[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5507531B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP5507531B2
JP5507531B2 JP2011258228A JP2011258228A JP5507531B2 JP 5507531 B2 JP5507531 B2 JP 5507531B2 JP 2011258228 A JP2011258228 A JP 2011258228A JP 2011258228 A JP2011258228 A JP 2011258228A JP 5507531 B2 JP5507531 B2 JP 5507531B2
Authority
JP
Japan
Prior art keywords
coil
magnetic resonance
resonance imaging
substrate
imaging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011258228A
Other languages
Japanese (ja)
Other versions
JP2013111126A (en
Inventor
康弘 中
伸一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2011258228A priority Critical patent/JP5507531B2/en
Publication of JP2013111126A publication Critical patent/JP2013111126A/en
Application granted granted Critical
Publication of JP5507531B2 publication Critical patent/JP5507531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、傾斜磁場コイル断面の少なくとも内側の形状が横長である磁気共鳴イメージング装置に関する。   The present invention relates to a magnetic resonance imaging apparatus in which at least an inner shape of a cross section of a gradient magnetic field coil is horizontally long.

磁気共鳴イメージング装置は、主に、撮像空間に静磁場を生成する超電導磁石等の静磁場磁石と、被検体からの核磁気共鳴(NMR:nuclear magnetic resonance)信号を発生させるためのRF(radio frequency)コイルと、NMR信号に位置情報を与えるために傾斜磁場を生成する傾斜磁場コイルから構成される。   A magnetic resonance imaging apparatus mainly includes a static magnetic field magnet such as a superconducting magnet that generates a static magnetic field in an imaging space, and an RF (radio frequency) for generating a nuclear magnetic resonance (NMR) signal from a subject. ) Coil and a gradient magnetic field coil for generating a gradient magnetic field to give position information to the NMR signal.

一般に、被検体(患者)を中心に、静磁場磁石が最も外側に配置され、その内側に傾斜磁場コイルが設置され、さらにその内側の被検体に最も近い位置にRFコイルが設置される。
被検体である患者は、検査用ベッドに仰向けに寝た状態で、傾斜磁場コイルとRFコイルとで形成される円筒構造体内に入り撮影される。MRIの構造と原理の詳細については、例えば特許文献1や特許文献2に記載されている。
In general, with a subject (patient) as the center, a static magnetic field magnet is disposed on the outermost side, a gradient magnetic field coil is disposed on the inner side, and an RF coil is disposed on a position closest to the subject on the inner side.
A patient who is a subject is photographed by entering a cylindrical structure formed by a gradient magnetic field coil and an RF coil while lying on his / her back on an examination bed. Details of the structure and principle of MRI are described in, for example, Patent Document 1 and Patent Document 2.

従来、傾斜磁場コイルとRFコイルの断面形状は円形であったが、患者の圧迫感を低減するために患者が入るスペースを広げ、断面形状が楕円のような横長な形状とすることが提案されている。例えば、特許文献3では、傾斜磁場コイルの外側の断面形状は円形だが、その内側断面形状を横長とした構造が示されている。   Conventionally, the cross-sectional shape of the gradient magnetic field coil and the RF coil has been circular. However, in order to reduce the patient's feeling of pressure, it has been proposed to expand the space for the patient to enter and to make the cross-sectional shape an oblong shape like an ellipse. ing. For example, Patent Document 3 shows a structure in which the outer cross-sectional shape of the gradient magnetic field coil is circular, but the inner cross-sectional shape is horizontally long.

特開2009−142646号公報JP 2009-142646 A 特開2008−119214号公報JP 2008-119214 A 特開2011−72461号公報JP 2011-72461 A

ところで、前記したように、十分な患者が入るスペースを確保するために、傾斜磁場コイル内側の横長な断面の幅を大きくした場合、成形上、その左右の側面部の厚さは従来よりも薄くなる。側面部の厚さが薄くなることにより断面係数の低下により剛性が低下し、磁場を発生させたときに傾斜磁場コイルに生じる振動が従来以上に大きくなる。
この傾斜磁場コイルの振動は、その内側のRFコイルにも伝達され、RFコイルの振動も従来以上に大きくなる可能性がある。
By the way, as described above, when the width of the horizontally long cross section inside the gradient magnetic field coil is increased in order to ensure a sufficient space for a patient to enter, the thickness of the left and right side portions is thinner than before in terms of molding. Become. By reducing the thickness of the side surface portion, the rigidity is reduced due to the reduction of the section modulus, and the vibration generated in the gradient magnetic field coil when the magnetic field is generated becomes larger than before.
The vibration of the gradient magnetic field coil is also transmitted to the inner RF coil, and the vibration of the RF coil may be larger than before.

さらに、RFコイルの横断面長手方向の幅も可能な限り大きくするため、水平方向に長径をもつ略楕円状のRFコイルの側面部の最も外方に突出した部位を傾斜磁場コイルに接触させる構造とする場合が考えられる。この場合、振動する傾斜磁場コイルに接触構造のRFコイルの振動はさらに増加する可能性がある。   Furthermore, in order to increase the width in the longitudinal direction of the cross section of the RF coil as much as possible, a structure in which the most outwardly projecting portion of the side surface portion of the substantially elliptical RF coil having a major axis in the horizontal direction is brought into contact with the gradient magnetic field coil. The case is considered. In this case, the vibration of the RF coil having the contact structure may further increase with the oscillating gradient magnetic field coil.

ところが、RFコイルの外側表面(外面)には、コイルやコンデンサ等の複数の電子部品が搭載されている。RFコイルの振動が従来以上に増加すると、当該電子部品の接続部が外力を受けて断線することが懸念される。特に、RFコイル外面上に固定されたガラスエポキシ等で製造された回路基板上に搭載された電子部品は、回路基板自身が固有振動数で共振してより大きく振動し、断線することが懸念される。   However, a plurality of electronic components such as coils and capacitors are mounted on the outer surface (outer surface) of the RF coil. When the vibration of the RF coil increases more than before, there is a concern that the connection part of the electronic component is disconnected due to external force. In particular, an electronic component mounted on a circuit board made of glass epoxy or the like fixed on the outer surface of the RF coil is concerned that the circuit board itself resonates at a natural frequency and vibrates more and is disconnected. The

本発明は上記実状に鑑み、RFコイル表面に固定された基板の振動を抑制することで当該基板上に搭載された電子部品の接続信頼性が高く、被検体スペースが広い磁気共鳴イメージング装置の提供を目的とする。   In view of the above circumstances, the present invention provides a magnetic resonance imaging apparatus in which the connection reliability of electronic components mounted on the substrate is high and the object space is wide by suppressing the vibration of the substrate fixed to the surface of the RF coil. With the goal.

上記目的を達成すべく、第1の本発明に関わる磁気共鳴イメージング装置は、磁気共鳴現象を用いる磁気共鳴イメージング装置であって、筒形状の傾斜磁場コイルと、前記傾斜磁場コイルの内方に設けられ、筒形状を有するとともにその中心軸方向に垂直な断面が扁平形状であるRFコイルと、前記両コイル間の前記RFコイル表面上に固定され、複数の電子部品が接続される基板と、前記基板における前記電子部品搭載面の反対側の面に、第1の粘着材を介して貼り付けられる補強板とを備えている。   In order to achieve the above object, a magnetic resonance imaging apparatus according to the first aspect of the present invention is a magnetic resonance imaging apparatus using a magnetic resonance phenomenon, and is provided inside a cylindrical gradient magnetic field coil and the gradient magnetic field coil. An RF coil having a cylindrical shape and a flat cross section perpendicular to the central axis direction, a substrate fixed on the surface of the RF coil between the two coils, and a plurality of electronic components connected thereto, A reinforcing plate attached to a surface of the substrate opposite to the electronic component mounting surface via a first adhesive material is provided.

第2の本発明に関わる磁気共鳴イメージング装置は、磁気共鳴現象を用いる磁気共鳴イメージング装置であって、筒形状の傾斜磁場コイルと、前記傾斜磁場コイルの内方に設けられ、筒形状を有するとともにその中心軸方向に垂直な断面形状は扁平形状であるRFコイルと、前記両コイルの間の前記RFコイル表面上に固定され、複数の電子部品が接続される基板と、前記基板における前記電子部品搭載面の反対側の面の前記RFコイルへの固定部位置に、第2の粘着材を介して貼り付けられる支持部材とを備えている。 A magnetic resonance imaging apparatus according to a second aspect of the present invention is a magnetic resonance imaging apparatus using a magnetic resonance phenomenon, and is provided with a cylindrical gradient magnetic field coil and an inner side of the gradient magnetic field coil, and has a cylindrical shape. a RF coil that the cross-sectional shape perpendicular to the central axis direction is a flat shape, said fixed on the RF coil surface between both coils, a substrate on which a plurality of electronic components are connected, said in the substrate electronic A supporting member is provided on a surface opposite to the component mounting surface at a position where the RF coil is fixed to the RF coil via a second adhesive material.

本発明によれば、RFコイル表面に固定された基板の振動を抑制することで当該基板上に搭載された電子部品の接続信頼性が高く、被検体スペースが広い磁気共鳴イメージング装置を実現できる。   According to the present invention, it is possible to realize a magnetic resonance imaging apparatus with high connection reliability of an electronic component mounted on a substrate and a wide object space by suppressing vibration of the substrate fixed on the surface of the RF coil.

本発明に係わる実施形態1の磁気共鳴イメージング装置の正面側から見た傾斜磁場コイルとRFコイル周辺部の概略構造を示す図である。It is a figure which shows schematic structure of the gradient magnetic field coil and RF coil periphery seen from the front side of the magnetic resonance imaging apparatus of Embodiment 1 concerning this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. RFコイルの概略構造を示す斜視図である。It is a perspective view which shows schematic structure of RF coil. 中央部に電子部品を接続した従来のガラスエポキシ製の試験基板を示す平面図である。It is a top view which shows the conventional glass epoxy test board which connected the electronic component to the center part. ボルトで固定するスパンを90mmとした場合の不図示の加振機による入力加速度振幅と試験基板の応答加速度振幅の関係を示す図である。It is a figure which shows the relationship between the input acceleration amplitude by the vibrator not shown at the time of setting the span fixed with a volt | bolt to 90 mm, and the response acceleration amplitude of a test board | substrate. 入力加速度振幅と、電子部品の接続断線が発生したスイープ回数との関係を、固定スパンをパラメータとして示す図である。It is a figure which shows the relationship between an input acceleration amplitude and the frequency | count of the sweep in which the disconnection of the electronic component generate | occur | produced using a fixed span as a parameter. 振動により回路基板表面に発生する応力を解析的に求めるためのモデルを示す図である。It is a figure which shows the model for calculating | requiring analytically the stress which generate | occur | produces on the circuit board surface by vibration. (a)は実施形態1の回路基板を被固定面側から見た平面図であり、(b)は(a)のB方向矢視図であり、(c)は(a)のC方向矢視図である。(a) is the top view which looked at the circuit board of Embodiment 1 from the to-be-fixed surface side, (b) is a B direction arrow directional view of (a), (c) is a C direction arrow of (a). FIG. 支持板を示す斜視図である。It is a perspective view which shows a support plate. 円環状の支持板材を示す斜視図である。It is a perspective view which shows an annular | circular shaped support plate material. (a)は実施形態2の回路基板を被固定面側から見た平面図であり、(b)は(a)のD方向矢視図であり、(c)は(a)のE方向矢視図である。(a) is the top view which looked at the circuit board of Embodiment 2 from the to-be-fixed surface side, (b) is a D direction arrow view of (a), (c) is an E direction arrow of (a). FIG. (a)は実施形態3の回路基板を被固定面側から見た平面図であり、(b)は(a)のF方向矢視図であり、(c)は(a)のG方向矢視図である。(a) is the top view which looked at the circuit board of Embodiment 3 from the to-be-fixed surface side, (b) is a F direction arrow view of (a), (c) is a G direction arrow of (a). FIG.

以下、本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
図8に、実施形態1に関わるRFコイルへ固定する基板の概略構造を示す。
図1に、本発明に係わる実施形態1の磁気共鳴イメージング装置の正面側から見た傾斜磁場コイルとRFコイル周辺部の概略構造を示す。図2には、図1のA−A線断面での概略構造を示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<< Embodiment 1 >>
FIG. 8 shows a schematic structure of a substrate fixed to the RF coil according to the first embodiment.
FIG. 1 shows a schematic structure of a gradient coil and an RF coil peripheral portion viewed from the front side of the magnetic resonance imaging apparatus according to the first embodiment of the present invention. FIG. 2 shows a schematic structure of the cross section taken along line AA of FIG.

実施形態1の磁気共鳴イメージング装置(MRI)Mは、磁界の中に被検体(患者)Pを入れ、体内の原子、例えば水素(H)の原子核に核磁気共鳴現象を発生させ、当該核磁気共鳴現象で得られる電磁波を検出して画像化して体内の異常を発見するための装置である。
原子核としては、水素以外の炭素(C)、リン(P)、ナトリウム(Na)等のその他の原子核でもよい。
The magnetic resonance imaging apparatus (MRI) M of Embodiment 1 puts a subject (patient) P in a magnetic field, generates a nuclear magnetic resonance phenomenon in an atomic body, for example, a hydrogen (H) nucleus, and the nuclear magnetic field. It is a device for detecting abnormalities in the body by detecting and imaging electromagnetic waves obtained by the resonance phenomenon.
The atomic nucleus may be other atomic nucleus such as carbon (C) other than hydrogen, phosphorus (P), sodium (Na), or the like.

磁気共鳴イメージング装置Mは、被検体(患者)Pが横たわる撮像空間Sに静磁場を生成する超電導磁石等の静磁場磁石5と、被検体Pからの核磁気共鳴(NMR)信号(電磁波)を発生させるとともに受信するためのRFコイル2と、NMR信号に位置情報を与えるために傾斜磁場を生成する傾斜磁場コイル1とを備え構成される。   The magnetic resonance imaging apparatus M receives a static magnetic field magnet 5 such as a superconducting magnet that generates a static magnetic field in an imaging space S where a subject (patient) P lies, and a nuclear magnetic resonance (NMR) signal (electromagnetic wave) from the subject P. An RF coil 2 for generating and receiving and a gradient magnetic field coil 1 for generating a gradient magnetic field to give positional information to the NMR signal are configured.

磁気共鳴イメージング装置Mは、被検体(患者)Pを中心に、内部に略円柱状空間が形成される静磁場磁石5が最も外側に配置され、その内側に筒状の傾斜磁場コイル1が設置され、さらにその内側の被検体(患者)Pに最も近い位置に筒状のRFコイル2が設置される。   In the magnetic resonance imaging apparatus M, a static magnetic field magnet 5 in which a substantially cylindrical space is formed is arranged on the outermost side around a subject (patient) P, and a cylindrical gradient magnetic field coil 1 is installed on the inner side. Further, the cylindrical RF coil 2 is installed at a position closest to the subject (patient) P inside.

傾斜磁場コイル1は、撮像空間Sに該傾斜磁場コイル1に流れる電流により傾斜磁場を生成するためにコイルが巻線され形成されている。
傾斜磁場コイル1は、外面が略円筒状を呈する一方、十分な被検体(患者)Pのスペースを確保するために、内面はRFコイル2を収納すべく略楕円筒状を呈している。別言すれば、傾斜磁場コイル1は、筒状の形状を有し、その中心軸に垂直な断面の内面が横長の扁平形状を呈している。
The gradient magnetic field coil 1 is formed by winding a coil in the imaging space S in order to generate a gradient magnetic field by a current flowing through the gradient magnetic field coil 1.
The gradient magnetic field coil 1 has a substantially cylindrical shape on the outer surface, and has a substantially elliptic cylindrical shape on the inner surface to accommodate the RF coil 2 in order to secure a sufficient space for the subject (patient) P. In other words, the gradient coil 1 has a cylindrical shape, and the inner surface of the cross section perpendicular to the central axis has a horizontally long flat shape.

図3に、RFコイルの概略構造を示す。
RFコイル2は、被検体PからのNMR信号を発生させるために高周波磁場を形成するとともに、被検体PからのNMR信号を検出する。
RFコイル2は、筒状の形状を有し、十分な被検体Pのスペースを確保するために、その中心軸に垂直な断面が横長の扁平形状を呈している。
FIG. 3 shows a schematic structure of the RF coil.
The RF coil 2 forms a high-frequency magnetic field in order to generate an NMR signal from the subject P, and detects the NMR signal from the subject P.
The RF coil 2 has a cylindrical shape, and in order to ensure a sufficient space for the subject P, the RF coil 2 has a flat shape whose cross section perpendicular to the central axis is horizontally long.

RFコイル2は、その中心軸方向の両端縁に形成されるツバ部6a、6bとツバ部6a、6b間の筒状の胴部6cとを有するボビン6を最内側に有する。ボビン6は、例えばガラスエポキシ等の樹脂製である。
RFコイル2は、銅箔7を貼ったガラスエポキシ等の薄膜のシート6sを、ボビン6の胴部6cの外周面に巻き付けて形成される。そして、RFコイル2の銅箔7には、所々にコンデンサ8やコイル9等の電子部品が接続されている。
The RF coil 2 has a bobbin 6 having flange portions 6a and 6b formed at both end edges in the central axis direction and a cylindrical body portion 6c between the flange portions 6a and 6b on the innermost side. The bobbin 6 is made of a resin such as glass epoxy.
The RF coil 2 is formed by winding a thin film sheet 6 s such as glass epoxy with a copper foil 7 around the outer peripheral surface of the body portion 6 c of the bobbin 6. The copper foil 7 of the RF coil 2 is connected to electronic components such as a capacitor 8 and a coil 9 at various places.

さらに、RFコイル2の外面(表面)上には、コンデンサ28やコイル29等の複数の電子部品が実装(搭載)される回路基板12が、ボルト、ナット等で螺設されている。回路基板12は、例えばガラスエポキシ製であり、配線パターンがエッチング等で形成されている。   Further, on the outer surface (surface) of the RF coil 2, a circuit board 12 on which a plurality of electronic components such as a capacitor 28 and a coil 29 are mounted (mounted) is screwed with bolts, nuts, and the like. The circuit board 12 is made of, for example, glass epoxy, and a wiring pattern is formed by etching or the like.

回路基板12は、RFコイル2への給電配線のための基板であり、コイル(銅箔7やコイル9等)への電磁的な影響を抑制するために、回路基板12とその配線13はボビン6上の銅箔7等から離隔して設置している。
図1、図2に示すように、傾斜磁場コイル1とRFコイル2は、それぞれの支持体3、4を介して、静磁場磁石5の筐体に固定される。
The circuit board 12 is a board for power supply wiring to the RF coil 2, and the circuit board 12 and its wiring 13 are bobbins in order to suppress electromagnetic influence on the coil (copper foil 7, coil 9, etc.). 6 away from the copper foil 7 on the top.
As shown in FIGS. 1 and 2, the gradient magnetic field coil 1 and the RF coil 2 are fixed to the housing of the static magnetic field magnet 5 via the respective supports 3 and 4.

前記したように、傾斜磁場コイル1の内部を、横断面水平方向に長い横長の扁平な構造、すなわち水平方向に長径をもつ略楕円形状とした場合、その両側面部1sの厚さ(図1参照)が従来よりも薄くなる。このように、傾斜磁場コイル1の形状が中心軸について対称でなくなるため、撮像空間Sへの磁場印加時に傾斜磁場コイル1内に発生する応力が不均一となり、その振動が従来よりも大きくなることが想定される。そのため、傾斜磁場コイル1からRFコイル2に伝達される振動が大きくなる可能性がある。   As described above, when the inside of the gradient magnetic field coil 1 has a horizontally long flat structure that is long in the horizontal direction, that is, a substantially elliptical shape having a long diameter in the horizontal direction, the thickness of both side surface portions 1s (see FIG. 1). ) Becomes thinner than before. As described above, since the shape of the gradient magnetic field coil 1 is not symmetric with respect to the central axis, the stress generated in the gradient magnetic field coil 1 when the magnetic field is applied to the imaging space S becomes non-uniform, and the vibration thereof becomes larger than the conventional one. Is assumed. Therefore, the vibration transmitted from the gradient magnetic field coil 1 to the RF coil 2 may increase.

さらに、RFコイル2の横断面長手方向の幅(横断面略楕円形状の水平方向に延びる長径の寸法)を可能な限り大きくするため、RFコイル2の側方の最も突出した部位の側部2sを傾斜磁場コイル1に接触させた場合には、傾斜磁場コイル1の振動がRFコイル2に常に直接伝達されることから、RFコイル2の振動がさらに増加することが懸念される。   Further, in order to increase the width in the longitudinal direction of the RF coil 2 in the longitudinal direction (the dimension of the major axis extending in the horizontal direction of a substantially elliptical cross section) as much as possible, the side portion 2s of the most protruding portion on the side of the RF coil 2 is used. Is brought into contact with the gradient coil 1, the vibration of the gradient coil 1 is always transmitted directly to the RF coil 2, and there is a concern that the vibration of the RF coil 2 further increases.

実際に、横断面横長の扁平形状のRFコイル2に印加する電磁周波数をスイープ(変化)させて、RFコイル2に発生する振動を測定する実験を行ったところ、従来の横断面円状のRFコイルの場合の約十倍の振動加速度が計測された例も報告されている。
RFコイル2の外面(表面)に直接接続されたコンデンサ8やコイル9等の電子部品の接続信頼性を解析等により検討したところ、前記の従来の約十倍の振動が加わった場合でもその接続部には微小なひずみしか発生せず、断線する懸念は小さいことが明らかとなった。
Actually, an experiment was conducted to measure the vibration generated in the RF coil 2 by sweeping (changing) the electromagnetic frequency applied to the flat RF coil 2 having a horizontally long cross section. An example in which vibration acceleration about ten times that of a coil is measured has been reported.
When the connection reliability of the electronic components such as the capacitor 8 and the coil 9 directly connected to the outer surface (surface) of the RF coil 2 is examined by analysis or the like, even when about ten times the vibration as described above is applied, the connection It was revealed that only a small strain was generated in the part, and the fear of disconnection was small.

これに対して、RFコイル2の外面に固定された回路基板12上に実装(搭載)された電子部品(コンデンサ28やコイル29等)は、以下の結果より、その接続が断線する可能性があると判断される。その根拠を示す実験結果を以下に説明する。
実験は、図4に示す中央部に電子部品16を接続した従来のガラスエポキシ製の回路基板14、すなわち外形寸法が、100×50mm、厚さは標準厚である1.6mmの回路基板14を、ボルト15で4箇所固定し、これに加振機により周波数をスイープ(変化)させた振動を加えた場合の電子部品16の接続寿命を検討した。
In contrast, electronic components (capacitor 28, coil 29, etc.) mounted (mounted) on the circuit board 12 fixed to the outer surface of the RF coil 2 may be disconnected from the following results. It is judged that there is. The experimental results showing the basis will be described below.
In the experiment, a conventional glass epoxy circuit board 14 in which an electronic component 16 is connected to the central portion shown in FIG. 4, that is, a circuit board 14 having an outer dimension of 100 × 50 mm and a standard thickness of 1.6 mm. Then, the connection life of the electronic component 16 was examined when four places were fixed with bolts 15 and the vibration with the frequency swept (changed) by the vibrator was applied thereto.

図5に、ボルト15で固定する固定スパンsを従来の90mmとした場合の不図示の加振機による入力加速度振幅と回路基板の応答加速度振幅の関係を示す。
試験した範囲では、回路基板14は600Hz近辺(図5のピーク(1)の580Hz)と3000Hz近辺(図5のピーク(2)の3140Hz)で共振点、つまり固有振動数を持つことが判明した。特に、600Hz付近の共振点(図5のピーク(1))では、入力加速度振幅100m/sの場合、回路基板14は全振幅量約2mmの大きな振動が発生した。
FIG. 5 shows the relationship between the input acceleration amplitude by a vibrator (not shown) and the response acceleration amplitude of the circuit board when the fixed span s fixed by the bolt 15 is 90 mm.
In the tested range, it has been found that the circuit board 14 has resonance points, that is, natural frequencies around 600 Hz (580 Hz of peak (1) in FIG. 5) and 3000 Hz (3140 Hz of peak (2) in FIG. 5). . In particular, at the resonance point near 600 Hz (peak (1) in FIG. 5), when the input acceleration amplitude was 100 m / s 2 , the circuit board 14 generated a large vibration with a total amplitude of about 2 mm.

図6に、入力加速度振幅と電子部品の接続断線が発生したスイープ回数との関係を、固定スパンsをパラメータとして示す。図6の縦軸に試験基板14に印加した入力加速度振幅(m/s)をとり、図6の横軸に電子部品が断線したスイープ回数(回)をとっている。
入力加速度振幅100m/s、●印の固定スパン90mmの場合、10回程度のスイープの実施で断線が発生した。前記の横断面形状が横長なRFコイル2の振動測定では、加振の周波数600Hz付近での振動加速度振幅は約100m/sだった。
FIG. 6 shows the relationship between the input acceleration amplitude and the number of sweeps in which the disconnection of the electronic component has occurred, with the fixed span s as a parameter. The vertical axis of FIG. 6 represents the input acceleration amplitude (m / s 2 ) applied to the test substrate 14, and the horizontal axis of FIG. 6 represents the number of sweeps (times) at which the electronic component is disconnected.
In the case of an input acceleration amplitude of 100 m / s 2 and a fixed span of 90 mm marked with ●, a disconnection occurred after about 10 sweeps. In the vibration measurement of the RF coil 2 having a horizontally long cross-sectional shape, the vibration acceleration amplitude in the vicinity of the excitation frequency of 600 Hz was about 100 m / s 2 .

したがって、従来と同様にRFコイル2上の回路基板12(図3参照)を試験用の回路基板14と同じ固定スパン90mmで固定した場合、ごく短期間で断線が発生すると予測された。つまり、RFコイル2上の回路基板12は、図6の●印の固定スパン90mmの入力加速度振幅100m/sの場合から、10回前後のスイープで断線が発生すると予想される。 Therefore, when the circuit board 12 (see FIG. 3) on the RF coil 2 is fixed with the same fixed span 90 mm as the test circuit board 14 as in the conventional case, it was predicted that the disconnection occurred in a very short period of time. That is, the circuit board 12 on the RF coil 2 is expected to break in about 10 sweeps from the input acceleration amplitude of 100 m / s 2 with a fixed span of 90 mm indicated by ● in FIG.

ここで、RFコイル2上の回路基板12(図3参照)の振動を低減し、回路基板12上に実装された電子部品の接続断線を防止するためには、回路基板12の断面係数が増加するとその応力σが減少することから、回路基板12の厚さを従来よりも厚くすることが有効である。
図7に示すような、加速度(a)により分布荷重w(単位長さ当りの荷重w)が負荷されたはりを考えた場合、材料力学の公式より、中央部の中立軸からの表面の位置h/2における応力σは次の式(1)で表される。
Here, in order to reduce the vibration of the circuit board 12 (see FIG. 3) on the RF coil 2 and prevent the disconnection of the electronic components mounted on the circuit board 12, the section coefficient of the circuit board 12 is increased. Then, since the stress σ decreases, it is effective to make the thickness of the circuit board 12 thicker than before.
When considering a beam loaded with distributed load w (load w per unit length) due to acceleration (a) as shown in FIG. 7, the position of the surface from the neutral axis in the center is determined by the material mechanics formula. The stress σ at h / 2 is expressed by the following equation (1).

Figure 0005507531
ここで、Lは固定スパン(固定箇所の距離)(図4の固定スパンs)、b、hはそれぞれ回路基板の幅、厚さ、aは振動加速度、rは回路基板の密度である。
Figure 0005507531
Here, L is a fixed span (fixed portion distance) (fixed span s in FIG. 4), b and h are the width and thickness of the circuit board, a is the vibration acceleration, and r is the density of the circuit board.

また、分布荷重wは、力=質量×加速度 と表されることから、はりの単位長さ当りの質量rbhを用いて、w=a×rbhと表される。
式(1)より、回路基板12の応力はその厚さhに反比例することが分る。
したがって、例えば厚さhを従来の1.6mmの2倍の約3mmとすれば、式(1)より応力σは1/2に低減され、加速度aを1/2に低減した場合に相当する。
Since the distributed load w is expressed as force = mass × acceleration, it is expressed as w = a × rbh using the mass rbh per unit length of the beam.
From equation (1), it can be seen that the stress of the circuit board 12 is inversely proportional to its thickness h.
Therefore, for example, if the thickness h is about 3 mm, which is twice the conventional 1.6 mm, the stress σ is reduced to ½ and the acceleration a is reduced to ½ from the equation (1). .

しかし、ガラスエポキシ製の回路基板は、標準厚さ1.6mm以上のものは一般的に市販されておらず特注品となるため、標準寸法外の回路基板を使用することは若干のコスト増を招来する。
そこで、図8に示すように、コンデンサ28やコイル29が実装(搭載)される回路基板12に塩化ビニル等の補強板19を貼り付ける(接触して設ける)ことでみかけ上の断面係数を高くし、回路基板12の振動に対する剛性を強化することが有効である。
However, circuit boards made of glass epoxy with a standard thickness of 1.6 mm or more are generally not commercially available and are custom-made products, so using a circuit board outside the standard dimensions slightly increases the cost. Invite you.
Therefore, as shown in FIG. 8, the apparent sectional modulus is increased by attaching (in contact with) a reinforcing plate 19 such as vinyl chloride to the circuit board 12 on which the capacitor 28 and the coil 29 are mounted (mounted). It is effective to reinforce the rigidity of the circuit board 12 against vibration.

回路基板12を補強板19に貼り付けるときに、粘弾性的特性を有する粘着テープや接着材の粘着材21aを使用すれば、その粘着テープ等の粘着材21aによる粘性減衰力による減衰効果で、共振点(固有振動数)での振動ピークが抑制される効果も期待できる。
さらに、貼り付けた補強板19が振動によりはがれてしまうことを防止するため、回路基板12のRFコイル2への4箇所での固定部k1、k2、k3、k4に加え、回路基板12の中央部付近にも固定部k5、k6を設けることが望ましい。
When the circuit board 12 is attached to the reinforcing plate 19, if an adhesive tape having a viscoelastic property or an adhesive material 21a of an adhesive material is used, the damping effect due to the viscous damping force by the adhesive material 21a such as the adhesive tape, The effect of suppressing the vibration peak at the resonance point (natural frequency) can also be expected.
Further, in order to prevent the adhered reinforcing plate 19 from being peeled off due to vibration, in addition to the fixing portions k1, k2, k3, k4 at the four locations to the RF coil 2 of the circuit board 12, the center of the circuit board 12 is provided. It is desirable to provide the fixing parts k5 and k6 also near the part.

回路基板12の中央部に固定部k5、k6を設けることにより、固定部k5と固定部k1または固定部k4との各固定スパンや固定部k6と固定部k2または固定部k3との各固定スパンが、中央部付近に固定部k5、k6を設けない場合の固定部k1と固定部k4との固定スパンや固定部k2と固定部k3との固定スパンより小さくなることによる振動(振幅)低減効果も期待できる。
何故なら、各固定スパンは、振動の節間の距離となるので、中央部付近に固定部k5、k6を設けた場合、設けない場合に比較し、振動の節間の距離が短くなるからである。
By providing the fixing portions k5 and k6 at the center of the circuit board 12, each fixing span between the fixing portion k5 and the fixing portion k1 or the fixing portion k4 and each fixing span between the fixing portion k6 and the fixing portion k2 or the fixing portion k3. However, when the fixed portions k5 and k6 are not provided in the vicinity of the central portion, the vibration (amplitude) reduction effect due to being smaller than the fixed span between the fixed portions k1 and k4 and the fixed span between the fixed portions k2 and k3. Can also be expected.
This is because each fixed span is the distance between the vibration nodes, so the distance between the vibration nodes is shorter when the fixed parts k5 and k6 are provided near the center than when the fixed parts are not provided. is there.

固定スパンL、すなわち固定部距離の振動の節間の距離を小さくすることによる効果は、式(1)と図6に示す実験結果から明らかである。
例えば、Lを1/2(45mm)とすれば、式(1)から応力σはLに比例するので、応力σは1/4に低減され、応力σが比例する加速度aを1/4に低減したと同等の効果が得られる。さらに、式(1)から応力σが反比例する回路基板厚さhを2倍にする対策と合わせて実施すれば、加速度を1/2×1/4の1/8に低減したと同じ効果が得られ、問題がない実績がある従来の振動レベルに近付けることができる。
The effect of reducing the fixed span L, that is, the distance between the vibration nodes of the fixed portion distance is apparent from the equation (1) and the experimental results shown in FIG.
For example, if L is 1/2 (45 mm), the stress σ is proportional to L 2 from Equation (1), so the stress σ is reduced to ¼, and the acceleration a at which the stress σ is proportional is ¼. An effect equivalent to that reduced to the above can be obtained. Furthermore, if implemented together with a measure for doubling the circuit board thickness h where the stress σ is inversely proportional to the equation (1), the same effect as when the acceleration is reduced to 1/8 of 1/2 × 1/4 is obtained. It is possible to approach the conventional vibration level that has been obtained and has no problem.

一方、例えば図6の実験結果からは、スパン30mmとした場合、従来のスパン90mmの場合の加速度振幅100m/sでの寿命の約5倍の加速度での寿命に相当することが確認できる。すなわち、図6から、スパン90mmの場合(図6の●印)の加速度振幅100m/sの断線したスイープ回数は、スパン30mmの場合(図6の■印)での加速度振幅が約500m/sの断線したスイープ回数にほぼ相当することが分る。 On the other hand, from the experimental results of FIG. 6, for example, when the span is set to 30 mm, it can be confirmed that this corresponds to a life at an acceleration of about 5 times the life at the acceleration amplitude of 100 m / s 2 in the case of the conventional span of 90 mm. That is, from FIG. 6, the number of sweeps where the acceleration amplitude is 100 m / s 2 when the span is 90 mm (marked with ● in FIG. 6) is about 500 m / s when the span is 30 mm (marked with ■ in FIG. 6). It can be seen that this roughly corresponds to the number of sweeps where s 2 is broken.

これより、回路基板12の固定部(k1〜k6)のスパンを30mmとした場合、振動加速度を約1/5低減とした場合と同等の効果が得られると言える。
回路基板12の厚さhを2倍にする対策(式(1)よりσが1/2となり、加速度aを1/2にしたことと同等の効果)と合わせて実施することにより、加速度を1/10に低減したと同等であり、従来と同等の加速度に低減した効果が得られる。
From this, it can be said that when the span of the fixed portions (k1 to k6) of the circuit board 12 is 30 mm, the same effect as that obtained when the vibration acceleration is reduced by about 1/5 can be obtained.
By implementing this together with a measure for doubling the thickness h of the circuit board 12 (same as the effect of σ is ½ and acceleration a is ½ from the equation (1)), the acceleration can be reduced. This is equivalent to a reduction to 1/10, and the effect of reducing the acceleration to the same level as before can be obtained.

さらに、式(1)でのL/hの値を考えると、入力加速度振幅100m/sで電子部品の接続断線が懸念される、スパンLが従来の90mm、厚さhが回路基板の標準厚1.6mmの組み合わせの場合、L/hは5060mmである。 Further, when considering the value of L 2 / h in equation (1), there is a concern about disconnection of electronic components at an input acceleration amplitude of 100 m / s 2. The span L is 90 mm and the thickness h is the circuit board. In the case of a combination with a standard thickness of 1.6 mm, L 2 / h is 5060 mm.

前記したように、横断面横長の扁平形状のRFコイル2では従来の円筒形状のRFコイルの場合の約十倍の振動加速度が報告されているため、回路基板12の式(1)の応力σを従来と同等レベルに低減するためには、回路基板12に印加される加速度aが十倍なので、回路基板12の密度rが等しいとした場合、L/hの値を、少なくとも1/10の約500mm以下に低減する必要がある。 As described above, in the flat RF coil 2 having a horizontally long cross section, vibration acceleration of about ten times that in the case of a conventional cylindrical RF coil has been reported. Is reduced to a level equivalent to that of the prior art, the acceleration a applied to the circuit board 12 is ten times higher. Therefore, when the density r of the circuit board 12 is equal, the value of L 2 / h is set to at least 1/10. It is necessary to reduce to about 500 mm or less.

実験的に応力低減効果が1/5と確認された固定スパンLを30mmで、厚さhを標準厚1.6mmの2倍の3mmとすればトータルでの応力低減効果が1/10未満となり、このときの L/h は300mmである。よって、L/hを300以下にできれば、より確実に電子部品の接続の信頼性を確保するため望ましい。 If the fixed span L is experimentally confirmed to be 1/5, the fixed span L is 30 mm, and the thickness h is 3 mm, twice the standard thickness of 1.6 mm, the total stress reduction effect will be less than 1/10. In this case, L 2 / h is 300 mm. Therefore, if L 2 / h can be set to 300 or less, it is desirable to ensure the reliability of connection of electronic components more reliably.

図8は、RFコイル上に固定された、電子部品が実装された回路基板の概略構造の例を示す図である。図8(a)は回路基板を被固定面側から見た平面図であり、図8(b)は図8(a)のB方向矢視図であり、図8(c)はRFコイル2の外周の接線方向に見た図8(a)のC方向矢視図である。
図8(a)に示すように、回路基板12をRFコイル2のボビン6の胴部6cの外方に突出する曲面上に安定して固定する必要がある。
FIG. 8 is a diagram showing an example of a schematic structure of a circuit board fixed on an RF coil and mounted with an electronic component. 8A is a plan view of the circuit board as viewed from the fixed surface side, FIG. 8B is a view taken in the direction of arrow B in FIG. 8A, and FIG. 8C is the RF coil 2. It is the C direction arrow directional view of Fig.8 (a) seen in the tangent direction of the outer periphery.
As shown in FIG. 8A, it is necessary to stably fix the circuit board 12 on a curved surface protruding outward of the body portion 6c of the bobbin 6 of the RF coil 2.

図8(b)に示すように、平板状の回路基板12の下面に対してRFコイル2が凸状に形成され、回路基板12をそのままRFコイル2の凸状の外面に固定すると中央部がRFコイル2に当接し、縁部がRFコイル2から浮いた非接触の状態になる。
そのため、回路基板12のRFコイル2の周方向の縁部に対向する補強板19の下部に、さらに図9に示す短冊状の2本の支持板20(20A、20B)を、粘着材21を介して、貼り付ける。粘着材21は、粘弾性的特性を有する粘着テープや接着材等であり、粘着材21による粘性減衰による減衰効果で、共振点(固有振動数)での振動ピークが抑制される効果がある。
As shown in FIG. 8 (b), the RF coil 2 is formed in a convex shape on the lower surface of the flat circuit board 12. When the circuit board 12 is fixed to the convex outer surface of the RF coil 2 as it is, the center portion is formed. The contact with the RF coil 2 is brought into a non-contact state in which the edge is lifted from the RF coil 2.
Therefore, two strip-shaped support plates 20 (20A, 20B) shown in FIG. 9 are further attached to the lower portion of the reinforcing plate 19 facing the circumferential edge of the RF coil 2 of the circuit board 12, and the adhesive material 21 is attached. Paste through. The pressure-sensitive adhesive material 21 is a pressure-sensitive adhesive tape or adhesive material having viscoelastic characteristics, and has an effect of suppressing a vibration peak at a resonance point (natural frequency) due to a damping effect due to viscous damping by the pressure-sensitive adhesive material 21.

そして、図8(c)に示すように、ボルト10の雄ネジ部を、回路基板12、粘着材21a、補強板19、粘着材21、支持板20にそれぞれ穿設される孔を挿通させ、ボルトnをボルト10の雄ネジ部に螺着して、回路基板12はRFコイル2に取着される。
図9に示す支持板20Aは、薄い板厚の細長い短冊状の長形状を呈しており、固定部k1、k5、k4の各位置にボルト10(図8参照)の雄ネジ部が挿通される挿通孔a1、a5、a4が貫設されている。
And as shown in FIG.8 (c), the male screw part of the volt | bolt 10 is penetrated to the hole drilled in each of the circuit board 12, the adhesive material 21a, the reinforcement board 19, the adhesive material 21, and the support plate 20, The circuit board 12 is attached to the RF coil 2 by screwing the bolt n to the male screw portion of the bolt 10.
The support plate 20A shown in FIG. 9 has an elongated strip shape with a thin plate thickness, and the male screw portion of the bolt 10 (see FIG. 8) is inserted into each position of the fixing portions k1, k5, and k4. Insertion holes a1, a5, and a4 are penetrated.

同様に、支持板20Bは、薄い板厚の細長い短冊状の長形状を呈しており、固定部k2、k6、k3の各位置にボルト10(図8参照)の雄ネジ部が挿通される挿通孔a2、a6、a3が貫設されている。
支持板20(20A、20B)、例えば塩化ビニル等の樹脂、ゴム等が用いられ、特に限定されない。しかし、支持板20は回路基板12に伝達される振動の減衰作用を有する材料が望ましい。
Similarly, the support plate 20B has an elongated strip shape with a thin plate thickness, and the male screw portion of the bolt 10 (see FIG. 8) is inserted into each position of the fixing portions k2, k6, and k3. Holes a2, a6, and a3 are provided.
Support plate 20 (20A, 20B), for example, a resin such as vinyl chloride, rubber or the like is used, and is not particularly limited. However, the support plate 20 is preferably made of a material that has a function of damping the vibration transmitted to the circuit board 12.

短冊状の支持板20には、回路基板12の補強板としての効果も期待され、さらに振動を低減するためにも有効に作用する。
回路基板12の固定(k1〜k6)はボルト10やナットn等で、RFコイル2の中心軸に沿った支持板20(20A、20B)の長手方向の位置で行い、支持板20Aの両端部(k1、k4)と中央部(k5)、および、支持板20Bの両端部(k2、k3)と中央部(k6)の各3箇所以上で固定するのが好ましい。
The strip-shaped support plate 20 is expected to have an effect as a reinforcing plate for the circuit board 12 and further effectively acts to reduce vibration.
The circuit board 12 is fixed (k1 to k6) with bolts 10 and nuts n at the longitudinal positions of the support plate 20 (20A, 20B) along the central axis of the RF coil 2, and both ends of the support plate 20A. It is preferable to fix at (k1, k4) and the central portion (k5), and at each of three or more locations on both ends (k2, k3) and the central portion (k6) of the support plate 20B.

RFコイル2の中心軸に沿った方向の支持板20(20A、20B)の長手方向の位置での固定は、回路基板12の下面とRFコイル2の外面(表面)との距離が等しいため、支持板20(20A、20B)の回路基板12やRFコイル2の外面からの剥離(はがれ)を抑制することができるためである。
なお、支持板20(20A、20B)は、固定部k1〜k6にそれぞれ独立して設ける図10に示す環状の支持板材30としてもよい。
Since the support plate 20 (20A, 20B) in the direction along the central axis of the RF coil 2 is fixed at the longitudinal position, the distance between the lower surface of the circuit board 12 and the outer surface (front surface) of the RF coil 2 is equal. This is because peeling (peeling) of the support plate 20 (20A, 20B) from the outer surface of the circuit board 12 or the RF coil 2 can be suppressed.
The support plate 20 (20A, 20B) may be an annular support plate material 30 shown in FIG. 10 provided independently in each of the fixing portions k1 to k6.

各支持板材30には、ボルト10の雄ネジ部が挿通する挿通孔30aが貫設されている。支持板材30は、例えば塩化ビニル等の樹脂、ゴム等が用いられ、特に限定されない。しかし、支持板材30に、回路基板12の振動に対する減衰作用を有する材料がより好ましい。
図10では、支持板材30が環状の場合を例示したが、回路基板12とRFコイル2との間にクリアランスを形成できれば、その形状は限定されないのは勿論である。
Each support plate 30 is provided with an insertion hole 30a through which the male screw portion of the bolt 10 is inserted. The support plate 30 is made of, for example, a resin such as vinyl chloride, rubber, or the like, and is not particularly limited. However, a material having a damping action for the vibration of the circuit board 12 is more preferable for the support plate 30.
Although FIG. 10 illustrates the case where the support plate 30 is annular, the shape is not limited as long as a clearance can be formed between the circuit board 12 and the RF coil 2.

また、図9の支持板20(20A、20B)は固定部を3つずつ固定し、図10の支持板材30固定部を1つずつ固定する支持部材を例示したが、回路基板12とRFコイル2との間にクリアランスを形成でき、かつ振動の減衰作用を有すれば、固定部を幾つ固定するかは、任意に選択可能である。
なお、図8では回路基板12上の主な部品(コンデンサ28、コイル29)のみを示し、その他の部品や配線や配線パターン等は省略している。
Moreover, although the supporting plate 20 (20A, 20B) of FIG. 9 fixed the fixing part three by three and illustrated the supporting member that fixes the supporting plate material 30 fixing part of FIG. 10 one by one, the circuit board 12 and the RF coil The number of fixing portions to be fixed can be arbitrarily selected as long as a clearance can be formed between the two and the vibration damping function.
In FIG. 8, only main components (capacitor 28 and coil 29) on the circuit board 12 are shown, and other components, wiring, wiring patterns, and the like are omitted.

また、図3に示した例では回路基板12の数は1個の場合を例示したが、複数の回路基板12を同様に固定する。さらに、図3では、回路基板12の位置はRFコイル2の上部として示したが、それ以外の位置、すなわち側面部や下部等に接続される場合もある。いずれの場合でも、前記した対策により同様の断線防止効果が得られる。
回路基板12の取り付け位置は、RFコイル2が扁平形状のため、その上・下部は空きスペースが存在し、入出力端子の接続作業が容易で、スペースの観点から望ましい。一方、RFコイル2の両側部(図1の側部2s)は振動が発生した際に振動の節に成り易く、振動振幅が小さい傾向にあるので、回路基板12の防振の観点から望ましい。
In the example shown in FIG. 3, the number of circuit boards 12 is exemplified, but a plurality of circuit boards 12 are similarly fixed. Furthermore, although the position of the circuit board 12 is shown as the upper part of the RF coil 2 in FIG. 3, it may be connected to other positions, that is, a side surface part or a lower part. In any case, the same measures for preventing disconnection can be obtained by the measures described above.
The mounting position of the circuit board 12 is desirable from the viewpoint of space because the RF coil 2 has a flat shape, and there are empty spaces above and below it, making it easy to connect input / output terminals. On the other hand, both side portions of the RF coil 2 (side portions 2s in FIG. 1) tend to become vibration nodes when vibrations occur, and the vibration amplitude tends to be small, which is desirable from the viewpoint of vibration isolation of the circuit board 12.

上記構成によれば、RFコイル2の表面(外面)に固定された回路基板12の振動を抑制して回路基板12上の電子部品の接続部の信頼性を向上することができる。
これにより、より被検体(患者)Pのスペースが広い、横長な傾斜磁場コイル1の横断面内側形状とRFコイル2横断面形状を有する磁気共鳴イメージング装置Mを提供することができる。
According to the above configuration, it is possible to suppress the vibration of the circuit board 12 fixed to the surface (outer surface) of the RF coil 2 and improve the reliability of the connection part of the electronic component on the circuit board 12.
Accordingly, it is possible to provide a magnetic resonance imaging apparatus M having a laterally long gradient magnetic field coil 1 cross-sectional inner shape and an RF coil 2 cross-sectional shape having a wider space for the subject (patient) P.

<<実施形態2>>
次に、実施形態2の磁気共鳴イメージング装置Mについて説明する。
図11に、実施形態2に関わるRFコイルへ固定する回路基板の概略構造を示す。図11(a)は回路基板を被固定面側から見た平面図であり、図11(b)は図11(a)のD方向矢視図であり、図11(c)はRFコイル2の外周の接線方向に見た図11(a)のE方向矢視図である。
<< Embodiment 2 >>
Next, the magnetic resonance imaging apparatus M of Embodiment 2 will be described.
FIG. 11 shows a schematic structure of a circuit board fixed to the RF coil according to the second embodiment. 11A is a plan view of the circuit board as viewed from the fixed surface side, FIG. 11B is a view in the direction of arrow D in FIG. 11A, and FIG. 11C is the RF coil 2. It is the E direction arrow directional view of Fig.11 (a) seen in the tangent direction of the outer periphery.

実施形態2では、実施形態1の回路基板12と異なり、回路基板22の固定部の一部(k25、k26)を、補強板19、支持板20のみ(粘着材21を含む)をRFコイル2に固定する構成としたものである。
実施形態2における実施形態1と同様な構成要素には同一の符号を付して示し、詳細な説明を省略する。
In the second embodiment, unlike the circuit board 12 of the first embodiment, a part of the fixing portion (k25, k26) of the circuit board 22 is replaced with the reinforcing plate 19 and only the support plate 20 (including the adhesive material 21). It is set as the structure fixed to.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施形態2の図11に示す例では、回路基板22の中央部2箇所の固定部k25、k26は、回路基板22の下方に貼り付けられる(接触して設けられる)補強板19、支持板20のみ(粘着材21を含む)をRFコイル2に固定する構造とした。
補強板19の固定部k25、k26には、固定用ボルト10のボルト頭10tが回路基板22に突出しないよう、回路基板22の設置面側に、固定用ボルト10のボルト頭10tが収容されるザグリ(凹)部17が設けられている。
In the example shown in FIG. 11 of the second embodiment, the fixing portions k25 and k26 at two central portions of the circuit board 22 are affixed (provided in contact with) the reinforcing plate 19 and the support plate 20 below the circuit board 22. Only the structure (including the adhesive 21) is fixed to the RF coil 2.
In the fixing portions k25 and k26 of the reinforcing plate 19, the bolt head 10t of the fixing bolt 10 is accommodated on the installation surface side of the circuit board 22 so that the bolt head 10t of the fixing bolt 10 does not protrude from the circuit board 22. A counterbore (concave) portion 17 is provided.

この構造とすることにより、補強板19の回路基板22からのはがれ防止の観点では不利となるが、固定用ボルト10の存在に制限を受けることなく、または、阻害されずに、コンデンサ28、コイル29等の電子部品を回路基板22に実装できる利点が得られる。
また、さらに回路基板22のRFコイル2への固定箇所を増やし、より強固に振動を抑制することが容易となり、その点でも有利である。
This structure is disadvantageous from the viewpoint of preventing the reinforcing plate 19 from being peeled off from the circuit board 22, but without being restricted by the presence of the fixing bolt 10 or without being obstructed, the capacitor 28, the coil The advantage that electronic components such as 29 can be mounted on the circuit board 22 is obtained.
Further, it is easy to increase the number of places where the circuit board 22 is fixed to the RF coil 2 and to suppress vibration more firmly, which is also advantageous.

なお、実施形態2では、回路基板22の中央付近の固定部を外面に固定用のボルト頭10tが突出しないように、回路基板22、補強板19に凹状のザグリ(凹)部17を設ける場合を例示したが、回路基板22のコーナ部の固定部k21〜k24において回路基板22、補強板19に凹状のザグリ(凹)部17を設け、固定用ボルト10のボルト頭10tが回路基板22の外面に突出しないように構成してもよい。また、回路基板22のコーナ部の固定部または中央付近の固定部のうちの少なくとも何れかを固定用ボルト10のボルト頭10tが回路基板22に突出しないように構成してもよい   In the second embodiment, the circuit board 22 and the reinforcing plate 19 are provided with the concave counterbore (concave) portion 17 so that the fixing bolt head 10t does not protrude from the outer surface of the fixing portion near the center of the circuit board 22. In the fixing portions k21 to k24 of the corner portion of the circuit board 22, the concave counterbore (concave) portion 17 is provided on the circuit board 22 and the reinforcing plate 19, and the bolt head 10t of the fixing bolt 10 is attached to the circuit board 22. You may comprise so that it may not protrude to an outer surface. Further, at least one of the fixed portion of the corner portion of the circuit board 22 or the fixed portion near the center may be configured such that the bolt head 10t of the fixing bolt 10 does not protrude from the circuit board 22.

<<実施形態3>>
次に、実施形態3の磁気共鳴イメージング装置Mについて説明する。
実施形態3では、実施形態1の回路基板12に相当する回路基板32(32A、32B)を分割する構成としたものである。
図12に、実施形態3に関わるRFコイルへ固定する回路基板の概略構造を示す。図12(a)は回路基板を被固定面側から見た平面図であり、図12(b)は図12(a)のF方向矢視図であり、図12(c)はRFコイル2の外周の接線方向に見た図12(a)のG方向矢視図である。
<< Embodiment 3 >>
Next, the magnetic resonance imaging apparatus M of Embodiment 3 will be described.
In the third embodiment, the circuit board 32 (32A, 32B) corresponding to the circuit board 12 of the first embodiment is divided.
FIG. 12 shows a schematic structure of a circuit board fixed to the RF coil according to the third embodiment. 12A is a plan view of the circuit board as viewed from the fixed surface side, FIG. 12B is a view taken in the direction of arrow F in FIG. 12A, and FIG. It is the G direction arrow line view of Fig.12 (a) seen in the tangent direction of the outer periphery.

実施形態1や実施形態2のように回路基板12、22の中央部に固定部k5、k6(図8参照)、固定部k25、k26(図11参照)を設けた場合、RFコイル2のボビン6の変形にならって回路基板12、22がそれぞれ変形してしまい、コンデンサ28やコイル29等の電子部品の接続信頼性に影響を及ぼす可能性がある。   When the fixing parts k5 and k6 (see FIG. 8) and the fixing parts k25 and k26 (see FIG. 11) are provided at the center of the circuit boards 12 and 22 as in the first and second embodiments, the bobbin of the RF coil 2 6 may cause the circuit boards 12 and 22 to be deformed, which may affect the connection reliability of electronic components such as the capacitor 28 and the coil 29.

そこで、実施形態3の図12に示した例では、回路基板32、補強板19、支持板20A、20Bをそれぞれ2枚の回路基板32A、32B、2枚の補強板19A、19B、2セットの支持板20A1、20B1、20A2、20B2に分割し、回路基板32Aのコーナ箇所の固定部ka31〜ka34および回路基板32Bのコーナ箇所の固定部kb31〜kb34で固定する構造としている。
これにより、ボビン6の変形の影響が、回路基板32A、補強板19A、支持板20A1、20B1と、回路基板32B、補強板19B、支持板20A2、20B2との分割された空間p1で開放されるようにしている。2枚の回路基板32A、32Bの間は配線52で結線され、電気的接続を図っている。
なお、実施形態3では、回路基板32、補強板19、支持板20A、20Bをそれぞれ2分割した場合を例示したが、2分割以上としてもよい。
Therefore, in the example shown in FIG. 12 of the third embodiment, the circuit board 32, the reinforcing plate 19, and the support plates 20A and 20B are each composed of two circuit boards 32A and 32B, two reinforcing plates 19A and 19B, and two sets. The support plates 20A1, 20B1, 20A2, and 20B2 are divided into fixed structures ka311 to ka34 at corners of the circuit board 32A and fixed parts kb31 to kb34 at corners of the circuit board 32B.
Thereby, the influence of the deformation | transformation of the bobbin 6 is open | released in the space p1 into which the circuit board 32A, the reinforcement board 19A, support board 20A1, 20B1, and the circuit board 32B, the reinforcement board 19B, and support board 20A2, 20B2 were divided | segmented. I am doing so. The two circuit boards 32A and 32B are connected by wiring 52 to achieve electrical connection.
In the third embodiment, the case where the circuit board 32, the reinforcing plate 19, and the support plates 20A and 20B are each divided into two parts is illustrated, but may be divided into two or more parts.

<<その他の実施形態>>
前記実施形態では、回路基板12、22、32に補強板19を貼り付ける場合を例示したが、回路基板12、22、32の強度を高めたり、厚肉に形成することで、補強板19(19A、19B)を設けることなく構成してもよい。
<< Other Embodiments >>
In the above-described embodiment, the case where the reinforcing plate 19 is attached to the circuit boards 12, 22, and 32 has been exemplified. However, by increasing the strength of the circuit boards 12, 22, and 32, or by forming them thickly, the reinforcing plate 19 ( You may comprise without providing 19A, 19B).

また、前記実施形態では、回路基板12、22、32をコーナ部4箇所でRFコイル2に固定する場合を例示したが、平板の回路基板を安定的に固定できる3箇所以上であれば固定箇所の数は限定されない。また、回路基板のコーナ部以外の縁部を固定する構成としてもよい。しかしながら、回路基板をコーナ部4箇所で固定すると固定作業が容易であるとともに、回路基板を安定してRFコイル2に固定できるので、最も望ましい。   Moreover, in the said embodiment, although the case where the circuit boards 12, 22, and 32 were fixed to the RF coil 2 in the corner part 4 places was illustrated, if it is three or more places which can fix a flat circuit board stably, it will be a fixed place The number of is not limited. Moreover, it is good also as a structure which fixes edge parts other than the corner part of a circuit board. However, fixing the circuit board at the four corners facilitates the fixing operation and can be stably fixed to the RF coil 2, which is most desirable.

なお、前記実施形態では、回路基板12のRFコイル2への固定を、ボルト、ナット等を用いて行う場合を例示したが、樹脂等の弾性材で弾性変形を利用して固定したりしてもよく、回路基板12のRFコイル2への固定方法は、ボルト以外の方法も適宜選択可能である。   In the above embodiment, the circuit board 12 is fixed to the RF coil 2 by using bolts, nuts or the like. However, the circuit board 12 may be fixed by elastic deformation using an elastic material such as resin. In addition, as a method for fixing the circuit board 12 to the RF coil 2, a method other than bolts can be appropriately selected.

また、前記実施形態では、様々な構成を説明したが、説明した各構成を適宜組み合わせて構成してもよい。これにより、組み合わせた作用効果を奏する。
以上、本発明の様々な実施形態を述べたが、その説明は典型的であることを意図したものである。そして、さらに多くの実施態様が本発明の範囲内で可能である。すなわち、本発明の範囲内で様々な変更と修正が可能である。
In the above-described embodiment, various configurations have been described, but the configurations described may be appropriately combined. Thereby, there exists a combined effect.
While various embodiments of the present invention have been described above, the description is intended to be exemplary. And many more embodiments are possible within the scope of the present invention. That is, various changes and modifications are possible within the scope of the present invention.

1 傾斜磁場コイル
2 RFコイル
8、28 コンデンサ(電子部品)
9、29 コイル(電子部品)
12、22、32、32A、32B 回路基板(基板)
17 ザグリ部(凹部)
19 補強板
20 支持板(支持部材)
21 粘着材(第2の粘着材)
21a 粘着材(第1の粘着材)
30 支持板材(支持部材)
32、32A、32B 回路基板(分割される基板)
52 配線
h 厚さ(基板と補強板を合わせた厚さ)
k1〜k6、k21〜k26、ka31〜ka36、kb31〜kb36 固定部
ka31〜ka36、kb31〜kb36 固定部
L 固定スパン(基板の前記RFコイルへの固定部の(最小)間隔)
M 磁気共鳴イメージング装置
1 Gradient magnetic field coil 2 RF coil 8, 28 Capacitor (electronic component)
9, 29 Coils (electronic parts)
12, 22, 32, 32A, 32B Circuit board (board)
17 Counterbore (recess)
19 Reinforcement plate 20 Support plate (support member)
21 Adhesive (second adhesive)
21a Adhesive material (first adhesive material)
30 Support plate material (support member)
32, 32A, 32B Circuit board (divided board)
52 Wiring h Thickness (Thickness of substrate and reinforcing plate combined)
k1 to k6, k21 to k26, ka31 to ka36, kb31 to kb36 fixing part ka31 to ka36, kb31 to kb36 fixing part L fixing span ((minimum) interval of the fixing part of the substrate to the RF coil)
M magnetic resonance imaging system

Claims (13)

磁気共鳴現象を用いる磁気共鳴イメージング装置であって、
筒形状の傾斜磁場コイルと、
前記傾斜磁場コイルの内方に設けられ、筒形状を有するとともにその中心軸方向に垂直な断面が扁平形状であるRFコイルと、
前記両コイル間の前記RFコイル表面上に固定され、複数の電子部品が接続される基板と、
前記基板における前記電子部品搭載面の反対側の面に、第1の粘着材を介して貼り付けられる補強板とを
備えることを特徴とする磁気共鳴イメージング装置。
A magnetic resonance imaging apparatus using a magnetic resonance phenomenon,
A cylindrical gradient magnetic field coil;
An RF coil that is provided inside the gradient magnetic field coil and has a cylindrical shape and a cross section perpendicular to the central axis direction thereof is a flat shape;
A substrate fixed on the surface of the RF coil between the two coils and to which a plurality of electronic components are connected;
A magnetic resonance imaging apparatus, comprising: a reinforcing plate attached to a surface of the substrate opposite to the electronic component mounting surface via a first adhesive material.
請求項1に記載の磁気共鳴イメージング装置において、
前記基板における前記補強板の貼り付け面の反対側の面の前記RFコイルへの固定部位置に、第2の粘着材を介して貼り付けられる支持部材を備える
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 1.
A magnetic resonance imaging apparatus comprising: a support member that is attached to the RF coil on a surface of the substrate opposite to the attachment surface of the reinforcing plate at a position where the RF coil is fixed via a second adhesive material. .
請求項1または請求項2に記載の磁気共鳴イメージング装置において、
前記基板の前記RFコイル表面への固定部は前記基板の縁部と前記基板の中央部付近に設けられる
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 1 or 2,
The magnetic resonance imaging apparatus according to claim 1, wherein a fixing portion of the substrate to the surface of the RF coil is provided near an edge of the substrate and a central portion of the substrate.
磁気共鳴現象を用いる磁気共鳴イメージング装置であって、
筒形状の傾斜磁場コイルと、
前記傾斜磁場コイルの内方に設けられ、筒形状を有するとともにその中心軸方向に垂直な断面形状は扁平形状であるRFコイルと、
前記両コイルの間の前記RFコイル表面上に固定され、複数の電子部品が接続される基板と、
前記基板における前記電子部品搭載面の反対側の面の前記RFコイルへの固定部位置に、第2の粘着材を介して貼り付けられる支持部材とを
備えることを特徴とする磁気共鳴イメージング装置。
A magnetic resonance imaging apparatus using a magnetic resonance phenomenon,
A cylindrical gradient magnetic field coil;
An RF coil that is provided inside the gradient magnetic field coil and has a cylindrical shape and a cross-sectional shape perpendicular to the central axis direction is a flat shape;
The fixed onto the RF coil surface between both coils, a substrate on which a plurality of electronic components are connected,
A magnetic resonance imaging apparatus, comprising: a support member attached via a second adhesive material at a position where the RF coil is fixed to a surface of the substrate opposite to the electronic component mounting surface.
請求項4に記載の磁気共鳴イメージング装置において、
前記基板の固定部は前記基板の縁部と前記基板の中央部付近に設けられる
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 4.
The magnetic resonance imaging apparatus, wherein the fixing portion of the substrate is provided near an edge portion of the substrate and a central portion of the substrate.
請求項1または請求項2に記載の磁気共鳴イメージング装置において、
前記基板の固定部は前記基板の縁部に設けられ、前記補強板は前記基板の中央部付近で前記RFコイルと固定され、
前記補強板表面の固定部位置の何れかには、前記基板の固定用部材の頭部が収容される凹部が設けられる
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 1 or 2,
The fixed portion of the substrate is provided at an edge portion of the substrate, and the reinforcing plate is fixed to the RF coil near the central portion of the substrate,
The magnetic resonance imaging apparatus according to any one of claims 1 to 4, wherein a recess for accommodating a head of a fixing member for the substrate is provided at any of the fixing portion positions on the surface of the reinforcing plate.
請求項1に記載の磁気共鳴イメージング装置において、
前記基板は前記補強板とともに2分割以上に分割され、前記各基板は電気的に接続され、
前記各基板の縁部は前記RFコイルと固定される
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 1.
The substrate is divided into two or more parts together with the reinforcing plate, and each of the substrates is electrically connected,
The magnetic resonance imaging apparatus, wherein an edge of each substrate is fixed to the RF coil.
請求項2に記載の磁気共鳴イメージング装置において、
前記基板は前記補強板、前記支持部材とともに2分割以上に分割されており、前記各基板は電気的に接続され、
前記各基板の縁部は前記RFコイルと固定される
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 2.
The substrate is divided into two or more parts together with the reinforcing plate and the support member, and each of the substrates is electrically connected,
The magnetic resonance imaging apparatus, wherein an edge of each substrate is fixed to the RF coil.
請求項4に記載の磁気共鳴イメージング装置において、
前記基板は前記支持板を伴って2分割以上に分割されており、前記各基板は電気的に接続され、
前記各基板の縁部は前記RFコイルと固定される
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 4.
The substrate is divided into two or more with the support plate, and the substrates are electrically connected,
The magnetic resonance imaging apparatus, wherein an edge of each substrate is fixed to the RF coil.
請求項1から請求項3または請求項6から請求項8のいずれか1項に記載の磁気共鳴イメージング装置において、
前記基板の前記RFコイルへの固定部の間隔をLmmとし、前記基板と前記補強板を合わせた厚さをhmmとした場合、L/hが500mm以下である
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to any one of claims 1 to 3, or 6 to 8.
Magnetic resonance imaging characterized in that L 2 / h is 500 mm or less, where Lmm is the distance between the fixing portions of the substrate to the RF coil and hmm is the combined thickness of the substrate and the reinforcing plate. apparatus.
請求項4、請求項5または請求項9のいずれか1項に記載の磁気共鳴イメージング装置において、
前記基板の固定部の間隔をLmmとし、前記基板の厚さをhmmとした場合、L/hが500mm以下である
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to any one of claims 4, 5, or 9,
A magnetic resonance imaging apparatus, wherein L 2 / h is 500 mm or less, where Lmm is the interval between the fixed portions of the substrate and hmm is the thickness of the substrate.
請求項3または請求項5または請求項6から請求項9のいずれか1項に記載の磁気共鳴イメージング装置であって、
前記基板が固定される縁部は、コーナ部の4箇所である
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to claim 3, claim 5, or claim 6 to claim 9,
The edge part to which the said board | substrate is fixed is four places of a corner part. The magnetic resonance imaging apparatus characterized by the above-mentioned.
請求項1から請求項12のいずれか1項に記載の磁気共鳴イメージング装置であって、
前記傾斜磁場コイルは、その中心軸に垂直な断面の内面が横長の扁平形状を有する
ことを特徴とする磁気共鳴イメージング装置。
The magnetic resonance imaging apparatus according to any one of claims 1 to 12,
The magnetic field resonance imaging apparatus, wherein the gradient magnetic field coil has a horizontally long flat shape on an inner surface of a cross section perpendicular to a central axis thereof.
JP2011258228A 2011-11-25 2011-11-25 Magnetic resonance imaging system Active JP5507531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258228A JP5507531B2 (en) 2011-11-25 2011-11-25 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011258228A JP5507531B2 (en) 2011-11-25 2011-11-25 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2013111126A JP2013111126A (en) 2013-06-10
JP5507531B2 true JP5507531B2 (en) 2014-05-28

Family

ID=48707316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258228A Active JP5507531B2 (en) 2011-11-25 2011-11-25 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP5507531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325237B2 (en) * 2013-11-22 2018-05-16 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133593A (en) * 1986-11-25 1988-06-06 株式会社神戸製鋼所 Board for forming electric circuit
JP3372099B2 (en) * 1994-02-14 2003-01-27 株式会社日立メディコ RF probe
JPH10212707A (en) * 1997-01-29 1998-08-11 Nippon Steel Corp Low noise structure for panel construction
JP5502304B2 (en) * 2007-11-22 2014-05-28 株式会社東芝 Magnetic resonance imaging apparatus and RF coil
CN103037765B (en) * 2010-02-26 2015-05-27 株式会社日立医疗器械 Antenna device

Also Published As

Publication number Publication date
JP2013111126A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
US8653820B2 (en) Magnetic resonance imaging apparatus, receiving coil and method of manufacturing the coil
TWI410827B (en) Position indicator and coordinate input device
US9013093B2 (en) Vibrating reed, electronic device, and electronic apparatus
KR20090124910A (en) Electronic device and ground connection structure
US20130049491A1 (en) Linear vibration motor
JP5507531B2 (en) Magnetic resonance imaging system
JP2010068586A (en) Vibration wave motor
US7276908B2 (en) Magnetic resonance imaging apparatus with suppressed noise
JP4980693B2 (en) Magnetic resonance imaging apparatus and RF irradiation coil
WO2021135831A1 (en) Exciter and electronic product
CN115884047A (en) Micro speaker and damper for micro speaker
JP2014225497A (en) Portable terminal device
KR20090033486A (en) Printed circuit board with vibration-generating electronic component
EP2595003B1 (en) Image forming apparatus
US20230239631A1 (en) Sound production apparatus and electronic device
JP5866515B2 (en) Force sensor and force detection device using the same
JP6366948B2 (en) Magnetic resonance imaging apparatus and gradient coil
CN109996156A (en) Full-frequency vibration loudspeaker system and the electronic equipment for having this system
US10986448B2 (en) Sound vibration actuator
WO2020038436A1 (en) Improved extremely-low-frequency micro-vibration signal sensor
JP2007173321A (en) Capacitor module and power converter employing same
US9448207B2 (en) Quality evaluation apparatus, quality evaluation method, and evaluation substrate
JP5866517B1 (en) Force sensor and force detection device using the same
CN219718474U (en) Vibration assembly, sound generating device and electronic equipment
JP2001198104A (en) Coil structure of mri device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350