[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5514762B2 - Cu-Co-Si alloy with excellent bending workability - Google Patents

Cu-Co-Si alloy with excellent bending workability Download PDF

Info

Publication number
JP5514762B2
JP5514762B2 JP2011073422A JP2011073422A JP5514762B2 JP 5514762 B2 JP5514762 B2 JP 5514762B2 JP 2011073422 A JP2011073422 A JP 2011073422A JP 2011073422 A JP2011073422 A JP 2011073422A JP 5514762 B2 JP5514762 B2 JP 5514762B2
Authority
JP
Japan
Prior art keywords
rolling
surface layer
less
bending
precipitates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011073422A
Other languages
Japanese (ja)
Other versions
JP2012207264A (en
Inventor
弘徳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011073422A priority Critical patent/JP5514762B2/en
Publication of JP2012207264A publication Critical patent/JP2012207264A/en
Application granted granted Critical
Publication of JP5514762B2 publication Critical patent/JP5514762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明はリードフレームやコネクタ等の電子材料、車載コネクタ用端子などに利用される高強度銅合金に関する。詳細には、曲げ加工後の曲げ部外観にしわや割れを生じない、優れた曲げ加工性及び曲げ部外観を示す高強度銅合金に関する。   The present invention relates to a high-strength copper alloy used for electronic materials such as lead frames and connectors, and terminals for in-vehicle connectors. Specifically, the present invention relates to a high-strength copper alloy that exhibits excellent bending workability and bending portion appearance that does not cause wrinkles or cracks in the bending portion appearance after bending.

近年、携帯電話、デジタルカメラ、ビデオカメラ等の電子機器や車載コネクタでの高密度実装化が進展し、その部品は著しく軽薄・短小化している。使用される材料も薄肉化の傾向が顕著で、材料にはより高強度なものが求められている。また、部品の形状も複雑化し、従来よりも厳しい曲げ加工が施されるケースが増えており、高強度化しても曲げ性は従来材と同等、もしくは箱曲げや180度密着曲げだけではなく、板厚を減厚させるつぶし加工後に曲げを行い割れが無いことなど、更に優れた曲げ加工性が要求されてきている。   In recent years, electronic devices such as mobile phones, digital cameras, and video cameras, and in-vehicle connectors have been mounted with high density, and the components have become extremely light and thin. The material used is also prone to thinning, and a material with higher strength is required. In addition, the shape of parts is becoming more complex, and there are an increasing number of cases where stricter bending is applied than before, and even if the strength is increased, the bendability is equivalent to the conventional material, or not only box bending and 180-degree contact bending, Further superior bending workability has been demanded, such as bending after crushing to reduce the plate thickness and no cracks.

コルソン合金(Cu−Co−Si系合金)は、一般的に合金の強度を高めると曲げ性が悪化し、また、曲げ性が良いものは強度が低い。そこで、強度と曲げ性を両立させる改善が種々行われてきた。コルソン合金は、時効硬化型の銅合金である。溶体化処理によって溶質原子であるCoとSiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、時効析出現象によって、強度の高い析出物が析出し、強度が向上する。この際、問題となるのは、強度と曲げ加工性が相反する特性を有する点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。一般に、冷間圧延の圧下率を高くするほど、導入される転位量が多くなって転位密度が高くなるため、析出に寄与する核生成サイトが増え、時効処理後の強度を高くすることができるが、圧下率を高くしすぎると曲げ加工性が悪化する。このため、強度及び曲げ加工性の両立を図ることが課題とされてきた。
特許文献1には、高強度、高導電性及び、高曲げ加工性の実現を目的として開発されたCu−Co−Si系合金が記載されており、結晶粒径とアスペクト比について着目している。特許文献2では、銅合金の組成と共に、銅合金中に析出する介在物の大きさ及び総量に着目したCu−Co−Si系合金が記載されている。特許文献3では、高強度、高導電性、高曲げ加工性及び耐疲労特性の実現を目的として開発されたCu−Co−Si系合金が記載されており、銅合金組織中の無析出帯(PFZ)の幅についてと粒界上の粒子径について着目している。特許文献4では、高強度、高導電性及び、高曲げ加工性の実現を目的として開発されたCu−Co−Si系合金が記載されており、結晶粒径と結晶粒径の分布について着目している。特許文献5は、強度、導電率、及び曲げ加工性に優れたCu−Co−Si系合金が記載されてあり、同文献段落「0018」では熱処理時の昇温速度、降温速度に着目している。
A Corson alloy (Cu—Co—Si-based alloy) generally deteriorates in bendability when the strength of the alloy is increased, and an alloy with good bendability has low strength. Accordingly, various improvements have been made to achieve both strength and bendability. The Corson alloy is an age-hardening type copper alloy. When a supersaturated solid solution of Co and Si, which are solute atoms, is formed by solution treatment, and heat treatment is performed at a low temperature for a relatively long time from this state, precipitates with high strength are precipitated due to the aging precipitation phenomenon, and the strength is improved. To do. At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained. In general, the higher the rolling reduction in cold rolling, the more dislocations are introduced and the dislocation density is higher, so that the number of nucleation sites contributing to precipitation increases and the strength after aging treatment can be increased. However, if the rolling reduction is too high, the bending workability deteriorates. For this reason, it has been an object to achieve both strength and bending workability.
Patent Document 1 describes a Cu—Co—Si-based alloy developed for the purpose of realizing high strength, high conductivity, and high bending workability, and pays attention to crystal grain size and aspect ratio. . Patent Document 2 describes a Cu—Co—Si-based alloy that focuses on the size and total amount of inclusions precipitated in the copper alloy as well as the composition of the copper alloy. Patent Document 3 describes a Cu—Co—Si based alloy developed for the purpose of realizing high strength, high conductivity, high bending workability, and fatigue resistance, and includes a precipitation-free zone ( We pay attention to the width of (PFZ) and the particle diameter on the grain boundary. Patent Document 4 describes a Cu—Co—Si alloy developed for the purpose of realizing high strength, high conductivity, and high bending workability, and pays attention to the crystal grain size and the distribution of crystal grain size. ing. Patent Document 5 describes a Cu—Co—Si based alloy excellent in strength, electrical conductivity, and bending workability. In the paragraph “0018” of the same document, attention is paid to a temperature increase rate and a temperature decrease rate during heat treatment. Yes.

特開平9−20943号公報JP-A-9-20943 特開2008−56977号公報JP 2008-55977 A 特開2010−215976号公報JP 2010-215976 A 特開2010−59543号公報JP 2010-59543 A WO2009−116649号公報WO2009-116649

コルソン合金の曲げ部外観、特に曲げ軸が圧延方向と直行する曲げ(特にBW)の外観はりん青銅のそれよりも劣り、肌荒れが大きい特徴がある。もし端子において割れが発生した場合、端子に求められる特性の導電性及びバネ性が失われ、製品の信頼性が損なわれるため、製品曲げ部の外観検査が通常行われている。しかし、例えば、最先端の超小型端子の曲げ部の外観の状況を裸眼で確認するのは難しく、曲げプレス後の状況を確認する検査工程では拡大鏡を使用して目視する、又はCCDカメラによる表面検査装置により確認するなど冶具や機械に頼らざるを得ない。この検査の際、実際には割れてはいないが、曲げ部外観の肌荒れが激しいため割れと区別が困難な場合は検査確認に時間がかかり検査効率が低下する。そこで、超小型電子機器材料に使用されるコルソン合金には、ただ曲げ部に割れが発生しなければ良いのではなく、曲げ部の肌荒れも小さいものが求められるようになってきている。
本発明は、コルソン系銅合金の優れた曲げ性、詳しくは割れのみならず、BW(bad way)の曲げ加工後の、従来注目されていなかった曲げ部の肌荒れを改良することを目的とした。
The appearance of the bent portion of the Corson alloy, particularly the appearance of the bending (particularly BW) in which the bending axis is orthogonal to the rolling direction, is inferior to that of phosphor bronze and has a feature that the skin is rough. If a crack occurs in the terminal, the electrical conductivity and spring properties required for the terminal are lost, and the reliability of the product is impaired. Therefore, the appearance inspection of the bent part of the product is usually performed. However, for example, it is difficult to check the appearance of the bending part of the most advanced ultra-small terminal with the naked eye. In the inspection process for checking the condition after the bending press, it is visually observed using a magnifying glass or by a CCD camera. We have to rely on jigs and machines, such as checking with surface inspection equipment. In this inspection, although it is not actually cracked, when the appearance of the bent portion is so rough that it is difficult to distinguish it from cracks, it takes time to check the inspection and the inspection efficiency is lowered. Therefore, a Corson alloy used for a material for a microelectronic device is not limited as long as cracks do not occur in a bent portion, and a material with a small rough surface of the bent portion is required.
The object of the present invention is to improve not only the excellent bendability of the Corson-based copper alloy, specifically the crack, but also the rough surface of the bent part, which has not been noticed in the past, after the bending of BW (bad way). .

本発明者らは、Cu−Co−Si系合金において、BWの曲げ性及び曲げ部の肌荒れの改善を目的として研究した結果、異物や欠陥などの不均一伸びの起点となる部分を表面近くから排除し、板厚中央部(下記表層以外の部分)に比べて表層(材料表面から板厚の1/6深さまで)のせん断帯の形成を抑えることにより材料本来の引張強さ、0.2%耐力、ばね限界値などの機械的特性はそのままにBWの曲げ部の肌荒れを改善できることを発見して本発明を完成させた。
本発明は下記構成を有する。
(1) Coを0.2〜3.5質量%、Siを0.02〜1.0質量%含有し、残部銅及び不可避的不純物からなるCu−Co−Si系合金条であって、第3元素群として、Mn、Fe、Mg、Ni、Cr、V、Nb、Mo、Zr、B、Zn、Sn、Ag、Be、ミッシュメタル及びPよりなる群から選択される1種以上を、総量で1.0質量%以下の範囲で含有してもよく、材料表面から板厚の1/6深さまで(以下「表層」と表記する)のせん断帯の線の本数Ssと、材料表層以外の部分(以下「板厚中央部」と表記する。)のせん断帯の線の本数Scの比Ss/Scが1.0以下、結晶粒径が20μm以下、材料表層では粒径1〜10μmの析出物の個数が3.0×104個/mm2以下であり、材料表層のせん断帯の線の本数が330本/10,000μm 2 以下である、高強度でかつ曲げ加工後の外観にも優れたCu−Co−Si系合金条。
(2) 材料表層における粒径1〜10μmの析出物の個数Nsと、板厚中央部における粒径1〜10μmの析出物の個数Ncの比Ns/Ncが1.0以下である(1)のCu−Co−Si系合金条。
) 溶体化温度を固溶限温度+25℃以内として溶体化処理されて製造される(1)又は(2)のCu−Co−Si系合金条。
As a result of studying for the purpose of improving the BW bendability and the rough surface of the bent portion in the Cu-Co-Si-based alloy, the present inventors have found a portion that becomes a starting point of non-uniform elongation such as foreign matter and defects from near the surface. Eliminating and suppressing the formation of a shear band on the surface layer (from the material surface to 1/6 depth of the plate thickness) compared to the plate thickness center portion (portion other than the following surface layer), the material's original tensile strength, 0.2 The present invention was completed by discovering that the rough surface of the bent portion of BW can be improved while maintaining the mechanical properties such as% proof stress and spring limit value.
The present invention has the following configuration.
(1) A Cu—Co—Si alloy strip containing 0.2 to 3.5% by mass of Co and 0.02 to 1.0% by mass of Si, the balance being copper and inevitable impurities, The total amount of one or more selected from the group consisting of Mn, Fe, Mg, Ni, Cr, V, Nb, Mo, Zr, B, Zn, Sn, Ag, Be, Misch metal and P as the three element group 1.0 mass% or less, and the number Ss of shear band lines from the material surface to 1/6 depth of the plate thickness (hereinafter referred to as “surface layer”), and other than the material surface layer The ratio Ss / Sc of the number Sc of the lines of the shear band of the portion (hereinafter referred to as “plate thickness central portion”) is 1.0 or less, the crystal grain size is 20 μm or less, and the precipitation is 1 to 10 μm in the material surface layer. object number is 3.0 × 10 4 cells / mm 2 Ri der less, the number of lines of the shear zone of the material surface layer 330 present 10,000μm 2 or less, Cu-Co-Si-based alloy strips excellent in appearance after and high strength bending.
(2) the number of particle diameter 1~10μm precipitate Ns in the material surface, the ratio Ns / Nc of the number Nc of the particle size 1~10μm of precipitates in the sheet thickness center portion is 1.0 or less (1) of Cu-Co-Si-based alloy strips.
( 3 ) The Cu—Co—Si-based alloy strip according to (1) or (2) , which is produced by solution treatment with a solution treatment temperature within a solid solution limit temperature of + 25 ° C.

