[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5521812B2 - Temperature detection device, electronic flash device, and camera - Google Patents

Temperature detection device, electronic flash device, and camera Download PDF

Info

Publication number
JP5521812B2
JP5521812B2 JP2010138441A JP2010138441A JP5521812B2 JP 5521812 B2 JP5521812 B2 JP 5521812B2 JP 2010138441 A JP2010138441 A JP 2010138441A JP 2010138441 A JP2010138441 A JP 2010138441A JP 5521812 B2 JP5521812 B2 JP 5521812B2
Authority
JP
Japan
Prior art keywords
temperature
translucent member
light
conductive film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010138441A
Other languages
Japanese (ja)
Other versions
JP2012002692A (en
Inventor
照祥 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010138441A priority Critical patent/JP5521812B2/en
Publication of JP2012002692A publication Critical patent/JP2012002692A/en
Application granted granted Critical
Publication of JP5521812B2 publication Critical patent/JP5521812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Stroboscope Apparatuses (AREA)

Description

本発明は、温度検出装置、電子閃光装置、およびカメラに関する。   The present invention relates to a temperature detection device, an electronic flash device, and a camera.

カメラに用いる電子閃光装置の過熱防止技術が知られている(特許文献1参照)。電子閃光装置では、発光管が光を放出すると同時に、大量の熱も発生する。また、発光管が発する光エネルギーがフレネルレンズなどの透光部材に集中するため、透光部材の温度が上昇する。温度検出のためにサーミスタや熱電対などの熱センサを透光部材に直接配設すると、該センサの影が生じる。そこで、従来の技術では影を生じさせない反射鏡に熱センサが配設されている。   A technique for preventing overheating of an electronic flash device used in a camera is known (see Patent Document 1). In an electronic flash device, a large amount of heat is generated at the same time as the arc tube emits light. Moreover, since the light energy emitted from the arc tube concentrates on the light transmitting member such as a Fresnel lens, the temperature of the light transmitting member rises. When a thermal sensor such as a thermistor or a thermocouple is directly disposed on the translucent member for temperature detection, a shadow of the sensor is generated. Therefore, a thermal sensor is disposed in a reflecting mirror that does not cause a shadow in the conventional technique.

特開2003−255448号公報JP 2003-255448 A

しかしながら、透光部材と異なる位置へ熱センサを配設すると、透光部材の正確な温度がわからないという問題があった。   However, when the thermal sensor is disposed at a position different from that of the translucent member, there is a problem that an accurate temperature of the translucent member is not known.

本発明による温度検出装置は、光源からの光を透過する透光部材と、抵抗率に温度依存性を有し、透光部材の面に形成されている透明導電膜と、透明導電膜の抵抗値に基づいて透光部材の温度を検出する温度検出手段と、を備え、透明導電膜は、透光部材の一方の面に形成されており、且つ透光部材の面の略中央部を左右に横断するように設けられていることを特徴とする。
本発明による電子閃光装置は、請求項1〜のいずれか一項に記載の温度検出装置と、撮影補助光を発する発光体と、発光体からの光を透過した透光部材の温度が所定温度を超えたことが温度検出手段によって検出された場合にこれを知らせる報知手段と、を備えることを特徴とする。
本発明によるカメラは、請求項のいずれか一項に記載の電子閃光装置を備えることを特徴とする。
本発明による電子閃光装置は、光源からの光を透過する透光部材と、抵抗率に温度依存性を有し、透光部材の面に形成されている透明導電膜と、透明導電膜の抵抗値に基づいて透光部材の温度を検出する温度検出手段と、を備え、透明導電膜は、透光部材の面の少なくとも中央部を覆うように形成されていることを特徴とする。
The temperature detection device according to the present invention includes a translucent member that transmits light from a light source, a transparent conductive film that has temperature dependency on resistivity, and is formed on the surface of the translucent member, and a resistance of the transparent conductive film. Temperature detecting means for detecting the temperature of the translucent member based on the value , the transparent conductive film is formed on one surface of the translucent member, and the substantially central portion of the surface of the translucent member is It is provided so that it may cross .
An electronic flash device according to the present invention includes a temperature detecting device according to any one of claims 1 to 3 , a light emitting body that emits photographing auxiliary light, and a temperature of a translucent member that transmits light from the light emitting body. And a notifying means for notifying that when the temperature detecting means detects that the temperature has been exceeded.
The camera according to the present invention is characterized by comprising an electronic flash device according to any one of claims 4-6.
An electronic flash device according to the present invention includes a translucent member that transmits light from a light source, a temperature-dependent resistivity, a transparent conductive film formed on the surface of the translucent member, and a resistance of the transparent conductive film. Temperature detecting means for detecting the temperature of the translucent member based on the value, and the transparent conductive film is formed so as to cover at least the central portion of the surface of the translucent member.

本発明によれば、透光部材の温度を正確に検出できる。   According to the present invention, the temperature of the translucent member can be accurately detected.

本発明の一実施の形態によるフラッシュ装置を装着したカメラシステムの外観図である。1 is an external view of a camera system equipped with a flash device according to an embodiment of the present invention. カメラシステムの要部構成を説明するブロック図である。It is a block diagram explaining the principal part structure of a camera system. フラッシュ装置の構成を例示する図である。It is a figure which illustrates the structure of a flash apparatus. 発光部の構成を説明する図である。It is a figure explaining the structure of a light emission part. 透光部材を被写体側から見た図である。It is the figure which looked at the translucent member from the to-be-photographed object side. 温度検出回路の構成を例示する図である。It is a figure which illustrates the structure of a temperature detection circuit. 検出電圧と検出温度との関係を例示する図である。It is a figure which illustrates the relationship between detection voltage and detection temperature. 透明導電膜に対する配線例を説明する図である。It is a figure explaining the example of wiring with respect to a transparent conductive film. 変形例2による透明導電膜の成膜パターンを例示する図である。It is a figure which illustrates the film-forming pattern of the transparent conductive film by the modification 2.

以下、図面を参照して本発明を実施するための形態について説明する。図1は、本発明の一実施の形態によるフラッシュ装置を装着したカメラシステムの外観図である。図1において、カメラ本体10に交換可能な撮影レンズ20が装着されている。カメラ本体10を被写体側から見て左上部に、レリーズボタン11が設けられる。カメラ本体10の中央上部に配設されているアクセサリシュー(不図示)に、フラッシュ装置30が装着されている。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an external view of a camera system equipped with a flash device according to an embodiment of the present invention. In FIG. 1, a replaceable photographing lens 20 is attached to the camera body 10. A release button 11 is provided on the upper left side when the camera body 10 is viewed from the subject side. A flash device 30 is attached to an accessory shoe (not shown) disposed at the upper center of the camera body 10.

図2は、図1のカメラシステムの要部構成を説明するブロック図である。図2において、フラッシュ装置30は、アクセサリシューに備えられている通信用端子51を介して発光開始を指示するタイミング信号、発光量を指示する信号、発光準備中(充電中)や発光準備完了を示す信号などをCPU101との間で送受信する。   FIG. 2 is a block diagram for explaining a main configuration of the camera system of FIG. In FIG. 2, the flash device 30 performs a timing signal for instructing the start of light emission via a communication terminal 51 provided in the accessory shoe, a signal for instructing the amount of light emission, light emission preparation (during charging) and light emission preparation completion. A signal or the like indicated is transmitted to or received from the CPU 101.

CPU101はASICなどによって構成される。CPU101は、後述する各ブロックから出力される信号を入力して所定の演算を行い、演算結果に基づく制御信号を各ブロックへ出力する。   The CPU 101 is configured by an ASIC or the like. The CPU 101 inputs a signal output from each block described later, performs a predetermined calculation, and outputs a control signal based on the calculation result to each block.

撮影レンズ20(図1)を通過してカメラ本体10に入射した被写体光束は、シャッタユニット105を介してCCDイメージセンサやCMOSイメージセンサなどによって構成される撮像素子(不図示)に導かれる。シャッタユニット105は、撮影時にCPU101からの指示に応じて所定のタイミングでシャッタ幕を開き、シャッタ速度に対応する露光時間が経過するとシャッタ幕を閉じる。   The subject luminous flux that has entered the camera body 10 through the photographing lens 20 (FIG. 1) is guided to an imaging device (not shown) configured by a CCD image sensor, a CMOS image sensor, or the like via the shutter unit 105. The shutter unit 105 opens the shutter curtain at a predetermined timing in accordance with an instruction from the CPU 101 during shooting, and closes the shutter curtain when an exposure time corresponding to the shutter speed has elapsed.

操作部材107は、レリーズボタン11(図1)の押下げに連動するレリーズスイッチ、および各種設定を行う操作スイッチ群を含み、操作内容に応じた操作信号をCPU101へ出力する。たとえば、フラッシュ装置30に対する発光許可/発光禁止、および赤目軽減発光などの設定操作に応じて設定操作信号をCPU101へ出力する。   The operation member 107 includes a release switch that interlocks with the depression of the release button 11 (FIG. 1) and an operation switch group that performs various settings, and outputs an operation signal corresponding to the operation content to the CPU 101. For example, a setting operation signal is output to the CPU 101 in accordance with setting operations such as emission permission / prohibition of light emission to the flash device 30 and red-eye reduction light emission.

測距装置102は、撮影レンズ20による焦点調節状態を検出し、検出信号をCPU101へ出力する。焦点調節情報の取得は、たとえば、公知の位相差検出方式によって行う。CPU101は、レンズ駆動ユニット104へ指示を送り、上記焦点調節状態に応じて撮影レンズ20内のフォーカスレンズ(不図示)を光軸方向に進退駆動させ、撮影レンズ20の焦点位置を調節する。なお、測距装置102による焦点検出信号は主要被写体までの距離(撮影距離)に対応する距離情報となる。   The distance measuring device 102 detects a focus adjustment state by the photographing lens 20 and outputs a detection signal to the CPU 101. The focus adjustment information is acquired by, for example, a known phase difference detection method. The CPU 101 sends an instruction to the lens driving unit 104 to drive a focus lens (not shown) in the photographic lens 20 forward and backward in the optical axis direction according to the focus adjustment state, thereby adjusting the focal position of the photographic lens 20. The focus detection signal from the distance measuring device 102 is distance information corresponding to the distance to the main subject (shooting distance).

測光装置103は、撮影レンズ20を通して被写体光量を検出し、検出信号をCPU101へ出力する。CPU101は、この検出信号を用いて被写体輝度を算出し、算出した輝度情報を用いて露出演算を行う。CPU101は、ISO感度を変更して露出演算を行うこともできる。   The photometric device 103 detects the amount of subject light through the photographing lens 20 and outputs a detection signal to the CPU 101. The CPU 101 calculates subject luminance using the detection signal, and performs exposure calculation using the calculated luminance information. The CPU 101 can also perform exposure calculation by changing the ISO sensitivity.

図3は、フラッシュ装置30の構成を例示する図である。図3において、フラッシュ装置30は、制御回路31と、カメラ通信回路32と、昇圧回路33と、定電圧回路34と、充電電圧検出回路35と、ダイオード36と、主コンデンサ37と、発光制御回路38と、トリガー回路39と、キセノン発光管40と、倍電圧回路41と、温度検出回路42と、情報表示部43と、透光部材44とを有し、電池60が装填されている。   FIG. 3 is a diagram illustrating the configuration of the flash device 30. In FIG. 3, a flash device 30 includes a control circuit 31, a camera communication circuit 32, a booster circuit 33, a constant voltage circuit 34, a charge voltage detection circuit 35, a diode 36, a main capacitor 37, and a light emission control circuit. 38, a trigger circuit 39, a xenon arc tube 40, a voltage doubler circuit 41, a temperature detection circuit 42, an information display unit 43, and a translucent member 44, and a battery 60 is loaded.

制御回路31は、フラッシュ装置30内の各ブロックから出力される信号を入力して所定の演算を行い、演算結果に基づく制御信号を各ブロックへ出力する。制御回路31は、カメラ通信回路32を介してカメラ本体10のCPU101(図2)との間で通信を行う。制御回路31は、通信用端子51を介して昇圧開始信号が入力されると、昇圧回路33に昇圧開始を指示する。   The control circuit 31 receives a signal output from each block in the flash device 30, performs a predetermined calculation, and outputs a control signal based on the calculation result to each block. The control circuit 31 communicates with the CPU 101 (FIG. 2) of the camera body 10 via the camera communication circuit 32. When a boost start signal is input via the communication terminal 51, the control circuit 31 instructs the boost circuit 33 to start boosting.

昇圧回路33は、DC−DCコンバータによって構成され、電池60による電圧を昇圧(たとえば、330V)する。主コンデンサ37は、昇圧後の電圧でダイオード36を介して充電される。充電電圧検出回路35は、主コンデンサ37の充電電圧が所定電圧Veに達すると、制御回路31へ昇圧終了を知らせる。制御回路31は、情報表示部43にパイロットランプを点灯させるとともに、発光準備完了を示す信号をカメラ通信回路32からカメラ本体10のCPU101(図2)へ送信させる。   The booster circuit 33 is configured by a DC-DC converter, and boosts the voltage of the battery 60 (for example, 330 V). The main capacitor 37 is charged via the diode 36 with the boosted voltage. When the charging voltage of the main capacitor 37 reaches the predetermined voltage Ve, the charging voltage detection circuit 35 notifies the control circuit 31 of the end of boosting. The control circuit 31 causes the information display unit 43 to light the pilot lamp and causes the camera communication circuit 32 to transmit a signal indicating that light emission preparation is complete to the CPU 101 (FIG. 2) of the camera body 10.

キセノン発光管40は、以下のように放電制御される。カメラ本体10のCPU101から通信用端子51を介して発光を指示する信号が送信されると、制御回路31は発光制御回路38へ指示を送り、スイッチング素子38aをオンさせる。倍電圧回路41は、スイッチング素子38aがオンされると、キセノン発光管40の両電極間に主コンデンサ37の充電電圧の2倍以上の電圧を生成し、キセノン発光管40をより発光しやすくする。トリガー回路39は、スイッチング素子38aがオンされるとトリガー用の電圧を発生し、このトリガー電圧をキセノン発光管40のトリガー電極(不図示)へ印加する。印加されたトリガー電圧によってキセノン発光管40内でキセノンガスが励起され、短期間に数十A〜百A以上の発光電流がキセノン発光管40を流れ、キセノン発光管40が閃光発光する。すなわち、主コンデンサ37内に蓄積されていた電気エネルギーがキセノン発光管40を通じて放電されることにより、撮影補助光を発する。   The xenon arc tube 40 is controlled to discharge as follows. When a signal instructing light emission is transmitted from the CPU 101 of the camera body 10 via the communication terminal 51, the control circuit 31 sends an instruction to the light emission control circuit 38 and turns on the switching element 38a. When the switching element 38a is turned on, the voltage doubler circuit 41 generates a voltage more than twice the charging voltage of the main capacitor 37 between both electrodes of the xenon arc tube 40, thereby making the xenon arc tube 40 easier to emit light. . The trigger circuit 39 generates a trigger voltage when the switching element 38 a is turned on, and applies the trigger voltage to a trigger electrode (not shown) of the xenon arc tube 40. Xenon gas is excited in the xenon arc tube 40 by the applied trigger voltage, and an emission current of several tens of A to one hundred A or more flows in the xenon arc tube 40 in a short time, and the xenon arc tube 40 flashes. That is, the electrical energy stored in the main capacitor 37 is discharged through the xenon arc tube 40, thereby emitting photographing auxiliary light.

キセノン発光管40は、スイッチング素子38aがオンすると直ちに発光を開始し、その発光強度は最大値まで上昇する。発光強度は主コンデンサ37内の蓄積エネルギーの減少とともに低下し、主コンデンサ37の蓄積エネルギーが空になると発光が終了する。なお、実際の撮影時には、蓄積エネルギーを全て放出する前にキセノン発光管40への電力供給が停止されることにより、キセノン発光管40が発する光量が所定光量に制御される。   The xenon arc tube 40 starts to emit light as soon as the switching element 38a is turned on, and its emission intensity increases to the maximum value. The emission intensity decreases as the stored energy in the main capacitor 37 decreases, and the emission ends when the stored energy in the main capacitor 37 becomes empty. In actual photographing, the power supply to the xenon arc tube 40 is stopped before all the stored energy is released, so that the light amount emitted from the xenon arc tube 40 is controlled to a predetermined light amount.

温度検出回路42は、透光部材44の表面温度を示す信号を検出し、該検出信号を制御回路31へ送出する。定電圧回路34は、電池60の残容量にかかわらず所定の電源電圧Vccを発生し、該電圧を制御回路31へ供給する。   The temperature detection circuit 42 detects a signal indicating the surface temperature of the translucent member 44 and sends the detection signal to the control circuit 31. The constant voltage circuit 34 generates a predetermined power supply voltage Vcc regardless of the remaining capacity of the battery 60 and supplies the voltage to the control circuit 31.

図4は、発光部の構成を説明する図である。図4において、キセノン発光管40の前方(被写体側であって図において右方)へ光を導くように反射鏡46が配設される。反射鏡46で反射された光、およびキセノン発光管40からの直接光は、透光部材44に集められる。透光部材44は、たとえばフレネルレンズによって構成されており、キセノン発光管40が発した光を被写体側へ所定パターンで配光する。   FIG. 4 is a diagram illustrating the configuration of the light emitting unit. In FIG. 4, a reflecting mirror 46 is disposed so as to guide light forward of the xenon arc tube 40 (on the subject side and to the right in the drawing). The light reflected by the reflecting mirror 46 and the direct light from the xenon arc tube 40 are collected by the translucent member 44. The translucent member 44 is composed of, for example, a Fresnel lens, and distributes the light emitted from the xenon arc tube 40 to the subject side in a predetermined pattern.

なお、キセノン発光管40は、図において矢印方向に進退移動自在に構成されており、キセノン発光管40と反射鏡46との間隔を変更可能である。また、反射鏡46と透光部材44との間隔も変更可能である。広い照明画角を要する場合はキセノン発光管40と反射鏡46または反射鏡46と透光部材44との間隔を狭くし、狭い照明画角を要する場合はキセノン発光管40と反射鏡46または反射鏡46と透光部材44との間隔を広くする。   The xenon arc tube 40 is configured to be movable back and forth in the direction of the arrow in the figure, and the interval between the xenon arc tube 40 and the reflecting mirror 46 can be changed. Further, the interval between the reflecting mirror 46 and the translucent member 44 can also be changed. When a wide illumination angle of view is required, the interval between the xenon arc tube 40 and the reflecting mirror 46 or the reflecting mirror 46 and the translucent member 44 is narrowed, and when a narrow illumination angle of view is required, the xenon arc tube 40 and the reflecting mirror 46 or reflection. The interval between the mirror 46 and the translucent member 44 is increased.

図5は、透光部材44を被写体側から見た図である。透光部材44の表面には、たとえば、錫ドープ酸化インジウム(Indium Tin Oxide)などの透明導電膜45が成膜されている。透明導電膜45は、たとえば、透光部材44の略中央部を左右に横断するように設けられる。透明導電膜45の成膜位置は、透光部材44において最も温度上昇しやすい領域(すなわち、光のエネルギー密度が高い領域)を含む。   FIG. 5 is a view of the translucent member 44 as viewed from the subject side. On the surface of the translucent member 44, for example, a transparent conductive film 45 such as tin-doped indium oxide is formed. The transparent conductive film 45 is provided, for example, so as to cross the substantially central portion of the translucent member 44 to the left and right. The film formation position of the transparent conductive film 45 includes a region where the temperature is most likely to rise in the translucent member 44 (that is, a region where the energy density of light is high).

図6は、温度検出回路42の構成を例示する図である。図6において、基準抵抗器421と透光部材44上の透明導電膜45とが直列に接続された上で、これらの合成抵抗に電圧Vccが印加される。上記温度検出回路42は、透明導電膜45の抵抗値R45に基づく電圧Vを検出する。   FIG. 6 is a diagram illustrating a configuration of the temperature detection circuit 42. In FIG. 6, after the reference resistor 421 and the transparent conductive film 45 on the translucent member 44 are connected in series, the voltage Vcc is applied to these combined resistors. The temperature detection circuit 42 detects the voltage V based on the resistance value R45 of the transparent conductive film 45.

検出電圧Vは、次式(1)によって算出される。
V=Vcc×R45/(R421+R45) (1)
ただし、Vccは定電圧回路34から供給される電圧である。R421は基準抵抗器421の抵抗値である。
The detection voltage V is calculated by the following equation (1).
V = Vcc × R45 / (R421 + R45) (1)
However, Vcc is a voltage supplied from the constant voltage circuit 34. R421 is the resistance value of the reference resistor 421.

図7は、検出電圧Vと検出温度(透光部材44の表面温度)との関係を例示する図である。透明導電膜45を構成する錫ドープ酸化インジウムは、その抵抗率が温度依存性を有する。このため、透明導電膜45の抵抗値R45は、透光部材44の温度の上昇とともに増加し、温度が高いほど検出温度Vが高くなる。検出温度Vの読み取りは、たとえばキセノン発光管40による1回の発光終了直後に行えばよい(発光時の電磁波ノイズによる誤認識を防ぐため)。制御回路31は、たとえば、検出電圧Vを引数として検出温度を読み出すように構成したLUT(ルックアップテーブル)をあらかじめ内部の不揮発性メモリに記憶している。制御回路31は、温度検出回路42からの検出信号を用いて、透光部材44の表面温度をLUTから取得する。なお、ルックアップテーブルを記憶する代わりに検出電圧Vを変数とする関数を記憶するようにしてもよい。この場合は、検出電圧Vを変数に代入することによって透光部材44の表面温度を算出する。   FIG. 7 is a diagram illustrating the relationship between the detection voltage V and the detection temperature (surface temperature of the translucent member 44). The resistivity of the tin-doped indium oxide constituting the transparent conductive film 45 has temperature dependence. For this reason, the resistance value R45 of the transparent conductive film 45 increases as the temperature of the translucent member 44 increases, and the detected temperature V increases as the temperature increases. The detection temperature V may be read, for example, immediately after the end of one light emission by the xenon arc tube 40 (to prevent erroneous recognition due to electromagnetic wave noise during light emission). For example, the control circuit 31 stores an LUT (lookup table) configured to read the detected temperature using the detected voltage V as an argument in an internal nonvolatile memory in advance. The control circuit 31 uses the detection signal from the temperature detection circuit 42 to acquire the surface temperature of the translucent member 44 from the LUT. Note that a function having the detected voltage V as a variable may be stored instead of storing the lookup table. In this case, the surface temperature of the translucent member 44 is calculated by substituting the detection voltage V into a variable.

図8は、透明導電膜45に対する配線材49a、49bの配線例を説明する図である。透光部材44の両端(図5の左右端に対応)において、透明導電膜45に導電性ゴム47a、47bを接着する。そして、透光部材44との間で導電性ゴム47a、47bを挟むように、配線用基板48a、48bをさらに接着する。配線用基板48a、48bには、それぞれ配線材49a、49bをハンダ付けする。配線材49a、49bは、一方をGNDに接続し、他方は基準抵抗器42と接続する。これは、透明導電膜45の抵抗値を温度検出回路に接続するための一例であり、これに限定するものではない。   FIG. 8 is a diagram for explaining a wiring example of the wiring members 49a and 49b with respect to the transparent conductive film 45. FIG. Conductive rubbers 47 a and 47 b are bonded to the transparent conductive film 45 at both ends (corresponding to the left and right ends in FIG. 5) of the translucent member 44. Then, the wiring boards 48 a and 48 b are further bonded so that the conductive rubber 47 a and 47 b are sandwiched between the translucent member 44. Wiring materials 49a and 49b are soldered to the wiring boards 48a and 48b, respectively. One of the wiring members 49 a and 49 b is connected to GND, and the other is connected to the reference resistor 42. This is an example for connecting the resistance value of the transparent conductive film 45 to the temperature detection circuit, and the present invention is not limited to this.

透光部材44の表面温度は、キセノン発光管40による単位時間当たりの放電エネルギーが高いほど上昇する。具体的には、フラッシュ装置30を発光させるフラッシュ撮影を連続して行う場合に温度が上昇しやすい。制御装置31は、検出温度が透光部材44を構成する材料の融点より低い材料軟化温度よりさらに所定値低い温度に達すると、カメラ通信回路32へ指示を送り、カメラ本体10側のCPU101へ透光部材44の温度上昇を伝える。   The surface temperature of the translucent member 44 increases as the discharge energy per unit time by the xenon arc tube 40 increases. Specifically, the temperature tends to rise when continuous flash photography is performed to cause the flash device 30 to emit light. When the detected temperature reaches a temperature lower by a predetermined value than the material softening temperature lower than the melting point of the material constituting the translucent member 44, the control device 31 sends an instruction to the camera communication circuit 32 and transmits the instruction to the CPU 101 on the camera body 10 side. The temperature rise of the optical member 44 is transmitted.

制御回路31はさらに、情報表示部43に透光部材44の温度上昇を示す表示を行うことにより、撮影者に対して透光部材44の温度上昇を知らせる。撮影者は、たとえば、フラッシュ装置30を発光させないで撮影を行うなどの対処が可能になる。   Further, the control circuit 31 notifies the photographer of the temperature rise of the translucent member 44 by displaying on the information display unit 43 the temperature rise of the translucent member 44. For example, the photographer can take measures such as shooting without causing the flash device 30 to emit light.

一方、透光部材44の温度上昇を伝えられたカメラ本体10は、たとえば、ISO感度を上げてフラッシュ装置30に新たに指示する発光量を低下させることにより、さらなる温度上昇を抑えるようにフラッシュ装置30に対する制御を行う。   On the other hand, the camera body 10 to which the temperature rise of the translucent member 44 has been transmitted, for example, increases the ISO sensitivity and lowers the amount of light that is newly instructed to the flash device 30, thereby suppressing further temperature rise. 30 is controlled.

また、透光部材44の温度上昇を伝えられたカメラ本体10は、撮影画角を狭く変更するとともに、フラッシュ装置30に新たに指示する照明画角を狭くする。すなわち、キセノン発光管40と反射鏡46や透光部材44との間隔を広くすることによって、さらなる温度上昇を抑えるようにフラッシュ装置30に対する制御を行う。   Further, the camera body 10 to which the temperature rise of the translucent member 44 has been transmitted changes the shooting angle of view narrower, and narrows the illumination angle of view newly instructed to the flash device 30. That is, the flash device 30 is controlled so as to suppress further temperature rise by widening the gap between the xenon arc tube 40 and the reflecting mirror 46 or the translucent member 44.

以上説明した実施形態によれば、次の作用効果が得られる。
(1)フラッシュ装置30の温度検出部は、キセノン発光管40からの光を透過する透光部材44と、抵抗率に温度依存性を有し、透光部材44の面に形成されている透明導電膜45と、透明導電膜45の抵抗値R45に基づいて透光部材44の温度を検出する温度検出回路42とを備える。これにより、透明導電膜45による影を生じさせることなく、透光部材44の温度を直接的に、かつ正確に検出できる。正確に検出できることで、透光部材44以外の他の部材についての検出温度から透光部材44の温度を推定する場合に比べてマージンを大きく確保しなくてよいので、温度上昇が許容範囲いっぱいになるまでフラッシュ発光させることができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) The temperature detection unit of the flash device 30 includes a translucent member 44 that transmits light from the xenon arc tube 40 and a temperature dependency on resistivity, and is formed on the surface of the translucent member 44. A conductive film 45 and a temperature detection circuit 42 that detects the temperature of the translucent member 44 based on the resistance value R45 of the transparent conductive film 45 are provided. Thereby, the temperature of the translucent member 44 can be detected directly and accurately without causing a shadow by the transparent conductive film 45. Since accurate detection is possible, it is not necessary to secure a large margin as compared with the case of estimating the temperature of the translucent member 44 from the detected temperature of other members other than the translucent member 44, so that the temperature rise is within the allowable range. The flash can be emitted until

(2)透明導電膜45は、錫ドープ酸化インジウムで構成するので、キセノン発光管40からの光の減衰を抑えて適切に透光部材44の温度を検出できる。 (2) Since the transparent conductive film 45 is composed of tin-doped indium oxide, it is possible to appropriately detect the temperature of the translucent member 44 while suppressing attenuation of light from the xenon arc tube 40.

(3)透明導電膜45は、透光部材44の一方の面に形成するので、両方の面に形成する場合に比べて簡単に構成できる。 (3) Since the transparent conductive film 45 is formed on one surface of the translucent member 44, the transparent conductive film 45 can be configured more easily than when formed on both surfaces.

(4)フラッシュ装置30は、上述した温度検出部と、撮影補助光を発する発光体キセノン発光管40と、該キセノン発光管40からの光を透過した透光部材44の温度が所定温度を超えたことが上記温度検出部によって検出された場合にこれを知らせる情報表示部43とを備えるようにした。これにより、撮影者は、フラッシュ装置30を発光させないで撮影を行うなどのさらなる温度上昇を避けるように対処できる。 (4) In the flash device 30, the temperature of the above-described temperature detection unit, the light emitter xenon arc tube 40 that emits photographing auxiliary light, and the translucent member 44 that transmits the light from the xenon arc tube 40 exceed a predetermined temperature. An information display unit 43 is provided for informing the user when the temperature is detected by the temperature detection unit. As a result, the photographer can deal with avoiding further temperature rise such as shooting without causing the flash device 30 to emit light.

(5)上記所定温度は、カメラ本体10のISO感度を高く変更し、当該ISO感度の変更に応じて撮影補助光の光量を低減するための温度としたので、撮影者が温度上昇に気づかなくても、さらなる温度上昇を防止できる。また、撮影補助光の光量を低減することによる露出不足をISO感度のアップで補うことができる。 (5) The predetermined temperature is a temperature for changing the ISO sensitivity of the camera body 10 to be high and reducing the amount of the photographing auxiliary light in accordance with the change in the ISO sensitivity, so that the photographer does not notice the temperature rise. However, further temperature rise can be prevented. In addition, insufficient exposure due to a reduction in the amount of photographing auxiliary light can be compensated by increasing ISO sensitivity.

(6)上記所定温度は、カメラ本体10の撮影画角を狭く変更し、当該撮影画角の変更に応じて撮影補助光の照明画角を狭く変更するための温度としたので、撮影者が温度上昇に気づかなくても、さらなる温度上昇を防止できる。また、照明画角と撮影画角のミスマッチを防ぐことができる。 (6) The predetermined temperature is a temperature for narrowing the shooting field angle of the camera body 10 and changing the illumination field angle of the auxiliary shooting light according to the change of the shooting field angle. Even if the temperature rise is not noticed, further temperature rise can be prevented. In addition, a mismatch between the illumination field angle and the shooting field angle can be prevented.

(変形例1)
透光部材44の面に成膜する透明導電膜45の形状は、図5に例示するものに限らず、透光部材44の面を覆うように成膜させたものでもよい。なお、配線材49a、49bを図5に例示する透光部材44の左右両端に配線する場合、透明導電膜45の抵抗値R45に寄与するのは、主として左右両端の配線材取付け部を結ぶ直線状部分であるので、該直線状部分が上記最も温度上昇しやすい領域と合致するように構成する。
(Modification 1)
The shape of the transparent conductive film 45 formed on the surface of the translucent member 44 is not limited to that illustrated in FIG. 5, and may be formed so as to cover the surface of the translucent member 44. Note that when wiring members 49a and 49b are wired to the left and right ends of the translucent member 44 illustrated in FIG. 5, the resistance value R45 of the transparent conductive film 45 is mainly a straight line connecting the wiring member mounting portions at both the left and right ends. Therefore, the linear portion is configured to coincide with the region where the temperature rises most easily.

(変形例2)
また、透光部材44の面に成膜する透明導電膜45の形状を図9に例示するように螺旋状にしてもよい。図9の場合は、透明導電膜45の螺旋パターンの全てが抵抗値R45に寄与する。図9の場合の配線材49a、49bの配線位置は、ともに透光部材44の左端である。
(Modification 2)
Further, the shape of the transparent conductive film 45 formed on the surface of the translucent member 44 may be spiral as illustrated in FIG. In the case of FIG. 9, all of the spiral pattern of the transparent conductive film 45 contributes to the resistance value R45. The wiring positions of the wiring members 49 a and 49 b in the case of FIG. 9 are both the left end of the translucent member 44.

(変形例3)
透光部材44を二枚重ねで構成する場合、第1透光部材と第2透光部材の間に透明導電膜を挟むように構成してもよい。
(Modification 3)
In the case where the two translucent members 44 are stacked, a transparent conductive film may be sandwiched between the first translucent member and the second translucent member.

(変形例4)
フラッシュ装置30の発光体としてキセノン発光管40を用いる例を説明したが、発光体はキセノン発光管40以外の他の放電発光管を使用してもよい。また、放電発光管の代わりに、LED光源を使用してもよい。
(Modification 4)
Although the example using the xenon arc tube 40 as the light emitter of the flash device 30 has been described, a discharge arc tube other than the xenon arc tube 40 may be used as the light emitter. Further, an LED light source may be used instead of the discharge arc tube.

(変形例5)
透光部材44はフレネルレンズに限らず、フィルタなどの他の光学部材にも適用してよい。
(Modification 5)
The translucent member 44 is not limited to the Fresnel lens, and may be applied to other optical members such as a filter.

(変形例6)
フラッシュ装置30をカメラ本体10に直接装着する場合に限らず、カメラ本体10とフラッシュ装置30との間で無線通信を介して発光制御を行う場合にも、本発明を適用してよい。フラッシュ装置30が撮影者の近傍に配設されておらず、撮影者がフラッシュ装置30に備えられている情報表示部43を直接確認できない場合でも、無線通信によって透光部材44の温度上昇を撮影者に伝えることができる。
(Modification 6)
The present invention may be applied not only when the flash device 30 is directly attached to the camera body 10 but also when light emission control is performed between the camera body 10 and the flash device 30 via wireless communication. Even when the flash device 30 is not disposed in the vicinity of the photographer and the photographer cannot directly check the information display unit 43 provided in the flash device 30, the temperature increase of the translucent member 44 is photographed by wireless communication. Can tell.

(変形例7)
本発明は、フラッシュ装置30のみならず、フラッシュ装置を内蔵するカメラにも適用してよい。また、本発明を、光源部における発熱が生じるプロジェクタ装置にも適用して構わない。
(Modification 7)
The present invention may be applied not only to the flash device 30 but also to a camera incorporating the flash device. The present invention may also be applied to a projector device that generates heat in the light source unit.

(変形例8)
透明導電膜45の構成例として錫ドープ酸化インジウム(ITO)を説明したが、透明性および導電性を有する他の構成例として、アンチモンドープ酸化錫(ATO)、フッ素ドープ酸化錫(FTO)、アルミニウムドープ酸化亜鉛(AZO)等を用いることができる。また、金の微細な繊維を配合した高分子膜、マグネシウムを用いるものでもよい。
(Modification 8)
Although tin-doped indium oxide (ITO) has been described as a structural example of the transparent conductive film 45, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum are other structural examples having transparency and conductivity. Doped zinc oxide (AZO) or the like can be used. Further, a polymer film containing fine gold fibers or magnesium may be used.

以上の説明はあくまで一例であり、上記の実施形態の構成に何ら限定されるものではない。   The above description is merely an example, and is not limited to the configuration of the above embodiment.

10…カメラ本体
30…フラッシュ装置
31…制御回路
32…カメラ通信回路
33…昇圧回路
37…主コンデンサ
38…発光制御回路
40…キセノン発光管
42…温度検出回路
43…情報表示部
44…透光部材
45…透明導電膜
46…反射鏡
DESCRIPTION OF SYMBOLS 10 ... Camera body 30 ... Flash apparatus 31 ... Control circuit 32 ... Camera communication circuit 33 ... Booster circuit 37 ... Main capacitor 38 ... Light emission control circuit 40 ... Xenon arc tube 42 ... Temperature detection circuit 43 ... Information display part 44 ... Translucent member 45 ... Transparent conductive film 46 ... Reflector

Claims (8)

光源からの光を透過する透光部材と、
抵抗率に温度依存性を有し、前記透光部材の面に形成されている透明導電膜と、
前記透明導電膜の抵抗値に基づいて前記透光部材の温度を検出する温度検出手段と、
を備え
前記透明導電膜は、前記透光部材の一方の面に形成されており、且つ前記透光部材の面の略中央部を左右に横断するように設けられていることを特徴とする温度検出装置。
A translucent member that transmits light from the light source;
A transparent conductive film having a temperature dependency on resistivity and formed on the surface of the translucent member;
Temperature detecting means for detecting the temperature of the translucent member based on the resistance value of the transparent conductive film;
Equipped with a,
The transparent conductive film is formed on one surface of the translucent member, and is provided so as to cross the substantially central portion of the surface of the translucent member from side to side. .
請求項1に記載の温度検出装置において、
前記透明導電膜は、錫ドープ酸化インジウムで構成されることを特徴とする温度検出装
置。
The temperature detection device according to claim 1,
The temperature detecting device, wherein the transparent conductive film is made of tin-doped indium oxide.
請求項1または2に記載の温度検出装置において、
前記透明導電膜は、前記透光部材を構成する第1透光部材および第2透光部材の間に形
成されていることを特徴とする温度検出装置。
The temperature detection device according to claim 1 or 2,
The temperature detecting device, wherein the transparent conductive film is formed between a first light transmissive member and a second light transmissive member constituting the light transmissive member.
請求項1〜のいずれか一項に記載の温度検出装置と、
撮影補助光を発する発光体と、
前記発光体からの光を透過した前記透光部材の温度が所定温度を超えたことが前記温度検出手段によって検出された場合にこれを知らせる報知手段と、
を備えることを特徴とする電子閃光装置。
The temperature detection device according to any one of claims 1 to 3 ,
An illuminant that emits shooting assistance light;
Informing means for notifying the case where the temperature detecting means detects that the temperature of the translucent member that has transmitted light from the light emitter exceeds a predetermined temperature;
An electronic flash device comprising:
請求項に記載の電子閃光装置において、
前記所定温度は、カメラのISO感度を高く変更し、当該ISO感度の変更に応じて前記撮影補助光の光量を低減するための温度であることを特徴とする電子閃光装置。
The electronic flash device according to claim 4 .
The electronic flash device according to claim 1, wherein the predetermined temperature is a temperature for changing a high ISO sensitivity of the camera and reducing the amount of the photographing auxiliary light in accordance with the change of the ISO sensitivity.
請求項に記載の電子閃光装置において、
前記所定温度は、カメラの撮影画角を狭く変更し、当該撮影画角の変更に応じて前記撮影補助光の照明画角を狭く変更するための温度であることを特徴とする電子閃光装置。
The electronic flash device according to claim 4 .
The electronic flash device according to claim 1, wherein the predetermined temperature is a temperature for changing a shooting field angle of a camera narrowly and changing an illumination field angle of the shooting auxiliary light in accordance with the change of the shooting field angle.
請求項のいずれか一項に記載の電子閃光装置を備えることを特徴とするカメラ。 A camera comprising the electronic flash device according to any one of claims 4 to 6 . 光源からの光を透過する透光部材と、A translucent member that transmits light from the light source;
抵抗率に温度依存性を有し、前記透光部材の面に形成されている透明導電膜と、A transparent conductive film having a temperature dependency on resistivity and formed on the surface of the translucent member;
前記透明導電膜の抵抗値に基づいて前記透光部材の温度を検出する温度検出手段と、Temperature detecting means for detecting the temperature of the translucent member based on the resistance value of the transparent conductive film;
を備え、With
前記透明導電膜は、前記透光部材の面の少なくとも中央部を覆うように形成されていることを特徴とする電子閃光装置。The electronic flash device, wherein the transparent conductive film is formed so as to cover at least a central portion of the surface of the translucent member.
JP2010138441A 2010-06-17 2010-06-17 Temperature detection device, electronic flash device, and camera Active JP5521812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138441A JP5521812B2 (en) 2010-06-17 2010-06-17 Temperature detection device, electronic flash device, and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138441A JP5521812B2 (en) 2010-06-17 2010-06-17 Temperature detection device, electronic flash device, and camera

Publications (2)

Publication Number Publication Date
JP2012002692A JP2012002692A (en) 2012-01-05
JP5521812B2 true JP5521812B2 (en) 2014-06-18

Family

ID=45534837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138441A Active JP5521812B2 (en) 2010-06-17 2010-06-17 Temperature detection device, electronic flash device, and camera

Country Status (1)

Country Link
JP (1) JP5521812B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006439B1 (en) * 2013-06-04 2016-04-29 Commissariat Energie Atomique TEMPERATURE SENSOR WITH THERMOSENSIBLE PASTE
US11333560B2 (en) 2013-06-04 2022-05-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Temperature sensor with heat-sensitive paste

Also Published As

Publication number Publication date
JP2012002692A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US7606480B2 (en) Photographic illuminating device and camera
JP5521812B2 (en) Temperature detection device, electronic flash device, and camera
US5287134A (en) Photographic flash apparatus
JP3670376B2 (en) camera
CN111629493B (en) Lighting device having function of cooling light-emitting part and control method thereof
JP6486040B2 (en) Imaging system, illumination device, and control method
JP5866962B2 (en) Lighting device
JP2009300523A (en) Flashing device and optical apparatus
JP2012048001A (en) Light emitting device
JP5224757B2 (en) Strobe device, imaging device, and camera system
JP2015191000A (en) Imaging device, flash device and flash photographing system
CN117693085A (en) Lighting apparatus and control method for reducing temperature rise due to light emission
JP2019039979A (en) Imaging device and control method thereof
JP2001117148A (en) Stroboscopic device and camera equipped therewith
JPH10177854A (en) Flashing device and flash photographic device
JP5493794B2 (en) Lighting device
JP2004252413A (en) Camera
JP3445312B2 (en) Camera strobe control
JP4130726B2 (en) camera
JP6129013B2 (en) Slave flash device and imaging system
JP3956220B2 (en) camera
JP5387190B2 (en) Electronics
JPS60100125A (en) Flash device
JP2006171280A (en) Automatic strobe device
JP2753689B2 (en) Camera with built-in self-timer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250