JP5513712B2 - Exhaust treatment device - Google Patents
Exhaust treatment device Download PDFInfo
- Publication number
- JP5513712B2 JP5513712B2 JP2007282617A JP2007282617A JP5513712B2 JP 5513712 B2 JP5513712 B2 JP 5513712B2 JP 2007282617 A JP2007282617 A JP 2007282617A JP 2007282617 A JP2007282617 A JP 2007282617A JP 5513712 B2 JP5513712 B2 JP 5513712B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- urea
- catalyst
- reducing agent
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/90—Injecting reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0821—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/014—Stoichiometric gasoline engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/14—Combinations of different methods of purification absorption or adsorption, and filtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/18—Ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
本発明は、燃焼装置から排出され種々の排出物質を含む気体(排気)を処理する排気処理装置に関する。 The present invention relates to an exhaust treatment device for treating a gas (exhaust gas) discharged from a combustion device and containing various exhaust substances.
燃焼装置からの排気を浄化して環境汚染の拡大を抑制することは重要な課題であるが、例えば、ディーゼル燃焼機関に関しては、排気中のPM(パティキュレートマター:粒子状物質=主に黒煙(スス)、SOFと称される燃え残った燃料や潤滑油の成分、サルフェートと称される軽油燃料中の硫黄分から生成される成分、その他の固体物質を含む)の大気への排出を抑えるために、例えば、ディーゼルパティキュレートフィルタ(Diesel Particulate Filter)などを排気通路に介装し、排気をディーゼルパティキュレートフィルタを通過させることで排気中のPMを捕集する一方、ディーゼルパティキュレートフィルタを種々の方法により再生することが行われている。 Purifying the exhaust from the combustion device to suppress the spread of environmental pollution is an important issue. For example, in the case of a diesel combustion engine, PM (particulate matter: particulate matter = mainly black smoke) in the exhaust (Soot), to suppress the emission of unburned fuel called SOF and components of lubricating oil, components generated from sulfur in diesel fuel called sulfate, and other solid substances) to the atmosphere In addition, for example, a diesel particulate filter is installed in the exhaust passage, and exhaust gas is passed through the diesel particulate filter to collect PM in the exhaust, while various diesel particulate filters are used. Reproduction is performed by the method.
また、例えば、特許文献1などにおいては、排気中に含まれるNOxとPMの同時低減を実現するために、ディーゼルパティキュレートフィルタやCSFを排気通路に介装すると共に、その下流側に、NOx低減に有効な尿素SCR(Selective Catalytic Reduction)を介装することが提案されている。なお、尿素SCRとは、酸素共存下においても選択的にNOxを還元剤と反応させることができる特性を備えた選択還元型NOx触媒であって、毒性のない尿素水を排気中に添加してアンモニアと炭酸ガスに熱分解し、この生成されたアンモニアを還元剤として用いて選択還元型NOx触媒上で排気中のNOxを還元して浄化しようとするものである。 Further, for example, in Patent Document 1, in order to realize simultaneous reduction of NOx and PM contained in exhaust gas, a diesel particulate filter and CSF are interposed in the exhaust passage, and NOx reduction is performed downstream thereof. It has been proposed to install an effective SCR (Selective Catalytic Reduction). Urea SCR is a selective reduction-type NOx catalyst that has the property of selectively reacting NOx with a reducing agent even in the presence of oxygen, and adds non-toxic urea water to the exhaust gas. It is thermally decomposed into ammonia and carbon dioxide, and the produced ammonia is used as a reducing agent to reduce and purify NOx in the exhaust gas on the selective reduction type NOx catalyst.
より詳細には、特許文献1に記載されるような従来の排気処理装置においては、例えば、図8に示すように、ディーゼル燃焼機関1の排気通路2の最上流側の排気温度の比較的高い位置に再生効率等の観点より酸化触媒装置3とディーゼルパティキュレートフィルタ4を介装し、その下流側に尿素水添加装置5、尿素SCR触媒装置6を介装すると共に、尿素SCR触媒装置6からリークしてくる余剰のアンモニア(NH3)を酸化処理するためのアンモニア酸化触媒装置7を介装するようにしていた(酸化触媒装置3、尿素水添加装置5、尿素SCR触媒装置6、アンモニア酸化触媒装置7の各装置における反応については、図9を参照のこと。図9中の加水分解反応は、次式で表される。加水分解の反応式:(NH2)2CO+H2O→2NH3+CO2)。 More specifically, in the conventional exhaust treatment apparatus as described in Patent Document 1, for example, as shown in FIG. 8, the exhaust temperature on the most upstream side of the exhaust passage 2 of the diesel combustion engine 1 is relatively high. From the viewpoint of regeneration efficiency and the like, an oxidation catalyst device 3 and a diesel particulate filter 4 are installed at a position, a urea water addition device 5 and a urea SCR catalyst device 6 are installed downstream thereof, and from the urea SCR catalyst device 6 An ammonia oxidation catalyst device 7 for oxidizing excess ammonia (NH 3 ) leaking was interposed (oxidation catalyst device 3, urea water addition device 5, urea SCR catalyst device 6, ammonia oxidation) For the reaction in each device of the catalyst device 7, see Fig. 9. The hydrolysis reaction in Fig. 9 is represented by the following equation: Hydrolysis reaction formula: (NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 ).
ここで、尿素水添加装置5を構成する尿素水噴射ノズル5Aを尿素SCR触媒装置6の排気上流側に配設し、前記尿素噴射ノズル5Aの尿素水噴射部分から尿素SCR触媒装置6の排気上流側端面までの距離を、尿素からアンモニアに加水分解するのに必要な時間を確保するため比較的長く取る必要がある。 Here, the urea water injection nozzle 5A constituting the urea water addition device 5 is disposed on the exhaust upstream side of the urea SCR catalyst device 6, and the exhaust gas upstream of the urea SCR catalyst device 6 from the urea water injection portion of the urea injection nozzle 5A. The distance to the side end face needs to be relatively long in order to secure the time required for hydrolysis from urea to ammonia.
また、噴射供給した尿素と排気とを良好に混合・拡散して尿素の加水分解を良好に行なわせる必要がある。 Further, it is necessary to mix and diffuse the supplied urea and the exhaust well so that urea can be hydrolyzed well.
このような観点から、従来においては、図8に示したように、前記尿素水噴射ノズル5Aの尿素水噴射部分から尿素SCR触媒装置6の排気上流側端面までの距離を比較的長くとりつつ排気の流速を稼いで混合を促進するために、尿素SCR触媒装置6の排気上流側に、酸化触媒装置3とディーゼルパティキュレートフィルタ4を収容する大径の収容ケース8や尿素SCR触媒装置6とアンモニア酸化触媒装置7を収容する大径の収容ケース9の径より排気通路断面積を小さく絞った小径の排気通路2Aを設け、ここに尿素水噴射ノズル5Aを取り付けるようにしていた。 From this point of view, conventionally, as shown in FIG. 8, the exhaust gas is discharged while taking a relatively long distance from the urea water injection portion of the urea water injection nozzle 5 </ b> A to the exhaust upstream end face of the urea SCR catalyst device 6. In order to promote the mixing by increasing the flow rate of the urea, the large-diameter housing case 8 for housing the oxidation catalyst device 3 and the diesel particulate filter 4 and the urea SCR catalyst device 6 and ammonia are provided upstream of the urea SCR catalyst device 6. A small-diameter exhaust passage 2A having a smaller exhaust passage cross-sectional area than the diameter of the large-diameter housing case 9 that houses the oxidation catalyst device 7 is provided, and the urea water injection nozzle 5A is attached thereto.
また、噴射した尿素水と排気とを良好に混合して尿素の加水分解を良好に行なわせるために、前記尿素水噴射ノズル5Aの尿素水噴射部分の排気下流側の小径の排気通路2Aにバッファプレート等からなるミキサーを配設するようにしていた。 Further, in order to mix the injected urea water and the exhaust gas well so as to perform the hydrolysis of urea well, a buffer is provided in the small diameter exhaust passage 2A on the exhaust downstream side of the urea water injection portion of the urea water injection nozzle 5A. A mixer composed of a plate or the like was arranged.
しかしながら、図8に示したように、酸化触媒装置3やディーゼルパティキュレートフィルタ4を収容する収容ケース8の径や尿素SCR触媒装置6を収容する収容ケース9の径より断面積をより小さく絞った小径の排気通路2Aを設け、ここに尿素水噴射ノズル5Aを取り付けるように構成した場合、圧力損失が大きくなるという実情がある。 However, as shown in FIG. 8, the cross-sectional area is reduced to be smaller than the diameter of the housing case 8 that houses the oxidation catalyst device 3 and the diesel particulate filter 4 and the diameter of the housing case 9 that houses the urea SCR catalyst device 6. When the exhaust passage 2A having a small diameter is provided and the urea water injection nozzle 5A is attached to the exhaust passage 2A, the pressure loss is increased.
このため、大径の収容ケース8、9と小径の排気通路2Aとの径差をテーパや突き当てなどの形状を工夫することも行なわれているが、圧力損失の低減と、良好な混合・拡散作用と、の両立は難しく、十分な効果が得られていないのが実情である。 For this reason, the diameter difference between the large-diameter housing cases 8 and 9 and the small-diameter exhaust passage 2A has been devised in shape such as taper or butting, but it is possible to reduce pressure loss and achieve good mixing / The fact is that it is difficult to achieve both the diffusion action and the sufficient effect has not been obtained.
本発明は、かかる実情に鑑みなされたもので、簡単かつコンパクトで安価な構成でありながら、圧力損失を低く維持しつつ排気に添加した還元剤と排気とを良好に混合させることができ、以って効果的に排気中の特定成分(例えばNOx)を還元して浄化することができる選択還元型触媒装置を備えた排気処理装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and while being a simple, compact and inexpensive configuration, the reducing agent added to the exhaust and the exhaust can be mixed well while maintaining a low pressure loss. Accordingly, an object of the present invention is to provide an exhaust treatment device including a selective reduction catalyst device that can effectively reduce and purify a specific component (for example, NOx) in exhaust gas.
このため、本発明に係る排気処理装置は、
燃焼装置から排出される排気を処理する排気処理装置であって、
排気中の特定の成分を還元して浄化する選択還元型触媒装置と、
前記選択還元型触媒装置の排気上流側において排気に対して還元剤を添加する還元剤添加装置と、
を備えたものにおいて、
前記還元剤添加装置と前記選択還元型触媒装置との間に、排気通路の排気流れに略直交する断面全体に略均等に配設されると共に排気流れに沿った方向に延在される多数の通路を有する金属製の構造体を、排気通路を絞ることなく介装する一方、
前記金属製の構造体に、選択還元型触媒が担持されると共に、
前記金属製の構造体の多数の通路のうちの少なくとも一部の通路同士が連通され、
前記選択還元型触媒装置が、尿素選択還元型NOx触媒装置であり、前記還元剤添加装置の排気上流側に触媒装置若しくはパティキュレートフィルタが配設されることを特徴とする。
Therefore, the exhaust treatment device according to the present invention is
An exhaust treatment device for treating exhaust gas discharged from a combustion device,
A selective catalytic reduction device that reduces and purifies specific components in the exhaust; and
A reducing agent addition device for adding a reducing agent to the exhaust on the exhaust upstream side of the selective catalytic reduction device;
In those with
Between the reducing agent addition device and the selective catalytic reduction catalyst device, a large number of members are disposed substantially evenly over the entire cross section substantially perpendicular to the exhaust flow in the exhaust passage and extend in the direction along the exhaust flow . While interposing a metal structure having a passage without restricting the exhaust passage,
A selective reduction catalyst is supported on the metal structure, and
At least some of the passages of the metal structure are communicated with each other,
The selective reduction catalyst device is a urea selective reduction type NOx catalyst device, and a catalyst device or a particulate filter is disposed on the exhaust upstream side of the reducing agent addition device.
本発明によれば、簡単かつコンパクトで安価な構成でありながら、圧力損失を低く維持しつつ排気に添加した還元剤と排気とを良好に混合させることができ、以って効果的に排気中の特定成分(例えばNOx)を還元して浄化することができる選択還元型触媒装置を備えた排気処理装置を提供することができる。 According to the present invention, the reducing agent added to the exhaust gas and the exhaust gas can be well mixed while maintaining a low pressure loss while being a simple, compact, and inexpensive configuration, and thus effectively in the exhaust gas. It is possible to provide an exhaust treatment device equipped with a selective catalytic reduction device that can reduce and purify specific components (for example, NOx).
以下、本発明に係る一実施の形態を、添付の図面を参照しつつ説明する。なお、以下で説明する実施の形態により、本発明が限定されるものではない。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the accompanying drawings. The present invention is not limited to the embodiments described below.
本発明の一実施の形態に係る排気処理装置は、図1に示すように、ディーゼル燃焼機関1の排気通路2の最上流側の排気温度の比較的高い位置に再生効率等の観点より酸化触媒装置3とディーゼルパティキュレートフィルタ4(或いは何れか一方でも良い)を介装し、その下流側に尿素水添加装置5、尿素SCR触媒装置6(例えば、コージェライト等のセラミック材を担体としたもの)を介装すると共に、尿素SCR触媒装置6からリークしてくる余剰のアンモニア(NH3)を酸化処理するためのアンモニア酸化触媒装置7が介装されている。 As shown in FIG. 1, an exhaust treatment apparatus according to an embodiment of the present invention is an oxidation catalyst in terms of regeneration efficiency and the like at a relatively high exhaust temperature position on the most upstream side of an exhaust passage 2 of a diesel combustion engine 1. A device 3 and a diesel particulate filter 4 (or any one of them) may be interposed, and a urea water addition device 5 and a urea SCR catalyst device 6 (for example, a ceramic material such as cordierite as a carrier) on the downstream side thereof ), And an ammonia oxidation catalyst device 7 for oxidizing excess ammonia (NH 3 ) leaking from the urea SCR catalyst device 6 is interposed.
前記尿素水添加装置5は、排気に対して尿素水を所定のタイミングで噴射供給する尿素水噴射ノズル5Aと、尿素水を貯留する尿素水タンク5Bと、当該尿素水タンク5Bに貯留されている尿素水を排気に対して噴射供給する前記尿素水噴射ノズル5Aへ所定圧力をもって圧送供給する供給ポンプ5Cと、を含んで構成されている。ただし、尿素の供給方法は、これに限定されるものではない。 The urea water adding device 5 is stored in a urea water injection nozzle 5A that supplies urea water to exhaust gas at a predetermined timing, a urea water tank 5B that stores urea water, and the urea water tank 5B. And a supply pump 5C for supplying and supplying urea water with a predetermined pressure to the urea water injection nozzle 5A. However, the urea supply method is not limited to this.
なお、本実施の形態では、図8に示した従来の排気処理装置のように、酸化触媒装置3とディーゼルパティキュレートフィルタ4を収容する大径の収容ケース8と、尿素SCR触媒装置6とアンモニア酸化触媒装置7を収容する大径の収容ケース9と、の間に排気通路断面積を小さく絞った小径の排気通路2Aを設ける構成を採用せず、酸化触媒装置3とディーゼルパティキュレートフィルタ4を収容する大径の収容部10と、尿素SCR触媒装置6とアンモニア酸化触媒装置7を収容する大径の収容部11と、をこれらの径をほぼ維持したまま接続する接続部12を介して接続するようになっている。 In the present embodiment, like the conventional exhaust treatment device shown in FIG. 8, a large-diameter housing case 8 for housing the oxidation catalyst device 3 and the diesel particulate filter 4, the urea SCR catalyst device 6 and ammonia. Without adopting a configuration in which the small-diameter exhaust passage 2A with a small exhaust passage cross-sectional area is provided between the large-diameter housing case 9 for housing the oxidation catalyst device 7, the oxidation catalyst device 3 and the diesel particulate filter 4 are provided. The large-diameter accommodating portion 10 to be accommodated is connected to the large-diameter accommodating portion 11 that accommodates the urea SCR catalyst device 6 and the ammonia oxidation catalyst device 7 through a connecting portion 12 that connects these diameters while maintaining their diameters substantially. It is supposed to be.
なお、収容部10、収容部11、接続部12を略一体的に形成した収容ケースを採用することも可能である。
ここで、前記収容部10、前記収容部11、前記接続部12は、金属製部材により形成されることができ、例えば、スチール、SUS、Tiなどの種々の材料を採用することができる。
It is also possible to adopt a housing case in which the housing portion 10, the housing portion 11, and the connection portion 12 are formed substantially integrally.
Here, the accommodating portion 10, the accommodating portion 11, and the connecting portion 12 can be formed of a metal member, and various materials such as steel, SUS, Ti, and the like can be employed.
このように、本実施の形態では、従来のように小径の排気通路2Aを設けず、大径の接続部12を介して収容部10と収容部11とを接続するようにしたので、従来のような排気通路断面積が縮小された部位(絞り部分:小径の排気通路2A)がないため、圧力損失を低く抑えることができる。 Thus, in the present embodiment, since the exhaust passage 2A having a small diameter is not provided as in the prior art, the housing portion 10 and the housing portion 11 are connected via the large diameter connecting portion 12, Since there is no portion (throttle portion: small-diameter exhaust passage 2A) in which the exhaust passage cross-sectional area is reduced, pressure loss can be kept low.
また、図1に示したように、本実施の形態のように大径の接続部12を介して収容部10と収容部11とを接続する構成とすれば、前記排気通路断面積を縮小・拡大するための部分(絞り部分・拡張部分)が不要となるため、例えば尿素からアンモニアに加水分解するのに必要な時間を確保するための必要最小限の長さを確保すればよく、以って排気処理装置の排気流れ方向長さを短くでき、延いては小型化、軽量化、低コスト化等に寄与することが可能となる。 In addition, as shown in FIG. 1, if the storage portion 10 and the storage portion 11 are connected via the large-diameter connection portion 12 as in the present embodiment, the exhaust passage cross-sectional area is reduced. Since there is no need for the part to be expanded (squeezed part / expanded part), for example, it is sufficient to secure the minimum length necessary to secure the time required for hydrolysis from urea to ammonia. Thus, the length of the exhaust treatment device in the exhaust flow direction can be shortened, which can contribute to reduction in size, weight, and cost.
なお、本実施の形態において上記のような構成の採用を可能にしたのは、前記接続部12に配設される尿素水噴射ノズル5Aの下流側で尿素SCR触媒装置6の上流側に、金属触媒20を配設したことに基づいている。 In the present embodiment, it is possible to adopt the above-described configuration because a metal is disposed on the downstream side of the urea water injection nozzle 5A disposed in the connecting portion 12 and on the upstream side of the urea SCR catalyst device 6. This is based on the arrangement of the catalyst 20.
前記金属触媒20は、SUS等から形成される多数の通路であるセルを有する金属製のハニカム構造の担体の表面に尿素SCR触媒が塗布等により適用され担持されて構成されている。
当該金属触媒20の担体は、例えば、図2に示すように、金属製の波形状に成形された波形状部材21及び板状部材22を螺旋状に巻回することにより形成されることができる。なお、板状部材22は、多数の穴やスリットが開口された金属板や、多孔質な繊維部材などにより構成されることができる。また、板状部材22は省略することもできる。
The metal catalyst 20 is configured by applying and supporting a urea SCR catalyst by coating or the like on the surface of a metal honeycomb structure carrier having cells that are a large number of passages formed of SUS or the like.
For example, as shown in FIG. 2, the carrier of the metal catalyst 20 can be formed by spirally winding a corrugated member 21 and a plate-like member 22 formed into a corrugated shape made of metal. . The plate-like member 22 can be constituted by a metal plate having a large number of holes and slits, a porous fiber member, and the like. Further, the plate-like member 22 can be omitted.
そして、波形状により形成される通路(セル)23を排気が流れて下流側へ流出し、排気通路2の排気下流側に配設されている尿素SCR触媒装置6へ流入するようになっている。
前記金属触媒20は、金属製の板状部材22を格子状に接合等したハニカム構造体を担体とする触媒とすることもできる。
また、前記金属触媒20は、図3に示すように、金属製のパイプ状部材24を束状に配設して通路(セル)23を形成したハニカム構造体を担体とする触媒とすることもできる。
Then, exhaust flows through the passage (cell) 23 formed by the wave shape, flows out downstream, and flows into the urea SCR catalyst device 6 disposed on the exhaust downstream side of the exhaust passage 2. .
The metal catalyst 20 may be a catalyst using a honeycomb structure in which metal plate-like members 22 are joined in a lattice shape as a carrier.
Further, as shown in FIG. 3, the metal catalyst 20 may be a catalyst using a honeycomb structure in which metal pipe-like members 24 are arranged in bundles to form passages (cells) 23 as a carrier. it can.
ここで、金属触媒20は、担体が金属製であるため排気温度の影響を受け易く排気温度の変化によく追従するため、当該金属触媒20を通過する排気の熱を受けて担体温度が短時間で上昇し、また、その表面積も大きいことから、尿素のアンモニアへの加水分解が促進されてガス化が促進され、以って排気と、排気に添加される還元剤と、の混合が、ミキサー等を備えた従来技術に比べて促進されることになる。
このため、尿素SCR触媒装置6におけるNOx還元効率を効果的に高めることができることになる。
Here, the metal catalyst 20 is easily affected by the exhaust temperature because the carrier is made of metal, and follows the change in the exhaust temperature well. Therefore, the metal catalyst 20 receives the heat of the exhaust gas passing through the metal catalyst 20 and has a short carrier temperature. In addition, since the surface area is large, the hydrolysis of urea into ammonia is promoted and gasification is promoted. Therefore, the mixing of the exhaust gas and the reducing agent added to the exhaust gas is performed by the mixer. It will be promoted compared to the prior art with such as.
For this reason, the NOx reduction efficiency in the urea SCR catalyst device 6 can be effectively increased.
また、本実施の形態に係る金属触媒20には、その表面に尿素SCR触媒が担持されているので、上述したように尿素のアンモニアへの加水分解が促進されてガス化が促進されると、当該金属触媒20上においても排気中のNOxが還元されることになる。
従って、従来のようにミキサー等を用いる場合に比べて、同一の尿素SCR触媒6を採用した場合において尿素SCR触媒の担持面積を増やすことができるためNOxの浄化効率を高めることが可能となる。
Moreover, since the urea SCR catalyst is supported on the surface of the metal catalyst 20 according to the present embodiment, as described above, when hydrolysis of urea into ammonia is promoted and gasification is promoted, Even on the metal catalyst 20, NOx in the exhaust is reduced.
Therefore, compared with the case where a mixer or the like is used as in the prior art, when the same urea SCR catalyst 6 is employed, the urea SCR catalyst carrying area can be increased, so that the NOx purification efficiency can be increased.
更に、本実施の形態のような金属触媒20を備える場合には、以下のような作用効果も奏することができる。
すなわち、金属触媒20は、担体が金属製であり排気温度の影響を受け易く排気温度の変化によく追従するため、冷間始動時等において昇温し易く、例えばコージェライト等のセラミック等に尿素SCR触媒を担持させた尿素SCR触媒装置6のみを備えた場合に比べて、始動後早期から排気中のNOxの浄化を図ることができる。
Furthermore, when the metal catalyst 20 as in the present embodiment is provided, the following operational effects can also be achieved.
That is, the metal catalyst 20 is made of a metal and is easily affected by the exhaust temperature, and follows the change in the exhaust temperature well. Therefore, the metal catalyst 20 easily rises in temperature during cold start or the like. Compared with the case where only the urea SCR catalyst device 6 supporting the SCR catalyst is provided, it is possible to purify the NOx in the exhaust from an early stage after the start.
また、暖機後においては、例えばディーゼル燃焼機関1の排気温度が低下するような運転状態に移行したような場合に、金属触媒20は担体が金属製であり排気温度の影響を受け易く排気温度の変化によく追従するため、当該排気温度が低下すると金属触媒20からの熱の放出量(排気による熱の持ち去り量)が増大されることになるため、下流側の尿素SCR触媒装置6の入口温度を高く維持するように働くこととなり、以って例えばコージェライト等のセラミック等に尿素SCR触媒を担持させた尿素SCR触媒装置6のみを備えた場合に比べて、排気温度の低下の影響を受け難いため、排気温度の低下後において、より長時間、排気中のNOxの浄化作用を維持することができることになる。 In addition, after warm-up, for example, when the engine is shifted to an operating state in which the exhaust temperature of the diesel combustion engine 1 is lowered, the metal catalyst 20 is made of metal and is easily affected by the exhaust temperature. Therefore, if the exhaust gas temperature decreases, the amount of heat released from the metal catalyst 20 (the amount of heat removed by the exhaust gas) increases, so that the urea SCR catalyst device 6 on the downstream side The inlet temperature is maintained to be high, and therefore, the influence of the lowering of the exhaust temperature compared to the case where only the urea SCR catalyst device 6 in which the urea SCR catalyst is supported on ceramic such as cordierite is provided. Therefore, after the exhaust gas temperature is lowered, the NOx purification action in the exhaust gas can be maintained for a longer time.
加えて、例えばディーゼル燃焼機関1の排気温度が比較的急激に上昇するような運転状態に移行したような場合に、金属触媒20は担体が金属製であり排気温度の影響を受け易く排気温度の変化によく追従するため、当該排気温度が上昇しようとする際に金属触媒20が排気から熱を奪って金属触媒20の温度が比較的急速に上昇する。従って、金属触媒20の排気下流側の尿素SCR触媒装置6の急速な温度上昇を抑制することができるため、尿素SCR触媒6の性能劣化、熱による損傷等を抑制することができ、以って長期に亘って排気中のNOxの浄化作用を維持することができることになる。
言い換えれば、金属触媒20を尿素SCR触媒装置6の上流側に配設することで、尿素SCR触媒装置6に流入する排気温度を安定化させることができ、尿素SCR触媒装置6におけるNOx還元効率を効果的に高めることができると共に信頼性を高めることができる。
In addition, for example, in the case where the exhaust temperature of the diesel combustion engine 1 shifts to an operating state where the exhaust temperature rises relatively rapidly, the metal catalyst 20 is made of metal and is easily affected by the exhaust temperature. In order to follow the change well, when the exhaust temperature is going to rise, the metal catalyst 20 takes heat from the exhaust, and the temperature of the metal catalyst 20 rises relatively rapidly. Therefore, since the rapid temperature rise of the urea SCR catalyst device 6 on the exhaust gas downstream side of the metal catalyst 20 can be suppressed, performance deterioration of the urea SCR catalyst 6 and damage due to heat can be suppressed. The purifying action of NOx in the exhaust gas can be maintained over a long period of time.
In other words, by arranging the metal catalyst 20 on the upstream side of the urea SCR catalyst device 6, the exhaust temperature flowing into the urea SCR catalyst device 6 can be stabilized, and the NOx reduction efficiency in the urea SCR catalyst device 6 can be improved. It can increase effectively and can improve reliability.
なお、本実施の形態では、尿素SCR触媒を担持させた金属触媒20を配設した場合について説明したが、本発明はこれに限定されるものではなく、尿素SCR触媒等の触媒を担持させていない金属製のハニカム状の構造体を配設するだけでも、上述した尿素のアンモニアへの加水分解の促進延いてはガス化の促進を図ることができ、以って排気と、排気に添加される還元剤と、の混合を、ミキサー等を備えた従来技術に比べて促進させることができる。更に、上述した排気下流側に配設される尿素SCR触媒装置6の入口温度の安定化に寄与することができる。
従って、尿素SCR触媒を担持させていない金属製のハニカム状の構造体を配設するだけでも、尿素SCR触媒装置6におけるNOx還元効率を効果的に高めることができることになる。
In the present embodiment, the case where the metal catalyst 20 supporting the urea SCR catalyst is disposed has been described. However, the present invention is not limited to this, and a catalyst such as a urea SCR catalyst is supported. It is possible to promote the above-described hydrolysis of urea to ammonia and thereby promote gasification even by disposing a metal honeycomb structure that is not present, so that it is added to the exhaust gas and the exhaust gas. The mixing with the reducing agent can be promoted as compared with the prior art equipped with a mixer or the like. Furthermore, it is possible to contribute to stabilization of the inlet temperature of the urea SCR catalyst device 6 disposed on the exhaust downstream side described above.
Therefore, the NOx reduction efficiency in the urea SCR catalyst device 6 can be effectively increased only by disposing a metallic honeycomb structure that does not carry the urea SCR catalyst.
ところで、図3に示した金属触媒20を構成するパイプ状部材24に、例えば、図4の(a)に示すように切欠部24Aを設けたり、図4の(b)に示すように連通穴24Bを設けたり、図4の(c)に示すように連通穴24Bを設けると共に仕切板24Cを設けるようにすることにより、隣接する通路23を相互に連通させた構成とすることができる。当該構成は、図2に示した金属触媒20を構成する波形状部材21においても同様に適用可能である。
このような切欠部24Aや連通穴24Bを設けた場合、図5、図6に示すように、排気の流れが、切欠部24Aや連通穴24Bによって分岐されて、外周側若しくは内周側のパイプ状部材24の通路23へ流れ込み、流れ込んだ通路23内の排気の流れと衝突することとなって、排気と、排気に添加される還元剤と、の混合を、より一層促進させることができ、以って金属触媒20上の尿素SCR触媒及び尿素SCR触媒装置6におけるNOx還元効率をより一層高めることができることになる。
また、連通穴24Bには、図7に示すように折曲部24Dを設けるように構成することもできる。
なお、波形状部材21を用いた場合の金属触媒20としては、例えば、特表2006−507445号等に記載されるようなものを適用することもできる。
Incidentally, the pipe-shaped member 24 constituting the metal catalyst 20 shown in FIG. 3 is provided with, for example, a notch 24A as shown in FIG. 4 (a), or a communication hole as shown in FIG. 4 (b). By providing 24B or providing the communication hole 24B and the partition plate 24C as shown in FIG. 4C, the adjacent passages 23 can be in communication with each other. This configuration can be similarly applied to the corrugated member 21 constituting the metal catalyst 20 shown in FIG.
When such a cutout 24A and a communication hole 24B are provided, the exhaust flow is branched by the cutout 24A and the communication hole 24B as shown in FIGS. It flows into the passage 23 of the shaped member 24 and collides with the flow of exhaust in the passage 23 that has flowed in, so that the mixing of the exhaust and the reducing agent added to the exhaust can be further promoted, Accordingly, the NOx reduction efficiency in the urea SCR catalyst and the urea SCR catalyst device 6 on the metal catalyst 20 can be further increased.
Further, the communication hole 24B can be configured to have a bent portion 24D as shown in FIG.
In addition, as a metal catalyst 20 at the time of using the corrugated member 21, what is described in Japanese translations of PCT publication No. 2006-507445 etc. is also applicable, for example.
ところで、本実施の形態において、ディーゼル燃焼機関1を例に説明したが、本発明はこれに限定されるものではなく、排気を伴う燃焼装置であれば、ガソリンエンジンその他の内燃機関の他、外燃機関とすることもでき、燃焼方式に拘わらず、あらゆる移動式・定置式の燃焼装置とすることができる。 By the way, in the present embodiment, the diesel combustion engine 1 has been described as an example. However, the present invention is not limited to this, and a combustion apparatus with exhaust gas is not limited to a gasoline engine or other internal combustion engines. A combustion engine can be used, and any mobile or stationary combustion device can be used regardless of the combustion method.
また、本実施の形態では、尿素SCR触媒装置6を採用し、還元剤として尿素水を排気に添加する例について説明したが、本発明はこれに限定されるものではなく、排気通路2を流れる排気に対して所定の添加物質を添加し、当該添加物質と、排気と、を混合することが要求される排気処理装置に本発明を適用可能である。 Further, in the present embodiment, the example in which the urea SCR catalyst device 6 is employed and urea water is added as the reducing agent to the exhaust gas has been described. However, the present invention is not limited to this and flows through the exhaust passage 2. The present invention can be applied to an exhaust treatment apparatus that is required to add a predetermined additive substance to the exhaust gas and to mix the additive substance and the exhaust gas.
以上で説明した各実施の形態は、本発明を説明するための例示に過ぎず、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。 Each embodiment described above is only an example for explaining the present invention, and various modifications can be made without departing from the gist of the present invention.
1 ディーゼル燃焼機関
2 排気通路
2A 小径の排気通路
3 酸化触媒
4 ディーゼルパティキュレートフィルタ
5 尿素水添加装置
5A 尿素水噴射ノズル
5B 尿素水タンク
5C 供給ポンプ
6 尿素SCR触媒
7 アンモニア酸化触媒
10 大径の収容部
11 大径の収容部
12 接続部
20 金属触媒(金属製の構造体)
21 波形状部材
23 通路(セル)
24 パイプ状部材
24A 切欠部
24B 連通部
24C 仕切板
24D 折曲部
DESCRIPTION OF SYMBOLS 1 Diesel combustion engine 2 Exhaust passage 2A Small-diameter exhaust passage 3 Oxidation catalyst 4 Diesel particulate filter 5 Urea water addition device 5A Urea water injection nozzle 5B Urea water tank 5C Supply pump 6 Urea SCR catalyst 7 Ammonia oxidation catalyst 10 Large diameter accommodation Part 11 Large diameter housing part 12 Connection part 20 Metal catalyst (metal structure)
21 corrugated member 23 passage (cell)
24 Pipe-shaped member 24A Notch portion 24B Communication portion 24C Partition plate 24D Bent portion
Claims (1)
排気中の特定の成分を還元して浄化する選択還元型触媒装置と、
前記選択還元型触媒装置の排気上流側において排気に対して還元剤を添加する還元剤添加装置と、
を備えたものにおいて、
前記還元剤添加装置と前記選択還元型触媒装置との間に、排気通路の排気流れに略直交する断面全体に略均等に配設されると共に排気流れに沿った方向に延在される多数の通路を有する金属製の構造体を、排気通路を絞ることなく介装する一方、
前記金属製の構造体に、選択還元型触媒が担持されると共に、
前記金属製の構造体の多数の通路のうちの少なくとも一部の通路同士が連通され、
前記選択還元型触媒装置が、尿素選択還元型NOx触媒装置であり、前記還元剤添加装置の排気上流側に触媒装置若しくはパティキュレートフィルタが配設されることを特徴とする排気処理装置。
An exhaust treatment device for treating exhaust gas discharged from a combustion device,
A selective catalytic reduction device that reduces and purifies specific components in the exhaust; and
A reducing agent addition device for adding a reducing agent to the exhaust on the exhaust upstream side of the selective catalytic reduction device;
In those with
Between the reducing agent addition device and the selective catalytic reduction catalyst device, a large number of members are disposed substantially evenly over the entire cross section substantially perpendicular to the exhaust flow in the exhaust passage and extend in the direction along the exhaust flow . While interposing a metal structure having a passage without restricting the exhaust passage,
A selective reduction catalyst is supported on the metal structure, and
At least some of the passages of the metal structure are communicated with each other,
The exhaust gas treatment device, wherein the selective reduction catalyst device is a urea selective reduction type NOx catalyst device, and a catalyst device or a particulate filter is disposed on the exhaust upstream side of the reducing agent addition device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007282617A JP5513712B2 (en) | 2007-10-31 | 2007-10-31 | Exhaust treatment device |
PCT/JP2008/003054 WO2009057274A1 (en) | 2007-10-31 | 2008-10-28 | Apparatus for treating exhaust |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007282617A JP5513712B2 (en) | 2007-10-31 | 2007-10-31 | Exhaust treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009108787A JP2009108787A (en) | 2009-05-21 |
JP5513712B2 true JP5513712B2 (en) | 2014-06-04 |
Family
ID=40590681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007282617A Active JP5513712B2 (en) | 2007-10-31 | 2007-10-31 | Exhaust treatment device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5513712B2 (en) |
WO (1) | WO2009057274A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5555023B2 (en) * | 2010-03-19 | 2014-07-23 | 日野自動車株式会社 | Exhaust purification device |
JP6000506B2 (en) * | 2010-03-24 | 2016-09-28 | 日野自動車株式会社 | Exhaust purification device |
US9856768B2 (en) * | 2015-06-29 | 2018-01-02 | General Electric Company | Power generation system exhaust cooling |
US10030558B2 (en) * | 2015-06-29 | 2018-07-24 | General Electric Company | Power generation system exhaust cooling |
US10215070B2 (en) * | 2015-06-29 | 2019-02-26 | General Electric Company | Power generation system exhaust cooling |
US9850794B2 (en) * | 2015-06-29 | 2017-12-26 | General Electric Company | Power generation system exhaust cooling |
CN108704475A (en) * | 2018-06-12 | 2018-10-26 | 彭圆 | A kind of thermoelectricity station-service SCR denitration device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000199423A (en) * | 1999-01-05 | 2000-07-18 | Mitsubishi Motors Corp | Exhaust emission control device for diesel engine |
DE10254764A1 (en) * | 2002-11-22 | 2004-06-03 | Emitec Gesellschaft Für Emissionstechnologie Mbh | exhaust system |
DE102005031816A1 (en) * | 2005-07-06 | 2007-01-18 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method for reducing the particle and nitrogen oxide content in the exhaust stream of an internal combustion engine and corresponding exhaust gas treatment unit |
JP2007032472A (en) | 2005-07-28 | 2007-02-08 | Hitachi Ltd | Exhaust gas treatment device using urea water |
DE102005041841A1 (en) * | 2005-09-02 | 2007-03-08 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method and device for adding a reactant to an exhaust gas of an internal combustion engine |
JP4651560B2 (en) * | 2006-03-06 | 2011-03-16 | 三菱ふそうトラック・バス株式会社 | Exhaust gas purification device for internal combustion engine |
-
2007
- 2007-10-31 JP JP2007282617A patent/JP5513712B2/en active Active
-
2008
- 2008-10-28 WO PCT/JP2008/003054 patent/WO2009057274A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2009057274A1 (en) | 2009-05-07 |
JP2009108787A (en) | 2009-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4827256B2 (en) | Exhaust treatment device | |
JP5513712B2 (en) | Exhaust treatment device | |
EP2578828B1 (en) | Exhaust gas purification device | |
EP2530268B1 (en) | Exhaust purification device and exhaust purification method for diesel engine | |
JP5066435B2 (en) | Exhaust gas purification equipment for diesel engines | |
EP2230001A1 (en) | Exhaust gas treatment | |
EP2530265B1 (en) | Exhaust purification device and exhaust purification method for diesel engine | |
US20110146252A1 (en) | Canister aftertreatment module | |
JP2009114930A (en) | Exhaust purification device | |
KR20110028463A (en) | Method and device for the purification of diesel exhaust gases | |
JP4462556B2 (en) | Exhaust gas purification device for internal combustion engine | |
US20130047583A1 (en) | Aftertreatment system | |
US20100115930A1 (en) | Exhaust after treatment system | |
US20090120075A1 (en) | Exhaust gas purifying system | |
US9945278B2 (en) | Exhaust gas mixer | |
GB2558311A (en) | Flow distribution arrangement for aftertreatment of exhaust gas | |
JP4216673B2 (en) | Exhaust purification equipment | |
JP4290026B2 (en) | Exhaust purification equipment | |
JP2010242515A (en) | Exhaust emission control system and exhaust emission control method | |
CN110869106A (en) | Exhaust system for motor vehicle | |
JP2009150279A (en) | Exhaust gas treatment device | |
JP2008075610A (en) | Exhaust gas treating device | |
JP2007205267A (en) | Exhaust emission control device | |
JP2010248955A (en) | Exhaust emission control device | |
US20190040786A1 (en) | Asymmetric catalyst cone for swirl induction of exhaust gas flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120822 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130425 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130507 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20130524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140328 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5513712 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |