[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5518421B2 - Recycling method for nickel-plated copper or copper alloy scrap - Google Patents

Recycling method for nickel-plated copper or copper alloy scrap Download PDF

Info

Publication number
JP5518421B2
JP5518421B2 JP2009235978A JP2009235978A JP5518421B2 JP 5518421 B2 JP5518421 B2 JP 5518421B2 JP 2009235978 A JP2009235978 A JP 2009235978A JP 2009235978 A JP2009235978 A JP 2009235978A JP 5518421 B2 JP5518421 B2 JP 5518421B2
Authority
JP
Japan
Prior art keywords
nickel
copper
solution
copper alloy
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009235978A
Other languages
Japanese (ja)
Other versions
JP2011084756A (en
Inventor
健 櫻井
誠一 石川
賢治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2009235978A priority Critical patent/JP5518421B2/en
Publication of JP2011084756A publication Critical patent/JP2011084756A/en
Application granted granted Critical
Publication of JP5518421B2 publication Critical patent/JP5518421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、ニッケルめっきが施された銅又は銅合金屑から連続して効率良くニッケルを剥離し、ニッケルめっきが剥離された銅又は銅合金屑を銅又は銅合金の製造用原料として使用するリサイクル方法に関するものである。   The present invention is a recycling method in which nickel is continuously and efficiently peeled off from copper or copper alloy scraps subjected to nickel plating, and the copper or copper alloy wastes from which nickel plating is peeled is used as a raw material for producing copper or copper alloys. It is about the method.

従来、ICやLSIなどの半導体装置、各種電子・電気部品に用いられるリードフレーム、端子、コネクタ等に、銅又は銅合金からなる銅条材の表面にニッケル、錫、銅などのめっき層が形成されためっき付銅条材が広く使用されている。
この様なめっき付銅条材は打抜き成形にて加工して使用されることが多く、打抜き成形時に発生する多量の屑は回収され、銅又は銅合金の製造用原料として使用することが資源リサイクルの観点から重要となっている。
この場合、リードフレームなどの電子材に使用される銅合金は、その性質から純銅に近いものがあり、ニッケル付きの屑は、薄めて再利用するか、あるいは一般屑として安い価格で市中に売却せざるを得ないのが現状である。
Conventionally, plating layers of nickel, tin, copper, etc. have been formed on the surface of copper strips made of copper or copper alloys on lead frames, terminals, connectors, etc. used in semiconductor devices such as IC and LSI, and various electronic and electrical components. Plated copper strips are widely used.
Such plated copper strips are often processed by punching and used, and a large amount of scrap generated during punching is collected and recycled as a raw material for copper or copper alloy production. It is important from the point of view.
In this case, copper alloys used for electronic materials such as lead frames are close to pure copper due to their properties, and nickel-containing scraps can be thinned and reused, or they can be used as general scrap at a low price in the market. The current situation is that it must be sold.

そこで、特許文献1では、特にニッケルめっきに着目し、ニッケルめっきが施された銅又は銅合金屑から剥離液にてニッケルめっき層を剥離した後、銅又は銅合金屑の表面を更に0.2〜200μmエッチングし、銅又は銅合金原料として使用するリサイクル方法を開示している。
また、特許文献2には、ニッケルを含有する剥離液からニッケル溶液と剥離液を分離する方法として、圧力透析装置に廃酸溶液を供給して透析し、酸溶液と金属分濃度を増大せしめた金属濃縮液とに分離し、該金属濃縮液をイオン交換樹脂装置に供給し、酸溶液と廃酸とに分離し、廃酸溶液の酸回収率および金属除去率を向上して、廃棄される液の量を少なくする方法が開示されている。
Then, in patent document 1, paying attention to nickel plating especially, after peeling a nickel plating layer with a peeling liquid from the copper or copper alloy waste on which nickel plating was given, the surface of copper or copper alloy waste was further 0.2. A recycling method is disclosed that etches ~ 200 μm and is used as a copper or copper alloy raw material.
In Patent Document 2, as a method for separating a nickel solution and a stripping solution from a stripping solution containing nickel, a waste acid solution was supplied to a pressure dialysis machine and dialyzed to increase the concentration of the acid solution and the metal content. Separated into a metal concentrate, the metal concentrate is supplied to an ion exchange resin device, separated into an acid solution and a waste acid, and is discarded after improving the acid recovery rate and metal removal rate of the waste acid solution. A method for reducing the amount of liquid is disclosed.

特開2001−123280号公報JP 2001-123280 A 特開2003−144858号公報JP 2003-144858 A

特許文献1に開示の方法では、高価で寿命の短いニッケル剥離液を使用しており、また、ニッケル剥離液に起因するコンタミを除去するために、ニッケルめっき剥離後も更に銅又は銅合金屑にエッチングを行っている。また、剥離に供した後の剥離液の廃液処理も問題になる。
この場合、特許文献2記載の廃液処理技術により、廃液から酸を回収することができるが、リサイクル技術としてさらにニッケルについても効率よく回収することが望まれる。
In the method disclosed in Patent Document 1, an expensive and short-life nickel stripping solution is used, and in order to remove contamination caused by the nickel stripping solution, copper or copper alloy scraps are further removed after the nickel plating stripping. Etching is performed. In addition, waste liquid treatment of the stripping solution after being subjected to stripping becomes a problem.
In this case, although the acid can be recovered from the waste liquid by the waste liquid treatment technique described in Patent Document 2, it is desired to recover nickel more efficiently as a recycling technique.

本発明はこの様な事情に鑑みてなされたものであり、高価で寿命の短い剥離液を使用せず、剥離後のエッチングもすることなく、連続して効率良く、ニッケルめっきが施された銅又は銅合金屑からニッケルを剥離して、ニッケルめっきが剥離された銅又は銅合金屑を銅又は銅合金の製造用原料として使用し、しかも剥離液の廃液処理の問題も解消し、その廃液からニッケルも回収可能にしたリサイクル方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and does not use an expensive and short-life stripping solution, and does not etch after stripping. Or, peel nickel from copper alloy scraps, use copper or copper alloy scraps from which nickel plating has been peeled off as a raw material for the production of copper or copper alloys, and also eliminate the problem of waste liquid treatment of the stripping solution. The purpose is to provide a recycling method in which nickel can also be collected.

本発明者らは鋭意研究の結果、硫酸ベースの安価でシンプルな剥離液を使用して電解にてニッケルを直接酸化して硫酸ニッケルを生成することにより、銅又は銅合金屑から剥離し、その剥離液については、硫酸ニッケルを系外に排出すれば、繰り返し使用可能で、いわゆるゼロエミッションを達成できると考えた。その場合に、剥離液から硫酸ニッケルを排出する際の効率を高めるために、圧力透析装置を使用して、使用済み剥離液から硫酸ニッケルを濃縮分離することが有効であることを見出した。また、濃縮分離された硫酸ニッケルを、硫酸ニッケルをベースとしたpHが1〜6の電解液中にて電解することにより、カソード表面上に効率良くニッケルが回収出来ることも見出した。
更に、硫酸ベースのシンプルな剥離液を使用するので、硫黄(S)等の残存によるコンタミがなく剥離後のエッチングも不要であることを確認した。
As a result of diligent research, the inventors of the present invention have developed nickel sulfate by directly oxidizing nickel by electrolysis using an inexpensive and simple stripping solution based on sulfuric acid. Regarding the stripping solution, it was considered that if nickel sulfate was discharged out of the system, it could be used repeatedly and so-called zero emission could be achieved. In that case, in order to raise the efficiency at the time of discharging | emitting nickel sulfate from stripping solution, it discovered that it was effective to concentrate and isolate nickel sulfate from used stripping solution using a pressure dialysis apparatus. It has also been found that nickel can be efficiently recovered on the cathode surface by electrolyzing the concentrated and separated nickel sulfate in an electrolyte having a pH of 1 to 6 based on nickel sulfate.
Furthermore, since a simple stripping solution based on sulfuric acid was used, it was confirmed that there was no contamination due to residual sulfur (S) and the like, and etching after stripping was unnecessary.

本発明の製造方法は、剥離液として硫酸溶液が貯留され、該硫酸溶液の硫酸濃度が50〜300g/Lであり、pHが−0.7〜0である第一電解槽中に、表面にニッケルめっきが施された銅又は銅合金屑を浸漬することにより、Ni+HSO→NiSO+Hなる化学反応により前記ニッケルめっきを剥離し、剥離されたニッケルを含有する使用済み剥離液を圧力透析装置にて、濃縮された硫酸ニッケル溶液と濃縮された硫酸溶液とに分離し、前記濃縮された硫酸ニッケル溶液を第二電解槽中にて電解することによりニッケルを回収し、前記濃縮された硫酸溶液は前記第一電解槽に戻すことを特徴とする。
圧力透析装置とは圧力による膜分離法であり、剥離されたニッケルを含有する使用済み剥離液を濃縮硫酸ニッケル溶液と濃縮硫酸溶液とに効率よく分離する装置であり、スパイラル型荷重膜を備えていることが好ましい。
In the production method of the present invention, a sulfuric acid solution is stored as a stripping solution, the sulfuric acid concentration of the sulfuric acid solution is 50 to 300 g / L, and the pH is -0.7 to 0. By immersing the nickel-plated copper or copper alloy scrap, the nickel plating is peeled off by a chemical reaction of Ni + H 2 SO 4 → NiSO 4 + H 2 , and the used stripping solution containing the peeled nickel is pressured In a dialyzer, the nickel sulfate solution is separated into a concentrated nickel sulfate solution and the concentrated nickel sulfate solution is electrolyzed in a second electrolytic cell to recover nickel and the concentrated The sulfuric acid solution is returned to the first electrolytic cell.
A pressure dialysis machine is a pressure-based membrane separation method that efficiently separates a used stripping solution containing stripped nickel into a concentrated nickel sulfate solution and a concentrated sulfuric acid solution, and has a spiral load membrane. Preferably it is.

酸濃度が50g/L未満であると、ニッケルよりも母材の銅又は銅合金屑が主として溶解して、ニッケルの溶解が進みにくい。硫酸濃度が300g/Lを超えると、粘性の上昇により剥離速度が下がり、剥離に時間がかかることになる。より好ましくは、硫酸濃度150〜300g/Lである。pHは−0.7未満であると、ニッケルの溶解度が下がり、pHが0を超えると、ニッケルの溶解速度が低くなり、剥離に時間がかかることになる。 When sulfuric acid concentration is less than 50 g / L, primarily dissolved copper or copper alloy scrap of the base material than nickel hardly proceeds dissolution of nickel. If the sulfuric acid concentration exceeds 300 g / L, the peeling speed decreases due to the increase in viscosity, and it takes time for peeling. More preferably, the sulfuric acid concentration is 150 to 300 g / L. When the pH is less than −0.7, the solubility of nickel decreases, and when the pH exceeds 0, the dissolution rate of nickel decreases and it takes time to peel off.

また、本発明の製造方法において、前記第二電解槽の電解液の主成分が硫酸ニッケルであり、pHが1〜6であることを特徴とする。剥離にて回収された硫酸ニッケル溶液を電解するので、電解液の主成分としては、硫酸ニッケルが最適である。電解液のpHが1未満であると、電流効率が低くてカソード上へのニッケルの析出速度が遅くなり、pHが6を超えると、カソード上へのニッケルの付着性が悪くなり、ニッケルの回収に時間がかかることになる。電解液の温度、電流密度もニッケルの回収効率に影響するが、温度が45〜55℃であり、電流密度が20〜50A/dmとするのが好ましい。 Moreover, in the manufacturing method of this invention, the main component of the electrolyte solution of said 2nd electrolytic vessel is nickel sulfate, and pH is 1-6, It is characterized by the above-mentioned. Since the nickel sulfate solution recovered by peeling is electrolyzed, nickel sulfate is the most suitable as the main component of the electrolytic solution. When the pH of the electrolytic solution is less than 1, the current efficiency is low and the deposition rate of nickel on the cathode is slow, and when the pH exceeds 6, the adhesion of nickel on the cathode is deteriorated and the nickel is recovered. Will take time. The temperature of the electrolyte and the current density also affect the nickel recovery efficiency, but the temperature is preferably 45 to 55 ° C. and the current density is preferably 20 to 50 A / dm 2 .

また、本発明のリサイクル方法において、前記剥離液が0.05〜0.1容積%の油除去剤を含むとなおよい。銅又は銅合金屑は、例えばプレス加工時の打ち抜き屑であり、そのほとんどは表面に油が付着しているので、これを除去することにより、ニッケルの剥離を効果的に行うことができ、事前の脱脂処理を省略できるので、効率がよい。   In the recycling method of the present invention, the stripping solution preferably contains 0.05 to 0.1% by volume of an oil removing agent. Copper or copper alloy scrap is, for example, stamped scrap at the time of press working, and most of the oil adheres to the surface. By removing this, nickel can be effectively peeled off in advance. Since the degreasing treatment can be omitted, efficiency is high.

本発明のリサイクル方法により、高価で寿命の短い剥離液を使用せず、剥離後のエッチングもなしに、連続して効率良く、ニッケルめっきが施された銅又は銅合金屑からニッケルを剥離し、剥離された銅又は銅合金屑を銅及び銅合金の製造用原料として使用することが可能となる。しかも、剥離液による電解剥離と並行して、使用済み剥離液からの硫酸ニッケルの分離回収及びその硫酸ニッケルからのニッケルの回収を効率よく行いながら、剥離液を半永久的に使用することができるので、いわゆるゼロエミッションを達成することができる。   By using the recycling method of the present invention, without using an expensive and short-lived stripping solution, without etching after stripping, continuously and efficiently strips nickel from copper or copper alloy scraps with nickel plating, The peeled copper or copper alloy scrap can be used as a raw material for producing copper and copper alloy. Moreover, in parallel with the electrolytic stripping with the stripping solution, the stripping solution can be used semipermanently while efficiently separating and recovering nickel sulfate from the used stripping solution and recovering nickel from the nickel sulfate. So-called zero emissions can be achieved.

図1は、本発明のニッケルめっきが施された銅又は銅合金屑からのニッケル剥離方法を実施するための装置全体図である。FIG. 1 is an overall view of an apparatus for carrying out the method for stripping nickel from scraped copper or copper alloy scraps according to the present invention.

以下に、本発明のリサイクル方法の一実施形態を図面に基づいて説明する。
図1はニッケルめっき剥離装置の全体構成を示しており、このニッケルめっき剥離装置1は、剥離液Eを貯留した第一電解槽2と、この第一電解槽2で電解に使用された剥離液Eを濃縮硫酸ニッケルMと濃縮硫酸溶液Rとに分離する圧力透析装置3と、濃縮硫酸ニッケルMからニッケルDを回収する第二電解層4とを備えている。
第一電解槽2内には、リサイクル対象の銅又は銅合金屑Cを入れるドラム籠5と、カソード6とが浸漬され、これらドラム籠5とカソード6との間に、整流器7を介して電源(図示略)が接続されている。
ドラム籠5はSUS等により形成され、カソード6はSUS、Cu等の金属から構成される。また、剥離液Eとドラム籠5内の銅及び銅合金屑Cとの接触面積を増すため、電解槽2内でドラム籠5を回転させても良い。
Hereinafter, an embodiment of the recycling method of the present invention will be described with reference to the drawings.
FIG. 1 shows the overall configuration of a nickel plating stripping apparatus. The nickel plating stripping apparatus 1 includes a first electrolytic tank 2 storing a stripping liquid E, and a stripping solution used for electrolysis in the first electrolytic tank 2. A pressure dialysis apparatus 3 that separates E into concentrated nickel sulfate M and concentrated sulfuric acid solution R, and a second electrolytic layer 4 that recovers nickel D from the concentrated nickel sulfate M are provided.
In the first electrolytic cell 2, a drum cage 5 into which copper or copper alloy scrap C to be recycled is placed and a cathode 6 are immersed, and a power source is connected between the drum cage 5 and the cathode 6 via a rectifier 7. (Not shown) is connected.
The drum cage 5 is made of SUS or the like, and the cathode 6 is made of a metal such as SUS or Cu. Further, the drum cage 5 may be rotated in the electrolytic cell 2 in order to increase the contact area between the stripping solution E and the copper and copper alloy scrap C in the drum cage 5.

第一電解槽2内に貯留される剥離液Eの組成は、硫酸濃度50〜300g/L(水1Lに対して10%硫酸が50〜300g)の硫酸溶液であり、温度は20〜80℃とする。この剥離液Eの硫酸濃度が50g/L未満であると、ニッケルよりも母材の銅又は銅合金屑Cが主として溶解して、ニッケルの溶解が進みにくい。硫酸濃度が300g/Lを超えると、剥離液Eの粘性の上昇により剥離速度が下がるため、時間がかかることになる。より好ましくは、硫酸濃度150〜250g/Lがよい。また、剥離液EのpHは−0.7〜0とされる。−0.7未満であると、ニッケルの溶解度が下がり、0を超えると、ニッケルの溶解速度が低くなり、剥離に時間がかかることになるからである。
また、供給される銅又は銅合金屑Cは、そのほとんどがプレス加工による打ち抜き屑であり、加工油が付着しているので、剥離液E中に0.05〜0.1容積%の界面活性剤等の油除去剤が添加される。
The composition of the stripping solution E stored in the first electrolytic cell 2 is a sulfuric acid solution having a sulfuric acid concentration of 50 to 300 g / L (10% sulfuric acid is 50 to 300 g with respect to 1 L of water), and the temperature is 20 to 80 ° C. And When the sulfuric acid concentration of the stripping solution E is less than 50 g / L, the base material copper or copper alloy scrap C is mainly dissolved rather than nickel, and the dissolution of nickel is difficult to proceed. If the sulfuric acid concentration exceeds 300 g / L, the peeling speed decreases due to the increase in the viscosity of the stripping solution E, which takes time. More preferably, the sulfuric acid concentration is 150 to 250 g / L. The pH of the stripping solution E is -0.7 to 0. This is because if it is less than −0.7, the solubility of nickel decreases, and if it exceeds 0, the dissolution rate of nickel decreases and it takes time to peel off.
Moreover, most of the supplied copper or copper alloy scrap C is stamped scraps by press working, and since processing oil is attached, 0.05 to 0.1% by volume of surface activity in the stripping solution E An oil removing agent such as an agent is added.

圧力透析装置3は、第一電解槽2に高圧ポンプ8を有する連絡管9によって接続されており、供給された剥離液Eを、内部に有する分離膜10にて、分離膜10を透析した濃縮硫酸溶液Rと、透析しない濃縮硫酸ニッケルMとに分離し、濃縮硫酸溶液Rをポンプ11にて、再び第一電解槽2に戻す循環系12と、濃縮硫酸ニッケルMをポンプ13にて第二電解層4に供給する回収配管14とが設けられている。   The pressure dialysis apparatus 3 is connected to the first electrolytic cell 2 by a connecting pipe 9 having a high-pressure pump 8, and is concentrated by dialyzing the separation membrane 10 with the separation membrane 10 having the supplied stripping solution E inside. The sulfuric acid solution R and the concentrated nickel sulfate M that is not dialyzed are separated, the concentrated sulfuric acid solution R is returned to the first electrolytic cell 2 by the pump 11, and the concentrated nickel sulfate M is secondly pumped by the pump 13. A recovery pipe 14 for supplying to the electrolytic layer 4 is provided.

第二電解層4内には、カソード15とアノード16が浸漬され、整流器17を介して電源(図示略)が接続されており、回収配管14により供給された濃縮硫酸ニッケルMを電解にて、カソード15上にニッケルDとして強固に析出させる。   In the second electrolytic layer 4, a cathode 15 and an anode 16 are immersed, and a power source (not shown) is connected via a rectifier 17, and the concentrated nickel sulfate M supplied through the recovery pipe 14 is electrolyzed, It is strongly deposited as nickel D on the cathode 15.

そして、このニッケルめっき剥離装置1のドラム籠5内に、ニッケルめっきが施された銅又は銅合金屑Cを収容するとともに、電解槽2内に剥離液Eを貯留し、ドラム籠5とカソード6とを剥離液Eに浸漬した状態でこれらの間に電源から整流器7を介して電流を流すことにより、ドラム籠5に接触している銅又は銅合金屑Cからニッケルを溶解して剥離する。
このとき、第一電解槽2内の剥離液Eの硫酸濃度は50〜300g/Lとする。液温は20〜80℃、pHは−0.7〜0とされる。
Then, the nickel plating copper or copper alloy scrap C is accommodated in the drum cage 5 of the nickel plating peeling apparatus 1, and the peeling solution E is stored in the electrolytic cell 2, and the drum cage 5 and the cathode 6 are stored. Are immersed in the stripping solution E, and a current is passed between the power source and the rectifier 7 between them to melt and peel the nickel from the copper or copper alloy scrap C in contact with the drum cage 5.
At this time, the sulfuric acid concentration of the stripping solution E in the first electrolytic cell 2 is 50 to 300 g / L. The liquid temperature is 20 to 80 ° C. and the pH is −0.7 to 0.

この剥離液E内では、ドラム籠5内の銅又は銅合金屑Cにおいては、Niがイオンを放出して(Ni→Ni2++2e)、Niイオンとなって剥離液E中に溶解し、一方、カソード6付近では、2H+2e→Hにて、水素が発生する。
したがって、剥離液Eの硫酸と銅又は銅合金屑Cのニッケルめっき膜との間では次のような反応として表される。
Ni+HSO→NiSO+H
これにより、銅又は銅合金屑Cの表面のニッケルは硫酸ニッケルとなって剥離液E中に溶解する。
In the stripping solution E, in the copper or copper alloy scrap C in the drum cage 5, Ni releases ions (Ni → Ni 2+ + 2e ) and becomes Ni ions and dissolves in the stripping solution E. On the other hand, in the vicinity of the cathode 6, hydrogen is generated at 2H + + 2e → H 2 .
Therefore, it is expressed as the following reaction between the sulfuric acid of the stripping solution E and the nickel plating film of copper or copper alloy scrap C.
Ni + H 2 SO 4 → NiSO 4 + H 2
Thereby, nickel on the surface of copper or copper alloy scrap C becomes nickel sulfate and dissolves in stripping solution E.

一方、この第一電解槽2内の剥離液Eは、その底部に接続されている高圧ポンプ8を有する連絡管9を介して、圧力透析装置3の分離膜10の浸透圧が0.1〜10MPaとなる様に一定量ずつ供給される。圧力透析装置3は、例えば、特許文献2に開示される様なスパイラル型荷電膜を有する金属除去効率がよいものを使用するのが好ましく、分離膜10を透析した濃縮硫酸溶液Rは、ポンプ11にて、循環系12を通して再び第一電解層2に戻される。分離膜10を透析しない濃縮硫酸ニッケルMは、ポンプ13にて、回収配管14を通して第二電解層4に供給される。例えば、圧力透析装置3に剥離液Eが100L/hr供給されると、濃縮硫酸ニッケルMは30L/hr、濃縮硫酸溶液Rは70L/hrの割合で分離膜10を介して分離される。   On the other hand, the stripping solution E in the first electrolytic cell 2 has an osmotic pressure of 0.1 to 0.1 in the separation membrane 10 of the pressure dialysis device 3 through a connecting tube 9 having a high-pressure pump 8 connected to the bottom thereof. A constant amount is supplied so as to be 10 MPa. As the pressure dialysis apparatus 3, it is preferable to use, for example, a metal having a spirally charged membrane as disclosed in Patent Document 2 and good metal removal efficiency. The concentrated sulfuric acid solution R obtained by dialysis of the separation membrane 10 is a pump 11. Then, it is returned to the first electrolytic layer 2 through the circulation system 12 again. The concentrated nickel sulfate M that does not dialyze the separation membrane 10 is supplied to the second electrolytic layer 4 through the recovery pipe 14 by the pump 13. For example, when the stripping solution E is supplied to the pressure dialysis apparatus 3 at 100 L / hr, the concentrated nickel sulfate M is separated through the separation membrane 10 at a rate of 30 L / hr and the concentrated sulfuric acid solution R is 70 L / hr.

また、第二電解層4内には、カソード15とアノード16が浸漬され、整流器17を介して電源(図示略)が接続されており、電解液の組成としては表1に示すものが好ましい。第二電解層4内に供給された濃縮硫酸ニッケルMは表1の条件にて電解される。カソード15の材質はニッケルであることが好ましい。ニッケル回収条件としては、特に、pHが重要であり1〜6であることが好ましい。pHが1未満では電流効率が低くニッケルの析出速度が遅くなり、6を超えるとカソード15に析出するニッケルが粉状となり回収効率が落ちる。電流密度が20A/dm未満では、析出速度が遅くなり、50A/dmを超えると、電解時の水素発生が激しくなり、気泡付着によりニッケルのカソード15への析出が悪くなる。温度が45℃未満では、電流効率が低くてニッケルの析出速度が遅くなり、55℃を超えると、析出するニッケルの均質性が悪くなる。 Further, a cathode 15 and an anode 16 are immersed in the second electrolytic layer 4, and a power source (not shown) is connected via a rectifier 17, and the composition shown in Table 1 is preferable as the composition of the electrolytic solution. The concentrated nickel sulfate M supplied into the second electrolytic layer 4 is electrolyzed under the conditions shown in Table 1. The material of the cathode 15 is preferably nickel. Especially as nickel collection | recovery conditions, pH is important and it is preferable that it is 1-6. If the pH is less than 1, the current efficiency is low and the nickel deposition rate is slow, and if it exceeds 6, the nickel deposited on the cathode 15 becomes powdery and the recovery efficiency decreases. When the current density is less than 20 A / dm 2 , the deposition rate is slow, and when it exceeds 50 A / dm 2 , hydrogen generation during electrolysis becomes intense, and the deposition of nickel on the cathode 15 becomes worse due to bubble adhesion. If the temperature is less than 45 ° C., the current efficiency is low and the deposition rate of nickel is slow, and if it exceeds 55 ° C., the homogeneity of the deposited nickel is deteriorated.

Figure 0005518421
Figure 0005518421

この様にして、ニッケルDが回収されたカソード15はニッケル精錬工場へ送られ、ニッケル精錬の原料として利用される。また、第二電解層4をオーバーフローした電解液Fは、環境へのクローズシステムの観点から、ポンプ18により、液戻し配管19を通して第一電解層2に戻して再使用する事が好ましい。なお、符号20は水供給系であり、必要に応じて第一電解槽2に水を供給して剥離液Eの濃度調整が行われる。   In this way, the cathode 15 from which the nickel D has been recovered is sent to a nickel refining factory and used as a raw material for nickel refining. In addition, the electrolytic solution F overflowing the second electrolytic layer 4 is preferably reused by being returned to the first electrolytic layer 2 through the liquid return pipe 19 by the pump 18 from the viewpoint of a closed system to the environment. Reference numeral 20 denotes a water supply system, and the concentration of the stripping solution E is adjusted by supplying water to the first electrolytic cell 2 as necessary.

以上のようにして、ドラム籠5を剥離液E内に浸漬してから所定時間後にドラム籠5とカソード6との間の通電を中止すると、ドラム籠5内の銅又は銅合金屑Cのニッケルめっきは溶解して剥離された状態となり、剥離されたニッケルは、第二電解層4のカソード15上に強固に析出する。
このニッケルめっきが剥離された銅又は銅合金屑は硫黄等のコンタミもなく、その後、エッチング処理等を経ることなく、銅又は銅合金の溶解鋳造等の原料としてそのまま使用することができ、回収されたニッケルは有価金属として有効に利用することが出来る。
As described above, when the energization between the drum cage 5 and the cathode 6 is stopped after a predetermined time from immersing the drum cage 5 in the stripping solution E, the nickel of the copper or copper alloy scrap C in the drum cage 5 is stopped. The plating is dissolved and peeled off, and the peeled nickel is firmly deposited on the cathode 15 of the second electrolytic layer 4.
The copper or copper alloy scraps from which this nickel plating has been peeled are free from sulfur and other contaminants, and can then be used as raw materials for copper or copper alloy melting and casting without being subjected to an etching process or the like and recovered. Nickel can be effectively used as a valuable metal.

本発明の方法による効果の検証を行った。
図1に示すものと同様の剥離装置1を用い、第一電解層2の剥離液Eとして、硫酸濃度100g/L、pH−0.3、温度45℃の硫酸溶液を用いた。銅又は銅合金屑Cのサンプルとして1μmの厚さのニッケルめっきが両面に施された銅合金屑を用い、これを2.6kgドラム籠5に入れて、剥離液Eに浸漬した。
ドラム籠5を剥離液Eに浸漬させ、ドラム籠5とカソード6間に通電した。ドラム籠5は、SUS製のものを使用し、カソード6にもSUS電極を用いた。ドラム籠5は剥離液Eの中で所定速度で回転させた。
The effect by the method of the present invention was verified.
A stripping apparatus 1 similar to that shown in FIG. 1 was used, and a sulfuric acid solution having a sulfuric acid concentration of 100 g / L, a pH of −0.3, and a temperature of 45 ° C. was used as the stripping solution E for the first electrolytic layer 2. As a sample of copper or copper alloy scrap C, copper alloy scrap with nickel plating having a thickness of 1 μm was used on both sides, and this was placed in a 2.6 kg drum cage 5 and immersed in the stripping solution E.
The drum cage 5 was immersed in the stripping solution E, and electricity was supplied between the drum cage 5 and the cathode 6. The drum cage 5 was made of SUS, and a SUS electrode was also used for the cathode 6. The drum cage 5 was rotated in the stripping solution E at a predetermined speed.

圧力透析装置3は、(株)野坂製作所の標準仕様品を使用し、3MPaの浸透圧にて、剥離液Eを濃縮硫酸ニッケルMと濃縮硫酸溶液Rとに分離した。
濃縮硫酸ニッケルMは第二電解槽4に供給し、濃縮硫酸溶液Rは再使用のため第一電解槽2に循環した。
第二電解槽4は、アノード16とカソード15の間に通電し、表2に示す条件にて、カソード15としてニッケル板を使用して濃縮硫酸ニッケルMを電解し、カソード15上にニッケルDを析出させた。
また、第二電解槽4からオーバーフローする電解液Fは再使用のため第一電解槽2に循環した。
The pressure dialyzer 3 was a standard specification product of Nosaka Manufacturing Co., Ltd., and the stripping solution E was separated into concentrated nickel sulfate M and concentrated sulfuric acid solution R at an osmotic pressure of 3 MPa.
The concentrated nickel sulfate M was supplied to the second electrolytic cell 4, and the concentrated sulfuric acid solution R was circulated to the first electrolytic cell 2 for reuse.
The second electrolytic cell 4 is energized between the anode 16 and the cathode 15, electrolyzes concentrated nickel sulfate M using a nickel plate as the cathode 15 under the conditions shown in Table 2, and nickel D is deposited on the cathode 15. Precipitated.
Further, the electrolytic solution F overflowing from the second electrolytic cell 4 was circulated to the first electrolytic cell 2 for reuse.

ドラム籠5を剥離液E内に浸漬してから2時間後にドラム籠5とカソード6との間の通電を中止し、サンプルをドラム籠5内より取り出し、SEM(Scanning Electron Microscope:走査型電子顕微鏡)にて銅又は銅合金屑Cの表面を観察したところ、ニッケルが完全に剥離されているのを確認した。
また、ニッケルめっきが剥離された銅又は銅合金屑表面をEPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザ)にて分析したところ、硫黄(S)等の残存によるコンタミも無かった。このニッケルめっきが剥離された銅又は銅合金屑を銅合金製造用原料の一部として溶解鋳造に使用し、熱間圧延後の銅合金板を目視にて調べたところ割れは生じていなかった。
Two hours after the drum 5 is immersed in the stripping solution E, the energization between the drum 5 and the cathode 6 is stopped, the sample is taken out from the drum 5 and the SEM (Scanning Electron Microscope: scanning electron microscope). ), The surface of the copper or copper alloy scrap C was observed, and it was confirmed that nickel was completely peeled off.
Moreover, when the copper or copper alloy scrap surface from which the nickel plating was peeled was analyzed by EPMA (Electron Probe Micro Analyzer), there was no contamination due to residual sulfur (S) or the like. The copper or copper alloy scrap from which the nickel plating was peeled was used for melting and casting as a part of the raw material for producing the copper alloy, and when the hot-rolled copper alloy sheet was visually examined, no cracks were produced.

一方、第二電解層4のカソード15には、ニッケル10gが強固に析出され、IPC(Ion-Pair Chromatography)で分析したところ、Cu含有量100ppm以下で、他の金属元素は検出されなかった。
以上のように、本発明の方法によると、ニッケルめっきが施された銅又は銅合金屑からニッケルめっきを効率的に剥離し、剥離後にエッチング処理する必要はなく、ニッケルめっきが剥離された銅又は銅合金屑を溶解鋳造等の原料としてそのままリサイクル可能であることがわかる。また、剥離液からニッケルを効果的に分離採取することができ、有価物としてリサイクル可能であることが確認された。
On the other hand, 10 g of nickel was firmly deposited on the cathode 15 of the second electrolytic layer 4 and analyzed by IPC (Ion-Pair Chromatography). As a result, the Cu content was 100 ppm or less, and no other metal elements were detected.
As described above, according to the method of the present invention, the nickel plating is efficiently peeled from the nickel-plated copper or copper alloy scrap, and it is not necessary to perform an etching process after the peeling. It turns out that copper alloy waste can be recycled as it is as a raw material for melting and casting. It was also confirmed that nickel can be separated and collected effectively from the stripping solution and can be recycled as a valuable resource.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることは可能である。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of this invention.

1 ニッケルめっき剥離装置
2 第一電解槽
3 圧力透析装置
4 第二電解槽
5 ドラム籠
6 カソード
7 整流器
8 ポンプ
9 連絡管
10 分離膜
11 ポンプ
12 循環系
13 ポンプ
14 回収配管
15 カソード
16 アノード
17 整流器
18 ポンプ
19 液戻し管
20 水供給系
R 濃縮硫酸溶液
M 濃縮硫酸ニッケル
D ニッケル
E 剥離液
C 銅又は銅合金屑
DESCRIPTION OF SYMBOLS 1 Nickel plating peeling apparatus 2 1st electrolysis tank 3 Pressure dialysis apparatus 4 2nd electrolysis tank 5 Drum tank 6 Cathode 7 Rectifier 8 Pump 9 Connecting pipe 10 Separation membrane 11 Pump 12 Circulation system 13 Pump 14 Recovery piping 15 Cathode 16 Anode 17 Rectifier 18 Pump 19 Liquid return pipe 20 Water supply system R Concentrated sulfuric acid solution M Concentrated nickel sulfate D Nickel E Stripping liquid C Copper or copper alloy scrap

Claims (3)

剥離液として硫酸溶液が貯留され、該硫酸溶液の硫酸濃度が50〜300g/Lであり、pHが−0.7〜0である第一電解槽中に、表面にニッケルめっきが施された銅又は銅合金屑を浸漬することにより、Ni+HSO→NiSO+Hなる化学反応により前記ニッケルめっきを剥離し、剥離されたニッケルを含有する使用済み剥離液を圧力透析装置にて、濃縮された硫酸ニッケル溶液と濃縮された硫酸溶液とに分離し、前記濃縮された硫酸ニッケル溶液を第二電解槽中にて電解することによりニッケルを回収し、前記濃縮された硫酸溶液は前記第一電解槽に戻すことを特徴とするニッケルめっきが施された銅又は銅合金屑のリサイクル方法 A copper solution having a surface plated with nickel in a first electrolytic cell in which a sulfuric acid solution is stored as a stripping solution, the sulfuric acid concentration of the sulfuric acid solution is 50 to 300 g / L, and the pH is -0.7 to 0 Alternatively, by immersing the copper alloy scrap, the nickel plating is peeled off by a chemical reaction of Ni + H 2 SO 4 → NiSO 4 + H 2 , and the used stripping solution containing the peeled nickel is concentrated with a pressure dialysis machine. The nickel sulfate solution and the concentrated sulfuric acid solution are separated, and the concentrated nickel sulfate solution is electrolyzed in a second electrolytic cell to recover nickel, and the concentrated sulfuric acid solution is used for the first electrolysis. Nickel-plated copper or copper alloy waste recycling method characterized by returning to the tank 前記第二電解槽における電解液の主成分が硫酸ニッケルであり、pHが1〜6であることを特徴とする請求項1に記載の銅又は銅合金屑のリサイクル方法。   The copper or copper alloy scrap recycling method according to claim 1, wherein the main component of the electrolytic solution in the second electrolytic cell is nickel sulfate, and the pH is 1 to 6. 前記剥離液が0.05〜0.1容積%の油除去剤を含むことを特徴とする請求項1又は2に記載の銅又は銅合金屑のリサイクル方法。
The method for recycling copper or copper alloy waste according to claim 1 or 2, wherein the stripping solution contains 0.05 to 0.1% by volume of an oil removing agent.
JP2009235978A 2009-10-13 2009-10-13 Recycling method for nickel-plated copper or copper alloy scrap Active JP5518421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235978A JP5518421B2 (en) 2009-10-13 2009-10-13 Recycling method for nickel-plated copper or copper alloy scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235978A JP5518421B2 (en) 2009-10-13 2009-10-13 Recycling method for nickel-plated copper or copper alloy scrap

Publications (2)

Publication Number Publication Date
JP2011084756A JP2011084756A (en) 2011-04-28
JP5518421B2 true JP5518421B2 (en) 2014-06-11

Family

ID=44077924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235978A Active JP5518421B2 (en) 2009-10-13 2009-10-13 Recycling method for nickel-plated copper or copper alloy scrap

Country Status (1)

Country Link
JP (1) JP5518421B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562441B (en) * 2011-06-17 2016-10-19 英派尔科技开发有限公司 By article secondary metal
CN106868544B (en) * 2017-03-06 2019-07-19 温州大学 A method of the selective removal univalent anion impurity from sulfuric acid system electrolyte
CN110039063A (en) * 2019-05-28 2019-07-23 白银矿冶职业技术学院 The method for preparing micron-stage sheet-like nickel coated copper powder with waste solution of copper electrolysis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101690A (en) * 1976-02-24 1977-08-25 Asahi Glass Co Ltd Separation of acid and metal from solution containing acid and its met al salts and recovery of them
JPS5345670A (en) * 1976-10-07 1978-04-24 Ebara Infilco Co Ltd Treating method for liquid containing organic or inorganic substances
US4400248A (en) * 1982-03-08 1983-08-23 Occidental Chemical Corporation Electrolytic stripping process
HU186150B (en) * 1982-10-29 1985-06-28 Latszereszeti Eszkoezoek Gyara Process for the removal electrolitically of nickel, chrome ot gold layers from the surface of copper or cupric alloys and equipemnt for carrying out the process
JPS6447900A (en) * 1987-08-14 1989-02-22 Kobe Steel Ltd Solution and method for removing nickel-phosphorus alloy plating layer
JPH0533074A (en) * 1991-07-26 1993-02-09 Tdk Corp Method for reuse of ni-coated rare earth alloy
JP4179772B2 (en) * 2001-11-15 2008-11-12 拓夫 川原 Acid recovery method for waste acid solution

Also Published As

Publication number Publication date
JP2011084756A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP6861773B2 (en) Improved equipment and methods for unrefined recycling of lead acid batteries
WO2016081030A1 (en) Improved devices and method for smelterless recycling of lead acid batteries
WO2018218894A1 (en) Method for electrolytically deplating zinc layer and chromium passivation layer on surface of iron piece
JP5412184B2 (en) Recycling method for nickel-plated copper or copper alloy scrap
CN108950562B (en) Two-stage tin stripping method for PCB
JP5518421B2 (en) Recycling method for nickel-plated copper or copper alloy scrap
EP3083016B1 (en) Method and apparatus for recovery of noble metals, including recovery of noble metals from plated and/or filled scrap
CN101974756A (en) Device for regenerating waste microetching liquid and recovering copper
JP2010059502A (en) Treatment method and device for copper etching waste solution
CN1796312A (en) Method for recovering nickel and removing impurity from nickel-plated wastewater
JP2014214378A (en) METHOD FOR RECOVERING COPPER FROM Sn PLATING STRIPPING WASTE LIQUID
JPH1018073A (en) Electrolysis with addition of ultrasonic vibration
JP2012052205A (en) Method of removing tin or tin alloy layer on surface of copper or copper alloy material
JP3998951B2 (en) Method and apparatus for recovering valuable metals from scrap
JP2012092447A (en) Electrolytic extracting method of cobalt
Ogawa et al. Copper recycling technique using electrochemical processes
JP2001279343A (en) Device and method for recovering noble metal
RU2781953C1 (en) Method for extracting precious metals from coatings containing them and base metal from electronic parts containing intermediate layer with nickel coating
JP2019157160A (en) Manufacturing method of copper and electrolytic device for manufacturing copper
JP6214413B2 (en) Collection method and collection device
JP2011149037A (en) Method for recycling scrap of copper or copper alloy plated with silver
JP2011184784A (en) Method for recycling silver-plated copper or copper alloy scrap and apparatus for stripping plated silver
CN106145463A (en) The processing method of a kind ofization tinning bronze alloy waste plating solution
JPH07145427A (en) Method for recovering and recycling palladium or palladium alloy from contact material
JP2011168811A (en) Crack preventing method of electrowinning cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250