本発明は、端子、コネクター等電子材料用銅合金として好適な、BW方向に関しても優れた曲げ加工性及びしわのない曲げ部外観を示す高強度銅合金を提供できる。   INDUSTRIAL APPLICABILITY The present invention can provide a high-strength copper alloy that is suitable as a copper alloy for electronic materials such as terminals and connectors, and exhibits excellent bending workability even in the BW direction and a bent portion appearance without wrinkles.

実施例1で製造された合金条の曲げ変形前の、圧延方向と平行かつ板厚方向に直角なサンプル表面の表層部を撮影したSEM写真(1,000倍)である。It is a SEM photograph (1,000 times) which image | photographed the surface layer part of the sample surface before a bending deformation of the alloy strip manufactured in Example 1 and orthogonal to a plate | board thickness direction at right angles. 実施例1で製造された合金条の曲げ変形前の、圧延方向と平行かつ板厚方向に直角なサンプル表面の板厚中央部を撮影したSEM写真(1,000倍)である。It is a SEM photograph (1,000 times) which image | photographed the plate | board thickness center part of the sample surface before a bending deformation of the alloy strip manufactured in Example 1 and orthogonal to a plate | board thickness direction. 実施例9で製造された合金条の曲げ変形前の、圧延方向と平行かつ板厚方向に直角なサンプル表面の板厚中央部を撮影したSEM写真(1,000倍)である。It is a SEM photograph (1,000 times) which image | photographed the plate | board thickness center part of the sample surface before a bending deformation of the alloy strip manufactured in Example 9, and parallel to a rolling direction and perpendicular to a plate | board thickness direction.

−Cu−Co−Si系合金の組成−
<Co含有量>
Coが0.2質量%未満ではCu−Co−Si系合金本来の析出強化による強化機構を充分に得ることができないことから十分な強度が得られず、逆に3.5質量%を超えると粗大なCoや添加元素を含む第二相粒子が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明の実施の形態に係る銅合金中のCoの含有量は、0.2〜3.5質量%であり、好ましくは1.5〜3.5質量%、更に好ましくは1.5〜3.0質量%である。このようにCoの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
-Composition of Cu-Co-Si alloy-
<Co content>
If the Co content is less than 0.2% by mass, a sufficient strengthening mechanism cannot be obtained due to the original precipitation strengthening of the Cu—Co—Si based alloy. If the Co content exceeds 3.5% by mass, Second phase particles containing coarse Co and additive elements tend to precipitate, and the strength and bending workability tend to deteriorate. Therefore, the content of Co in the copper alloy according to the embodiment of the present invention is 0.2 to 3.5 mass%, preferably 1.5 to 3.5 mass%, more preferably 1.5. It is -3.0 mass%. Thus, by optimizing the Co content, it is possible to achieve both strength and bending workability suitable for electronic components.

<Si含有量>
Siは導電性に悪影響を及ぼすことなくCoと反応して第二相粒子を生成し強化機構に寄与する。発明者による試験の知見から、Siの含有量は析出強化による強化機構を十分に発揮するために、Co:Si=4.2:1が導電率と強度の関係が理論的に最適であることが見出された。Siは溶解時に添加しにくく、かつCoに比べ少し多くても強度面には影響がほとんど無い。従って、導電率が目標の範囲内となるのであればSiの上限は理論値より少し高いことが実際には適当である。従って、本発明の実施の形態に係る銅合金中のSiの含有量は、0.02〜1.0、好ましくは0.07〜0.85質量%、更に好ましくは0.36〜0.83質量%、最も好ましくは0.36〜0.71質量%である。
<Si content>
Si reacts with Co without adversely affecting the electrical conductivity to generate second phase particles and contributes to the strengthening mechanism. From the knowledge of the test by the inventor, the content of Si is theoretically optimal in terms of the relationship between conductivity and strength in order for Co: Si = 4.2: 1 to fully exert the strengthening mechanism by precipitation strengthening. Was found. Si is difficult to add at the time of dissolution, and even if it is a little larger than Co, there is almost no effect on the strength. Therefore, if the conductivity is within the target range, it is actually appropriate that the upper limit of Si is slightly higher than the theoretical value. Therefore, the content of Si in the copper alloy according to the embodiment of the present invention is 0.02 to 1.0, preferably 0.07 to 0.85% by mass, and more preferably 0.36 to 0.83. % By mass, most preferably 0.36 to 0.71% by mass.

<その他の添加元素>
その他の添加元素をCu−Co−Si系合金に添加すると、Coが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度を向上させる効果がある。
<Other additive elements>
When other additive elements are added to the Cu—Co—Si based alloy, there is an effect that the crystal grains are easily refined and the strength is improved even if solution treatment is performed at a high temperature at which Co is sufficiently dissolved.

その他の添加元素としては、Mn、Fe、Mg、Ni、Cr、V、Nb、Mo、Zr、B、Zn、Sn、Ag、Be、ミッシュメタル及びPを単独で添加するか、又は2種以上を複合添加してもよい。   As other additive elements, Mn, Fe, Mg, Ni, Cr, V, Nb, Mo, Zr, B, Zn, Sn, Ag, Be, misch metal and P are added alone, or two or more kinds thereof are added. May be added in combination.

これらの元素は、合計で0.05質量%以上含有するとその効果が現れだすが、合計で1.0質量%を超えるとCoの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、その他の元素群としてMn、Fe、Mg、Ni、Cr、V、Nb、Mo、Zr、B、Zn、Sn、Ag、Be、ミッシュメタル及びPよりなる群から選択される1種以上を合計で0〜1.0質量%含有することができ、好ましくは合計で0.05〜1.0質量%、更に好ましくは0.05〜0.5質量%含有してもよい。   When these elements contain a total of 0.05% by mass or more, the effect appears, but when the total exceeds 1.0% by mass, the solid solubility limit of Co is narrowed to precipitate coarse second-phase particles. It becomes easy and the strength is slightly improved, but the bending workability is deteriorated. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Therefore, one or more selected from the group consisting of Mn, Fe, Mg, Ni, Cr, V, Nb, Mo, Zr, B, Zn, Sn, Ag, Be, Misch metal, and P as other element groups. The total content may be 0 to 1.0% by mass, preferably 0.05 to 1.0% by mass, and more preferably 0.05 to 0.5% by mass.

−曲げしわの原因−
一般に、材料を曲げ加工する場合、曲げ部最外周に最も歪が付与される。曲げ加工において特定の歪値までは材料表面が均一に伸びるが、特定の歪値を境界に局部的に伸びが小さくなり、曲げしわが発生する。曲げ加工が進むとこのしわを起点に割れが入る。局部的に伸びが小さくなる(以降、不均一伸び)現象が生じる歪限界値は材料の機械的特性に依存するところも大きいが、材料内に異物や欠陥などの不均一伸びの起点となる物が存在すると、材料本来の機械的特性に応じた歪限界値以下で不均一伸びが生じやすく、曲げ部のしわが大きくなる傾向がある。従って、これら不均一伸びが生じる起点を少なくすることにより曲げしわを小さくできる。
なお、材料内部に不均一伸びが生じる起点が存在すると、材料表面に存在する起点ほどではないが、これが原因で材料表面に影響を及ぼすため、材料内部についても不均一伸びが生じる起点を少なくすることが望ましい。
不均一伸びの起点となる因子としては、材料表面の粗さ、表層に存在する析出物が挙げられる。材料表面の粗さは、最終圧延ロール表面の表面研磨等の従来手段で小さくすることは可能であるが、それだけでは最新の超小型端子に要求される曲げ加工に対応できない。
-Causes of bending wrinkles-
In general, when bending a material, the most distortion is applied to the outermost periphery of the bent portion. In the bending process, the surface of the material extends uniformly up to a specific strain value, but the elongation decreases locally with the specific strain value as a boundary, and bending wrinkles occur. As bending progresses, cracks start from this wrinkle. The strain limit value at which the phenomenon of locally small elongation (hereinafter referred to as non-uniform elongation) occurs largely depending on the mechanical properties of the material, but is the starting point of non-uniform elongation such as foreign matter and defects in the material. Is present, the non-uniform elongation tends to occur below the strain limit value corresponding to the original mechanical characteristics of the material, and the wrinkle of the bent portion tends to increase. Therefore, bending wrinkles can be reduced by reducing the starting points at which these non-uniform elongation occurs.
In addition, if there is a starting point where uneven elongation occurs inside the material, it is not as much as the starting point existing on the surface of the material, but this affects the surface of the material, thereby reducing the starting point where uneven stretching occurs inside the material. It is desirable.
Factors that serve as starting points for non-uniform elongation include roughness of the material surface and precipitates present on the surface layer. The surface roughness of the material can be reduced by conventional means such as surface polishing of the surface of the final rolling roll, but it alone cannot cope with the bending process required for the latest ultra-small terminals.

−金属組織内のせん断帯−
一般的に銅合金は、金属結晶の粒径(結晶微細化)や析出物の量、粒径、分布(析出強化)等の調整により強化できるが、最終冷間圧延の加工度調整によっても強化できる(加工強化)。圧延では、長手方向に張力が負荷された材料に対し、鉛直方向から圧延ロールによる荷重が加えられ、材料が変形(圧延)されていく。この圧延の際には、せん断的な変形が局所的に集中し、結晶粒組織が変形破壊されてせん断帯と呼ばれる帯状の組織が結晶方位とは無関係に形成される。
本実施形態において「せん断帯」とは、金属材料を圧延加工したサンプルの表面または圧延平行断面を研磨後エッチングしたときに観察される筋状又は線状の深さ0.01〜1μmの凹部であって、結晶粒の内部に連続して存在する部分を意味する(図3のせん断帯12参照)。
-Shear band in metal structure-
In general, copper alloys can be strengthened by adjusting the metal crystal grain size (crystal refinement), the amount of precipitates, grain size, distribution (precipitation strengthening), etc., but can also be strengthened by adjusting the workability of the final cold rolling. Yes (process enhancement). In rolling, a load applied by a rolling roll is applied from the vertical direction to a material in which tension is applied in the longitudinal direction, and the material is deformed (rolled). During this rolling, shear deformation locally concentrates, the crystal grain structure is deformed and broken, and a band-like structure called a shear band is formed regardless of the crystal orientation.
In this embodiment, the “shear band” is a streak-like or linear recess having a depth of 0.01 to 1 μm that is observed when a surface of a sample obtained by rolling a metal material or a rolled parallel section is etched after polishing. It means a portion continuously present inside the crystal grains (see the shear band 12 in FIG. 3).

せん断帯の発達を制御する方法としては、圧延加工度を変更すること、冷間圧延時の圧延油の粘度を変更すること、圧延荷重を変更すること等によって行うことができる。具体的には、時効処理後の冷間圧延での圧延加工度、圧延油の粘度、圧延荷重を高くするなどして、金属材料に歪みが入りやすい状態とすることにより、せん断帯の発生頻度を上げることができる。   As a method for controlling the development of the shear band, it can be performed by changing the rolling degree, changing the viscosity of the rolling oil during cold rolling, changing the rolling load, and the like. Specifically, the frequency of occurrence of shear bands by increasing the degree of rolling work in cold rolling after aging treatment, increasing the viscosity of the rolling oil, and increasing the rolling load, etc. Can be raised.

せん断帯は変形が局部的に集中した組織、すなわち歪が多くたまって転位密度が増加している部分であり、周りの組織に比べ変形しにくい。このため、せん断帯が存在する材料では、曲げ加工した際にせん断帯を起点に不均一伸びが生じ、不均一伸びが表面まで達する場合にはしわや割れが発生する。しかし、せん断帯が形成されるまで圧延加工をしないと加工強化はできず、要求される合金強度を達成することができないため、最終冷間圧延後の製品は必然的にせん断帯を内在させている。
本発明者らはせん断帯の分布に着目し、材料表面近くのせん断帯が少ないほど表面に達する不均一伸びが生じにくいため、割れやしわが少なくなることを発見した。即ち、せん断帯として具現化される歪が板厚中央部より表層で少ない場合には、曲げ加工の際に割れやしわが発生しにくい。具体的には、最終圧延後の材料表層に観察されるせん断帯の線の本数Ssと、板厚中央部(表層以外の部分)のせん断帯の線の本数Scの比Ss/Scが1.0以下、好ましくは0.95以下であれば、激しい曲げ加工の際にも曲げしわの発生が少なくなる。
更に、最終圧延後の材料表層のせん断帯の線の本数が好ましくは330本/10,000μm2以下、更に好ましくは280本/10,000μm2以下であれば、曲げしわの発生がより少なくなる。
なお、最終圧延での総加工度を低くして加工強化を充分に行わず、材料の表層でも板厚中央部でもせん断帯が少なかった場合は、高強度な本発明の合金条を得ることはできない。従って、本発明の合金条の表層のせん断帯の線の本数Ssは0を超える。
The shear band is a structure in which deformation is locally concentrated, that is, a portion where dislocation density increases due to increased strain, and is less likely to be deformed than the surrounding structure. For this reason, in a material having a shear band, non-uniform elongation occurs starting from the shear band when bending is performed, and wrinkles and cracks occur when the non-uniform elongation reaches the surface. However, if the rolling process is not performed until the shear band is formed, the work cannot be strengthened and the required alloy strength cannot be achieved. Therefore, the product after the final cold rolling must have the shear band inherent. Yes.
The present inventors paid attention to the distribution of the shear band, and found that the smaller the shear band near the surface of the material, the less likely the non-uniform elongation to reach the surface is, so that cracks and wrinkles are reduced. That is, when the strain embodied as a shear band is less in the surface layer than the central portion of the plate thickness, cracks and wrinkles are unlikely to occur during bending. Specifically, the ratio Ss / Sc of the number Ss of shear band lines observed on the material surface layer after the final rolling and the number Sc of shear band lines at the center of the plate thickness (the portion other than the surface layer) is 1. If it is 0 or less, preferably 0.95 or less, the occurrence of bending wrinkles is reduced even during severe bending.
Further, if the number of shear band lines on the material surface layer after the final rolling is preferably 330 / 10,000 μm 2 or less, more preferably 280 / 10,000 μm 2 or less, the occurrence of bending wrinkles is reduced. .
In addition, if the total degree of work in the final rolling is lowered and the work strengthening is not performed sufficiently, and there are few shear bands in the surface layer of the material or the center of the plate thickness, it is possible to obtain a high strength alloy strip of the present invention. Can not. Therefore, the number Ss of shear band lines on the surface layer of the alloy strip of the present invention exceeds zero.

本実施形態においては、せん断帯の有無を、Cu−Co−Si系合金の圧延平行断面に対して機械研磨後にエッチングすることにより組織を現出させ、走査型電子顕微鏡(SEM)を用いて、結晶粒の表面(圧延面)から深さが0.01μm以上のものをカウントする。深さの下限を0.01μm以上としたのは、あまりにも微細なせん断帯はカウントするのが困難だからである。   In this embodiment, the presence or absence of a shear band is revealed by etching after mechanical polishing on the rolled parallel cross section of the Cu—Co—Si based alloy, and using a scanning electron microscope (SEM), Count those having a depth of 0.01 μm or more from the surface of the crystal grains (rolled surface). The reason why the lower limit of the depth is set to 0.01 μm or more is that it is difficult to count too fine shear bands.

−析出物の粒径及び数−
せん断帯は歪がたまる部分に発生しやすい。そして、歪は組織が不連続となる部分、すなわちコルソン系合金では析出物粒子の周辺に局所的にたまりやすい。よって、析出物粒子の密度が低ければ歪の局所化も抑えられ、せん断帯も発生しにくくなる。ここで、本発明の「析出物」は、鋳造時の凝固過程に生じる晶出物、溶解時の溶湯内での反応により生じる酸化物や硫化物等、鋳塊凝固後の冷却過程、熱間圧延後、溶体化処理後の冷却過程及び時効処理時にCuマトリックス母材中に析出する析出物等の金属化合物を包括して総称する。従って、析出物粒子は、Co及びSiからなる粒子もあれば、この粒子に更に添加合金元素が加わったもの、Co及びSiのいずれか一方を含まない、もしくは両方を含まないものもある。
析出物の粒径及び数は、圧延平行断面を研磨し,エッチング後に、FE−SEM(電解放射型走査電子顕微鏡)を用いて200〜2,000倍程度の倍率で観察できる。粒子解析ソフト及びEDS(エネルギー分散型X線分析)を用いて成分を測定し、母材成分とは異なる成分で構成される粒子を析出物として判定した。析出物のそれぞれの粒径を測定して個数を数えた。ここで、析出物に外接する円の直径を析出物の粒径とする。
-Particle size and number of precipitates-
Shear bands tend to occur where strains accumulate. Strain tends to accumulate locally in the vicinity of the precipitate particles in a portion where the structure becomes discontinuous, that is, in a Corson alloy. Therefore, if the density of the precipitate particles is low, the localization of strain is suppressed, and a shear band is hardly generated. Here, the “precipitate” of the present invention is a crystallized product generated during the solidification process during casting, oxides or sulfides generated by a reaction in the molten metal during melting, cooling process after ingot solidification, hot It is a general term for metal compounds such as precipitates that precipitate in the Cu matrix base material during rolling and after the solution treatment and cooling process and aging treatment. Therefore, some of the precipitate particles are made of Co and Si, and some of the particles are obtained by further adding an additive alloy element to the particles, and some of the precipitate particles do not contain any one of Co and Si, or do not contain both.
The particle size and number of the precipitates can be observed at a magnification of about 200 to 2,000 times using a FE-SEM (electrolytic emission scanning electron microscope) after polishing the rolled parallel section and etching. Components were measured using particle analysis software and EDS (energy dispersive X-ray analysis), and particles composed of components different from the base material components were determined as precipitates. The particle size of each precipitate was measured and counted. Here, the diameter of the circle circumscribing the precipitate is defined as the particle size of the precipitate.

理論によって本発明を制限するものではないが、時効処理後の材料の表面から1/6板厚深さまでの表層において、粒径1〜10μmの析出物の個数が3.0×104個/mm2以下であれば、せん断帯発生の起点となる析出物の密度が低いため、表層部分でのせん断帯の発生が少なくなり、曲げ部に発生するしわも小さくできる。一方、3.0×104個/mm2を超えると表層でのせん断帯の発生が多くなり、曲げ部に発生するしわが大きくなる。表層における粒径1〜10μmの析出物の個数は好ましくは1×10-6個/mm2以上であり、それ未満であると材料全体として析出が少ない状態であり、強度上昇効果が得られず導電性も低い傾向がある。
また、表層における粒径1〜10μmの析出物粒子の個数Nsと、板厚中央部の粒径1〜10μmの析出物粒子の個数Ncの比Ns/Ncが1.0以下、好ましくは0.95以下であれば、激しい曲げ加工後にもしわの発生が少なくなる。これは、板厚中央部よりも表層で析出物粒子の個数が少ないため表層に歪がたまらず、せん断帯が少なくなり、曲げ加工の際に割れやしわが発生しにくいからである。
Although the present invention is not limited by theory, in the surface layer from the surface of the material after aging treatment to 1/6 plate thickness depth, the number of precipitates having a particle diameter of 1 to 10 μm is 3.0 × 10 4 / if mm 2 or less, due to the low density of the precipitates as the starting point of shear bands occurrence, the occurrence of shear bands in the surface layer portion is reduced, wrinkles can also be reduced which occurs bend. On the other hand, if it exceeds 3.0 × 10 4 pieces / mm 2 , the generation of shear bands in the surface layer increases and wrinkles generated in the bent portion increase. The number of precipitates having a particle size of 1 to 10 μm in the surface layer is preferably 1 × 10 −6 pieces / mm 2 or more, and if it is less than that, there is little precipitation as a whole material, and the effect of increasing the strength cannot be obtained. The conductivity tends to be low.
The ratio Ns / Nc of the number Ns of precipitate particles having a particle diameter of 1 to 10 μm in the surface layer and the number Nc of precipitate particles having a particle diameter of 1 to 10 μm in the center of the plate thickness is 1.0 or less, preferably 0.8. If it is 95 or less, the generation of wrinkles is reduced even after intense bending. This is because the number of precipitate particles in the surface layer is smaller than that in the central portion of the plate thickness, so that the surface layer is not distorted, the shear band is reduced, and cracks and wrinkles are less likely to occur during bending.

なお、コルソン合金では微細な析出物が均一に存在することにより強度向上効果が見られるが、粒径1μm以上の析出物は、析出物の分布密度及び粒界面積の低下を引き起こすため強度向上の観点から余り好ましくないとされていた。しかし、本発明では、圧延加工による歪を局在化させてせん断帯が形成される原因となりやすい粒径1〜10μmの析出物に着目し、その分布を調整して目的の特性を達成している。
粒径1μm未満の析出物粒子は、析出強化に寄与するが歪の局在化には余り寄与せず、せん断帯の発生にほとんど影響しないため曲げ部のしわにも影響しない。更に、粒径0.5μm未満の析出物粒子は、析出物であるか否かの成分判断ができないほど小さすぎる。一方、表層及び板厚中央部を含む全体において粒径10μmを超える析出物は割れの原因になるため、その個数は好ましくは1個/mm2以下、更に好ましくは0個/mm2である。
In the Corson alloy, the effect of improving the strength is observed due to the uniform presence of fine precipitates. However, the precipitate having a particle size of 1 μm or more causes a decrease in the distribution density of the precipitates and the interfacial area of the precipitates, thereby improving the strength. From the point of view, it was considered unfavorable. However, in the present invention, attention is paid to precipitates having a particle diameter of 1 to 10 μm, which are likely to cause the formation of shear bands by localizing strain due to rolling, and the distribution is adjusted to achieve the desired characteristics. Yes.
Precipitate particles having a particle size of less than 1 μm contribute to precipitation strengthening but do not contribute much to the localization of strain, and have little influence on the generation of shear bands, and therefore do not affect the wrinkles of the bent portion. Furthermore, the precipitate particles having a particle size of less than 0.5 μm are too small to determine whether the component is a precipitate. On the other hand, since a precipitate having a particle size exceeding 10 μm in the entire surface layer and the center of the plate thickness causes cracking, the number is preferably 1 piece / mm 2 or less, more preferably 0 piece / mm 2 .

−結晶粒径−
本発明のCu−Co−Si系合金条の結晶粒径は20μm以下であり、15μm以下がさらに好ましい。20μm以上の粒径では曲げ性が悪化する。
-Crystal grain size-
The crystal grain size of the Cu—Co—Si based alloy strip of the present invention is 20 μm or less, and more preferably 15 μm or less. When the particle diameter is 20 μm or more, the bendability deteriorates.

−本発明の合金条の製造方法−
次に、本発明の合金を得るための製造方法について説明する。
通常、コルソン合金の鋳塊の製造は半連続鋳造法で行なわれる。鋳造条件の温度、時間及び冷却速度を制御して、鋳造時の凝固過程において粗大なCo−Si系析出物を生成させないことが好ましい。ある大きさ以下のCo−Si系析出物は、鋳造後に行われる熱間圧延の加熱を強化することによりCuマトリックス中に固溶できるが、全ての粗大な析出物をマトリックス中に固溶させるために加熱温度を上昇させると加熱炉の炉体耐火物寿命が短くなり、加熱時間を長時間化させるとリードタイムが長くなり生産性が極端に悪化する等の問題が生じる。
-Manufacturing method of alloy strip of the present invention-
Next, the manufacturing method for obtaining the alloy of this invention is demonstrated.
Normally, the production of an ingot of Corson alloy is carried out by a semi-continuous casting method. It is preferable to control the temperature, time, and cooling rate of the casting conditions so that coarse Co—Si based precipitates are not generated during the solidification process during casting. Co-Si-based precipitates of a certain size or less can be dissolved in the Cu matrix by strengthening the heating of hot rolling performed after casting, but to dissolve all coarse precipitates in the matrix. If the heating temperature is increased, the furnace refractory life of the heating furnace will be shortened, and if the heating time is lengthened, the lead time will become longer and the productivity will be extremely deteriorated.

800℃以上の温度で1時間以上加熱後に、終了温度を650℃以上とする熱間圧延を行なうと、鋳造で析出・晶出したある大きさ以下の析出物はCuマトリックス中に固溶される。その場合、高温で加熱すると鋳造時に析出・晶出した析出物をCuマトリックス中に固溶させることができるが、熱間圧延前の加熱温度が1,000℃以上では、大量のスケールの発生、熱間圧延時の割れの発生といった問題が生じるので、熱間圧延前の加熱温度は900℃以上1,000℃未満が好ましい。具体的には、インゴット製造工程後には、900〜1,000℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。   After heating at a temperature of 800 ° C. or higher for 1 hour or longer and performing hot rolling with an end temperature of 650 ° C. or higher, precipitates of a certain size or smaller that are precipitated and crystallized by casting are dissolved in the Cu matrix. . In that case, when heated at a high temperature, the precipitate precipitated and crystallized during casting can be dissolved in the Cu matrix, but when the heating temperature before hot rolling is 1,000 ° C. or more, a large amount of scale is generated, Since problems such as generation of cracks during hot rolling occur, the heating temperature before hot rolling is preferably 900 ° C. or higher and lower than 1,000 ° C. Specifically, after the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 1,000 ° C. and performing homogenization annealing for 3 to 24 hours.

コルソン合金は、上記熱間圧延加工後、加熱して鋳造や熱間圧延で析出したCo−Si系析出物をCuマトリックス中に固溶させる溶体化処理と、溶体化処理温度より低い温度で熱処理して溶体化処理で固溶したCoとSiを析出させる時効処理、時効処理の前後で加工硬化させる圧延を組み合わせた工程で製造されることが多い。一般的には溶体化処理、圧延、時効処理、圧延、歪取り焼鈍の工程で製造される。せん断帯は、時効熱処理により消滅し、時効後の圧延で新たに生成する。そのため時効処理後の圧延条件がせん断帯形成に対して重要である。一方、歪取り焼鈍熱処理は、時効に比べて入熱量が少ないため、せん断帯の存在に対する影響はほとんど無い。時効処理前後の圧延では、要求される引張強さや0.2%耐力といった機械的特性及び曲げ加工性を考慮して条件を設定するが、時効前後のどちらか一方の圧延を省略することは可能である。   Corson alloy is a heat treatment at a temperature lower than the solution treatment temperature, and a solution treatment in which a Co-Si based precipitate precipitated by casting or hot rolling is heated in the Cu matrix after the hot rolling process, and a solution treatment temperature lower than the solution treatment temperature. In many cases, it is produced by a combination of aging treatment for precipitating Co and Si dissolved in the solution treatment and rolling for work hardening before and after the aging treatment. Generally, it is manufactured in the steps of solution treatment, rolling, aging treatment, rolling, and strain relief annealing. The shear band disappears by aging heat treatment and is newly generated by rolling after aging. Therefore, the rolling conditions after aging treatment are important for shear band formation. On the other hand, the strain relief annealing heat treatment has little influence on the presence of the shear band because it has a smaller heat input than aging. For rolling before and after aging treatment, conditions are set in consideration of mechanical properties such as required tensile strength and 0.2% proof stress and bending workability, but it is possible to omit either rolling before or after aging treatment. It is.

この場合、溶体化処理温度が高い方がCo、SiのCuマトリックス中への固溶量が増加し、時効処理時にマトリックス中からCo−Si系の金属間化合物が析出して強度を向上させる。この析出強度効果を得るための溶体化処理温度は、試験片の材料最高温度がCoの固溶限温度(Co濃度0.1質量%で約370℃、Co濃度0.2質量%で約490℃、Co濃度0.3質量%で約560℃、Co濃度0.5質量%で約650℃、Co濃度0.7質量%で約710℃、Co濃度0.8質量%で約730℃、Co濃度0.9質量%で約750℃、Co濃度1.0質量%で約770℃、Co濃度1.5質量%で約840℃、Co濃度1.7質量%で約865℃、Co濃度1.8質量%で約875℃、Co濃度1.9質量%で約885℃、Co濃度2.0質量%で約890℃、Co濃度2.2質量%で約910℃、Co濃度2.6質量%で約940℃、Co濃度3.0質量%で約960℃、Co濃度3.5質量%で約990℃)程度又はそれ以上となるようにする。   In this case, when the solution treatment temperature is higher, the amount of Co and Si dissolved in the Cu matrix increases, and during the aging treatment, a Co—Si based intermetallic compound is precipitated from the matrix to improve the strength. The solution treatment temperature for obtaining this precipitation strength effect is such that the maximum material temperature of the test piece is the solid solution limit temperature of Co (about 370 ° C. when the Co concentration is 0.1% by mass and about 490 when the Co concentration is 0.2% by mass). C, about 560 ° C. with a Co concentration of 0.3% by mass, about 650 ° C. with a Co concentration of 0.5% by mass, about 710 ° C. with a Co concentration of 0.7% by mass, about 730 ° C. with a Co concentration of 0.8% by mass, About 750 ° C. with Co concentration of 0.9% by mass, about 770 ° C. with Co concentration of 1.0% by mass, about 840 ° C. with Co concentration of 1.5% by mass, about 865 ° C. with Co concentration of 1.7% by mass, Co concentration 1.8% by mass, about 875 ° C., Co concentration of 1.9% by mass, about 885 ° C., Co concentration of 2.0% by mass, about 890 ° C., Co concentration of 2.2% by mass, about 910 ° C., Co concentration of 2.%. 6% by mass, about 940 ° C., Co concentration of 3.0% by mass, about 960 ° C., Co concentration of 3.5% by mass, about 990 ° C.) Or so as to become higher.

通常、溶体化処理工程ではCo及びSiの固溶状態を可能な限り維持するために急冷される。本発明では、実際にはいくら急冷しても溶体化処理の冷却過程で、ある程度の量のCo−Si金属間化合物が材料内部にほぼ均一に析出してしまうことに着目し、あえて溶体化処理工程での冷却速度を遅くすることにより、溶体化の冷却過程で表層と板厚中央部に温度勾配をつけ、粒径1〜10μmの析出物数が表層から板厚中央部に向けて段階的に増加するように変化させて、最終冷間圧延後の表層せん断帯本数を少なくし、曲げ加工後でも優れた表面外観を示す合金条を得た。理論によって本発明を制限するものではないが、冷却速度を遅くすることにより表層と板厚中央部とで冷却速度の差が大きくなり、表層付近は急冷されて析出物が少なく、板厚中央部では徐冷されて析出物は多くなると考えられる。   Usually, in the solution treatment step, quenching is performed in order to maintain the solid solution state of Co and Si as much as possible. In the present invention, attention is paid to the fact that a certain amount of Co—Si intermetallic compound precipitates almost uniformly in the material during the cooling process of the solution treatment, no matter how much rapid cooling is actually performed. By slowing down the cooling rate in the process, a temperature gradient is created between the surface layer and the center of the plate thickness in the cooling process of the solution treatment, and the number of precipitates having a particle size of 1 to 10 μm is gradually increased from the surface layer toward the center of the plate thickness. The number of surface shear bands after the final cold rolling was reduced, and an alloy strip showing an excellent surface appearance even after bending was obtained. Although the present invention is not limited by theory, by reducing the cooling rate, the difference in cooling rate between the surface layer and the central portion of the plate thickness increases, and the vicinity of the surface layer is rapidly cooled to reduce precipitates, and the central portion of the plate thickness. Then, it is considered that the precipitate is increased by slow cooling.

溶体化温度から400℃までの平均冷却速度は、好ましくは500℃/分以下、さらに好ましくは500〜300℃/分、最も好ましくは500〜400℃/分である。上記範囲であると表層では急冷されるため粒径1μm以上の析出物数が低下し、中央部では徐冷されるため粒径1〜10μmの析出物が発生する。500℃/分を超えると材料内部にほぼ均一に析出してしまうため、曲げ性及び曲げ加工後の外観に劣る。300℃/分未満であると板厚中央部の析出物が粗大化して時効での析出強化の効果が充分に得られない。
400℃から70℃までの平均冷却速度は、好ましくは300℃/分以下、さらに好ましくは300〜100℃/分である。300℃/分を超えると材料内部にほぼ均一に析出してしまうため、曲げ加工後の外観に劣る。一方100℃/分未満であると板厚中央部の析出物が粗大化して時効での析出強化の効果が充分に得られない。その上、時間もかかるため工業的にも好ましくない。
本発明では溶体化温度からの冷却において冷却速度を一定にすることは実際には難しいので平均冷却温度を用いている。本発明の平均冷却速度は、溶体化温度と400℃、又は400℃と70℃との差を、冷却にかかった時間で割ったものである。
The average cooling rate from the solution temperature to 400 ° C. is preferably 500 ° C./min or less, more preferably 500 to 300 ° C./min, and most preferably 500 to 400 ° C./min. If it is in the above range, the number of precipitates having a particle size of 1 μm or more is decreased because the surface layer is rapidly cooled, and precipitates having a particle size of 1 to 10 μm are generated because it is gradually cooled in the central portion. If it exceeds 500 ° C./min, it will be deposited almost uniformly inside the material, resulting in poor bendability and appearance after bending. If it is less than 300 ° C./min, the precipitate at the center of the plate thickness becomes coarse and the effect of precipitation strengthening due to aging cannot be sufficiently obtained.
The average cooling rate from 400 ° C. to 70 ° C. is preferably 300 ° C./min or less, more preferably 300 to 100 ° C./min. If it exceeds 300 ° C./min, it will be deposited almost uniformly inside the material, resulting in poor appearance after bending. On the other hand, if it is less than 100 ° C./min, the precipitate in the central part of the plate thickness becomes coarse and the effect of precipitation strengthening due to aging cannot be sufficiently obtained. In addition, since it takes time, it is not preferable industrially.
In the present invention, the average cooling temperature is used because it is actually difficult to make the cooling rate constant in cooling from the solution temperature. The average cooling rate of the present invention is the solution temperature and 400 ° C, or the difference between 400 ° C and 70 ° C divided by the time taken for cooling.

溶体化前の銅合金素材を、第二相粒子組成の固溶限付近の温度になるまで加熱する。Coの添加量が0.2〜3.5質量%の範囲でCoの固溶限が添加量と等しくなる温度(本発明では「固溶限温度」という。)は490〜990℃程度であり、例えばCoの添加量が2.0質量%では890℃程度である。典型的には、溶体化前の銅合金素材のCoの固溶限温度に比べて0〜25℃高い温度、好ましくは0〜20℃高い温度になるまで加熱する。但し、溶体化処理温度をCoの固溶限温度よりも25℃を超えて高く設定することは結晶粒径が大きくなり、曲げ性が悪化するため好ましくない。溶体化は冷間圧延の途中に複数回行うことも可能である。   The copper alloy material before solution treatment is heated until it reaches a temperature near the solid solution limit of the second phase particle composition. The temperature at which the solid solubility limit of Co becomes equal to the addition amount when the addition amount of Co is in the range of 0.2 to 3.5% by mass (referred to as “solid solubility limit temperature” in the present invention) is about 490 to 990 ° C. For example, when the addition amount of Co is 2.0 mass%, it is about 890 ° C. Typically, heating is performed until the temperature reaches 0 to 25 ° C., preferably 0 to 20 ° C. higher than the solid solution temperature of Co of the copper alloy material before solution treatment. However, setting the solution treatment temperature to be higher than the solid solution limit temperature of Co by exceeding 25 ° C. is not preferable because the crystal grain size increases and the bendability deteriorates. The solution treatment can be performed a plurality of times during the cold rolling.

最終溶体化処理に引き続いて、時効処理を行う。本実施形態に係るCu−Co−Si系合金を得る上では最終溶体化処理の後、冷間圧延を行わずに直ちに時効処理を行うことが好ましい。
最終溶体化処理の後、時効処理を行って微細な析出物を生成させた後に冷間圧延をすると(時効→冷間圧延)、せん断帯の起点である転位は析出物の個数に比例して増加するので、低い加工度で高強度を得ることができる。曲げ性は、材料に入っている歪の量が少ないほうが良い傾向にあるため、低い加工度で圧延を行うことのできる「時効→冷間圧延」によって得られる材料の曲げ性は優れたものになる。一方、時効による析出物が無い状態で冷間圧延を行ってから時効処理をする「冷間圧延→時効工程」では、曲げ性と強度を両立することが困難である。その理由は、冷間圧延時には析出物がほとんど無いために、時効→冷間圧延と同じレベルの強度を得るためには高い加工度が必要とされ、曲げ性が悪くなるからである。議論によって本発明を限定するものではないが、せん断帯は時効熱処理で一度消滅し、その後の圧延で再度生成すると考えられる。従って、強度と曲げ性のバランスに優れた合金条を得るためには時効後の圧延が好ましく、時効前の圧延は省略可能である。
An aging treatment is performed following the final solution treatment. In order to obtain the Cu—Co—Si based alloy according to this embodiment, it is preferable to perform an aging treatment immediately after the final solution treatment without performing cold rolling.
After the final solution treatment, aging treatment is performed to produce fine precipitates and then cold rolling (aging → cold rolling), the dislocation that is the origin of the shear band is proportional to the number of precipitates. Since it increases, high strength can be obtained with a low degree of processing. As the bendability tends to be better when the amount of strain contained in the material is smaller, the bendability of the material obtained by “aging → cold rolling” that can be rolled at a low workability is excellent. Become. On the other hand, it is difficult to achieve both bendability and strength in the “cold rolling → aging process” in which the aging treatment is performed after cold rolling in the absence of precipitates due to aging. The reason is that since there is almost no precipitate during cold rolling, a high degree of workability is required to obtain the same level of strength as aging → cold rolling, resulting in poor bendability. Although the present invention is not limited by the discussion, it is considered that the shear band disappears once by aging heat treatment and is formed again by subsequent rolling. Therefore, in order to obtain an alloy strip having an excellent balance between strength and bendability, rolling after aging is preferable, and rolling before aging can be omitted.

時効処理は、金属間化合物の微細な析出物が適切な大きさと間隔で均質に分布して、導電性を担保しつつピーク強度が得られる時効処理条件で実施することが好ましい。ここで、ピーク強度とは、例えば時効処理時間を一定として(例えば15時間)、時効処理温度を変化させた場合(例えば450、475、500、525、550、575、600℃の各時効処理温度で時効処理をした場合)に、最も強度(引張強さ)が高くなる条件で時効処理した場合の強度をいう。具体的には、材料温度475〜580℃で1〜30時間加熱することが好ましく、材料温度480〜580℃で1.5〜25時間加熱することがより好ましく、材料温度480〜580℃で5〜25時間加熱することがより好ましい。
せん断帯は材料内に導入された歪が局所化することにより発生する。上記記載の通り粒径1〜10μmの析出物の個数を表層部で少なく、板厚中央部で多く調整した材料へ、表層及び板厚中央部に対して均一に変形(圧延)を加えると、せん断帯が表層で少なく板厚中央部では加工強化に充分な程度に多く発生する。
The aging treatment is preferably carried out under aging treatment conditions in which fine precipitates of intermetallic compounds are uniformly distributed at appropriate sizes and intervals, and peak strength is obtained while ensuring conductivity. Here, the peak intensity is, for example, when the aging treatment time is changed (for example, 15 hours) and the aging treatment temperature is changed (for example, 450, 475, 500, 525, 550, 575, 600 ° C.) Is the strength when aging treatment is performed under the condition that the strength (tensile strength) is the highest. Specifically, it is preferable to heat at a material temperature of 475 to 580 ° C. for 1 to 30 hours, more preferably to heat at a material temperature of 480 to 580 ° C. for 1.5 to 25 hours, and 5 to 5 at a material temperature of 480 to 580 ° C. It is more preferable to heat for ~ 25 hours.
The shear band is generated by localizing the strain introduced in the material. As described above, when the number of precipitates having a particle size of 1 to 10 μm is small in the surface layer part, and the material adjusted to be large in the sheet thickness center part is uniformly deformed (rolled) with respect to the surface layer and the sheet thickness center part, There are few shear bands in the surface layer, and they occur in the central part of the plate thickness to the extent sufficient for strengthening the work.

せん断帯の発達を制御するため、本発明の実施形態においては、最終冷間圧延の圧延荷重は材料の幅方向の単位長さ当たりで115kg/mm以下とするのが好ましく、より好ましくは100kg/mm以下であり、例えば、100〜85kg/mmである。これは、表層及び板厚中央部に対して均一に変形(圧延)を加えることを目的としており、粒径1〜10μmの析出物の個数を表層部で少なく、板厚中央部で多く調整した材料ではせん断帯が表層で少なく板厚中央部では加工強化に充分な程度に多く発生する効果がある。なお、通常は、最終冷間圧延の圧延荷重は工業的に短時間で圧延するために、150〜200kg/mmからそれ以上の圧延荷重で実施される。圧延荷重が高ければ高いほど、板厚方向に材料を圧縮する力が強くなり、より短時間で所望の板厚まで材料を薄くすることができるからである。そのため従来技術ではせん断帯の発達は制御されず、材料表面に歪みが集中して表層のせん断帯が多くなっていた。   In order to control the development of the shear band, in the embodiment of the present invention, the rolling load of the final cold rolling is preferably 115 kg / mm or less, more preferably 100 kg / mm per unit length in the width direction of the material. mm or less, for example, 100 to 85 kg / mm. This is intended to uniformly deform (roll) the surface layer and the central portion of the plate thickness, and the number of precipitates having a particle diameter of 1 to 10 μm is small in the surface layer portion and adjusted in the central portion of the plate thickness. The material has an effect that the shear band is small in the surface layer and is generated in a sufficient amount for work strengthening in the central portion of the plate thickness. Usually, the rolling load of the final cold rolling is carried out at a rolling load of 150 to 200 kg / mm or more in order to roll industrially in a short time. This is because the higher the rolling load, the stronger the force for compressing the material in the plate thickness direction, and the material can be reduced to the desired plate thickness in a shorter time. Therefore, in the prior art, the development of the shear band is not controlled, and strain concentrates on the material surface, resulting in an increase in the surface shear band.

本発明の実施形態においては、最終冷間圧延で使用される圧延油の粘度は、表層と中央部とで均一に加工変形が生じるように13cST未満とするのが好ましく、10cST以下とするのが更に好ましく、より好ましくは7cST以下、最も好ましくは6.8〜3cSTである。13cST以上では、圧延の際に圧延油が材料表面に噛み込まれて表面平滑性に劣ると共に表層に歪がたまり、表層のせん断帯の本数が多くなる傾向がある。なお、通常は、工業的に短時間で圧延するためには7〜25cST程度からそれ以上の粘度の圧延油を使用するのが一般的である。圧延油の粘度が高いほど、速い圧延速度でも圧延に最適な潤滑油厚みを得られるため、圧延速度を高めることが可能となり、より短時間で圧延して生産性を向上させることができるからである。   In the embodiment of the present invention, the viscosity of the rolling oil used in the final cold rolling is preferably less than 13 cST so that uniform deformation occurs in the surface layer and the central portion, and is preferably 10 cST or less. More preferably, it is 7 cST or less, and most preferably 6.8 to 3 cST. If it is 13 cST or more, the rolling oil is caught on the surface of the material during rolling, the surface smoothness is inferior, and the surface layer tends to be distorted, so that the number of surface shear bands tends to increase. Normally, rolling oil having a viscosity of about 7 to 25 cST or higher is generally used for industrial rolling in a short time. The higher the viscosity of the rolling oil, the more optimal lubrication oil thickness can be obtained at higher rolling speeds, so the rolling speed can be increased and the productivity can be improved by rolling in a shorter time. is there.

本実施形態においては、せん断帯の有無を、Cu−Co−Si系合金の圧延平行断面に対して機械研磨後にエッチングすることにより組織を現出させ、走査型電子顕微鏡(SEM)を用いて、結晶粒の表面(圧延面)から深さが0.01μm以上のものをカウントする。深さの下限を0.01μm以上としたのは、あまりにも微細なせん断帯はカウントするのが困難だからである。   In this embodiment, the presence or absence of a shear band is revealed by etching after mechanical polishing on the rolled parallel cross section of the Cu—Co—Si based alloy, and using a scanning electron microscope (SEM), Count those having a depth of 0.01 μm or more from the surface of the crystal grains (rolled surface). The reason why the lower limit of the depth is set to 0.01 μm or more is that it is difficult to count too fine shear bands.

高い強度を得ることを目的とする場合は、時効処理後の冷間圧延の総加工度を2%以上、好ましくは5%以上、より好ましくは7%以上とする。但し、加工度が高すぎるとせん断帯の存在する結晶粒の割合が多くなり曲げ性が悪化することから加工度を25%以下、好ましくは20%以下とする。要求される引張強さ、0.2%耐力といった機械的特性及び曲げ加工性に対して任意に選択できる。   When the purpose is to obtain high strength, the total degree of cold rolling after aging treatment is 2% or more, preferably 5% or more, more preferably 7% or more. However, if the degree of work is too high, the proportion of crystal grains in which shear bands are present increases and the bendability deteriorates, so the degree of work is 25% or less, preferably 20% or less. The mechanical properties such as required tensile strength, 0.2% proof stress and bending workability can be arbitrarily selected.

最終の冷間圧延の後、電子部品に適用するのに必要な応力緩和特性を得るため、歪取焼鈍を行う。歪取焼鈍の条件は慣用の条件でよいが、具体的には、材料温度200℃以上550℃未満で0.001〜20時間加熱の条件で行うのが好ましく、低温であれば長時間(例えば材料温度200〜300℃で12〜20時間加熱)、高温であれば短時間(例えば材料温度300〜400℃で0.001〜12時間加熱)の条件で行うのがより好ましい。また要求特性によっては本工程を省略することも可能である。但し、歪取焼鈍条件は、焼鈍後製品のせん断帯の本数及び分布が本発明の範囲内で保持されるように設定される。   After the final cold rolling, strain relief annealing is performed to obtain stress relaxation characteristics necessary for application to electronic components. The conditions for strain relief annealing may be conventional conditions. Specifically, it is preferably performed under the conditions of heating at a material temperature of 200 ° C. or more and less than 550 ° C. for 0.001 to 20 hours. If the material temperature is 200 to 300 ° C. and heated for 12 to 20 hours, and if it is high temperature, it is more preferable to carry out under conditions of a short time (for example, heating at a material temperature of 300 to 400 ° C. for 0.001 to 12 hours). Depending on the required characteristics, this step can be omitted. However, the strain relief annealing conditions are set so that the number and distribution of the shear bands of the product after annealing are maintained within the scope of the present invention.

本発明の銅合金は、曲げ加工後の表面外観の変化を評価するので材料表面外観が重要である。表面粗さの調整は、例えば、圧延、研磨などにより行うことが出来る。実際の操業においては表面粗度を調整した圧延ロール等を用いて圧延することにより、銅合金の表面粗度を調整することが出来る。また、圧延後の工程で材料表面に対して例えば、目の粗さが違うバフ研磨を実施することにより表面粗度を調整することも可能である。
本発明の合金条の下記曲げ加工評価後の表面平均粗さRaは、曲げ方向GW及びBW共に1.0μm以下、好ましくは0.8μm以下である。
Since the copper alloy of the present invention evaluates the change in surface appearance after bending, the material surface appearance is important. The surface roughness can be adjusted, for example, by rolling or polishing. In actual operation, the surface roughness of the copper alloy can be adjusted by rolling using a rolling roll or the like whose surface roughness is adjusted. Moreover, it is also possible to adjust the surface roughness by performing buffing, for example, with different eye roughness on the material surface in the process after rolling.
The surface average roughness Ra of the alloy strip of the present invention after the following bending evaluation is 1.0 μm or less, preferably 0.8 μm or less in both the bending directions GW and BW.

以下に本発明に係るCu−Co−Si系合金の製造例及び特性試験の結果を示すが、これらは本発明及びその利点をより良く理解するために提供するのであり、本発明が限定されることを意図するものではないことに留意すべきである。   The production examples of Cu—Co—Si alloys and the results of characteristic tests according to the present invention are shown below, but these are provided for better understanding of the present invention and its advantages, and the present invention is limited. It should be noted that this is not intended.

(製造方法)
実施例の銅合金を製造するに際しては、溶製には大気溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。
(Production method)
In producing the copper alloy of the example, an air melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

表1及び2に記載の濃度のCo、Siを添加し、場合により第3元素を更に添加して、残部銅及び不可避的不純物の組成を有するインゴットに対して980℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2.0mm)とした。次いで、中間の冷間圧延では最終板厚が0.10mmとなるように中間の板厚を調整して冷間圧延した。その後、急速加熱が可能な焼鈍炉に挿入して溶体化処理を行い、銅合金素材が所定の材料温度に達した時点で直ぐに焼鈍炉から取り出し水冷した。   Homogenization by adding Co and Si at the concentrations shown in Tables 1 and 2 and optionally further adding a third element and heating at 980 ° C. for 3 hours to the ingot having the composition of the remaining copper and inevitable impurities After annealing, hot rolling was performed at 900 to 950 ° C. to obtain a hot rolled sheet having a thickness of 10 mm. After descaling by chamfering, it was cold-rolled to obtain a strip thickness (2.0 mm). Next, in the intermediate cold rolling, the intermediate plate thickness was adjusted so that the final plate thickness was 0.10 mm, and cold rolling was performed. Thereafter, it was inserted into an annealing furnace capable of rapid heating and subjected to a solution treatment, and immediately after the copper alloy material reached a predetermined material temperature, it was taken out of the annealing furnace and cooled with water.

溶体化処理は、実施例においては、試験片の材料最高温度がCoの固溶限温度の0℃〜25℃高い温度になるようにした。溶体化温度〜400℃及び400℃〜70℃におけるそれぞれの平均冷却速度を所定の速度に調節しながら冷却し、表層及び板厚中央部の粒径1〜10μmの析出物個数を調整した。   In the examples, the solution treatment was performed such that the maximum material temperature of the test piece was 0 ° C. to 25 ° C. higher than the solid solution limit temperature of Co. It cooled, adjusting each average cooling rate in solution solution temperature -400 degreeC and 400 degreeC-70 degreeC to a predetermined | prescribed speed | rate, and adjusted the number of precipitates with a particle size of 1-10 micrometers of a surface layer and plate thickness center part.

本実施例においては、溶体化処理の保持時間は10sで統一した。なお、「溶体化処理の保持時間」は、試験片が材料最高温度に達した時から水冷を開始するまでの時間を示す。
表1及び2中の「溶体化温度〜400℃の冷却速度」は、試験片が材料最高温度から400℃まで冷却されるまでの平均冷却速度を表す。具体的には(冷却速度(℃/s))=((材料最高温度(℃)−400(℃))/(水冷を開始してから試験片の温度が400℃になるまでに要した時間(s))で算出した。表1及び2中の「400℃〜70℃の冷却速度」も同様に算出した。なお、冷却速度の基準を、試験片が70℃に冷却されるまでの時間と規定したのは、70℃以下の温度域では析出物の消滅、生成、成長の駆動力となる原子の拡散距離が無視できるくらい小さいからである。
In this example, the solution treatment holding time was unified at 10 s. “Solution treatment retention time” indicates the time from when the test piece reaches the maximum material temperature until the water cooling starts.
“Solution temperature to 400 ° C. cooling rate” in Tables 1 and 2 represents the average cooling rate until the specimen is cooled from the maximum material temperature to 400 ° C. Specifically, (cooling rate (° C./s))=((material maximum temperature (° C.) − 400 (° C.)) / (Time required from the start of water cooling until the temperature of the test piece reaches 400 ° C. (S)) The “cooling rate of 400 ° C. to 70 ° C.” in Tables 1 and 2 was also calculated in the same manner, and the time until the test piece was cooled to 70 ° C. was used as the reference for the cooling rate. This is because, in the temperature range of 70 ° C. or lower, the diffusion distance of atoms, which is the driving force for the disappearance, generation, and growth of precipitates, is negligibly small.

その後、実施例1〜35、比較例1〜30、35〜40については最終溶体化処理後の試験片に対してそれぞれピーク強度が得られる時効処理条件(例えば、500℃、15時間)で時効処理を行った後、表1に示す条件で最終冷間圧延を行い(製造方法A)、実施例及び比較例の試験片を作製した。また、比較例31〜34については溶体化処理後の試験片に対して表1及び2に示す条件で冷間圧延を行い、その後、それぞれピーク強度が得られる時効処理条件(例えば、500℃、15時間)で時効処理を行った(製造方法B)。なお、表1及び2中「荷重」は、試験片の幅方向の単位長さあたりの圧延荷重を示す。(幅方向の単位長さあたりの圧延荷重(kg/mm))=(圧延荷重(kg))/(サンプル幅(mm))
圧延油は、出光興産社製 商品名ダフニーステンレスオイルX-60(粘度9.5cST)又は出光興産社製 商品名ダフニーステンレスオイルX-3K(粘度12cST)へ鉱油を添加して粘度を調整して使用した。
Thereafter, for Examples 1 to 35 and Comparative Examples 1 to 30 and 35 to 40, aging is performed under aging treatment conditions (for example, 500 ° C., 15 hours) at which peak strengths are obtained for the test pieces after the final solution treatment. After the treatment, final cold rolling was performed under the conditions shown in Table 1 (Production Method A), and test pieces of Examples and Comparative Examples were produced. Moreover, about Comparative Examples 31-34, it cold-rolls on the conditions shown in Table 1 and 2 with respect to the test piece after a solution treatment, and after that, the aging treatment conditions (for example, 500 degreeC, respectively) from which peak intensity is obtained, respectively. 15 hours) was subjected to aging treatment (Production Method B). In Tables 1 and 2, “Load” indicates the rolling load per unit length in the width direction of the test piece. (Rolling load per unit length in the width direction (kg / mm)) = (Rolling load (kg)) / (Sample width (mm))
For the rolling oil, mineral oil is added to Idemitsu Kosan's trade name Daphne Stainless Oil X-60 (viscosity 9.5 cST) or Idemitsu Kosan Co., Ltd. trade name Daphne Stainless Oil X-3K (viscosity 12 cST) to adjust the viscosity. used.

得られた各試験片について以下の条件で特性評価を行った。結果を表2に示す。
<結晶粒径>
結晶粒径(平均結晶粒径)の測定は、圧延面表面をリン酸67%+硫酸10%+水の溶液に15V60秒の条件で電解研磨により組織を現出させ,水洗乾燥させ観察に供した.これをFE−SEM(電解放射型走査電子顕微鏡)を用いて組織を観察し、JIS G0551の交差線分法により平均結晶粒径を求めた。
<第二相粒子の個数密度>
結晶粒径測定と同様に組織を現出させ、FE−SEMを用い、粒径と析出物の複数の元素が含まれることは、FE−SEMのEDS(エネルギー分散型X線分析)を用いて全ての析出物に対して成分分析することにより確認した。粒径1.0μm未満の第二相粒子、粒径1.0〜10μmの第二相粒子、粒径10μmを超える第二相粒子に分けて個数を粒子解析ソフト(フェニックス社製EDS粒子/相解析ソフトウェア)を用いて数えた。なお、全ての実施例及び比較例において、粒径10μmを超える析出物は表層及び板厚中央部に存在しなかった。
Characteristic evaluation was performed on the obtained test pieces under the following conditions. The results are shown in Table 2.
<Crystal grain size>
The crystal grain size (average crystal grain size) is measured by exposing the rolled surface to a solution of phosphoric acid 67% + sulfuric acid 10% + water by electropolishing under conditions of 15 V 60 seconds, washing with water and drying for observation. did. The structure was observed using an FE-SEM (electrolytic emission scanning electron microscope), and the average crystal grain size was determined by the cross line segment method of JIS G0551.
<Number density of second phase particles>
Using the FE-SEM, the structure appears in the same way as the crystal grain size measurement, and the inclusion of multiple elements such as grain size and precipitates is determined using the FE-SEM EDS (energy dispersive X-ray analysis). It confirmed by analyzing a component with respect to all the deposits. Particle analysis software (EDS particles / phase manufactured by Phoenix Corporation) divided into second phase particles having a particle size of less than 1.0 μm, second phase particles having a particle size of 1.0 to 10 μm, and second phase particles having a particle size of more than 10 μm. Analysis software). In all Examples and Comparative Examples, precipitates having a particle size exceeding 10 μm were not present in the surface layer and the central portion of the plate thickness.

<せん断帯>
結晶粒径測定と同様に組織を現出させ、サンプル表面の組織の凹凸を、走査型電子顕微鏡(SEM)を用いて測定した。そして、結晶粒の表面から深さが0.01μm以上のものをせん断帯としてカウントした。具体的には、100μm×100μmの枠を作製し、この中に存在するせん断帯の本数をカウントした。枠を横切っているせん断帯についても、1本としてカウントした。カウントした本数をせん断帯の単位面積辺りの本数と規定した。サンプル表層についてはサンプル表面をそのまま電解研磨することにより現出させた。サンプル中央部については、サンプル表面からひずみが入らないように機械研磨を実施し、板厚中央部の組織を現出させた。
せん断帯の測定については、筋状又は線状の模様が存在する範囲の組織の凹凸を測定し、ある谷(凹部)から隣の山(凸部)までの高さが0.01μm以上である谷(凹部)を「せん断帯」としてカウントした。ここで「筋状又は線状の模様」は、SEM写真(倍率5,000倍)を目視することにより特定した。なお、結晶粒界はせん断帯としてカウントしなかった。
<Shear band>
The structure was revealed in the same manner as the crystal grain size measurement, and the unevenness of the structure on the sample surface was measured using a scanning electron microscope (SEM). And the thing whose depth is 0.01 micrometer or more from the surface of the crystal grain was counted as a shear zone. Specifically, a frame of 100 μm × 100 μm was prepared, and the number of shear bands present therein was counted. A shear band crossing the frame was also counted as one. The counted number was defined as the number per unit area of the shear band. The sample surface layer was revealed by electropolishing the sample surface as it was. About the center part of the sample, mechanical polishing was performed so as not to cause strain from the sample surface, and the structure of the center part of the plate thickness was revealed.
Regarding the measurement of the shear band, the unevenness of the tissue in the range where the streak or linear pattern exists is measured, and the height from a certain valley (concave portion) to the adjacent mountain (convex portion) is 0.01 μm or more. The valleys (recesses) were counted as “shear bands”. Here, the “streaky or linear pattern” was specified by visually observing an SEM photograph (magnification of 5,000 times). The crystal grain boundaries were not counted as shear bands.

<0.2%耐力>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%伸び時の強度を測定した。本発明で高強度とは、0.2%耐力560MPa以上を言う。
<導電率>
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。本発明のCu−Co−Si系合金条は、通常60%IACS以上、好ましくは65.0%IACS以上、より好ましくは66.5%IACS以上の導電率を示す。
<伸び>
引張試験を実施したサンプルに対して、JIS−Z2241に従って、破断伸びを測定した。
<0.2% yield strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The test piece was subjected to a tensile test according to JIS-Z2241, and the strength at 0.2% elongation in the rolling parallel direction was measured. In the present invention, high strength means 0.2% proof stress of 560 MPa or more.
<Conductivity>
In accordance with JIS H 0505, the conductivity (EC:% IACS) was measured by a four-terminal method. The Cu—Co—Si alloy strip of the present invention usually exhibits a conductivity of 60% IACS or more, preferably 65.0% IACS or more, more preferably 66.5% IACS or more.
<Elongation>
The elongation at break was measured according to JIS-Z2241 for the sample subjected to the tensile test.

<曲げ表面>
JIS Z 2248に従いW曲げ試験をBad way(BW:曲げ軸が圧延方向と同一方向)、R/t=0で実施し、この試験片の曲げ表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ表面を撮影し、付属のソフトウェアを用いて平均粗さRaを測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できなかった。曲げ加工後の表面平均粗さRaが1.0μmを超える場合を曲げ加工後の外観に劣ると評価した。本発明の「曲げ加工後の外観に優れた」とは、上記測定においてBW曲げ加工後の表面平均粗さRaが1.0μm以下のものをいう。なお、下記本発明の実施例サンプルにおいては、GW曲げ加工後のRaは全て1.0μm以下であった。
<Bending surface>
In accordance with JIS Z 2248, a W-bending test was performed with a bad way (BW: bending axis is the same direction as the rolling direction) and R / t = 0, and the bending surface of this test piece was observed. As an observation method, the bending surface was photographed using a laser tech confocal microscope HD100, and the average roughness Ra was measured using the attached software, and compared. In addition, the unevenness | corrugation was not confirmed when the sample surface before a bending process was observed using the confocal microscope. The case where the average surface roughness Ra after bending exceeds 1.0 μm was evaluated as inferior in appearance after bending. The term “excellent in appearance after bending” in the present invention means that the surface average roughness Ra after BW bending is 1.0 μm or less in the above measurement. In the following example samples of the present invention, Ra after GW bending was all 1.0 μm or less.

以上のようにして作製した材料の製造条件及び特性を表1〜4に示す。なお、表中の「*1」は熱間圧延で割れが生じたため、製造・評価不能であったことを示し、「*2」はせん断帯が存在しないため、表層と板厚中央部の比率は計算できないことを示す。
実施例2及び3はCo含有量が本発明の下限及び上限の例であり、実施例2はSi含有量が本発明の下限近くの例である。実施例4〜6はCo及びSi含有量が本発明の範囲内の例であり、実施例7〜9は時効処理後の冷間圧延加工度を3〜18%に変化させた例であり、実施例10〜33は添加元素の種類及び量を本発明の範囲内で変化させた例であり、実施例34はSi含有量が本発明の上限の例であり、実施例36〜41は冷却速度を変化させた例であるが、実施例1と同様に目的とする効果を示した。なお、実施例1の溶体化処理温度はCoの固溶限温度+5℃であるのに対し、実施例4では+15℃であったが、その差は製造された試験片の物性へほとんど影響しなかった。実施例5はCoの添加量がやや少ないため、溶体化処理温度も低めになり、粒径1〜10μmの析出物数も少なくなった。その結果実施例2と同様に強度が若干低かった。
The production conditions and characteristics of the material produced as described above are shown in Tables 1 to 4. In addition, “* 1” in the table indicates that manufacturing / evaluation was impossible because cracking occurred during hot rolling, and “* 2” indicates the ratio of the surface layer to the center of the plate thickness because there is no shear band. Indicates that it cannot be calculated.
Examples 2 and 3 are examples in which the Co content is the lower limit and the upper limit of the present invention, and Example 2 is an example in which the Si content is near the lower limit of the present invention. Examples 4 to 6 are examples in which the Co and Si contents are within the scope of the present invention, and Examples 7 to 9 are examples in which the cold rolling degree after aging treatment is changed to 3 to 18%. Examples 10 to 33 are examples in which the type and amount of additive elements were changed within the scope of the present invention, Example 34 was an example in which the Si content was the upper limit of the present invention, and Examples 36 to 41 were cooled. This is an example in which the speed is changed, but the same effect as in Example 1 was exhibited. The solution treatment temperature of Example 1 was + 15 ° C. in the solid solution limit temperature of Co, whereas it was + 15 ° C. in Example 4. However, the difference almost affected the physical properties of the manufactured test piece. There wasn't. In Example 5, since the addition amount of Co was slightly small, the solution treatment temperature was lowered, and the number of precipitates having a particle size of 1 to 10 μm was also reduced. As a result, the strength was slightly low as in Example 2.

比較例1は溶体化処理温度が固溶限温度より65℃低かったため、実施例1又は4に比べて粒径1〜10μmの析出物が多く析出し、強度及び曲げ性に劣った。
比較例2〜8及び35〜40は溶体化処理温度が高かったため、結晶粒径が20μmを超えて曲げ性に劣った。更に、比較例2、3および35は強度向上効果のある添加元素を含まないので強度にも劣った。その上、比較例35〜40は圧延荷重が高く、圧延油粘度も高いためにさらに曲げ性が悪化した。
比較例9〜12は、実施例1、4又は9に比べて溶体化温度から400℃までの平均冷却速度又は400℃から70℃までの平均冷却速度が速かったため、析出物が材料内部にほぼ均一に析出してしまい、中央部のせん断帯の線の本数が少なく曲げ性に劣った。更に比較例10は結晶粒径が大きめのため強度も劣った。又、比較例12は荷重が大きく冷間油の粘度も大きい従来例であり、表層のせん断帯本数が多く、曲げ性は非常に悪かった。
比較例13は、時効処理後の圧延の加工度がゼロだったので、表層および中央部の両方ともせん断帯が存在せず強度に劣った。比較例14は、加工度が高すぎるために,表層にせん断帯が過剰に存在する一方、中央部のせん断帯の線の本数が少なく、曲げ性に劣った。
比較例15、18、19、22、23、26、27、35〜40は、時効処理後の圧延荷重が大きかったので、表層にせん断帯が過剰に存在する一方、中央部のせん断帯の線の本数が少なくなり曲げ性に劣った。
Since the solution treatment temperature in Comparative Example 1 was 65 ° C. lower than the solid solution limit temperature, more precipitates having a particle diameter of 1 to 10 μm were deposited than in Example 1 or 4, and the strength and bendability were inferior.
In Comparative Examples 2 to 8 and 35 to 40, since the solution treatment temperature was high, the crystal grain size exceeded 20 μm and the bendability was inferior. Further, Comparative Examples 2, 3 and 35 were inferior in strength because they did not contain an additive element having an effect of improving the strength. In addition, Comparative Examples 35 to 40 were further deteriorated in bendability due to high rolling load and high rolling oil viscosity.
In Comparative Examples 9 to 12, the average cooling rate from the solution temperature to 400 ° C. or the average cooling rate from 400 ° C. to 70 ° C. was higher than that in Example 1, 4 or 9, so that the precipitate was almost contained in the material. It was deposited uniformly, and the number of lines in the central shear band was small and the bendability was poor. Further, Comparative Example 10 was inferior in strength because the crystal grain size was large. Further, Comparative Example 12 is a conventional example in which the load is large and the viscosity of the cold oil is large, the number of shear bands on the surface layer is large, and the bendability is very poor.
In Comparative Example 13, since the degree of rolling after aging treatment was zero, there was no shear band in both the surface layer and the central portion, and the strength was inferior. In Comparative Example 14, since the degree of processing was too high, there were excessive shear bands on the surface layer, but the number of shear band lines in the center was small, and the bendability was poor.
In Comparative Examples 15, 18, 19, 22, 23, 26, 27, 35 to 40, the rolling load after the aging treatment was large. And the bendability was inferior.

比較例16、17、20、21、24、25、28、29、は、いずれも時効処理後の圧延油粘度が大きかったので、せん断帯が過剰に存在するにもかかわらす中央部のせん断帯の線の本数が少なく曲げ性に劣った。
比較例19及び21は、溶体化処理温度が不適当だったため、せん断帯が過剰に存在するにもかかわらす中央部のせん断帯の線の本数が少なく曲げ性に劣った。
比較例30はCo及びSi含有量が本発明の範囲外に多すぎたため、熱間圧延で割れが生じて評価不能であった。
比較例31〜34では、時効前に冷間圧延を行い、時効後の冷間圧延を行わなかった。比較例31は、加工度が低かったため、曲げ性は良いが強度は低かった。比較例32及び33は、比較例31に比べて加工度が高かったため、強度は高いが曲げ性が非常に悪かった。比較例34は、圧延条件が実施例9と同様であったにもかかわらず、時効後に冷間圧延をしていないため、強度は低く、曲げ性は悪化した。
比較例35〜40は荷重及び油粘度が大きかったので、せん断帯が過剰に存在するにもかかわらず中央部のせん断帯の線の本数が表層部に比べて少なく、比較例2〜8より更に曲げ性に劣った。
In Comparative Examples 16, 17, 20, 21, 24, 25, 28, and 29, since the rolling oil viscosity after aging treatment was large, the shear band in the center portion although the shear band was excessively present The number of wires was small and the bendability was poor.
In Comparative Examples 19 and 21, since the solution treatment temperature was inappropriate, the number of shear band lines in the central portion was small and the bendability was inferior even though the shear band was excessively present.
In Comparative Example 30, the Co and Si contents were too much outside the scope of the present invention, so cracking occurred during hot rolling and evaluation was impossible.
In Comparative Examples 31 to 34, cold rolling was performed before aging, and cold rolling after aging was not performed. Since Comparative Example 31 had a low workability, the bendability was good but the strength was low. Since Comparative Examples 32 and 33 were higher in workability than Comparative Example 31, the strength was high but the bendability was very poor. In Comparative Example 34, although the rolling conditions were the same as in Example 9, since cold rolling was not performed after aging, the strength was low and the bendability deteriorated.
Since Comparative Examples 35 to 40 had large loads and oil viscosities, the number of shear band lines in the central portion was smaller than that of the surface layer portion despite the presence of excessive shear bands, which was even more than Comparative Examples 2 to 8. Poor bendability.

以上、説明したように本発明によれば、GWのみならずBW曲げ加工後の曲げ部外観にしわや割れを生じない、優れた曲げ部外観を示す高強度銅合金が得られ、端子、コネクター等電子材料用銅合金として好適である。   As described above, according to the present invention, it is possible to obtain a high-strength copper alloy exhibiting an excellent appearance of a bent portion that does not cause wrinkles or cracks in the appearance of a bent portion after BW bending as well as the GW. Suitable as a copper alloy for isoelectronic materials.

11:析出物
12:せん断帯
11: Precipitate 12: Shear band

Claims (3)

Coを0.2〜3.5質量%、Siを0.02〜1.0質量%含有し、残部銅及び不可避的不純物からなるCu−Co−Si系合金条であって、第3元素群として、Mn、Fe、Mg、Ni、Cr、V、Nb、Mo、Zr、B、Zn、Sn、Ag、Be、ミッシュメタル及びPよりなる群から選択される1種以上を、総量で1.0質量%以下の範囲で含有してもよく、材料表面から板厚の1/6深さまで(以下「表層」と表記する)のせん断帯の線の本数Ssと、材料表層以外の部分(以下「板厚中央部」と表記する。)のせん断帯の線の本数Scの比Ss/Scが1.0以下、結晶粒径が20μm以下、材料表層では粒径1〜10μmの析出物の個数が3.0×104個/mm2以下であり、材料表層のせん断帯の線の本数が330本/10,000μm 2 以下であることを特徴とする、高強度でかつ曲げ加工後の外観にも優れたCu−Co−Si系合金条。 A Cu—Co—Si alloy strip containing 0.2 to 3.5% by mass of Co and 0.02 to 1.0% by mass of Si, the balance being copper and inevitable impurities, and a third element group 1 or more selected from the group consisting of Mn, Fe, Mg, Ni, Cr, V, Nb, Mo, Zr, B, Zn, Sn, Ag, Be, Misch metal and P in a total amount of 1. It may be contained in the range of 0% by mass or less, and the number Ss of lines of the shear band from the material surface to 1/6 depth of the plate thickness (hereinafter referred to as “surface layer”) and portions other than the material surface layer (hereinafter referred to as “surface layer”) The ratio Ss / Sc of the number Sc of the lines of the shear band of “Sheet thickness center” is 1.0 or less, the crystal grain size is 20 μm or less, and the number of precipitates having a grain size of 1 to 10 μm in the material surface layer. Ri der There 3.0 × 10 4 cells / mm 2 or less, the number of lines of the shear zone of the material surface layer 330 lines / 10, A Cu—Co—Si alloy strip having high strength and excellent appearance after bending, characterized by being 000 μm 2 or less . 材料表層における粒径1〜10μmの析出物の個数Nsと、板厚中央部における粒径1〜10μmの析出物の個数Ncの比Ns/Ncが1.0以下であることを特徴とする請求項1に記載のCu−Co−Si系合金条。 The ratio Ns / Nc of the number Ns of precipitates having a particle diameter of 1 to 10 μm in the surface layer of the material and the number Nc of precipitates having a particle diameter of 1 to 10 μm in the central portion of the plate thickness is 1.0 or less. Item 8. A Cu—Co—Si alloy strip according to item 1 . 溶体化温度を固溶限温度+25℃以内として溶体化処理されて製造されることを特徴とする、請求項1又は2に記載のCu−Co−Si系合金条。 The Cu-Co-Si alloy strip according to claim 1 or 2 , wherein the solution is made by solution treatment with a solution temperature within a solid solution limit temperature of + 25 ° C.
JP2011073422A 2011-03-29 2011-03-29 Cu-Co-Si alloy with excellent bending workability Active JP5514762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073422A JP5514762B2 (en) 2011-03-29 2011-03-29 Cu-Co-Si alloy with excellent bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073422A JP5514762B2 (en) 2011-03-29 2011-03-29 Cu-Co-Si alloy with excellent bending workability

Publications (2)

Publication Number Publication Date
JP2012207264A JP2012207264A (en) 2012-10-25
JP5514762B2 true JP5514762B2 (en) 2014-06-04

Family

ID=47187256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073422A Active JP5514762B2 (en) 2011-03-29 2011-03-29 Cu-Co-Si alloy with excellent bending workability

Country Status (1)

Country Link
JP (1) JP5514762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2823887C1 (en) * 2023-10-16 2024-07-30 Сергей Алексеевич Костин Low-alloyed heat-resistant alloy based on copper and article made from it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762453B1 (en) * 2019-01-22 2020-09-30 古河電気工業株式会社 Copper alloy plate material and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326573A1 (en) * 2008-01-30 2010-12-30 Kuniteru Mihara Copper alloy material for electric/electronic component and method for manufacturing the same
CN101978081B (en) * 2008-03-21 2014-09-10 古河电气工业株式会社 Copper alloy material for electric/electronic parts
EP2319947A4 (en) * 2008-07-31 2011-11-23 Furukawa Electric Co Ltd Copper alloy material for electrical and electronic components, and manufacturing method therefor
JP4913902B2 (en) * 2008-08-05 2012-04-11 古河電気工業株式会社 Method for producing copper alloy material for electric / electronic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2823887C1 (en) * 2023-10-16 2024-07-30 Сергей Алексеевич Костин Low-alloyed heat-resistant alloy based on copper and article made from it

Also Published As

Publication number Publication date
JP2012207264A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5281031B2 (en) Cu-Ni-Si alloy with excellent bending workability
KR101056973B1 (en) Cu-Ni-Si alloy
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5916964B2 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
WO2012026611A1 (en) Copper alloy sheet and method for producing same
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
WO2015099097A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
TW201945553A (en) Copper alloy for electronic and electrical device, copper alloy sheet strip for electronic and electrical device, part for electronic and electrical device, terminal, and bus bar
TWI541367B (en) Cu-Ni-Si type copper alloy sheet having good mold resistance and shearing workability and manufacturing method thereof
JP2010138461A (en) Ni-Si-Co BASE COPPER ALLOY, AND METHOD FOR PRODUCING THE SAME
JP6696770B2 (en) Copper alloy plate and connector
JP4663031B1 (en) Titanium copper, wrought copper products, electronic components and connectors
JP4642119B2 (en) Copper alloy and method for producing the same
JP5544316B2 (en) Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP5393629B2 (en) Titanium copper and copper products, electronic parts and connectors using the same
JP4663030B1 (en) Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP5514762B2 (en) Cu-Co-Si alloy with excellent bending workability
JP6029296B2 (en) Cu-Zn-Sn-Ca alloy for electrical and electronic equipment
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP2018062705A (en) Copper alloy for electronic material
JP2013147687A (en) Titanium copper excellent in bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250