[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5506244B2 - 容量型機械電気変換素子 - Google Patents

容量型機械電気変換素子 Download PDF

Info

Publication number
JP5506244B2
JP5506244B2 JP2009127092A JP2009127092A JP5506244B2 JP 5506244 B2 JP5506244 B2 JP 5506244B2 JP 2009127092 A JP2009127092 A JP 2009127092A JP 2009127092 A JP2009127092 A JP 2009127092A JP 5506244 B2 JP5506244 B2 JP 5506244B2
Authority
JP
Japan
Prior art keywords
pressure
gap
electrode
electromechanical transducer
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009127092A
Other languages
English (en)
Other versions
JP2010278582A (ja
Inventor
一成 藤井
義貴 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009127092A priority Critical patent/JP5506244B2/ja
Priority to US12/786,212 priority patent/US8256302B2/en
Publication of JP2010278582A publication Critical patent/JP2010278582A/ja
Application granted granted Critical
Publication of JP5506244B2 publication Critical patent/JP5506244B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/12Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by changing capacitance or inductance
    • G01L23/125Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by changing capacitance or inductance by changing capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Micromachines (AREA)

Description

本発明は、容量型超音波変換素子などの容量型機械電気変換素子に関する。
近年、マイクロマシンニング工程を用いて作製される容量型機械電気変換素子が盛んに研究されている。通常の容量型機械電気変換素子は、下部電極と所定の間隔を保って支持された振動膜と該振動膜の表面に配設される上部電極から成るセルを有する。これは、例えば、容量型超音波変換素子(CMUT:Capacitive-Micromachined-Ultrasonic-Transducer)などとして用いられる。
上記変換素子は、軽量の振動膜を用いて電気信号から超音波への変換、或いは超音波から電気信号の変換のうち少なくともいずれか一方を行うものであり、液中及び空気中でも優れた広帯域特性を持つものが容易に得られる。この変換素子を利用すると、従来の医療診断より高精度な診断が可能となるため、有望な技術として注目されつつある。この変換素子の動作原理について説明する。超音波を送信する際には、下部電極と上部電極間に、DC電圧に微小なAC電圧を重畳した電圧を印加する。これにより、振動膜が振動し超音波が発生する。超音波を受信する際には、振動膜が超音波により変形するので、変形に伴う下部電極と上部電極間の容量変化により信号を検出する。通常の変換素子は、電気的に接続された複数のセルを含むエレメントを複数個配置したものが用いられる。こうした構成では、複数のエレメントの感度がばらつくことがあり、これに対して感度補正を行う方法が提案されている(特許文献1参照)。この方法では、各超音波検知素子で変換される出力信号同士の差(感度差)が小さくなる様に制御部で出力信号を電気的に調整する。
上記セルないしエレメントの感度は、例えば、電極間の間隔(ギャップ)の平方に反比例する。よって、電極間のギャップがばらつきを持つ場合は、上記変換素子の感度のばらつきとなる。容量型機械電気変換素子のギャップの形成方法としては、所望の電極間隔と同等の厚さの犠牲層を設けて、該犠牲層の上部に振動膜を形成し、犠牲層を除去してギャップを形成する方法が、一般に採用されている。
特開2004−125514号公報
電気的に接続された複数のセルから成るエレメントを複数個配置した変換素子を用いて医療診断を行う場合、複数のエレメントの感度のばらつきは診断精度の低下を招く。よって、エレメント個々に感度の補正が必要である。しかし、特許文献1の様に、後段の回路のゲイン調整により感度補正を行う構成では、回路のダイナミックレンジを広くとる必要がある。更に、一定以上のばらつきがある場合は、補正が不可能となる。
上記課題に鑑み、本発明のCMUTなどの容量型機械電気変換素子は、第1の電極と、前記第1の電極と対向し空隙を隔てて配設された第2の電極とを備えるセルから構成される。更に、本発明の変換素子は、前記空隙の圧力を調整する圧力調整部を有する。
本発明の容量型機械電気変換素子では、セルの空隙の内圧を圧力調整部により調整することができる。従って、例えば、セルを含む構成や、電気的に接続された複数のセルから成るエレメントを複数個配置した構成の静電容量型変換素子で、超音波等の弾性波に対するセル又はエレメントの受信感度の調整、エレメント間の受信感度のばらつきの低減等を行える。
以下、本発明の実施形態について説明する。本発明の容量型機械電気変換素子において重要なことは、1つ或いは複数のセル又は素子(エレメント)に対して、空隙の圧力を調整する圧力調整部を設けることである。
上記考え方に基づき、本発明の容量型機械電気変換素子の基本的な実施形態は、次の様な構成を有する。第1の電極(後述の実施形態では下部電極と称する)と、第1の電極と対向し空隙を隔てて配設された第2の電極(後述の実施形態では上部電極と称する)を備えるセルから構成され、少なくとも外部からの弾性波の受信を行うことができる。そして、空隙の圧力を調整する圧力調整部を有する。勿論、この容量型機械電気変換素子は、外部に超音波等の弾性波の発信をも行える様に構成されてもよい。受信、発信は背景技術のところで説明した様に行われる。
前記基本的な実施形態を基に、以下に述べる様なより具体的な実施形態が可能である。
複数のセルから構成される素子であるエレメントを複数有し、少なくとも1つのエレメントに対して個々に圧力調整部を設ける形態が可能である(後述の第2の実施形態参照)。圧力調整部は各エレメントに対して1つずつ設けることも可能であるが、複数のエレメントに対して1つの圧力調整部を設けることも可能である。後者の場合、複数のエレメントの空隙を同じ圧力に調整することができる。
圧力調整部は、前記空隙の圧力を調整することで、後述の第1の実施形態の様にセル又はエレメントの受信感度の調整、或いは後述の第2の実施形態の様に複数のエレメントないし素子間の受信感度のばらつきの低減を行うことができる。また、前記セルは、第1の電極である下部電極と、第2の電極である上部電極と、第2の電極が設けられた振動膜と、を備える構成を採ることができる。本発明に用いられる上部電極としては、Al、Cr、Ti、Au、Pt、Cu、Ag、W、Mo、Ta、Niから選択される金属、AlSi、AlCu、AlTi、MoW、AlCrから選択される合金のうち少なくとも1種を選んで用いることができる。また、上部電極は振動膜の上面、裏面、内部のうち少なくとも一ヶ所に設けるか、もしくは振動膜を導電体又は半導体で形成する場合は振動膜自体が上部電極を兼ねる構造にすることも可能である。また、本発明に用いられる下部電極としては、上部電極と同様の金属を用いることができる。基板がシリコン等の半導体基板を用いている場合、基板が下部電極を兼ねてもよい。
(第1の実施形態)
以下、本発明の第1の実施形態の容量型機械電気変換素子を図を用いて説明する。図1(a)及び図1(b)に示す様に、容量型機械電気変換素子100は複数のセル102を有する。図1(a)では、素子であるエレメント内に9個のセル102を配置しているが、セルの数はこれに限らない。エレメント内に1以上のセルがあればよい。セル102は、基板103に配設された下部電極104と、下部電極と対向し所定の空隙105を隔てて配設された上部電極106と、上部電極を支持する振動膜107と、振動膜を支持する支持部108から成る。下部電極104は変換素子100内で共通であり、エレメント内のセル間の上部電極106は電極109により接続されている。セルの空隙105は空隙接続路110によって繋がれ(すなわち、連通され)、変換素子100のエレメント内のセルの空隙の圧力は均一となっている。セルの空隙105の形状は図示例では円形であるが、その他の形状でもよい。電極の接続態様も、上記のものに限らない。これらは、仕様に応じて適宜決めればよい。
セルの空隙105は基板103の貫通孔111を介して圧力調整部112に繋がっている。圧力調整部112は、例えば、公知の一般的なダイヤフラムポンプ、電磁式ポンプ、モーター式ポンプ等の小型ポンプを用いることができる。ダイヤフラムポンプとは、膜を往復運動させることにより流体の吸引及び排出を行うポンプである。電磁式ポンプとは、ダイヤフラムポンプの駆動方式の一種であり、スピーカーのように電磁石を用いて膜を往復運動させるポンプである。モーター式ポンプとは、ダイヤフラムポンプの駆動方式の一種であり、モーターと膜の間をクランク機構で繋ぐことにより膜を往復運動させるポンプである。こうしたポンプにより、圧力調整部112はセルの空隙の内圧を調整する。
シミュレーションにより、セルの空隙の圧力と容量型機械電気変換素子の受信感度の関係を計算した結果を図1(c)示す。図1(c)では、横軸は空隙の圧力を示し、縦軸は、圧力0.002気圧の受信感度を1(デシベルで表せば0)とした時の相対受信感度を示している。シミュレーションでは、最初に有限要素法を用いてセルの空隙内部の圧力と外部の大気圧との差圧による振動膜の初期変位を計算した。次に、振動膜に入射された超音波の単位音圧に対して発生する電気信号の大きさを等価回路モデルを用いて計算した。等価回路モデルとは、セルの空隙内部の気体及び振動膜の機械特性(弾性及び粘性、質量)を電気回路素子(コンデンサ及び抵抗、コイル)とみなすことにより、セルの機械特性及び電気特性を1つの回路方程式で表現したモデルである(Oliver Ahrens et.al.,IEEE TRANSACTIONS ON ULTRASONICS,FERROELECTRICS,AND FREQUENCY CONTROL,VOL.49,NO.9,PP.1321−1329,2002.及び、Veijola,Helsinki Univ.Tech,Curcuit Theory Laboratory Report Series,CT−39,1999.参照)。また、有限要素法を用いた計算は市販のソフトウェア(ANSYS11.0 ANSYS Inc.)を用いて行った。図1(c)に示す様に、空隙の圧力が上昇すると受信感度が低下し、空隙の圧力が減少すると受信感度が上昇する。変換素子100は、所望の受信感度になる様に圧力調整部112により空隙105の圧力を調整する。
図1(c)に示す様に、空隙の圧力が0.1気圧(10.1325kPa)以下の領域においては、0.002気圧(0.20265kPa)の際の受信感度に対する感度の低下が5%以内に収まっている。よって、受信感度の低下を5%以内に抑えたい場合は0.1気圧以下に空隙の内圧を調整可能な圧力調整部を用いるのが好ましい。
振動膜107の上部の気圧が変化することにより受信感度が変化することもある。この場合も、圧力調整部112で空隙の内圧を調整することにより、振動膜の上部の気圧に係わりなく所望の受信感度を維持することができる。本実施形態の変換素子100により、エレメント間の内圧のばらつきの低減、変換素子の経年変化などにより変化した内圧の補正などの目的に応じて、受信感度を任意に調整できる容量型機械電気変換素子を実現することができる。
(第2の実施形態)
第2の実施形態の容量型機械電気変換素子を説明する。本実施形態の変換素子の基本構造図である図2に示す様に、エレメント101は複数のセル102を有し、容量型機械電気変換素子100は複数のエレメントから成る。図2では、エレメント内に9個のセル102を配置し、変換素子100に9個のエレメント101を配置しているが、数はこれらに限らない。また、9個のエレメント101を2次元に配置しているが、例えば、複数のエレメントを1次元に配列してもよい。本実施形態のエレメント101のA−A断面も、第1の実施形態の図1(b)と同様である。
複数のエレメントを持つ変換素子を用いて個々の受信信号から音波源の特徴を解析する場合、各エレメントの受信感度が揃っていることが望ましい。しかしながら、変換素子のエレメントは、その作製工程で生じる誤差等によって個々に受信感度がばらつくことがある。よって、本実施形態の変換素子100は、予め測定した受信感度に応じて、各エレメントが個々に有する圧力調整部によりセルの空隙の内圧を調整できる様になっている。これにより、複数のエレメント101の感度のばらつきを低減することができる。
例えば、作製工程で空隙の内圧を0.001気圧で作製し、9個のエレメントの内の1つのエレメントの受信感度が1dB高かった場合を考える。その場合は、そのエレメントのセルの空隙の内圧を0.3気圧にすることにより、図1(c)に示す様にこのエレメントの受信感度を概ね1dB下げることができ、エレメント間の受信感度のばらつきを低減できる。この様に、各エレメントの受信特性に応じて、各エレメントの空隙の内圧を加圧或いは減圧することで、複数のエレメントの感度のばらつきを低減できる。
例えば、受信感度の調整を次の様に行うこともできる。変換素子のエレメントと調整装置の超音波送波素子とを対向させて配置し、変換素子のエレメントを受波可能な状態とするとともに、該エレメントの圧力調整部を調整装置と接続する。調整装置は該エレメントから信号を受ける様にもしておく。調整作業を開始すると、超音波送波素子から所定の超音波を送波させる。この超音波は変換素子のエレメントで受波され、調整装置は該エレメントから信号を受ける。調整装置は、この信号の強度が所定値(エレメントが所定の受信感度を持つときに信号強度が有するべき値)に一致するか否かを調べる。そして、一致しない場合は、圧力調整部を制御してエレメントの内圧を変化させ、信号強度と所定値が一致するまで圧力調整部をフィードバック制御する。こうした制御を各エレメントに対して行う。
本実施形態の変換素子100により、複数のエレメントを持つ変換素子の各エレメントの感度のばらつきが少なくなり、例えば、音波源の特徴の解析に適した容量型機械電気変換素子を実現することができる。
本発明に係る第1の実施形態の容量型機械電気変換素子の基本構造とセルの空隙の内圧と容量型機械電気変換素子の感度の関係を説明する図。 本発明に係る第2の実施形態の容量型機械電気変換素子の基本構造の図。
100 容量型機械電気変換素子
101 エレメント(素子)
102 セル
103 基板
104 下部電極(第1の電極)
105 空隙
106 上部電極(第2の電極)
112 圧力調整部

Claims (6)

  1. 第1の電極と、前記第1の電極と対向し空隙を隔てて配設された第2の電極とを備えるセルを1つ以上有する素子を備える容量型機械電気変換素子であって、
    前記空隙の圧力を調整する圧力調整部を有することを特徴とする容量型機械電気変換素子。
  2. 複数の前記素を有し、前記圧力調整部は素子毎に前記空隙内の圧力を調整できるよう構成されていることを特徴とする請求項1に記載の容量型機械電気変換素子。
  3. 前記圧力調整部は、前記空隙の圧力を調整することで、前記素子の受信感度の調整、或いは複数の前記素子間の受信感度のばらつきの低減を行うことを特徴とする請求項1又は2に記載の容量型機械電気変換素子。
  4. 前記第1の電極は基板上に形成されており、
    前記空隙と前記圧力調整部が前記基板の貫通孔を介して繋がっていることを特徴とする請求項1から3の何れか1項に記載の容量型機械電気変換素子。
  5. 前記圧力調整部は、ポンプを含むことを特徴とする請求項1乃至4のいずれか1項に記載の容量型機械電気変換素子。
  6. 第1の電極と、前記第1の電極と対向し空隙を隔てて配設された第2の電極と、を備えるセルを夫々有する複数の素子の感度調整方法であって、
    圧力調整部によって前記複数の素子毎に空隙内の圧力を調整することにより、前記複数の素子間の受信感度ばらつきの低減を行うことを特徴とする感度調整方法。
JP2009127092A 2009-05-27 2009-05-27 容量型機械電気変換素子 Expired - Fee Related JP5506244B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009127092A JP5506244B2 (ja) 2009-05-27 2009-05-27 容量型機械電気変換素子
US12/786,212 US8256302B2 (en) 2009-05-27 2010-05-24 Capacitive electro-mechanical transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127092A JP5506244B2 (ja) 2009-05-27 2009-05-27 容量型機械電気変換素子

Publications (2)

Publication Number Publication Date
JP2010278582A JP2010278582A (ja) 2010-12-09
JP5506244B2 true JP5506244B2 (ja) 2014-05-28

Family

ID=43218697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127092A Expired - Fee Related JP5506244B2 (ja) 2009-05-27 2009-05-27 容量型機械電気変換素子

Country Status (2)

Country Link
US (1) US8256302B2 (ja)
JP (1) JP5506244B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506244B2 (ja) * 2009-05-27 2014-05-28 キヤノン株式会社 容量型機械電気変換素子
JP5511260B2 (ja) * 2009-08-19 2014-06-04 キヤノン株式会社 容量型電気機械変換装置、及びその感度調整方法
US9457379B2 (en) * 2012-12-10 2016-10-04 Apple Inc. Ultrasonic MEMS transmitter
US20150377837A1 (en) * 2013-02-22 2015-12-31 The Board Of Trustees Of The Leland Stanford Junior University Ultrasonic sensor for object and movement detection
US9586233B2 (en) * 2013-02-22 2017-03-07 The Board Of Trustees Of The Leland Stanford Junior University Capacitive micromachined ultrasound transducers with pressurized cavities
CN103196613B (zh) * 2013-03-15 2016-02-24 西安交通大学 一种高温cmut压力传感器及其制备方法
KR102163729B1 (ko) * 2013-11-20 2020-10-08 삼성전자주식회사 전기 음향 변환기
JP6399803B2 (ja) * 2014-05-14 2018-10-03 キヤノン株式会社 力覚センサおよび把持装置
JP6707000B2 (ja) * 2016-08-31 2020-06-10 国立大学法人 東京大学 超音波発生デバイス
JP7453847B2 (ja) * 2020-05-18 2024-03-21 株式会社日立製作所 音波制御モジュール
TWI797475B (zh) * 2020-08-21 2023-04-01 友達光電股份有限公司 電容式換能裝置及其製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993413A (ja) 1982-11-18 1984-05-29 Olympus Optical Co Ltd 内視鏡
JP2002500351A (ja) * 1997-12-23 2002-01-08 ユナキス・バルツェルス・アクチェンゲゼルシャフト 容量式の真空測定セル
US6688179B2 (en) * 2001-10-26 2004-02-10 Nth Tech Corporation Electrostatic pressure transducer and a method thereof
JP2004125514A (ja) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd 超音波センサの感度調整方法並びに感度調整装置
CN1863485B (zh) * 2003-10-02 2010-09-08 株式会社日立医药 超声波探头、超声波成像设备以及超声波成像方法
SE0400330D0 (sv) * 2004-02-12 2004-02-12 Gambro Lundia Ab Pressure sensing
US7863907B2 (en) * 2007-02-06 2011-01-04 Chevron U.S.A. Inc. Temperature and pressure transducer
JP2008211570A (ja) * 2007-02-27 2008-09-11 Citizen Holdings Co Ltd 振動子封止体の製造方法及び振動子封止体ならびに物理量センサ
JP4882836B2 (ja) * 2007-04-03 2012-02-22 ヤマハ株式会社 スピーカ用振動膜およびスピーカ
JP5329408B2 (ja) * 2007-07-11 2013-10-30 株式会社日立メディコ 超音波探触子及び超音波診断装置
US7918134B2 (en) * 2008-10-06 2011-04-05 Rosemount Inc. Thermal-based diagnostic system for process transmitter
JP5506244B2 (ja) * 2009-05-27 2014-05-28 キヤノン株式会社 容量型機械電気変換素子
US8490495B2 (en) * 2010-05-05 2013-07-23 Consensic, Inc. Capacitive pressure sensor with vertical electrical feedthroughs and method to make the same

Also Published As

Publication number Publication date
US20100300208A1 (en) 2010-12-02
JP2010278582A (ja) 2010-12-09
US8256302B2 (en) 2012-09-04

Similar Documents

Publication Publication Date Title
JP5506244B2 (ja) 容量型機械電気変換素子
JP5511260B2 (ja) 容量型電気機械変換装置、及びその感度調整方法
US12058939B2 (en) Piezoelectric MEMS microphone
EP2269746B1 (en) Collapsed mode capacitive sensor
JP5578810B2 (ja) 静電容量型の電気機械変換装置
JP5578836B2 (ja) 電気機械変換装置及びその作製方法
CN111001553A (zh) 一种可调谐的超声传感器阵列
JP2011527152A (ja) 圧電型memsマイクロフォン
JP2014017566A (ja) 静電容量型トランスデューサ
JP6057571B2 (ja) 静電容量型トランスデューサ
CN110560352B (zh) 基于Helmholtz共振腔的可调频超声传感器阵列
JP2010251847A (ja) 機械電気変化素子
JP2009260723A (ja) トランスデューサ
CN110560351B (zh) 基于Helmholtz共振腔的可调频声波接收装置
JP5733898B2 (ja) 静電容量型電気機械変換装置
CN115432662B (zh) 中心支撑底电极的微机械超声换能器
WO2022141828A1 (zh) 一种骨导麦克风
CN110944274B (zh) 一种基于Piston-mode的带质量负载可调谐MEMS压电声换能器
JP2018129725A (ja) 静電容量型トランスデューサおよびその製造方法
JP2020191359A (ja) 圧電素子
CN117861984A (zh) 一种双压电薄膜压电超声换能器及其制备方法
CN215773558U (zh) Mems压电执行器及扬声器
Yildiz Capacitive Micromachined Ultrasonic Transducer (CMUT): Analytical Evaluation of Membranes Performance Under Fabrication Related Stress
JP2008131326A (ja) コンデンサーマイクロホンユニットおよびコンデンサーマイクロホン
CN205949255U (zh) 一种复合微机械电容式超声换能器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

LAPS Cancellation because of no payment of annual fees