[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5504813B2 - Rotor core holding structure, variable field embedded magnet type rotating electric machine having the holding structure - Google Patents

Rotor core holding structure, variable field embedded magnet type rotating electric machine having the holding structure Download PDF

Info

Publication number
JP5504813B2
JP5504813B2 JP2009234515A JP2009234515A JP5504813B2 JP 5504813 B2 JP5504813 B2 JP 5504813B2 JP 2009234515 A JP2009234515 A JP 2009234515A JP 2009234515 A JP2009234515 A JP 2009234515A JP 5504813 B2 JP5504813 B2 JP 5504813B2
Authority
JP
Japan
Prior art keywords
magnetic pole
rotor core
rotor
load
holding structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009234515A
Other languages
Japanese (ja)
Other versions
JP2011083145A5 (en
JP2011083145A (en
Inventor
剛 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2009234515A priority Critical patent/JP5504813B2/en
Publication of JP2011083145A publication Critical patent/JP2011083145A/en
Publication of JP2011083145A5 publication Critical patent/JP2011083145A5/ja
Application granted granted Critical
Publication of JP5504813B2 publication Critical patent/JP5504813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、埋込磁石構造の回転子の界磁を変化させる、可変界磁埋込磁石型回転電機の回転子鉄心の保持構造に関する。 The present invention relates to a holding structure for a rotor core of a variable field embedded magnet type rotating electrical machine that changes the field of a rotor having an embedded magnet structure.

従来の、可変界磁埋込磁石型回転電機には、埋込磁石構造の回転子の磁極を軸方向に3分割し、各々を相対回動することで、回転子の界磁を変化させるものがある(例えば、特許文献1参照)。
図20は、従来の、可変界磁埋込磁石型回転電機の回転子の構造説明図であり、特許文献1、p12、図6に示されているものである。
図において、回転子の磁極は、軸方向に3分割され、シャフト4に固定された負荷側磁極部1、反負荷側磁極部2と、前記磁極部に対し相対回動する中央の磁極部3を有し、各々の磁極部には永久磁石13が装着されている。
負荷側磁極部と反負荷側磁極部は固定ハブを介しシャフトに固定され、中央の磁極部は可動ハブ8へ固定され、固定ハブと可動ハブには、案内溝7a,8aが設けられ、案内溝に装着された遠心錘5により、中央の磁極部は負荷側磁極部と反負荷側磁極部に対する相対回動角を規制されている。
このような回転子に設けた遠心錘は、回転子の回転速度が低いときには、図示しないトーションスプリングの付勢により回転軸側に位置し、負荷側磁極部,反負荷側磁極部と中央の磁極部の、N極とS極は軸方向に位置を揃える状態となり、界磁が大きい状態となるため、高トルクの発生が可能である。
回転子の回転速度が大きくなると、遠心錘に作用する遠心力がトーションスプリングの付勢力を上回り、遠心錘は回転子の外周に向かって移動し、遠心錘が最も外周側に至ると、負荷側磁極部,反負荷側磁極部と中央の磁極部の、N極とS極は軸方向に交互に位置する状態となり、界磁が小さい状態となる。
界磁が小さい状態では、固定子巻線に鎖交する磁束が相殺され、誘起電圧が小さくなるため、より高回転域までの駆動が可能となる。また、永久磁石より発する磁束が、負荷側磁極部,反負荷側磁極部と中央の磁極部の間を軸方向にショートカットし、回転子から出て行く磁束が激減するため、固定子鉄心を通過する磁束自体を小さくでき、固定子鉄心に発生する鉄損を、一段と低減できる点において優れている。
このように、特許文献1の可変界磁埋込磁石型回転電機は、回転子の界磁を回転子の回転による遠心力を用いて変化させることで、低回転域での高トルクと、高回転域までの駆動を達成し、高回転域での鉄損を低減し、さらなる高回転化と高効率化を可能にしている。
In a conventional variable field embedded magnet type rotating electrical machine, the magnetic pole of the rotor of the embedded magnet structure is divided into three in the axial direction, and each of them is rotated relative to each other to change the rotor field. (For example, refer to Patent Document 1).
FIG. 20 is an explanatory view of the structure of a conventional rotor of a variable field embedded magnet type rotating electric machine, which is shown in Patent Document 1, p12, and FIG.
In the figure, the magnetic poles of the rotor are divided into three in the axial direction, the load-side magnetic pole portion 1 and the anti-load-side magnetic pole portion 2 fixed to the shaft 4, and the central magnetic pole portion 3 that rotates relative to the magnetic pole portion. A permanent magnet 13 is attached to each magnetic pole portion.
The load-side magnetic pole part and the anti-load-side magnetic pole part are fixed to the shaft via a fixed hub, the central magnetic pole part is fixed to the movable hub 8, and guide grooves 7a and 8a are provided in the fixed hub and the movable hub, and the guide is provided. By the centrifugal weight 5 mounted in the groove, the relative rotation angle of the central magnetic pole part with respect to the load-side magnetic pole part and the anti-load-side magnetic pole part is regulated.
When the rotational speed of the rotor is low, the centrifugal weight provided on such a rotor is located on the rotating shaft side by the biasing of a torsion spring (not shown), and the load side magnetic pole part, the anti-load side magnetic pole part, and the central magnetic pole Since the N pole and S pole of the part are aligned in the axial direction and the field is large, high torque can be generated.
When the rotational speed of the rotor increases, the centrifugal force acting on the centrifugal weight exceeds the urging force of the torsion spring, the centrifugal weight moves toward the outer periphery of the rotor, and when the centrifugal weight reaches the outermost side, The N pole and S pole of the magnetic pole part, the anti-load side magnetic pole part, and the central magnetic pole part are alternately positioned in the axial direction, and the field is small.
In a state where the field is small, the magnetic flux linked to the stator winding is canceled and the induced voltage becomes small, so that it is possible to drive up to a higher rotation range. In addition, the magnetic flux generated from the permanent magnet is short-cut in the axial direction between the load-side magnetic pole part, the anti-load-side magnetic pole part and the central magnetic pole part, and the magnetic flux exiting the rotor is drastically reduced, so it passes through the stator core. It is excellent in that the magnetic flux itself can be reduced and the iron loss generated in the stator core can be further reduced.
As described above, the variable field embedded magnet type rotating electric machine of Patent Document 1 changes the field of the rotor by using the centrifugal force generated by the rotation of the rotor, thereby increasing the high torque in the low rotation range, It achieves driving up to the rotation range, reduces iron loss in the high rotation range, and enables higher rotation and higher efficiency.

ところで、特許文献1の可変界磁埋込磁石型回転電機の回転子において、負荷側磁極部,反負荷側磁極部と中央の磁極部の相対回動面では、磁極部の間に引力や斥力が作用する。例えば、負荷側磁極部,反負荷側磁極部と中央の磁極部の、N極とS極が軸方向に交互に位置する状態では強大な引力が作用する。もし両磁極部が吸引され干渉した場合、大きな摩擦トルクが付加されるため、相対回動に要するトルクが増大してしまう。もし、両磁極部が干渉しないように大きな隙間を設けた場合、界磁が小さい状態において、永久磁石より発する磁束が、磁極部の間を軸方向にショートカットしずらくなり、固定子鉄心に発生する鉄損の低減効果が小さくなる。そのため両磁極部は近接することが望ましい。
回転子鉄心は、積層された電磁鋼板からなるため、強大な引力に対して電磁鋼板の積層状態を維持し、両磁極部が干渉せずに近接する構造が、特許文献1の可変界磁埋込磁石型回転電機には必要となる。
By the way, in the rotor of the variable field embedded magnet type rotating electrical machine disclosed in Patent Document 1, at the relative rotation surfaces of the load side magnetic pole part, the anti-load side magnetic pole part, and the central magnetic pole part, attractive force or repulsive force is generated between the magnetic pole parts. Works. For example, a strong attractive force acts in a state where the N pole and the S pole are alternately positioned in the axial direction of the load side magnetic pole part, the anti-load side magnetic pole part, and the central magnetic pole part. If both magnetic pole portions are attracted and interfere with each other, a large friction torque is added, and thus the torque required for relative rotation increases. If a large gap is provided so that the two magnetic pole parts do not interfere with each other, the magnetic flux generated by the permanent magnet will be difficult to short-cut between the magnetic pole parts in the axial direction when the field is small, and will occur in the stator core. The effect of reducing iron loss is reduced. Therefore, it is desirable that both magnetic pole portions are close to each other.
Since the rotor core is made of laminated electromagnetic steel plates, the structure in which the magnetic steel plates are maintained in a laminated state against a strong attractive force and the magnetic pole portions are close to each other without interfering with each other is the variable field buried of Patent Document 1. This is necessary for the internal magnet type rotating electric machine.

回転電機ではないロータの積層鋼板の保持構造として、リベットで締結した例がある。(例えば、特許文献2参照)。
図21は、従来の、ベーンポンプ用ロータの構造説明図であり、特許文献2、p6、図1に示されているものである。
図において、ロータ10は、軸方向の両端に配置された1対の挟持部材12と、それらの間に配置された積層鋼板14を、リベット15で締結している。挟持部材には、皿穴16が形成され、その部分にリベットの加締部が収納されている。リベットの締結により、積層鋼板を強固に一体化し得る。
図22は、前記ベーンポンプ用ロータの別の構造説明図であり、特許文献2、p9、図9に示されているものである。
図において、ロータ80は、図21で示した挟持部材12を用いずに、直接に積層鋼板82を、リベット86で締結している。積層鋼板の両端部には皿穴84が形成され、その部分にリベットの加締部が収納されている。そのため、積層鋼板の軸方向長さ内での締結が達成されている。
このように、回転電機ではないロータの積層鋼板の保持構造として、リベットで締結した例もある。
There is an example in which a laminated steel plate of a rotor that is not a rotating electrical machine is fastened with rivets. (For example, refer to Patent Document 2).
FIG. 21 is an explanatory view of the structure of a conventional vane pump rotor, which is shown in Patent Document 2, p6 and FIG.
In the figure, the rotor 10 is fastened by a rivet 15 to a pair of clamping members 12 disposed at both ends in the axial direction and a laminated steel plate 14 disposed therebetween. A countersink 16 is formed in the clamping member, and a rivet caulking portion is accommodated in that portion. By fastening the rivets, the laminated steel plates can be firmly integrated.
FIG. 22 is another structural explanatory diagram of the vane pump rotor, which is shown in Patent Document 2, p9, and FIG.
In the figure, the rotor 80 directly fastens the laminated steel plate 82 with rivets 86 without using the clamping member 12 shown in FIG. Countersunk holes 84 are formed at both ends of the laminated steel plate, and rivet caulking portions are accommodated in these portions. Therefore, fastening within the axial length of the laminated steel sheet is achieved.
As described above, there is an example in which a laminated steel plate of a rotor that is not a rotating electrical machine is fastened with rivets.

特開2007−259531号公報(第11頁、図2)JP 2007-2559531 A (page 11, FIG. 2) 特開2002−021746号公報(第6頁、図1および第9頁、図9)JP 2002-021746 (page 6, FIG. 1 and page 9, FIG. 9)

特許文献1に示した、従来の、可変界磁埋込磁石型回転電機は、軸方向に分割され、相対回動する磁極部の間に強大な引力が作用し、両磁極部が干渉せずに近接する構造が必要であるが、回転子鉄心を構成する積層された電磁鋼板を、強固に締結する具体的な構造が示されていない。 The conventional variable field embedded magnet type rotating electrical machine shown in Patent Document 1 is divided in the axial direction, and a strong attractive force acts between the relatively rotating magnetic pole portions, so that the magnetic pole portions do not interfere with each other. However, a specific structure for firmly fastening the laminated electromagnetic steel sheets constituting the rotor core is not shown.

特許文献2に示した、従来の積層鋼板の締結方法を、可変界磁埋込磁石型回転電機に用いることを考えた場合、図21で示した挟持部材を用いた構造では、リベットの加締部が挟持部材の皿穴部に収納されているため、相対回動面において、両磁極部を近接する構造となし得るが、挟持部材は薄い電磁鋼板ではないため、渦電流の増大により鉄損が増大する。
図22で示した挟持部材を用いない構造では、リベットの加締部が積層鋼板の皿穴部に収納されているため、相対回動面において、両磁極部を近接する構造となし得るが、端の鋼板へのリベット加締部の押さえ代が小さいため、脱落し易く強固に一体化し得ない。

本発明はこのような問題点に鑑みてなされたものであり、軸方向に分割され、相対回動する両磁極部間が干渉せずに近接し得る回転子鉄心の保持構造を提供し、鉄損が小さく、相対回動に要するトルクが小さい可変界磁埋込磁石型回転電機を提供することを目的とする。
When considering using the conventional laminated steel plate fastening method shown in Patent Document 2 for a variable field embedded magnet type rotating electrical machine, the structure using the clamping member shown in FIG. The part is housed in the countersink part of the clamping member, so that both magnetic poles can be arranged close to each other on the relative rotation surface, but since the clamping member is not a thin electromagnetic steel plate, iron loss increases due to an increase in eddy current. Will increase.
In the structure that does not use the clamping member shown in FIG. 22, the rivet caulking portion is housed in the countersunk portion of the laminated steel plate, so that both magnetic pole portions can be made close to each other on the relative rotation surface. Since the press margin of the rivet caulking portion to the end steel plate is small, it is easy to drop off and cannot be firmly integrated.

The present invention has been made in view of such problems, and provides a holding structure for a rotor core that is divided in the axial direction and can be approached without interference between both magnetic pole portions that rotate relative to each other. It is an object of the present invention to provide a variable field embedded magnet type rotating electrical machine having a small loss and a small torque required for relative rotation.

上記問題を解決するため、本発明は、埋込磁石型回転電機の回転子鉄心を軸方向に分割し、各々を相対回動させ、界磁を変化させる可変界磁埋込磁石型回転電機において、前記回転子鉄心は、積層された電磁鋼板からなり、前記回転子鉄心の相対回動面側の最外層の前記電磁鋼板は、前記回転子鉄心の積層状態を保持する部材の頭部が前記相対回動面側の端面より内側へ収納されるように一体的かつ立体的に設けられた前記頭部の座受け部および収納部を有し、前記最外層の電磁鋼板を除く前記回転子鉄心は、前記座受け部と密接可能な形状に形成された穴部を有することを特徴とする回転子鉄心の保持構造とするものである。
また、本発明は、前記部材は、リベットであることを特徴とする回転子鉄心の保持構造とするものである。
また、本発明は、前記部材は、ねじであることを特徴とする回転子鉄心の保持構造とするものである。
また、本発明は、前記回転子鉄心の保持構造を用いた回転子とするものである。
また、本発明は、前記回転子を有する可変界磁埋込磁石型回転電機とするものである。
In order to solve the above problems, the present invention provides a variable field embedded magnet type rotating electrical machine in which a rotor core of an embedded magnet type rotating electrical machine is divided in the axial direction, and each of them is relatively rotated to change a field. The rotor core is composed of laminated electromagnetic steel sheets, and the outermost layer of the electromagnetic steel sheet on the relative rotation surface side of the rotor core has a head portion of a member that holds the laminated state of the rotor core. The rotor core having a seat receiving portion and a housing portion of the head integrally and three-dimensionally provided so as to be housed inward from the end surface on the relative rotation surface side , excluding the outermost electromagnetic steel plate Has a rotor core holding structure characterized by having a hole formed in a shape close to the seat receiving portion .
According to the present invention, the member is a rivet, and the rotor core holding structure is provided.
According to the present invention, the member is a rotor core holding structure, wherein the member is a screw.
Moreover, this invention makes it a rotor using the holding structure of the said rotor core.
The present invention also provides a variable field embedded magnet type rotating electrical machine having the rotor.

本発明によると、
回転子鉄心は、積層された電磁鋼板からなり、上記回転子鉄心の相対回動面側の最外層の上記電磁鋼板は、上記回転子鉄心の積層状態を保持する部材の頭部が上記相対回動面側の端面より内側へ収納されるように一体的かつ立体的に設けられた上記頭部の座受け部および収納部を有し、上記最外層の電磁鋼板を除く上記回転子鉄心は、上記座受け部と密接可能な形状に形成された穴部を有するため、相対回動する両磁極部間が干渉せずに近接し、鉄損が小さく、相対回動に要するトルクが小さく、制御性も良い可変界磁埋込磁石型回転電機を提供できる。
また、本発明によると、
前記部材は、リベットであるため、確実に締結でき、廉価な回転子鉄心の保持構造を提供できる。
また、本発明によると、
前記部材は、ねじであるため、確実に締結でき、分解が可能な回転子鉄心の保持構造を提供できる。
また、本発明によると、
前記保持構造を用いた回転子とするため、相対回動に要するトルクが小さい可変界磁埋込磁石型回転電機用回転子を提供できる。
また、本発明によると、
前記回転子を有する可変界磁埋込磁石型回転電機とするため、鉄損が小さく、相対回動に要するトルクが小さく、制御性も良い可変界磁埋込磁石型回転電機を提供できる。
According to the present invention,
The rotor core is composed of laminated electromagnetic steel sheets, and the outermost magnetic steel sheet on the side of the relative rotation surface of the rotor core is such that the head of the member that holds the laminated state of the rotor core is the relative rotation. The rotor core having the seat receiving portion and the storage portion of the head provided integrally and three-dimensionally so as to be stored inward from the end surface on the moving surface side, excluding the electromagnetic steel sheet of the outermost layer, Because it has a hole formed in a shape that can be in close contact with the seat receiving part, the two magnetic pole parts that rotate relative to each other are close to each other without interfering, the iron loss is small, the torque required for relative rotation is small, and control It is possible to provide a variable field embedded magnet type rotating electrical machine having good performance.
Moreover, according to the present invention,
Since the member is a rivet, the member can be securely fastened and an inexpensive rotor core holding structure can be provided.
Moreover, according to the present invention,
Since the member is a screw, it is possible to provide a rotor core holding structure that can be securely fastened and disassembled.
Moreover, according to the present invention,
Since the rotor uses the holding structure, it is possible to provide a rotor for a variable field embedded magnet type rotating electrical machine that requires a small torque for relative rotation.
Moreover, according to the present invention,
Since the variable field embedded magnet type rotary electric machine having the rotor is provided, it is possible to provide a variable field embedded magnet type rotary electric machine having a small iron loss, a small torque required for relative rotation, and good controllability.

本発明の第1実施例を示す可変界磁埋込磁石型回転電機の軸方向断面図1 is a sectional view in the axial direction of a variable field embedded magnet type rotating electric machine showing a first embodiment of the present invention 前記回転電機の径方向断面図Radial sectional view of the rotating electrical machine 前記回転子の界磁を変化させる回動を示す斜視図The perspective view which shows the rotation which changes the field of the said rotor 前記回転子の構造を示す分解状態の斜視図An exploded perspective view showing the structure of the rotor 前記回転子の中央の磁極部とシャフトの構造を示す分解状態の斜視図The perspective view of the decomposition | disassembly state which shows the structure of the magnetic pole part of the center of the said rotor, and a shaft 前記回転子の界磁が小さい状態の説明図Explanatory drawing of a state where the field of the rotor is small 前記回転子の軸方向断面図Axial sectional view of the rotor 負荷側磁極部の軸方向断面図Axial sectional view of load side magnetic pole 回転子鉄心の相対回動面側の端部の鋼板の説明図Explanatory drawing of the steel plate at the end of the rotor core on the relative rotation surface side 相対回動面側の端部の鋼板を除いた回転子鉄心の説明図Illustration of the rotor core excluding the steel plate at the end on the relative rotation surface side 負荷側磁極部を構成する部品の説明図Explanatory drawing of the parts composing the load side magnetic pole 負荷側磁極部のリベットを加締める工程の説明図Explanatory drawing of the process of caulking the rivet of the load side magnetic pole リベット形状の種類の説明図Illustration of rivet shape types 問題点を有するリベットによる締結の説明図Illustration of fastening with rivets with problems 中央の磁極部の軸方向断面図Axial cross-sectional view of the central magnetic pole 中央の磁極部の端部の鋼板を除いた回転子鉄心の説明図Illustration of the rotor core excluding the steel plate at the end of the central magnetic pole 中央の磁極部を構成する部品の説明図Explanatory drawing of the parts that make up the central magnetic pole 反負荷側磁極部の軸方向断面図Axial sectional view of the anti-load side magnetic pole 反負荷側磁極部を構成する部品の説明図Explanatory drawing of the parts composing the anti-load side magnetic pole 従来の、可変界磁埋込磁石型回転電機の回転子の構造説明図Conventional structure of rotor of variable field embedded magnet type rotating electrical machine 従来の、ベーンポンプ用ロータの構造説明図Conventional structure of vane pump rotor 前記ベーンポンプ用ロータの別の構造説明図Another structural explanatory view of the vane pump rotor

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、車両駆動用電動機または発電機に供する、本発明の第1実施例を示す可変界磁埋込磁石型回転電機の軸方向断面図である。
図において、前記回転電機は、固定子鉄心43に固定子巻線42を備えた固定子40と、油圧を用い界磁を変化させることができる埋込磁石構造の回転子50を有する。
固定子巻線への通電は、リード線41を介して行う。固定子は、負荷側ブラケット31に、固定子締結ボルト44をもって締結され、反負荷側ブラケット32は、フレーム45とともに、図示しないボルトで、負荷側ブラケットに締結されている。
回転子は、回転子シャフト51に設置された負荷側軸受33と反負荷側軸受34を介して、負荷側ブラケットと反負荷側ブラケットに回転自在に保持され、回転子内部に設けられた油圧機構49に油圧を供給し、界磁を変化させることができる。回転子のシャフトの反負荷側には、回転子の回転位置検出のためのエンコーダ部37が設置されている。
反負荷側ブラケットの軸受部には、回転子の界磁を変化させる油圧制御部48が、一体に設けられている。
反負荷側ブラケットには、外部の図示しないオイルポンプから油圧制御部へ、オイルを供給する高圧油入口と、油圧制御部からオイルポンプへ、オイルを戻す戻り油出口と、回転子より前記回転電機の内部に放出されたオイルを、オイルポンプへ排出する排出油出口が設けられ、オイルは、オイルポンプと前記回転電機を循環でき、継続的に運転が可能である。負荷側オイルシール35と、反負荷側オイルシール36と、カバー38は、前記回転電機の内部に放出されたオイルが、外部に流出することを防いでいる。
反負荷側オイルシールは、鋼製のリングにゴム皮膜を焼付けたものであり、オイルをシールし、シャフトへオイルを供給する嵌合部品71を軸方向に固定している。
回転子は、回転子鉄心を軸方向に3分割し、各々をリベット62,63,64をもって締結している。
FIG. 1 is a cross-sectional view in the axial direction of a variable field embedded magnet type rotating electrical machine showing a first embodiment of the present invention for use in a vehicle drive motor or generator.
In the figure, the rotating electrical machine includes a stator 40 having a stator core 43 and a stator winding 42, and a rotor 50 having an embedded magnet structure capable of changing a field using hydraulic pressure.
Energization of the stator winding is performed via the lead wire 41. The stator is fastened to the load side bracket 31 with a stator fastening bolt 44, and the anti-load side bracket 32 is fastened to the load side bracket together with the frame 45 with bolts (not shown).
The rotor is rotatably held by the load-side bracket and the anti-load-side bracket via a load-side bearing 33 and an anti-load-side bearing 34 installed on the rotor shaft 51, and is a hydraulic mechanism provided inside the rotor. The hydraulic pressure can be supplied to 49 to change the field. An encoder unit 37 for detecting the rotational position of the rotor is installed on the opposite side of the rotor shaft.
A hydraulic control unit 48 that changes the magnetic field of the rotor is integrally provided in the bearing portion of the non-load side bracket.
The anti-load side bracket includes a high-pressure oil inlet for supplying oil from an external oil pump (not shown) to the hydraulic control unit, a return oil outlet for returning oil from the hydraulic control unit to the oil pump, and the rotor A discharge oil outlet is provided for discharging the oil released into the oil pump to the oil pump. The oil can circulate between the oil pump and the rotating electric machine, and can be continuously operated. The load side oil seal 35, the anti-load side oil seal 36, and the cover 38 prevent the oil released to the inside of the rotating electrical machine from flowing out to the outside.
The anti-load side oil seal is formed by baking a rubber film on a steel ring, and seals the oil and fixes a fitting part 71 that supplies oil to the shaft in the axial direction.
In the rotor, the rotor core is divided into three in the axial direction, and each is fastened with rivets 62, 63, 64.

図2は、前記回転電機の径方向断面図である。
図において、回転子鉄心54に設けられた略V字形状をなす永久磁石装着孔54aには、永久磁石52が着磁方向を対面、または背面するように、永久磁石の径方向外側に隣接する樹脂部品53と共に装着され、10極の磁極を構成している。
回転子鉄心は、回転子鉄心のポールシュー54pにおいて、リベット63で締結され、回転子鉄心は、可動ハブ55に装着され、可動ハブの内側にある油圧機構49によりシャフト51に対して相対回動する。
FIG. 2 is a radial sectional view of the rotating electrical machine.
In the drawing, a permanent magnet mounting hole 54a having a substantially V shape provided in the rotor core 54 is adjacent to the outer side in the radial direction of the permanent magnet so that the permanent magnet 52 faces or backs the magnetizing direction. It is mounted together with the resin component 53 to form a 10-pole magnetic pole.
The rotor core is fastened by a rivet 63 at a pole shoe 54p of the rotor core, and the rotor core is mounted on the movable hub 55 and is rotated relative to the shaft 51 by a hydraulic mechanism 49 inside the movable hub. To do.

図3は、前記回転子の界磁を変化させる回動を示す斜視図である。
図において、回転子は、軸方向に3分割された負荷側磁極部50aと、中央の磁極部50bと、反負荷側磁極部50cとを有し、負荷側磁極部と、反負荷側磁極部をシャフト51にボルト58で固定し、中央の磁極部をシャフトに対し回動させる構造となっている。
前記3つの磁極部は、各々N極とS極が交互に円周方向に並んだ10極の磁極を有し、中央の磁極部50bが、増磁側への回動Riに示すように回動し、軸方向に同じ磁極を並ばせた状態では、回転子の界磁は、大きな状態となる。中央の磁極部が、減磁側への回動Rdに示すように回動し、軸方向に異なる磁極を並ばせた状態では、回転子の界磁は、小さな状態となる。
回転子の界磁が大きい状態では、高トルクを発生し得るが、回転速度に対する誘起電圧も大きいため、電源に対し、低い回転域での運転しかなし得ない。回転子の界磁が小さい状態では、低トルクしか発生し得ないが、回転速度に対する誘起電圧が小さいため、電源に対し、高回転域までの運転が可能となる。本実施例の回転子の、中央の磁極部は、1磁極分の回動が可能であり、油圧機構を用いて随意の位置に回動させることで、低回転から高回転までの、トルクと誘起電圧を調整し、トルク増大と高回転域までの運転を両立できる。
図4は、前記回転子の構造を示す分解状態の斜視図である。
図において、負荷側磁極部50aと、反負荷側磁極部50cは、シャフトのボルト孔51aに、ボルト58で固定される。中央の磁極部50bを支持する可動ハブ55の内側に設けた、油圧機構49に高圧のオイルを導入することで、中央の磁極部は、シャフトに固定された負荷側磁極部と、反負荷側磁極部に対し回動される構造となっている。
可動ハブに装着された中央の磁極部は、リベット63により回転子鉄心54のポールシューを締結している。負荷側磁極部、反負荷側の磁極部も同様にリベットにより回転子鉄心のポールシューを締結している。
磁極部と磁極部は、永久磁石の磁束が軸方向に短絡しやすいように近接させるが、相対回動を滑らかに行うため、スラストワッシャ61を磁極部間に設けても良い。
鉄製スラストワッシャを用いると、中央の磁極部の相対回動を滑らかにする効果があるが、漏れ磁束が増えて最大トルクが減少する欠点がある。ステンレス製スラストワッシャを用いると、最大トルクの減少はないが界磁を小さくする状態での、鉄損の低減効果が小さくなる欠点がある。そのため、スラストワッシャを用いずに、磁極部の相対回動面の平面度を向上させ、磁極部と磁極部は、永久磁石の磁束が軸方向に短絡しやすいように近接させることが望ましい。
FIG. 3 is a perspective view showing the rotation for changing the field of the rotor.
In the figure, the rotor has a load-side magnetic pole portion 50a divided into three in the axial direction, a central magnetic pole portion 50b, and an anti-load-side magnetic pole portion 50c, and the load-side magnetic pole portion and the anti-load-side magnetic pole portion. Is fixed to the shaft 51 with a bolt 58 and the central magnetic pole portion is rotated with respect to the shaft.
Each of the three magnetic pole portions has 10 magnetic poles in which N poles and S poles are alternately arranged in the circumferential direction, and the central magnetic pole portion 50b rotates as shown by the rotation Ri toward the magnetizing side. In a state where the same magnetic poles are arranged in the axial direction, the rotor field is in a large state. In the state where the central magnetic pole portion rotates as indicated by the rotation Rd toward the demagnetization side and different magnetic poles are arranged in the axial direction, the rotor field is small.
When the rotor field is large, high torque can be generated. However, since the induced voltage with respect to the rotational speed is also large, the power source can only be operated in a low rotational range. In a state where the rotor field is small, only low torque can be generated. However, since the induced voltage with respect to the rotation speed is small, the power supply can be operated up to a high rotation range. The central magnetic pole portion of the rotor of the present embodiment can be rotated by one magnetic pole, and can be rotated to an arbitrary position by using a hydraulic mechanism, so that torque from low rotation to high rotation can be obtained. By adjusting the induced voltage, it is possible to achieve both torque increase and operation up to a high rotation range.
FIG. 4 is an exploded perspective view showing the structure of the rotor.
In the figure, the load-side magnetic pole part 50a and the anti-load-side magnetic pole part 50c are fixed to the bolt hole 51a of the shaft with a bolt 58. By introducing high-pressure oil into a hydraulic mechanism 49 provided inside the movable hub 55 that supports the central magnetic pole portion 50b, the central magnetic pole portion includes a load-side magnetic pole portion fixed to the shaft and an anti-load side. It is structured to be rotated with respect to the magnetic pole part.
The central magnetic pole portion mounted on the movable hub fastens the pole shoe of the rotor core 54 with a rivet 63. Similarly, the pole shoe of the rotor core is fastened to the load side magnetic pole portion and the anti-load side magnetic pole portion by rivets.
The magnetic pole portion and the magnetic pole portion are close to each other so that the magnetic flux of the permanent magnet is easily short-circuited in the axial direction, but a thrust washer 61 may be provided between the magnetic pole portions in order to smoothly perform relative rotation.
When an iron thrust washer is used, there is an effect of smoothing the relative rotation of the magnetic pole part at the center, but there is a drawback that the leakage flux increases and the maximum torque decreases. When a stainless steel washer is used, the maximum torque is not reduced, but there is a drawback that the effect of reducing iron loss is reduced when the field is reduced. Therefore, it is desirable to improve the flatness of the relative rotation surface of the magnetic pole part without using a thrust washer, and to make the magnetic pole part and the magnetic pole part close to each other so that the magnetic flux of the permanent magnet is easily short-circuited in the axial direction.

図5は、前記回転子の中央の磁極部とシャフトの構造を示す分解状態の斜視図である。
図において、シャフト51と可動ハブ55の摺動面には、油圧シール部品59が、シャフトの油圧シール部51bと可動ハブの油圧シール部55cに装着され、油圧機構49の高圧側油圧室から低圧側油圧室へのオイル洩れを防いでいる。
回転子に装着される永久磁石52は、永久磁石の径方向外側に隣接する樹脂部品53と共に、回転子鉄心の永久磁石装着孔54aに装着される。
FIG. 5 is an exploded perspective view showing the structure of the central magnetic pole portion and the shaft of the rotor.
In the figure, a hydraulic seal component 59 is mounted on the sliding surface of the shaft 51 and the movable hub 55 to the hydraulic seal portion 51b of the shaft and the hydraulic seal portion 55c of the movable hub, and the low pressure from the high pressure side hydraulic chamber of the hydraulic mechanism 49. Oil leakage to the side hydraulic chamber is prevented.
The permanent magnet 52 mounted on the rotor is mounted in the permanent magnet mounting hole 54a of the rotor core together with the resin component 53 adjacent to the outer side in the radial direction of the permanent magnet.

図6は、前記回転子の界磁が小さい状態の説明図である。
図において、負荷側磁極部50a,反負荷側磁極部50cと中央の磁極部50bの、N極とS極が軸方向に交互に位置する状態では、固定子巻線に鎖交する磁束が相殺され、誘起電圧が小さくなるため、より高回転域までの駆動が可能となる。また、永久磁石より発する磁束が、磁束のイメージFに示すように、負荷側磁極部,反負荷側磁極部と中央の磁極部の間を軸方向にショートカットし、固定子鉄心を通過する磁束自体を小さくでき、固定子鉄心に発生する鉄損を低減できる。
FIG. 6 is an explanatory diagram of a state in which the rotor has a small field.
In the figure, in the state where the N pole and the S pole are alternately positioned in the axial direction of the load side magnetic pole part 50a, the anti-load side magnetic pole part 50c and the central magnetic pole part 50b, the magnetic flux interlinked with the stator winding cancels out. In addition, since the induced voltage becomes small, it is possible to drive up to a higher rotation range. Further, as shown in the image F of the magnetic flux, the magnetic flux generated from the permanent magnet is short-cut in the axial direction between the load side magnetic pole part, the anti-load side magnetic pole part, and the central magnetic pole part, and the magnetic flux itself passes through the stator core. The iron loss generated in the stator core can be reduced.

図7は、前記回転子の軸方向断面図である。
図において、負荷側磁極部50a,反負荷側磁極部50cと中央の磁極部50bを構成する回転子鉄心54は、回転子鉄心のポールシュー部において、リベットで軸方向に締結している。負荷側磁極部は、回転子鉄心を負荷側固定プレート56に締結し、反負荷側磁極部は、回転子鉄心を反負荷側固定プレート57に締結し、中央の磁極部は、回転子鉄心のみをリベットで軸方向に締結している。
本実施例の回転子において、負荷側磁極部または、反負荷側磁極部と、中央の磁極部との間には、最大で1トンに近い吸引力、または斥力が作用する。例えば、中央の磁極部が回動し、異なる磁極が近づくにつれ、磁極部間には大きな引力Gが発生し、回転子鉄心が軸方向に強固に締結されていないと、密着して相対回動が困難になる。1トンに近い吸引力に抗し、回転子鉄心を締結するため、回転子鉄心の強固な締結手段として溶接を用いた場合、特性的には回転子鉄心の渦電流損失が増大し、機械的には溶接による回転子鉄心の熱変形が生じ易い。これらを克服する別の締結手段としてリベットを用いるのである。
FIG. 7 is an axial sectional view of the rotor.
In the figure, the rotor core 54 constituting the load side magnetic pole part 50a, the anti-load side magnetic pole part 50c and the central magnetic pole part 50b is fastened in the axial direction with a rivet at the pole shoe part of the rotor core. The load-side magnetic pole portion fastens the rotor core to the load-side fixing plate 56, the anti-load-side magnetic pole portion fastens the rotor core to the anti-load-side fixing plate 57, and the central magnetic pole portion is only the rotor core. Are fastened in the axial direction with rivets.
In the rotor of the present embodiment, an attractive force or repulsive force close to 1 ton acts between the load side magnetic pole part or the anti-load side magnetic pole part and the central magnetic pole part. For example, as the central magnetic pole part rotates and different magnetic poles approach, a large attractive force G is generated between the magnetic pole parts, and if the rotor core is not firmly fastened in the axial direction, it is in close contact and relative rotation Becomes difficult. In order to fasten the rotor core against an attractive force close to 1 ton, when welding is used as a strong fastening means for the rotor core, the eddy current loss of the rotor core increases characteristically and mechanical In this case, thermal deformation of the rotor core due to welding is likely to occur. Rivets are used as another fastening means to overcome these problems.

各々の磁極部の回転子鉄心をリベットで締結することで、前記吸引力、または斥力が、中央の磁極部に両側より作用し相殺されるため、中央の磁極部が、両側の磁極部の一方に吸引されることがなく、回動を妨げる摩擦トルクの発生を防ぐことができる。
また、前記回動を行う油圧機構に用いられるオイルの一部は、前記磁極部間の摺動部の潤滑に供せられた後、回転子外部へ放出されるが、中央の磁極部が、両側の磁極部の一方に吸引されないため、2つの摺動面に容易に油膜が形成され、油圧機構は、中央の磁極部を最小限の油圧で回動できる。
図5に示したように、中央の磁極部50bを構成する回転子鉄心は、負荷トルクに耐えるため可動ハブ55と角スプライン55aで契合している。同様に、負荷側磁極部を構成する回転子鉄心は、負荷側固定ハブ65と角スプラインで契合し、反負荷側磁極部を構成する回転子鉄心は、反負荷側固定ハブ66と角スプラインで契合している。
負荷側磁極部を保持する負荷側固定プレートと負荷側固定ハブ、及び反負荷側磁極部を保持する反負荷側固定プレートと反負荷側固定ハブは、ボルト58をもってシャフト51に固定されている。
By fastening the rotor core of each magnetic pole part with a rivet, the attracting force or repulsive force acts on the central magnetic pole part from both sides and cancels, so that the central magnetic pole part is one of the magnetic pole parts on both sides. Therefore, it is possible to prevent the generation of friction torque that hinders rotation.
In addition, a part of the oil used for the hydraulic mechanism that performs the rotation is discharged to the outside of the rotor after being used for lubrication of the sliding portion between the magnetic pole portions. Since it is not attracted to one of the magnetic pole portions on both sides, an oil film is easily formed on the two sliding surfaces, and the hydraulic mechanism can rotate the central magnetic pole portion with a minimum hydraulic pressure.
As shown in FIG. 5, the rotor core constituting the central magnetic pole portion 50b is engaged with the movable hub 55 by the angular spline 55a in order to withstand the load torque. Similarly, the rotor iron core constituting the load side magnetic pole part engages with the load side fixing hub 65 and the angular spline, and the rotor iron core constituting the anti load side magnetic pole part is constituted with the anti load side fixing hub 66 and the angular spline. It is contracted.
The load-side fixing plate and the load-side fixing hub that hold the load-side magnetic pole part, and the anti-load-side fixing plate and the anti-load-side fixing hub that hold the anti-load-side magnetic pole part are fixed to the shaft 51 with bolts 58.

図8は、負荷側磁極部の軸方向断面図である。
図において、回転子鉄心を保持するリベット62の頭部は円錐形状であり、リベットの頭部62aを、回転子鉄心の相対回動面側の端面より内側に設け、回転子鉄心同士を近接させている。そのため、磁束は負荷側磁極部と中央の磁極部の間を軸方向にショートカットしやすく、回転子の界磁が小さい状態では、固定子鉄心に発生する鉄損を低減できる。
また、回転子鉄心の相対回動面側の端部には、端部の鋼板67のみを特殊な形状としている。
FIG. 8 is a sectional view in the axial direction of the load-side magnetic pole part.
In the figure, the head of the rivet 62 holding the rotor core has a conical shape, and the rivet head 62a is provided on the inner side of the end surface on the relative rotation surface side of the rotor core so that the rotor cores are brought close to each other. ing. Therefore, the magnetic flux can easily be short-cut in the axial direction between the load-side magnetic pole part and the central magnetic pole part, and the iron loss generated in the stator core can be reduced when the rotor field is small.
Further, only the steel plate 67 at the end is formed into a special shape at the end on the relative rotation surface side of the rotor core.

図9は、回転子鉄心の相対回動面側の端部の鋼板の説明図である。
図において、回転子鉄心の相対回動面側の端部の鋼板67は、リベットの頭部の座受け部67aと、リベットの頭部の収納部67bとが立体的に設けられている。そのため、端部の鋼板を介して、リベットで内側の複数の鋼板を締結でき、図21で示した特許文献2のようなリベットを保持する挟持部材の必要もなく、端部の鋼板がリベットから剥がれにくい構造となっている。
FIG. 9 is an explanatory diagram of a steel plate at the end of the rotor core on the side of the relative rotation surface.
In the figure, a steel plate 67 at the end of the rotor core on the side of the relative rotation surface is provided with a rivet head seat receiving portion 67a and a rivet head storage portion 67b in three dimensions. Therefore, a plurality of inner steel plates can be fastened with rivets via the end steel plates, and there is no need for a clamping member for holding the rivet as shown in FIG. It has a structure that is difficult to peel off.

図10は、相対回動面側の端部の鋼板を除いた回転子鉄心の説明図である。
図において、相対回動面側の端部の鋼板を除いた回転子鉄心54は、電磁鋼板を積層してなる。相対回動面側の端部の鋼板のリベットの頭部の座受け部に相当する部分は、積層後、ドリル68の加工によって形成する。
FIG. 10 is an explanatory diagram of the rotor core excluding the steel plate at the end on the relative rotation surface side.
In the figure, the rotor core 54 excluding the steel plate at the end on the relative rotation surface side is formed by laminating electromagnetic steel plates. A portion corresponding to the seat receiving portion of the head portion of the rivet of the steel plate at the end portion on the relative rotation surface side is formed by processing of the drill 68 after lamination.

図11は、負荷側磁極部を構成する部品の説明図である。
図において、ドリル加工によってリベット頭部の座受け部を形成した回転子鉄心54に、端部の鋼板67のリベット頭部の座受け部67aを合わせて密接させ、リベット62をもって、負荷側固定プレート56に締結する。また、負荷側固定ハブ65を回転子鉄心の内周に契合する。
FIG. 11 is an explanatory diagram of components constituting the load-side magnetic pole part.
In the drawing, a rivet head seat receiving portion 67a of a steel plate 67 at the end is brought into close contact with the rotor core 54 having a rivet head seat receiving portion formed by drilling, and the load side fixing plate is held by the rivet 62. Fastened to 56. Further, the load side fixing hub 65 is engaged with the inner periphery of the rotor core.

図12は、負荷側磁極部のリベットを加締める工程の説明図である。
図において、リベット62は、加締め治具79により、リベットの端部を加締めることで、端部の鋼板67,回転子鉄心54,負荷側の固定プレート56を共に締結する。
FIG. 12 is an explanatory diagram of a process of caulking the rivet of the load side magnetic pole part.
In the figure, the rivet 62 is fastened together with the steel plate 67 at the end, the rotor core 54, and the load-side fixing plate 56 by caulking the end of the rivet with a caulking jig 79.

図13は、リベット形状の種類の説明図である。
図の、( a )に示すように、回転子鉄心の相対回動面側において、端部の鋼板のリベットの頭部62aの座受け部67aに接する回転子鉄心54に、積層後、ドリル加工を行うのではなく、プレス成形時に予め穴を設けた鋼板54bを用いても良い。
また、リベット62の頭部は( a )に示すように、円錐形状であっても良いし、( b )に示すように、円筒形状であっても良い。また、リベットによらず、ねじ69で負荷側の固定プレート70に締結しても良い。そのとき、( b )に示すように、リベット,またはねじの頭部69aが、回転子鉄心の相対回動面側の端面より内側となるように、回転子鉄心の相対回動面側の端部の鋼板68は、リベット,またはねじの頭部69aの座受け部68aと、リベットの頭部の収納部68bとを立体的に設ける。リベット,またはねじの頭部69aが、円錐形状であれ円筒形状であれ、端部の鋼板を介して回転子鉄心を締結することは同じであるが、円筒形状である方が、予め穴を設けた鋼板54cの穴の大きさが同じでよい点において、コスト上有利である。
FIG. 13 is an explanatory diagram of the types of rivet shapes.
As shown in (a) of the figure, on the relative rotational surface side of the rotor core, drilling is performed after laminating the rotor core 54 in contact with the seat receiving portion 67a of the rivet head 62a of the steel plate at the end. Instead of performing the above, a steel plate 54b provided with holes in advance during press forming may be used.
Further, the head of the rivet 62 may have a conical shape as shown in (a), or may have a cylindrical shape as shown in (b). Further, the screw 69 may be used to fasten the load side fixing plate 70 without using rivets. At that time, as shown in (b), the end of the rotor core on the relative rotation surface side so that the head portion 69a of the rivet or screw is inside the end surface on the relative rotation surface side of the rotor core. The steel plate 68 is a three-dimensionally provided seat receiving portion 68a of a rivet or screw head 69a and a storage portion 68b of the rivet head. Regardless of whether the rivet or screw head 69a is conical or cylindrical, it is the same that the rotor core is fastened through the steel plate at the end, but the cylindrical shape is provided with holes beforehand. This is advantageous in terms of cost in that the size of the holes in the steel plate 54c may be the same.

図14は、問題点を有するリベットによる締結の説明図である。
仮に、図9に示した、リベットの頭部の座受け部67aと、リベットの頭部の収納部67bとが立体的に設けられている端部の鋼板67を用いず、図14( a )に示すように、回転子鉄心76をリベット74,75をもって締結した場合、リベットの頭部74a,75aがかさばり、回転子鉄心同士を近接させることができない。
また、( b )に示すように、特許文献2、p9、図9に倣い、リベット72の頭部は円錐形状とし、リベットの頭部を、回転子鉄心の相対回動面側の端面より内側に設けた場合、端部の鋼板78は、リベットの押さえ代が少ないため、脱落し易く強固に一体化し得ない。
FIG. 14 is an explanatory diagram of fastening with a rivet having a problem.
FIG. 14 (a) is assumed without using the steel plate 67 at the end portion in which the seat receiving portion 67 a of the rivet head and the storage portion 67 b of the rivet head shown in FIG. When the rotor core 76 is fastened with rivets 74 and 75, the rivet heads 74a and 75a are bulky, and the rotor cores cannot be brought close to each other.
Further, as shown in (b), following Patent Document 2, p9, and FIG. 9, the head of the rivet 72 has a conical shape, and the head of the rivet is located on the inner side of the end surface on the side of the relative rotation surface of the rotor core. The steel plate 78 at the end portion has a small rivet holding allowance, so that it easily falls off and cannot be firmly integrated.

図15は、中央の磁極部の軸方向断面図である。
図において、中央の磁極部50bは、図9に示した、リベットの頭部の座受け部67aと、リベットの頭部の収納部67bとが立体的に設けられている端部の鋼板67を回転子鉄心の両側に用い、端部の鋼板を介して、リベットで内側の複数の鋼板を締結する。
FIG. 15 is an axial cross-sectional view of the central magnetic pole portion.
In the figure, the magnetic pole part 50b at the center is the end steel plate 67 shown in FIG. 9 in which the seat receiving part 67a of the rivet head and the storage part 67b of the rivet head are three-dimensionally provided. Used on both sides of the rotor core, a plurality of inner steel plates are fastened with rivets through the steel plates at the ends.

図16は、中央の磁極部の端部の鋼板を除いた回転子鉄心の説明図である。
図において、相対回動面側の端部の鋼板を除いた回転子鉄心は、電磁鋼板を積層してなる。相対回動面側の端部の鋼板67のリベットの頭部の座受け部に相当する部分は、積層後、ドリル加工によって形成する。
FIG. 16 is an explanatory diagram of the rotor core excluding the steel plate at the end of the central magnetic pole portion.
In the drawing, the rotor core excluding the steel plate at the end on the relative rotation surface side is formed by laminating electromagnetic steel plates. The portion corresponding to the seat receiving portion of the head of the rivet of the steel plate 67 at the end on the relative rotation surface side is formed by drilling after lamination.

図17は、中央の磁極部を構成する部品の説明図である。
図において、ドリル加工によってリベット頭部の座受け部を形成した回転子鉄心54に、端部の鋼板67を、リベット頭部の座受け部67aを合わせて密接させ、リベット63をもって締結する。また、可動ハブ55を回転子鉄心の内周に契合する。
FIG. 17 is an explanatory diagram of components constituting the central magnetic pole portion.
In the figure, a steel plate 67 at the end is brought into intimate contact with a rotor core 54 in which a seat receiving portion of a rivet head is formed by drilling, and a rivet 63 is fastened together with a seat receiving portion 67a of the rivet head. Further, the movable hub 55 is engaged with the inner periphery of the rotor core.

図18は、反負荷側磁極部の軸方向断面図である。
図において、回転子鉄心を保持するリベット64の頭部は円錐形状であり、リベットの頭部64aを、回転子鉄心の相対回動面側の端面より内側に設け、回転子鉄心同士を近接させている。
FIG. 18 is an axial cross-sectional view of the anti-load side magnetic pole portion.
In the figure, the head of the rivet 64 that holds the rotor core has a conical shape, and the rivet head 64a is provided on the inner side of the end surface on the relative rotation surface side of the rotor core so that the rotor cores are brought close to each other. ing.

図19は、反負荷側磁極部を構成する部品の説明図である。
図において、反負荷側磁極部50cは、ドリル加工によってリベット頭部の座受け部を形成した回転子鉄心54に、端部の鋼板67を、リベット頭部の座受け部67aを合わせて密接させ、リベット64をもって締結する。また、反負荷側固定ハブ66を回転子鉄心の内周に契合する。
FIG. 19 is an explanatory diagram of components constituting the anti-load side magnetic pole portion.
In the figure, an anti-load-side magnetic pole portion 50c is brought into close contact with a rotor iron core 54 in which a seat receiving portion of a rivet head is formed by drilling, with a steel plate 67 at the end being aligned with a seat receiving portion 67a of the rivet head. Fasten with rivets 64. Further, the anti-load side fixing hub 66 is engaged with the inner periphery of the rotor core.

本発明が、特許文献1と異なる部分は、回転子鉄心を構成する積層された電磁鋼板を、磁極部と磁極部を近接した状態で、強固に締結する具体的な構造を示した部分である。
本発明が、特許文献2と異なる部分は、回転子鉄心を構成する電磁鋼板をリベットで強固に締結する方法を、電磁鋼板のみを用いて成し得た部分である。
The present invention is different from Patent Document 1 in that it is a part showing a specific structure for firmly fastening the laminated electrical steel sheets constituting the rotor core in a state where the magnetic pole part and the magnetic pole part are close to each other. .
The part where the present invention is different from Patent Document 2 is a part where the method of firmly fastening the electromagnetic steel sheet constituting the rotor core with rivets can be achieved using only the electromagnetic steel sheet.

本発明の回転子鉄心の保持構造を有する可変界磁埋込磁石型回転電機は、低回転域での高トルクと、高回転域までの駆動を達成するばかりでなく、高回転域での鉄損を低減し、さらなる高回転化と高効率化が可能となるため、工作機主軸や電気自動車用モータという用途にも適用できる。 The variable field embedded magnet type rotating electrical machine having the rotor core holding structure of the present invention not only achieves high torque in the low rotation range and driving up to the high rotation range, but also iron in the high rotation range. Loss can be reduced and higher rotation and higher efficiency can be achieved. Therefore, the present invention can also be applied to machine tool spindles and electric vehicle motors.

31 負荷側ブラケット
32 反負荷側ブラケット
33 負荷側軸受
34 反負荷側軸受
35 負荷側オイルシール
36 反負荷側オイルシール
37 エンコーダ部
38 カバー
40 固定子
41 リード線
42 定子巻線
43 固定子鉄心
44 固定子締結ボルト
45 フレーム
48 油圧制御部
49 油圧機構
50 回転子
51 シャフト
52 永久磁石
53 樹脂部品
54 回転子鉄心
54a 永久磁石装着孔
54p 回転子鉄心のポールシュー
55 可動ハブ
58 ボルト
59 油圧シール部品
62,63,64 リベット
65 負荷側固定ハブ
66 反負荷側固定ハブ
67 端部の鋼板
31 Load side bracket 32 Anti load side bracket 33 Load side bearing 34 Anti load side bearing 35 Load side oil seal 36 Anti load side oil seal 37 Encoder part 38 Cover
40 Stator 41 Lead Wire 42 Stator Winding 43 Stator Core 44 Stator Fastening Bolt 45 Frame 48 Hydraulic Control Unit 49 Hydraulic Mechanism 50 Rotor 51 Shaft 52 Permanent Magnet 53 Resin Component 54 Rotor Core
54a Permanent magnet mounting hole 54p Pole shoe of rotor core 55 Movable hub 58 Bolt 59 Hydraulic seal parts 62, 63, 64 Rivet 65 Load side fixing hub 66 Anti-load side fixing hub 67 Steel plate at the end

Claims (5)

埋込磁石型回転電機の回転子鉄心を軸方向に分割し、各々を相対回動させ、界磁を変化させる可変界磁埋込磁石型回転電機において、
前記回転子鉄心は、積層された電磁鋼板からなり、
前記回転子鉄心の相対回動面側の最外層の前記電磁鋼板は、
前記回転子鉄心の積層状態を保持する部材の頭部が前記相対回動面側の端面より内側へ収納されるように一体的かつ立体的に設けられた前記頭部の座受け部および収納部を有し、
前記最外層の電磁鋼板を除く前記回転子鉄心は、
前記座受け部と密接可能な形状に形成された穴部を有することを特徴とする回転子鉄心の保持構造。
In a variable field embedded magnet type rotating electrical machine that divides the rotor core of an embedded magnet type rotating electrical machine in the axial direction, relatively rotates each core, and changes the field,
The rotor core is composed of laminated electrical steel sheets,
The electrical steel sheet of the outermost layer on the relative rotation surface side of the rotor core is
The seat receiving portion and the storage portion of the head that are integrally and three-dimensionally provided so that the head portion of the member that holds the laminated state of the rotor cores is stored inside the end surface on the relative rotation surface side. Have
The rotor core, excluding the outermost electrical steel sheet,
A structure for holding a rotor core, comprising a hole formed in a shape close to the seat receiving portion .
前記部材は、リベットであることを特徴とする、請求項1記載の回転子鉄心の保持構造。 The rotor core holding structure according to claim 1, wherein the member is a rivet. 前記部材は、ねじであることを特徴とする、請求項1記載の回転子鉄心の保持構造。 The rotor core holding structure according to claim 1, wherein the member is a screw. 請求項1記載の回転子鉄心の保持構造を用いた回転子。 A rotor using the rotor core holding structure according to claim 1. 請求項4記載の回転子を有する可変界磁埋込磁石型回転電機。 A variable field embedded magnet type rotating electrical machine having the rotor according to claim 4.
JP2009234515A 2009-10-08 2009-10-08 Rotor core holding structure, variable field embedded magnet type rotating electric machine having the holding structure Expired - Fee Related JP5504813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234515A JP5504813B2 (en) 2009-10-08 2009-10-08 Rotor core holding structure, variable field embedded magnet type rotating electric machine having the holding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234515A JP5504813B2 (en) 2009-10-08 2009-10-08 Rotor core holding structure, variable field embedded magnet type rotating electric machine having the holding structure

Publications (3)

Publication Number Publication Date
JP2011083145A JP2011083145A (en) 2011-04-21
JP2011083145A5 JP2011083145A5 (en) 2012-05-10
JP5504813B2 true JP5504813B2 (en) 2014-05-28

Family

ID=44076618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234515A Expired - Fee Related JP5504813B2 (en) 2009-10-08 2009-10-08 Rotor core holding structure, variable field embedded magnet type rotating electric machine having the holding structure

Country Status (1)

Country Link
JP (1) JP5504813B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021746A (en) * 2000-07-06 2002-01-23 Kondoo Seikoo Kk Rotor
JP4848649B2 (en) * 2005-03-16 2011-12-28 株式会社安川電機 Rotating electric machine

Also Published As

Publication number Publication date
JP2011083145A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
WO2007072622A1 (en) Electric motor
US7750527B2 (en) Motor/generator
JP5688684B2 (en) Rotating electric machine
JP2006513681A (en) Electric motor with external rotor
JP4791013B2 (en) Brushless motor
CN102691534A (en) Turbo machine
JP6710578B2 (en) Electric linear actuator
JP4849974B2 (en) Brushless motor
JP6531830B2 (en) Electric turbocharger
EP1650851B1 (en) Single-phase induction motor
WO2017204099A1 (en) Electric linear motion actuator
JP2008125235A (en) Electric motor
JP2010183648A (en) Permanent magnet rotary electric machine and electric vehicle using the same
EP1835600B1 (en) Motor/generator
JP5504813B2 (en) Rotor core holding structure, variable field embedded magnet type rotating electric machine having the holding structure
WO2006118533A1 (en) Releasable rotor
JP2008148516A (en) Rotary electric machine
CN109417331B (en) Electric linear motion actuator
JP5210986B2 (en) Motor unit
JP2008131790A (en) Rotating electric machine and motor-driven wheel therewith
WO2021228154A1 (en) Drum motor
JP5257821B2 (en) motor
JP7415050B2 (en) rotating machine
JP5085875B2 (en) Electric motor
JPH09209969A (en) Pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees