガスを吹き込み、硫黄が殆ど無くなった状態で、固−液の濾過分離を行い、固体相の成分を調査したところ、殆どがCaCO3であることが明らかとなった。また、液体側を静置していたところ、SiO2分が沈殿分離された。これは、CaCO3の沈殿分離に比べSiO2の沈殿分離速度が遅いため、このような結果になったものと思われる。なお、SiO2の沈降速度が遅いのは、微細な粒子として存在するためであると思われる。それに対し、CaCO3粒子は炭酸化反応の進行とともに成長し、粒径が増大するため相対的に速やかに沈降するものと思われる。本発明は、当該実験に着想を得てなされたものである。 In the basic experiment leading to the present invention, the inventors of the present application blow H 2 S by blowing carbon dioxide gas in a state where the hot metal desulfurization slag having the composition shown in Table 1 and the particle size distribution shown in FIG. 2 is suspended in water. Attempts were made to remove sulfur and to separate and recover CaCO 3 . That is, when CO 2 gas was blown and sulfur was almost lost, solid-liquid filtration was performed and the components of the solid phase were examined. As a result, it was found that most of the components were CaCO 3 . Further, when the liquid side was allowed to stand, SiO 2 was precipitated and separated. This is probably because the SiO 2 precipitation separation rate is slower than the CaCO 3 precipitation separation. Note that the sedimentation rate of the SiO 2 is low, is believed to be due to present as fine particles. On the other hand, CaCO 3 particles grow with the progress of the carbonation reaction, and it seems that they settle relatively quickly because the particle size increases. The present invention has been made based on the experiment.
溶銑脱硫スラグの粒度は、2mm未満とすると、スラグ表面が大きくなるため、[化3]および[化4]反応が進み易く、微細なSiO2が水中でコロイドを生成し易いので好ましい。スラグの粒度が2mm以上であれば、2mm以下まで粉砕するのが、微細なコロイド状SiO2 を水中に分散させるには好ましい。ここで、スラグの粒度2mm未満とは、篩目が2mmを通過したスラグ粒子であり、スラグの粒度2mm以上とは篩目が2mmを通過しないスラグ粒子を意味する。 When the particle size of the hot metal desulfurization slag is less than 2 mm, the surface of the slag becomes large, so that [Chemical Formula 3] and [Chemical Formula 4] reactions tend to proceed, and fine SiO 2 is preferable because colloid is easily generated in water. If the particle size of the slag is 2 mm or more, pulverization to 2 mm or less is preferable in order to disperse the fine colloidal SiO 2 in water. Here, the slag particle size of less than 2 mm is slag particles having a sieve mesh of 2 mm, and the slag particle size of 2 mm or more means slag particles having a sieve mesh of not passing 2 mm.
なお、本基礎実験では、500mLのビーカーを用い、蒸留水250mLを充填し、インペラー攪拌を付与しつつ炭酸ガスを吹き込みつつ、溶銑脱硫スラグから32μm〜75μmの粒径のものを選び、15gを添加した。その後、所定の時間経過後に濾紙にて液体と固体を分離した。固体は乾燥後、その成分を分析するとともに、粉末X線回折を行った。水は、その一部の組成を分析するとともに、8時間程静置し、沈殿したものを分析した。図3には、所定時間炭酸化処理後、固体と水とに分離した後の固体試料の組成の経時変化を示し、図4には、240分間処理した後の固体の粉末X線回折結果を示している。X線回折測定条件は、[表2]に示すものとした。 In this basic experiment, a 500 mL beaker is used, 250 mL of distilled water is filled, carbon dioxide is blown in while impeller stirring is performed, and a particle size of 32 μm to 75 μm is selected from hot metal desulfurization slag, and 15 g is added. did. Thereafter, after elapse of a predetermined time, the liquid and the solid were separated with a filter paper. After the solid was dried, its components were analyzed and powder X-ray diffraction was performed. A portion of the composition of water was analyzed, and the mixture was allowed to stand for about 8 hours, and the precipitated water was analyzed. FIG. 3 shows the change over time in the composition of the solid sample after carbonation for a predetermined time and after separation into solid and water, and FIG. 4 shows the powder X-ray diffraction results of the solid after 240 minutes of treatment. Show. The X-ray diffraction measurement conditions were as shown in [Table 2].
溶銑脱硫スラグ中にはSiO2分が含まれているが、これは脱硫工程に不可避的に混入される高炉スラグに由来するものである。このSiO2分は、図4の処理前スラグの粉末X線回折法により、大部分はγ2CaO・SiO2であることが判明した。γ2CaO・SiO2は、冷却に伴いα相から変態したものと思われるが、この場合、相変態に伴う粉化(一般に、ダスティングと称される)により、スラグの粒度が細かくなったものと思われる。この場合、反応の比表面積を大きくできるので本願発明の対象としては有利である。 The hot metal desulfurization slag contains SiO 2 , which originates from blast furnace slag that is inevitably mixed in the desulfurization process. This SiO 2 component was found to be mostly γ2CaO · SiO 2 by the powder X-ray diffraction method of the pre-treatment slag shown in FIG. γ2CaO · SiO 2 seems to have transformed from the α phase with cooling. In this case, the particle size of the slag has become finer due to powdering accompanying the phase transformation (generally called dusting). Seem. In this case, the specific surface area of the reaction can be increased, which is advantageous as an object of the present invention.
図3に示すように、処理中、硫黄濃度の低下のみならず、SiO2濃度の低下が見られ、CaO/SiO2濃度比も処理前が2.4程度であったものが、4.5程度と、脱りん、脱硫剤として再利用可能な値に増加した。また、図4に示すように、処理前の主要成分はγ2CaO・SiO2であったが、処理後の主要成分は炭酸カルシウムに変化したことが確認された。 As shown in FIG. 3, during the treatment, not only the sulfur concentration was lowered but also the SiO 2 concentration was lowered, and the CaO / SiO 2 concentration ratio was about 2.4 before the treatment, Increased to a degree and reusable value as dephosphorization and desulfurization agent. Further, as shown in FIG. 4, the main components of the pretreatment was the γ2CaO · SiO 2, the major components after treatment was confirmed that changes in the calcium carbonate.
また、本基礎実験の結果から、CO2ガスを吹き込み開始後、水のpHが7を下回るとH2Sの発生が著しく促進されることが明らかとなった。 In addition, from the results of this basic experiment, it became clear that the generation of H 2 S is remarkably promoted when the pH of water falls below 7 after the start of blowing CO 2 gas.
[表3]の粒度分布のおよび[表4]の組成を持つ溶銑脱硫スラグを水中に懸濁した状態で、炭酸ガスを吹き込むことにより、H2Sとしての硫黄の除去および、CaCO3の分離回収を試みた(実施例1〜3、比較例1〜2)。 Removal of sulfur as H 2 S and separation of CaCO 3 by blowing carbon dioxide gas in a state where the hot metal desulfurization slag having the particle size distribution of [Table 3] and the composition of [Table 4] is suspended in water Recovery was attempted (Examples 1 to 3, Comparative Examples 1 and 2).
本実施例および比較例では、図1の反応容器1として、内容積6m3のタンクを使用した。該タンク内には予め、3m3の水を装入し、インペラーで攪拌を開始するとともに、底部に設けたノズルより炭酸ガスの吹き込みを開始した。更に、スラグを投入した後、所定時間の処理を行った。処理中、水を循環させ、シックナーにてSiO2を沈殿させた。反応容器底部からは適宜、タンク内の沈殿物(沈殿物A)を抜き取った。処理終了後、水は全て沈降分離装置に移し、さらに沈殿を分離した。生成したCaCO3を主とする沈殿物は熱風乾燥を行い、製鋼工程で底吹きインジェクション用精錬剤として再利用した。反応容器の上部から回収した珪酸を主とする沈殿物(沈殿物B)は、乾燥後、SiO2源として有効利用した。[表5]には、沈殿物Aと沈殿物Bと回収ガスの主要成分を示している。 In this example and the comparative example, a tank having an internal volume of 6 m 3 was used as the reaction vessel 1 in FIG. The tank was charged with 3 m 3 of water in advance, and stirring with an impeller was started, and carbon dioxide blowing was started from a nozzle provided at the bottom. Furthermore, after throwing in the slag, processing for a predetermined time was performed. During the treatment, water was circulated and SiO 2 was precipitated with a thickener. From the bottom of the reaction vessel, the precipitate (precipitate A) in the tank was appropriately extracted. After the treatment, all the water was transferred to a sedimentation separator, and the precipitate was further separated. The produced precipitate mainly composed of CaCO 3 was dried with hot air and reused as a refining agent for bottom blowing injection in the steelmaking process. The precipitate mainly containing silicic acid recovered from the upper part of the reaction vessel (precipitate B) was effectively used as a SiO 2 source after drying. [Table 5] shows the main components of the precipitate A, the precipitate B, and the recovered gas.
実施例1は、[表3]にスラグ1として示す溶銑脱硫スラグをそのまま使用したものである。240分間の処理を行い、CaCO3を主成分とする沈殿物、SiO2を主成分とする沈殿を別個に回収できた。CaCO3を主成分とする沈殿物を乾燥後分析したところ、CaO/SiO2が4.5と、原料スラグの2.3よりも十分高くなっていた。硫黄濃度は0.2%と十分低く、精錬剤として再利用可能であることが分かった。 In Example 1, the hot metal desulfurization slag shown as slag 1 in [Table 3] is used as it is. The treatment for 240 minutes was performed, and the precipitate mainly composed of CaCO 3 and the precipitate mainly composed of SiO 2 could be recovered separately. When the precipitate containing CaCO 3 as a main component was analyzed after drying, CaO / SiO 2 was 4.5, which was sufficiently higher than 2.3 of the raw material slag. It was found that the sulfur concentration was sufficiently low at 0.2% and could be reused as a refining agent.
実施例2は、同じく[表3]のスラグ1の中から2mmアンダーの部分を篩分けを行って処理した。この例では、実施例1に比べて半分の処理時間で同様の効果が得られた。 In Example 2, the portion under 2 mm was similarly processed from the slag 1 of [Table 3] by sieving. In this example, the same effect was obtained in half the processing time as compared with Example 1.
実施例3は、[表3]にスラグ1を粉砕し、全て2mmアンダーとしたものを用いた例であるが、やはり、実施例1に比べて半分の処理時間で同様の効果が得られた。 Example 3 is an example in which the slag 1 was crushed into [Table 3] and all were under 2 mm, but the same effect was obtained in half the processing time as compared with Example 1. .
比較例1は、[表3]にスラグ1を粉砕し、全て2mmアンダーとしたものを用いたが、特開2009-30101に開示されている方法に従って処理したものである。即ち、蒸気と接触させて硫黄を除去した後、CO2を通気して接触させ炭酸化を行った。硫黄の除去は可能であったが、SiO2の分離は出来なかったため、CaO/SiO2の低いものしか回収できなかった。 In Comparative Example 1, the slag 1 was pulverized in [Table 3] and all were under 2 mm, but the slag 1 was processed according to the method disclosed in JP2009-30101A. That is, after removing sulfur by contacting with steam, carbonation was performed by aeration by contacting with CO 2 . Removal of sulfur was possible, but because it was not possible separation of SiO2, could only recover those low CaO / SiO 2.
比較例2は、処理対象として、実施例3同様、[表3]にスラグ1を粉砕し、全て2mmアンダーとしたものを用いた例である。この場合CO2ガス吹き込みを行わず、N2ガスを吹き込んだため、水に硫黄が若干溶解したのみで、S、SiO2の除去効果が殆ど無かった。 Comparative Example 2 is an example in which slag 1 was pulverized into [Table 3] and all made under 2 mm as in the case of Example 3 as a processing target. In this case, since N 2 gas was blown without blowing CO 2 gas, sulfur was slightly dissolved in water, and there was almost no effect of removing S and SiO 2 .
1 反応容器
2 溶銑脱硫スラグ
3 水
4 補給水
5 ガス
6 H2S回収装置
7 CO2分離装置
8 ゲートバルブ
9 沈殿槽
10 炭酸カルシウム
11 SiO2
12 インペラー
13 排気塔
1 Reaction vessel 2 Hot metal desulfurization slag 3 Water
4 makeup water 5 gas 6 H 2 S recovery device 7 CO 2 separation device 8 gate valve 9 sedimentation tank 10 calcium carbonate
11 SiO 2
12 Impeller 13 Exhaust tower
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011185618A JP5522133B2 (en) | 2011-08-29 | 2011-08-29 | Regeneration method of slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011185618A JP5522133B2 (en) | 2011-08-29 | 2011-08-29 | Regeneration method of slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013047152A JP2013047152A (en) | 2013-03-07 |
JP5522133B2 true JP5522133B2 (en) | 2014-06-18 |
Family
ID=48010412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011185618A Active JP5522133B2 (en) | 2011-08-29 | 2011-08-29 | Regeneration method of slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5522133B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5983537B2 (en) * | 2012-05-29 | 2016-08-31 | Jfeスチール株式会社 | Method for removing sulfur from slag containing sulfur |
-
2011
- 2011-08-29 JP JP2011185618A patent/JP5522133B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013047152A (en) | 2013-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2349945B1 (en) | Treatment of tailings streams | |
RU2644169C1 (en) | Method of recovery of alkali and aluminum during processing of the red mud obtained in the bayer process using liming and carbonization technology | |
JP4913023B2 (en) | Slag manufacturing method | |
TWI679282B (en) | Method for recovering calcium-containing solid content from steelmaking slag | |
JP4206419B2 (en) | Ore processing method, ore processing equipment, iron making method, and iron and steel making method | |
BR112014025399B1 (en) | METHOD FOR PROCESSING NON-FERROUS METALURGING SLINGS. | |
WO2015114703A1 (en) | Phosphorus and calcium collection method, and mixture produced by said collection method | |
JP4719082B2 (en) | High temperature slag treatment method | |
TW202012643A (en) | Method for recovering calcium from steelmaking slag | |
JP5790388B2 (en) | Separation method of steel slag by hydrochloric acid solution | |
JP2011006301A (en) | Method for treating steelmaking slag and reformed slag | |
JP5522133B2 (en) | Regeneration method of slag | |
JP5720497B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
JP7524446B2 (en) | Expansion suppression treatment method for steelmaking slag, utilization method for steelmaking slag, and manufacturing method for low f-CaO content slag | |
JP5494687B2 (en) | Hot metal desulfurization treatment method | |
JP5327184B2 (en) | Steelmaking slag and method for producing the same | |
JP5573727B2 (en) | Method for reforming hot metal desulfurization slag | |
JP6201736B2 (en) | Method for producing sintered ore using desulfurized slag | |
JP6369699B2 (en) | Recovery method of refining flux from hot metal desulfurization slag and dephosphorization / desulfurization method of hot metal | |
KR100226942B1 (en) | Modifying treatment method of steel making slag | |
JP2012219298A (en) | Method for recovering iron and phosphorus from steelmaking slag | |
JP2000350976A (en) | Method for solidifying granular steel-making slag | |
JP2001279316A (en) | Method for pre-treating molten iron | |
JP2019162610A (en) | Method and apparatus for removing selenium from slag, method for reutilizing slag and method for producing regenerated slag | |
JP4240033B2 (en) | Hot metal pretreatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140324 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5522133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |