[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5503917B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP5503917B2
JP5503917B2 JP2009180392A JP2009180392A JP5503917B2 JP 5503917 B2 JP5503917 B2 JP 5503917B2 JP 2009180392 A JP2009180392 A JP 2009180392A JP 2009180392 A JP2009180392 A JP 2009180392A JP 5503917 B2 JP5503917 B2 JP 5503917B2
Authority
JP
Japan
Prior art keywords
flow path
ring
fuel cell
path forming
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009180392A
Other languages
Japanese (ja)
Other versions
JP2010062142A (en
Inventor
新人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2009180392A priority Critical patent/JP5503917B2/en
Publication of JP2010062142A publication Critical patent/JP2010062142A/en
Application granted granted Critical
Publication of JP5503917B2 publication Critical patent/JP5503917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • F04C29/066Noise dampening volumes, e.g. muffler chambers with means to enclose the source of noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は燃料電池システムに関し、より特定的には、燃料電池に空気を供給する燃料電池システムに関する。   The present invention relates to a fuel cell system, and more particularly to a fuel cell system that supplies air to a fuel cell.

特許文献1には、圧縮部と電動モータとを有する空気ブロアを防音箱に収容する燃料電池装置が開示されている。特許文献1の燃料電池装置では、電動モータを冷却するために、圧縮部の駆動に伴って防音箱に吸入された空気を受けるように空気ブロアが防音箱に配置されている。また、圧縮部が加圧した空気を吐出する際には、当該空気の圧力変化に伴って騒音が生じる。つまり、圧縮部の駆動に伴って騒音が生じる。特許文献1の燃料電池装置では、圧縮部の駆動に伴う騒音が防音箱の外部に漏れることを抑制するために、防音箱における空気の流路が曲げられている。   Patent Document 1 discloses a fuel cell device that houses an air blower having a compression unit and an electric motor in a soundproof box. In the fuel cell device of Patent Document 1, in order to cool the electric motor, an air blower is arranged in the soundproof box so as to receive air sucked into the soundproof box as the compression unit is driven. Further, when air compressed by the compression unit is discharged, noise is generated along with a change in pressure of the air. That is, noise is generated as the compression unit is driven. In the fuel cell device of Patent Document 1, the air flow path in the soundproof box is bent in order to prevent noise accompanying driving of the compression unit from leaking to the outside of the soundproof box.

特開2008−84564号公報JP 2008-84564 A

しかし、特許文献1の燃料電池装置では、燃料電池の出力を大きくするために燃料電池への空気供給量を大きくすると、以下のような問題が生じることがわかった。   However, in the fuel cell device of Patent Document 1, it has been found that the following problems occur when the amount of air supplied to the fuel cell is increased in order to increase the output of the fuel cell.

燃料電池への空気供給量を大きくすると、圧縮部の駆動に伴う騒音も大きくなる。特許文献1の技術では、大きな騒音に対して十分な消音効果を得るためには大きな防音箱を用いる必要があり、装置が大きくなってしまう。   When the amount of air supplied to the fuel cell is increased, the noise accompanying the driving of the compression unit also increases. In the technique of Patent Document 1, it is necessary to use a large soundproof box in order to obtain a sufficient silencing effect against a large noise, and the apparatus becomes large.

また、燃料電池への空気供給量を大きくすると、電動モータの発熱量が大きくなる。このために特許文献1の技術のように単に防音箱に電動モータを配置しただけでは、電動モータを十分に冷却できないおそれがあった。圧縮部の駆動を停止させると電動モータを冷却する空気の流れも停止するので、圧縮部の駆動時に電動モータを十分に冷却できていなければ圧縮部の駆動停止直後に電動モータの温度が著しく上昇するおそれがあった。ひいては、電動モータの耐久性を低下させるおそれがあった。   In addition, when the amount of air supplied to the fuel cell is increased, the amount of heat generated by the electric motor increases. For this reason, there is a possibility that the electric motor cannot be sufficiently cooled only by arranging the electric motor in the soundproof box as in the technique of Patent Document 1. When the drive of the compression unit is stopped, the flow of air that cools the electric motor is also stopped. Therefore, if the electric motor cannot be sufficiently cooled when the compression unit is driven, the temperature of the electric motor rises significantly immediately after the compression unit is stopped. There was a risk. As a result, the durability of the electric motor may be reduced.

それゆえに、この発明の主たる目的は、小型な構成で確実に騒音を低減できかつ耐久性を向上できる、燃料電池システムを提供することである。   Therefore, a main object of the present invention is to provide a fuel cell system capable of reliably reducing noise and improving durability with a small configuration.

上述の目的を達成するために、燃料電池と、燃料電池に空気を供給するための供給機構と、供給機構を駆動するためのモータと、モータに接するようにモータの表面に設けられ、供給機構に与えられるべき空気が流れる流路を形成する流路形成部材と、供給機構に与えられるべき全ての空気が流路を流れるように流路形成部材と供給機構とを接続する接続部材とを備え、流路は、サーペンタイン状、鋸歯状または螺旋状に形成される、燃料電池システムが提供される。 In order to achieve the above-described object, a fuel cell, a supply mechanism for supplying air to the fuel cell, a motor for driving the supply mechanism, and a supply mechanism provided on the surface of the motor so as to be in contact with the motor A flow path forming member that forms a flow path through which air to be supplied to the air supply, and a connection member that connects the flow path forming member and the supply mechanism so that all air to be supplied to the supply mechanism flows through the flow path. The fuel cell system is provided in which the flow path is formed in a serpentine shape, a sawtooth shape, or a spiral shape .

この発明では、供給機構の駆動に伴う騒音が流路形成部材に形成される流路を進むことによって当該流路で反射して下流側から上流側に伝播しにくくなる。つまり、供給機構の駆動に伴う騒音を流路形成部材の流路で減衰させることができる。これによって、騒音が流路形成部材の上流側に漏れることを抑制できる。このように騒音を流路形成部材の流路で減衰させることによって、大きな防音箱等を準備する必要がなく、小型な構成で確実に騒音を低減できる。また、供給機構に与えられるべき空気が流路形成部材の流路を流れることによって、当該空気および流路形成部材にモータの熱を効率よく吸収させることができ、モータを効率よく冷却できる。これによって供給機構の駆動停止直後であっても、モータの温度が上昇し過ぎることを防止できる。空気の流通によって十分に冷却された流路形成部材がモータに接しているので、供給機構の駆動停止後には、特に流路形成部材によってモータから熱を奪うことができ、モータの温度が上昇し過ぎることを防止できる。このようにモータを効率よく冷却できるので、モータひいては当該燃料電池システムの耐久性を向上できる。さらに、モータの熱を十分に吸収した空気を燃料電池に供給できるので、燃料電池に効率よく発電させることができる。
また、供給機構に与えられるべき全ての空気が流路を流れるように流路形成部材と供給機構とが接続部材によって接続される。この場合、流路形成部材の流路により多くの空気を流すことができ、モータをより効率よく冷却できる。また、供給機構の駆動に伴う騒音を効果的に流路形成部材の流路に与えることができ、騒音をより低減できる。
In the present invention, the noise accompanying the driving of the supply mechanism travels through the flow path formed in the flow path forming member, so that it is reflected by the flow path and hardly propagates from the downstream side to the upstream side. That is, the noise accompanying the drive of the supply mechanism can be attenuated by the flow path of the flow path forming member. Thereby, it is possible to suppress noise from leaking to the upstream side of the flow path forming member. Thus, by attenuating noise in the flow path of the flow path forming member, it is not necessary to prepare a large soundproof box or the like, and noise can be reliably reduced with a small configuration. Further, when air to be supplied to the supply mechanism flows through the flow path of the flow path forming member, the heat of the motor can be efficiently absorbed by the air and the flow path forming member, and the motor can be efficiently cooled. Accordingly, it is possible to prevent the motor temperature from rising excessively even immediately after the supply mechanism is stopped. Since the flow path forming member that is sufficiently cooled by the air flow is in contact with the motor, heat can be taken away from the motor by the flow path forming member particularly after the supply mechanism is stopped, and the motor temperature rises. It can be prevented from passing. Thus, since the motor can be efficiently cooled, the durability of the motor and thus the fuel cell system can be improved. Furthermore, since air that has sufficiently absorbed the heat of the motor can be supplied to the fuel cell, the fuel cell can efficiently generate power.
Further, the flow path forming member and the supply mechanism are connected by the connection member so that all the air to be supplied to the supply mechanism flows through the flow path. In this case, more air can flow through the flow path of the flow path forming member, and the motor can be cooled more efficiently. In addition, noise accompanying driving of the supply mechanism can be effectively applied to the flow path of the flow path forming member, and noise can be further reduced.

好ましくは、流路形成部材の流路は屈曲した形状を有する。この場合、供給機構の駆動に伴う騒音が下流側により反射しやすくなり、騒音をより低減できる。   Preferably, the flow path of the flow path forming member has a bent shape. In this case, noise accompanying driving of the supply mechanism is more easily reflected on the downstream side, and noise can be further reduced.

さらに好ましくは、流路の下流側からの音を反射させるために流路に反射部材が設けられる。この場合、供給機構の駆動に伴う下流側からの騒音が流路形成部材の流路に設けられる反射部材によっても反射されるので、騒音が上流側により伝播しにくくなり、騒音をより低減できる。   More preferably, a reflective member is provided in the flow path in order to reflect sound from the downstream side of the flow path. In this case, noise from the downstream side due to the drive of the supply mechanism is also reflected by the reflecting member provided in the flow path of the flow path forming member, so that the noise is less likely to propagate to the upstream side, and noise can be further reduced.

好ましくは、反射部材は、流路形成部材の流路の下流側に向かって流路に突出するように設けられる。この場合、上流側から下流側へと円滑に空気を流通させることができるとともに、下流側からの騒音をより反射させやすくなる。したがって、燃料電池への空気供給を円滑に行うことができるとともに、騒音をより一層低減できる。   Preferably, the reflection member is provided so as to protrude into the flow path toward the downstream side of the flow path of the flow path forming member. In this case, air can be smoothly circulated from the upstream side to the downstream side, and noise from the downstream side can be more easily reflected. Therefore, air can be smoothly supplied to the fuel cell, and noise can be further reduced.

また好ましくは、流路に吸音部材がさらに設けられる。この場合、供給機構の駆動に伴う下流側からの騒音を流路形成部材の流路で減衰させつつ流路に設けられた吸音部材によって吸収することもできるので、騒音が上流側により伝播しにくくなり、騒音をより低減できる。   Preferably, a sound absorbing member is further provided in the flow path. In this case, the noise from the downstream side due to the drive of the supply mechanism can be absorbed by the sound absorbing member provided in the flow path while being attenuated by the flow path of the flow path forming member, so that the noise is difficult to propagate to the upstream side. Therefore, noise can be further reduced.

さらに好ましくは、吸音部材は、貫通孔を有する板状部材、繊維状部材および金属発泡体の少なくともいずれか1つを含む。このような吸音部材によれば、簡単にかつ効率的に騒音を吸収できる。   More preferably, the sound absorbing member includes at least one of a plate-like member having a through hole, a fibrous member, and a metal foam. According to such a sound absorbing member, it is possible to absorb noise easily and efficiently.

好ましくは、流路形成部材が収容部材に収容される。この場合、騒音をより低減できる。   Preferably, the flow path forming member is accommodated in the accommodating member. In this case, noise can be further reduced.

また好ましくは、収容部材は、流路形成部材を収容する第1収容部材と、第1収容部材を収容する第2収容部材とを含む。このように流路形成部材を収容する第1収容部材と第1収容部材を収容する第2収容部材との二重構造を採用することによって、騒音をより効果的に低減できる。   Preferably, the housing member includes a first housing member that houses the flow path forming member and a second housing member that houses the first housing member. Thus, noise can be reduced more effectively by adopting a dual structure of the first housing member that houses the flow path forming member and the second housing member that houses the first housing member.

さらに好ましくは、第1収容部材と前記第2収容部材との間に吸音部材が設けられる。この場合、騒音をより一層低減できる。   More preferably, a sound absorbing member is provided between the first housing member and the second housing member. In this case, noise can be further reduced.

この発明の上述の目的およびその他の目的、特徴、局面および利点は、添付図面に関連して行われる以下のこの発明の実施形態の詳細な説明から一層明らかとなろう。   The above and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of embodiments of the present invention taken in conjunction with the accompanying drawings.

この発明によれば、小型な構成で確実に騒音を低減できかつ耐久性を向上できる燃料電池システムが得られる。   According to the present invention, it is possible to obtain a fuel cell system capable of reliably reducing noise and improving durability with a small configuration.

この発明の一実施形態の燃料電池システムの主な構成を示すシステム図である。1 is a system diagram showing a main configuration of a fuel cell system according to an embodiment of the present invention. エアポンプユニットの横断面を示す図解図である。It is an illustration figure which shows the cross section of an air pump unit. 図2のY−Y断面を示す図解図である。It is an illustration figure which shows the YY cross section of FIG. 図2のZ−Z断面を示す図解図である。It is an illustration figure which shows the ZZ cross section of FIG. エアポンプおよび流路形成部材を右上前方からみた斜視図である。It is the perspective view which looked at the air pump and the flow-path formation member from the upper right front. ポンプ部内の構成を示す図解図である。It is an illustration figure which shows the structure in a pump part. 流路形成部材を右上前方からみた分解斜視図である。It is the disassembled perspective view which looked at the flow-path formation member from the upper right front. 流路形成部材を右上後方からみた分解斜視図である。It is the disassembled perspective view which looked at the flow-path formation member from the upper right back. 第2リング状部材の正面図である。It is a front view of a 2nd ring-shaped member. 第3リング状部材の正面図である。It is a front view of a 3rd ring-shaped member. 流路形成部材に形成される流路の形状を示す図解図である。It is an illustration figure which shows the shape of the flow path formed in a flow path formation member. 電動モータを前方下側からみた場合の流路の形状を示す図解図である。It is an illustration figure which shows the shape of the flow path at the time of seeing an electric motor from the front lower side. 流路形成部材の流路における騒音の進み方を示す図解図である。It is an illustration figure which shows the way of the noise in the flow path of a flow path formation member. 反射部材を設けた場合の流路形成部材の流路における騒音の進み方を示す図解図である。It is an illustration figure which shows the way of the noise in the flow path of the flow-path formation member at the time of providing a reflection member. 第1リング状部材、第2リング状部材および第3リング状部材の他の例を示す斜視図である。It is a perspective view which shows the other example of a 1st ring-shaped member, a 2nd ring-shaped member, and a 3rd ring-shaped member. 図15に示す第2リング状部材の正面図である。It is a front view of the 2nd ring-shaped member shown in FIG. 流路形成部材の変形例を右上前方からみた分解斜視図である。It is the disassembled perspective view which looked at the modification of the flow-path formation member from the upper right front. 流路形成部材の変形例を右上後方からみた分解斜視図である。It is the disassembled perspective view which looked at the modification of the flow-path formation member from the upper right back. 図17および図18に示す第2リング状部材の正面図である。It is a front view of the 2nd ring-shaped member shown in FIG.17 and FIG.18. 図17および図18に示す第3リング状部材の正面図である。FIG. 19 is a front view of the third ring-shaped member shown in FIGS. 17 and 18.

以下、図面を参照してこの発明の実施の形態について説明する。
図1は、この発明の一実施形態の燃料電池システム10の主な構成を示すシステム図である。燃料電池システム10は、メタノール(メタノール水溶液)を改質せずにダイレクトに電気エネルギの生成(発電)に利用する直接メタノール型燃料電池システムである。燃料電池システム10は、可搬型に構成され、たとえば屋外コンサートの会場で音響機器等の電子機器に電力を供給するために用いられる。燃料電池システム10の発電による最大出力は1kW程度である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram showing a main configuration of a fuel cell system 10 according to an embodiment of the present invention. The fuel cell system 10 is a direct methanol fuel cell system that directly uses methanol (aqueous methanol solution) for generation of electric energy (power generation) without reforming. The fuel cell system 10 is configured to be portable, and is used, for example, to supply electric power to an electronic device such as an audio device at an outdoor concert venue. The maximum output by the power generation of the fuel cell system 10 is about 1 kW.

図1に示すように、燃料電池システム10は筐体12を含む。筐体12は、燃料電池セルスタック(以下、単にセルスタックという)14、水溶液タンク16および水タンク18を収容している。   As shown in FIG. 1, the fuel cell system 10 includes a housing 12. The housing 12 accommodates a fuel cell stack (hereinafter simply referred to as a cell stack) 14, an aqueous solution tank 16 and a water tank 18.

セルスタック14は、メタノールに基づく水素イオンと酸素(酸化剤)との電気化学反応によって発電できる複数の燃料電池(燃料電池セル)20を含む。複数の燃料電池20は積層され、隣り合う燃料電池20間にはセパレータ22が挟まれている。各燃料電池20は、たとえば固体高分子膜からなる電解質膜20aと、電解質膜20aを挟んで互いに対向するアノード(燃料極)20bおよびカソード(空気極)20cとを含む。   The cell stack 14 includes a plurality of fuel cells (fuel cells) 20 that can generate power by an electrochemical reaction between methanol-based hydrogen ions and oxygen (oxidant). A plurality of fuel cells 20 are stacked, and a separator 22 is sandwiched between adjacent fuel cells 20. Each fuel cell 20 includes an electrolyte membrane 20a made of, for example, a solid polymer membrane, and an anode (fuel electrode) 20b and a cathode (air electrode) 20c facing each other with the electrolyte membrane 20a interposed therebetween.

水溶液タンク16は、セルスタック14の電気化学反応に適した濃度(たとえば、メタノールを約3wt%含む)のメタノール水溶液を収容している。水溶液タンク16は、パイプP1を介してセルスタック14のアノード入口I1に接続されている。パイプP1には、水溶液タンク16側から順に水溶液ポンプ24および水溶液フィルタ26が介挿されている。また、セルスタック14のアノード出口I2には、パイプP2を介して水溶液タンク16が接続されている。水溶液ポンプ24を駆動させることによって、水溶液タンク16内のメタノール水溶液がセルスタック14に供給されるとともにセルスタック14からのメタノール水溶液が水溶液タンク16に戻る。
上述したパイプP1〜P2は主として燃料の流路となる。
The aqueous solution tank 16 contains a methanol aqueous solution having a concentration suitable for the electrochemical reaction of the cell stack 14 (for example, containing about 3 wt% of methanol). The aqueous solution tank 16 is connected to the anode inlet I1 of the cell stack 14 via the pipe P1. An aqueous solution pump 24 and an aqueous solution filter 26 are inserted into the pipe P1 in this order from the aqueous solution tank 16 side. An aqueous solution tank 16 is connected to the anode outlet I2 of the cell stack 14 through a pipe P2. By driving the aqueous solution pump 24, the aqueous methanol solution in the aqueous solution tank 16 is supplied to the cell stack 14, and the aqueous methanol solution from the cell stack 14 returns to the aqueous solution tank 16.
The pipes P1 and P2 described above mainly serve as fuel flow paths.

セルスタック14のカソード入口I3には、パイプP3を介してエアポンプユニット28が接続されている。エアポンプユニット28には、パイプP4を介してエアフィルタ30が接続されている。エアポンプユニット28のエアポンプ34(後述)を駆動させることによって、酸素(酸化剤)を含む外部の空気がセルスタック14に供給される。   An air pump unit 28 is connected to the cathode inlet I3 of the cell stack 14 via a pipe P3. An air filter 30 is connected to the air pump unit 28 via a pipe P4. By driving an air pump 34 (described later) of the air pump unit 28, external air containing oxygen (oxidant) is supplied to the cell stack 14.

セルスタック14のカソード出口I4には、パイプP5を介して水タンク18が接続されている。水タンク18は、水溶液タンク16に供給すべき水を収容している。水タンク18には、カソード出口I4からの排気ガスを外部に排出するためのパイプ(排気管)P6が接続されている。
上述したパイプP3〜P6は主として酸化剤の流路となる。
A water tank 18 is connected to the cathode outlet I4 of the cell stack 14 via a pipe P5. The water tank 18 stores water to be supplied to the aqueous solution tank 16. The water tank 18 is connected to a pipe (exhaust pipe) P6 for discharging the exhaust gas from the cathode outlet I4 to the outside.
The pipes P3 to P6 described above mainly serve as a flow path for the oxidizing agent.

水タンク18は、パイプP7を介して水溶液タンク16に接続されている。パイプP7には水ポンプ32が介挿されている。水ポンプ32を駆動させることによって、水タンク18内の水が水溶液タンク16に供給される。
上述したパイプP7は水の流路となる。
The water tank 18 is connected to the aqueous solution tank 16 through a pipe P7. A water pump 32 is inserted in the pipe P7. By driving the water pump 32, the water in the water tank 18 is supplied to the aqueous solution tank 16.
The pipe P7 described above serves as a water flow path.

このように構成される燃料電池システム10において注目すべきは、エアポンプユニット28である。ついで、エアポンプユニット28について詳しく説明する。
図2はエアポンプユニット28の横断面(図3のX−X断面)を示す図解図である。図3は図2のY−Y断面を示す図解図である。図4は図2のZ−Z断面を示す図解図である。
What should be noted in the fuel cell system 10 configured as described above is the air pump unit 28. Next, the air pump unit 28 will be described in detail.
FIG. 2 is an illustrative view showing a transverse section (XX section in FIG. 3) of the air pump unit 28. FIG. 3 is an illustrative view showing a YY cross section of FIG. 2. FIG. 4 is an illustrative view showing a ZZ cross section of FIG. 2.

図2〜図4に示すように、エアポンプユニット28は、エアポンプ34、エアポンプ34に設けられる流路形成部材36、エアポンプ34および流路形成部材36を収容する収容部材38、収容部材38を収容する収容部材40、ならびに収容部材38と40との間に設けられる繊維状部材42を含む。   As shown in FIGS. 2 to 4, the air pump unit 28 houses the air pump 34, the flow path forming member 36 provided in the air pump 34, the air pump 34, the housing member 38 that houses the flow path forming member 36, and the housing member 38. The housing member 40 and the fibrous member 42 provided between the housing members 38 and 40 are included.

図5はエアポンプ34および流路形成部材36を右上前方からみた斜視図である。図5に示すように、エアポンプ34は、セルスタック14に空気を供給するためのポンプ部44、およびポンプ部44を駆動するための電動モータ46を含む。   FIG. 5 is a perspective view of the air pump 34 and the flow path forming member 36 as viewed from the upper right front. As shown in FIG. 5, the air pump 34 includes a pump unit 44 for supplying air to the cell stack 14 and an electric motor 46 for driving the pump unit 44.

図6はポンプ部44内の構成を示す図解図である。図6に示すように、ポンプ部44は、その内部に設けられる略まゆ状の回転子44a,44bを有するルーツブロア型に構成されている。回転子44a,44bは、電動モータ46によって駆動され、互いに噛み合うような位置関係を保ちつつも互いに接触することがないように回転する。このような回転子44a,44bの回転によって、加圧された空気がポンプ部44から吐出される。ポンプ部44からの空気の吐出圧力は20kPa程度である。また、ポンプ部44の最大出力(最大吐出量)は、150L/min程度であり、通常運転時におけるポンプ部44の出力は80L/min程度である。   FIG. 6 is an illustrative view showing a configuration in the pump unit 44. As shown in FIG. 6, the pump portion 44 is configured as a roots blower type having substantially eyebrows-shaped rotors 44 a and 44 b provided therein. The rotors 44a and 44b are driven by the electric motor 46 and rotate so as not to contact each other while maintaining a positional relationship such that they mesh with each other. Pressurized air is discharged from the pump unit 44 by such rotation of the rotors 44 a and 44 b. The discharge pressure of air from the pump unit 44 is about 20 kPa. Further, the maximum output (maximum discharge amount) of the pump unit 44 is about 150 L / min, and the output of the pump unit 44 during normal operation is about 80 L / min.

図5に戻って、ポンプ部44にはパイプP3が接続されており、ポンプ部44から吐出される(送り出される)空気がセルスタック14に与えられる。電動モータ46は、その内部に固定子や回転子等を有する本体46aを含む。本体46aは円柱状に形成されており、本体46aの外周面の70%程度は略円筒状の流路形成部材36によって覆われている。流路形成部材36は、第1リング状部材48、第2リング状部材50a,50bおよび第3リング状部材52a,52bを含む。   Returning to FIG. 5, a pipe P <b> 3 is connected to the pump unit 44, and air discharged (sent out) from the pump unit 44 is given to the cell stack 14. The electric motor 46 includes a main body 46a having a stator, a rotor, and the like therein. The main body 46 a is formed in a columnar shape, and about 70% of the outer peripheral surface of the main body 46 a is covered with a substantially cylindrical flow path forming member 36. The flow path forming member 36 includes a first ring-shaped member 48, second ring-shaped members 50a and 50b, and third ring-shaped members 52a and 52b.

図7は流路形成部材36を右上前方からみた分解斜視図である。図8は流路形成部材36を右上後方からみた分解斜視図である。また、図9は第2リング状部材50a,50bの正面図であり、図10は第3リング状部材52a,52bの正面図である。   FIG. 7 is an exploded perspective view of the flow path forming member 36 as viewed from the upper right front. FIG. 8 is an exploded perspective view of the flow path forming member 36 as viewed from the upper right rear. FIG. 9 is a front view of the second ring-shaped members 50a and 50b, and FIG. 10 is a front view of the third ring-shaped members 52a and 52b.

図7および図8に示すように、これらのリング状部材は、前方側から第1リング状部材48、第2リング状部材50a、第3リング状部材52a、第2リング状部材50bおよび第3リング状部材52bの順に配置されている。   As shown in FIGS. 7 and 8, these ring-shaped members are, from the front side, the first ring-shaped member 48, the second ring-shaped member 50a, the third ring-shaped member 52a, the second ring-shaped member 50b, and the third ring-shaped member. The ring-shaped members 52b are arranged in this order.

第1リング状部材48は、空隙G1が設けられた略C字の板状(Cリング状)に形成されている。第1リング状部材48において空隙G1の下側の位置には、矢印D1方向(流路形成部材36の軸方向)に延びる貫通孔54aが設けられている。また、第1リング状部材48において空隙G1の上側の位置には、矢印D1方向に延びる貫通孔54bが設けられている。   The 1st ring-shaped member 48 is formed in the substantially C-shaped plate shape (C ring shape) in which the space | gap G1 was provided. A through hole 54a extending in the direction of arrow D1 (the axial direction of the flow path forming member 36) is provided at a position below the gap G1 in the first ring member 48. In the first ring-shaped member 48, a through hole 54b extending in the direction of the arrow D1 is provided at a position above the gap G1.

図7〜図9に示すように、第2リング状部材50aは本体56を含む。本体56は、空隙G2が設けられた略C字の枠状に形成されている。本体56の外周面は、第2リング状部材50aを第1リング状部材48に繋げたときに第1リング状部材48の外周面と面一になるように形成されている。本体56の内周面には、空隙G2に対向する位置に矢印D1方向に延びる突起58が設けられている。図9に示すように、本体56の内周面には、空隙G2の下側から突起58の下側に向けて突起58に繋がることのないように流路形成部材36の周方向(矢印D2方向)に延びるリブ60aが設けられている。また、本体56の内周面には、空隙G2の上側から突起58の上側に向けて突起58に繋がることのないように矢印D2方向に延びるリブ60bが設けられている。図8に示すように、リブ60a,60bはそれぞれ、本体56の内周面において後寄りに設けられており、本体56の後端面と面一になっている。第2リング状部材50aは、このような突起58とリブ60a,60bとが設けられていることによって、突起58の下側と上側とに出口62aと62bとを有している。第2リング状部材50aと50bとは同様に構成されているので、第2リング状部材50bの説明は省略する。   As shown in FIGS. 7 to 9, the second ring-shaped member 50 a includes a main body 56. The main body 56 is formed in a substantially C-shaped frame shape provided with a gap G2. The outer peripheral surface of the main body 56 is formed to be flush with the outer peripheral surface of the first ring-shaped member 48 when the second ring-shaped member 50 a is connected to the first ring-shaped member 48. On the inner peripheral surface of the main body 56, a protrusion 58 extending in the direction of the arrow D1 is provided at a position facing the gap G2. As shown in FIG. 9, on the inner peripheral surface of the main body 56, the circumferential direction of the flow path forming member 36 (arrow D2) is connected to the protrusion 58 from the lower side of the gap G2 toward the lower side of the protrusion 58. Ribs 60a extending in the direction) are provided. Further, a rib 60b extending in the direction of arrow D2 is provided on the inner peripheral surface of the main body 56 so as not to be connected to the protrusion 58 from the upper side of the gap G2 toward the upper side of the protrusion 58. As shown in FIG. 8, the ribs 60 a and 60 b are provided rearward on the inner peripheral surface of the main body 56, and are flush with the rear end surface of the main body 56. The second ring-shaped member 50a has outlets 62a and 62b on the lower side and the upper side of the projection 58 by providing the projection 58 and the ribs 60a and 60b. Since the second ring-shaped members 50a and 50b are configured similarly, the description of the second ring-shaped member 50b is omitted.

図7、図8および図10に示すように、第3リング状部材52aは本体64を含む。本体64は、第2リング状部材50aの本体56と同形状かつ同寸法に形成されている。本体64の内周面には、第2リング状部材50aの突起58と同様に、空隙G3に対向する位置に突起66が設けられている。図10に示すように、本体64の内周面には、空隙G3の下側から突起66の下側に向けて矢印D2方向延びるリブ68a、および空隙G3の上側から突起66の上側に向けて矢印D2方向に延びるリブ68bが設けられている。リブ68a,68bは突起66に繋がっている。リブ68aにおいて空隙G3の下側の位置には、第1リング状部材48の貫通孔54aと同様の貫通孔70aが設けられている。また、リブ68bにおいて空隙G3の上側の位置には、第1リング状部材48の貫通孔54bと同様の貫通孔70bが設けられている。第3リング状部材52aは、出口62a,62bに代えて貫通孔70a,70bが設けられていることを除けば第2リング状部材50aと同様に構成されている。第3リング状部材52aと52bとは同様に構成されているので、第3リング状部材52bの説明は省略する。   As shown in FIGS. 7, 8, and 10, the third ring-shaped member 52 a includes a main body 64. The main body 64 has the same shape and the same size as the main body 56 of the second ring-shaped member 50a. Similar to the protrusion 58 of the second ring-shaped member 50a, a protrusion 66 is provided on the inner peripheral surface of the main body 64 at a position facing the gap G3. As shown in FIG. 10, on the inner peripheral surface of the main body 64, a rib 68a extending in the arrow D2 direction from the lower side of the gap G3 toward the lower side of the projection 66, and from the upper side of the gap G3 toward the upper side of the projection 66. Ribs 68b extending in the direction of arrow D2 are provided. The ribs 68 a and 68 b are connected to the protrusion 66. A through hole 70a similar to the through hole 54a of the first ring-shaped member 48 is provided at a position below the gap G3 in the rib 68a. Further, a through hole 70b similar to the through hole 54b of the first ring-shaped member 48 is provided at a position above the gap G3 in the rib 68b. The third ring-shaped member 52a is configured in the same manner as the second ring-shaped member 50a except that through holes 70a and 70b are provided instead of the outlets 62a and 62b. Since the third ring-shaped members 52a and 52b are configured similarly, the description of the third ring-shaped member 52b is omitted.

図5に戻って、このような第1リング状部材48、第2リング状部材50a,50bおよび第3リング状部材52a,52bを、それぞれの外周面が面一になるように相互に固定することによって、側壁の一部を矢印D1方向に切り欠いた略円筒状の流路形成部材36が得られる。第1リング状部材48、第2リング状部材50a,50bおよび第3リング状部材52a,52bの一部は、流路形成部材36が電動モータ46の本体46aに取り付けられることによって本体46aの外周面に接する。詳しくは、図7および図8を参照して、第1リング状部材48においては、その内周面が本体46aの外周面に接する。第2リング状部材50a,50bにおいては、本体56の両端部、突起58における本体56とは反対側の面、リブ60a,60bにおける本体56とは反対側の面がそれぞれ本体46aの外周面に接する。第3リング状部材52a,52bにおいても、第2リング状部材50a,50bと同様の部分が本体46aの外周面に接する。第1リング状部材48、第2リング状部材50a,50bおよび第3リング状部材52a,52bの材質、ひいては流路形成部材36の材質としては、たとえばアルミニウムや銅等が用いられる。   Returning to FIG. 5, the first ring-shaped member 48, the second ring-shaped members 50a and 50b, and the third ring-shaped members 52a and 52b are fixed to each other so that their outer peripheral surfaces are flush with each other. Thus, a substantially cylindrical flow path forming member 36 in which a part of the side wall is cut out in the direction of the arrow D1 is obtained. A part of the first ring-shaped member 48, the second ring-shaped members 50a, 50b, and the third ring-shaped members 52a, 52b are formed on the outer periphery of the main body 46a by attaching the flow path forming member 36 to the main body 46a of the electric motor 46. Touch the surface. Specifically, referring to FIG. 7 and FIG. 8, in the first ring-shaped member 48, the inner peripheral surface thereof is in contact with the outer peripheral surface of the main body 46a. In the second ring-shaped members 50a and 50b, both ends of the main body 56, the surfaces of the protrusions 58 on the opposite side to the main body 56, and the ribs 60a and 60b on the opposite side of the main body 56 are the outer peripheral surfaces of the main body 46a. Touch. In the third ring-shaped members 52a and 52b, the same portions as the second ring-shaped members 50a and 50b are in contact with the outer peripheral surface of the main body 46a. As the material of the first ring-shaped member 48, the second ring-shaped members 50a and 50b, and the third ring-shaped members 52a and 52b, and the material of the flow path forming member 36, for example, aluminum or copper is used.

流路形成部材36の第3リング状部材52bにおいて、貫通孔70aには両端開口の円筒状に形成される金属パイプ72aの一方端が嵌入されており、貫通孔70bには両端開口の円筒状に形成される金属パイプ72bの一方端が嵌入されている。金属パイプ72a,72bの他方端は、ポンプ部44に接続されている。このように流路形成部材36とポンプ部44とを金属パイプ72a,72bで接続することによって、流路形成部材36の流路F1,F2(後述)とポンプ部44内の空間とが金属パイプ72a,72b内の外部に開放されていない空間を介して繋げられる。金属パイプ72a,72bの材質としては、たとえばアルミニウムやステンレス等が用いられる。   In the third ring-shaped member 52b of the flow path forming member 36, one end of a metal pipe 72a formed in a cylindrical shape having both ends opened is fitted into the through hole 70a, and the cylindrical shape having both ends opened in the through hole 70b. The one end of the metal pipe 72b formed in is inserted. The other ends of the metal pipes 72 a and 72 b are connected to the pump unit 44. Thus, by connecting the flow path forming member 36 and the pump portion 44 with the metal pipes 72a and 72b, the flow paths F1 and F2 (described later) of the flow path forming member 36 and the space in the pump portion 44 are connected to the metal pipe. 72a and 72b are connected to each other through a space not open to the outside. As a material of the metal pipes 72a and 72b, for example, aluminum or stainless steel is used.

図2〜図4に戻って、収容部材38,40はそれぞれ、略直方体の箱状に形成されている。収容部材38,40の材質としては、たとえばアルミニウムやステンレス等が用いられる。図2および図3に示すように、エアポンプ34は4つのボルト74によって収容部材38の底面に固定されている。収容部材38,40の上面には、パイプP4が嵌通されている。また、図3および図4に示すように、収容部材38,40の側面には、ポンプ部44に接続されるパイプP3が嵌通されている。繊維状部材42は、たとえばグラスウールやスチールウール等からなり、収容部材38と40との間に詰められている。   Returning to FIG. 2 to FIG. 4, the housing members 38 and 40 are each formed in a substantially rectangular parallelepiped box shape. As the material of the housing members 38 and 40, for example, aluminum or stainless steel is used. As shown in FIGS. 2 and 3, the air pump 34 is fixed to the bottom surface of the housing member 38 by four bolts 74. A pipe P4 is fitted through the upper surfaces of the housing members 38, 40. As shown in FIGS. 3 and 4, a pipe P <b> 3 connected to the pump unit 44 is fitted on the side surfaces of the housing members 38 and 40. The fibrous member 42 is made of, for example, glass wool or steel wool, and is packed between the accommodating members 38 and 40.

図11は、流路形成部材36によって形成される流路F1,F2の形状を示す図解図である。図11に示すように、このようなエアポンプユニット28において、電動モータ46に取り付けられた流路形成部材36の内周側には、電動モータ46の本体46aを挟む流路F1とF2とがそれぞれ本体46aの下側と上側とに外部に露出することのないように形成される。ポンプ部44の駆動に伴ってポンプ部44に吸引される(与えられるべき)空気は、流路F1,F2および金属パイプ72a,72bを介してポンプ部44に流入する。   FIG. 11 is an illustrative view showing the shapes of the flow paths F1 and F2 formed by the flow path forming member 36. FIG. As shown in FIG. 11, in such an air pump unit 28, the flow paths F <b> 1 and F <b> 2 sandwiching the main body 46 a of the electric motor 46 are respectively provided on the inner peripheral side of the flow path forming member 36 attached to the electric motor 46. It is formed on the lower side and the upper side of the main body 46a so as not to be exposed to the outside. The air sucked (to be given) by the pump unit 44 as the pump unit 44 is driven flows into the pump unit 44 through the flow paths F1 and F2 and the metal pipes 72a and 72b.

流路F1,F2はそれぞれ、矢印D1方向から矢印D2方向への直角な屈曲と、矢印D2方向から矢印D1方向への直角な屈曲とを繰り返して蛇行するように延びている。つまり、流路F1,F2は、直角な屈曲を繰り返すサーペンタイン状を呈している。   The flow paths F1 and F2 respectively extend so as to meander by repeatedly bending at right angles from the direction of the arrow D1 to the direction of arrow D2 and bending at right angles from the direction of the arrow D2 to direction of the arrow D1. That is, the flow paths F1 and F2 have a serpentine shape that repeats a right-angle bend.

図12は、本体46aを前方下側からみた場合の流路F1の形状を示す図解図である。図12には、流路F1のみが示されている。図12をも参照して、本体46aの下側に形成される流路F1は、湾曲部C1〜C4および直進部S1〜S5によって構成されている。さらに図7をも参照して、図7には、流路形成部材36の流路F1に対応する部分に一点鎖線の経路が示されている。当該経路において湾曲部C1〜C4に対応する部分および直進部S1〜S5に対応する部分には、符号C1〜C4およびS1〜S5が付されている。   FIG. 12 is an illustrative view showing the shape of the flow path F1 when the main body 46a is viewed from the front lower side. FIG. 12 shows only the flow path F1. Referring also to FIG. 12, the flow path F <b> 1 formed on the lower side of the main body 46 a is configured by the curved portions C <b> 1 to C <b> 4 and rectilinear portions S <b> 1 to S <b> 5. Further, referring also to FIG. 7, in FIG. 7, a one-dot chain path is shown in a portion corresponding to the flow path F <b> 1 of the flow path forming member 36. Reference numerals C1 to C4 and S1 to S5 are attached to portions corresponding to the curved portions C1 to C4 and portions corresponding to the straight portions S1 to S5 in the path.

図7、図11および図12を参照して、湾曲部C1〜C4および直進部S1〜S5は、上流側から直進部S1、湾曲部C1、直進部S2、湾曲部C2、直進部S3、湾曲部C3、直進部S4、湾曲部C4および直進部S5の順に繋がっている。湾曲部C1〜C4は本体46aに沿って矢印D2方向に延びており、直進部S1〜S5は本体46aに沿って矢印D1方向に延びている。つまり、湾曲部C1〜C4と直進部S1〜S5とは互いに直交する方向に延びている。なお、本体46aの上側に形成される流路F2の形状は、流路F1の形状と上下対称であるので、流路F2の説明は省略する。   Referring to FIGS. 7, 11, and 12, the bending portions C1 to C4 and the rectilinear portions S1 to S5 are, from the upstream side, the rectilinear portion S1, the curving portion C1, the rectilinear portion S2, the curving portion C2, the rectilinear portion S3, and the curving portion. The part C3, the straight part S4, the bending part C4, and the straight part S5 are connected in this order. The curved portions C1 to C4 extend in the arrow D2 direction along the main body 46a, and the rectilinear portions S1 to S5 extend in the arrow D1 direction along the main body 46a. That is, the curved parts C1 to C4 and the straight parts S1 to S5 extend in directions orthogonal to each other. In addition, since the shape of the flow path F2 formed above the main body 46a is vertically symmetrical with the shape of the flow path F1, description of the flow path F2 is abbreviate | omitted.

この実施形態では、エアポンプ34のポンプ部44が供給機構に相当し、エアポンプ34の電動モータ46がモータに相当し、金属パイプ72a,72bが接続部材に相当する。収容部材は収容部材38と収容部材40とを含み、収容部材38が第1収容部材に相当し、収容部材40が第2収容部材に相当する。繊維状部材42が第1収容部材と前記第2収容部材との間に設けられる吸音部材に相当する。   In this embodiment, the pump portion 44 of the air pump 34 corresponds to a supply mechanism, the electric motor 46 of the air pump 34 corresponds to a motor, and the metal pipes 72a and 72b correspond to connection members. The housing member includes a housing member 38 and a housing member 40. The housing member 38 corresponds to the first housing member, and the housing member 40 corresponds to the second housing member. The fibrous member 42 corresponds to a sound absorbing member provided between the first housing member and the second housing member.

ついで、燃料電池システム10の基本的な動作について説明する。
上述した水溶液ポンプ24、水ポンプ30およびエアポンプ34等の補機類は、筐体12に収容されている図示しないコントローラによって制御される。コントローラは、たとえば図示しない二次電池の蓄電率が所定値未満になることを契機として、当該二次電池からの電力によって水溶液ポンプ24およびエアポンプ34の駆動を開始させ、セルスタック14に発電を開始させる。
Next, the basic operation of the fuel cell system 10 will be described.
Auxiliaries such as the aqueous solution pump 24, the water pump 30, and the air pump 34 described above are controlled by a controller (not shown) housed in the housing 12. The controller, for example, starts driving the aqueous solution pump 24 and the air pump 34 with the electric power from the secondary battery when the secondary battery storage rate (not shown) becomes less than a predetermined value, and starts power generation in the cell stack 14. Let

図1を参照して、水溶液タンク16内のメタノール水溶液は、水溶液ポンプ24の駆動によってパイプP1に流入し、水溶液ポンプ24、水溶液フィルタ26およびアノード入口I1を介してセルスタック14に含まれる各燃料電池20のアノード20bにダイレクトに供給される。   Referring to FIG. 1, the aqueous methanol solution in aqueous solution tank 16 flows into pipe P1 by driving aqueous solution pump 24, and each fuel contained in cell stack 14 via aqueous solution pump 24, aqueous solution filter 26 and anode inlet I1. Directly supplied to the anode 20 b of the battery 20.

一方、エアポンプ34のポンプ部44の駆動によって、外部の空気が筐体12内に取り込まれ、エアフィルタ30、パイプP4、エアポンプユニット28、パイプP3およびカソード入口I3を介してセルスタック14に含まれる各燃料電池20のカソード20cに供給される。   On the other hand, external air is taken into the housing 12 by driving the pump portion 44 of the air pump 34, and is included in the cell stack 14 via the air filter 30, the pipe P4, the air pump unit 28, the pipe P3, and the cathode inlet I3. It is supplied to the cathode 20c of each fuel cell 20.

エアポンプユニット28では、ポンプ部44の駆動によってパイプP4からの空気が収容部材38内に取り込まれる。図5に示すように、パイプP4からの空気は、流路形成部材36の貫通孔54a,54bから流路形成部材36に流入する。そして、流路形成部材36に流入した空気は、流路F1,F2および金属パイプ72a,72bを介してポンプ部44に与えられ、ポンプ部44から吐出される。金属パイプ72a,72bの一方端と他方端とが流路形成部材36とポンプ部44とに嵌入(隙間なく挿入)されているので、流路形成部材36とポンプ部44との間における空気漏れが防止される。したがって、ポンプ部44に吸引される(与えられるべき)全ての空気が流路形成部材36の流路F1,F2を流れる。言い換えれば、セルスタック14に供給される空気と同量の空気が流路形成部材36の流路F1,F2を流れる。   In the air pump unit 28, the air from the pipe P <b> 4 is taken into the housing member 38 by driving the pump unit 44. As shown in FIG. 5, the air from the pipe P <b> 4 flows into the flow path forming member 36 from the through holes 54 a and 54 b of the flow path forming member 36. The air flowing into the flow path forming member 36 is given to the pump unit 44 via the flow paths F1 and F2 and the metal pipes 72a and 72b, and is discharged from the pump unit 44. Since one end and the other end of the metal pipes 72 a and 72 b are fitted into the flow path forming member 36 and the pump portion 44 (inserted without gaps), air leakage between the flow path forming member 36 and the pump portion 44. Is prevented. Accordingly, all the air sucked (to be given) by the pump portion 44 flows through the flow paths F1 and F2 of the flow path forming member 36. In other words, the same amount of air as the air supplied to the cell stack 14 flows through the flow paths F1 and F2 of the flow path forming member 36.

加圧された空気がポンプ部44から吐出される際には、当該空気の圧力変化(減圧)に伴って騒音が生じる。このような騒音は、金属パイプ72a,72bを介してポンプ部44の上流側の流路形成部材36に伝播し(図5参照)、流路形成部材36の蛇行する流路F1,F2(図11参照)で減衰される。   When the pressurized air is discharged from the pump unit 44, noise is generated along with the pressure change (decompression) of the air. Such noise propagates to the flow path forming member 36 on the upstream side of the pump portion 44 through the metal pipes 72a and 72b (see FIG. 5), and the meandering flow paths F1 and F2 (see FIG. 5) of the flow path forming member 36. 11).

図13は、流路形成部材36の流路F1における騒音の進み方を示す図解図である。図7、図8および図13を参照して、流路F1を上流側に向かって矢印D1方向に進む騒音は、特に、第1リング状部材48においては後面、第2リング状部材50a,50bにおいてはリブ60aの後面、第3リング状部材52a,52bにおいてはリブ68aの後面に衝突し、その進行方向を変える。また、流路F1を上流側に向かって矢印D2方向に進む騒音は、特に、第2リング状部材50a,50bにおいては本体56の内周面かつ空隙G2近傍の部分、第3リング状部材52a,52bにおいては突起66に衝突し、その進行方向を変える。   FIG. 13 is an illustrative view showing how noise travels in the flow path F1 of the flow path forming member 36. FIG. Referring to FIGS. 7, 8, and 13, the noise that travels in the direction of arrow D <b> 1 toward the upstream side of flow path F <b> 1 is particularly the rear surface of first ring member 48, and second ring members 50 a and 50 b. , The rear surface of the rib 60a and the third ring-shaped members 52a and 52b collide with the rear surface of the rib 68a to change the traveling direction. In addition, noise that travels in the direction of arrow D2 toward the upstream side of the flow path F1 particularly occurs in the second ring-shaped members 50a and 50b, on the inner peripheral surface of the main body 56 and in the vicinity of the gap G2, the third ring-shaped member 52a. , 52b collide with the projection 66 and change its traveling direction.

このように、ポンプ部44の駆動に伴う騒音は、流路F1を形成する壁と衝突することによってその進行方向が変えられる。進行方向が変えられた騒音の一部は、図13に破線で示すように下流側に反射する。そして、下流側に反射した騒音が上流側から進んでくる騒音と衝突することによって、これらが減衰される。これによって、ポンプ部44の駆動に伴う騒音は、流路F1を下流側から上流側に進むにつれて小さくなる。流路F2においても同様であり、騒音は、流路F2を下流側から上流側に進むにつれて小さくなる。したがって、流路形成部材36ひいてはエアフィルタ30からの騒音の漏れが抑制される。   Thus, the traveling direction of the noise accompanying the driving of the pump unit 44 is changed by colliding with the wall forming the flow path F1. A part of the noise whose traveling direction is changed is reflected downstream as indicated by a broken line in FIG. Then, when the noise reflected to the downstream side collides with the noise traveling from the upstream side, these are attenuated. Thereby, the noise accompanying the drive of the pump unit 44 decreases as the flow path F1 is advanced from the downstream side to the upstream side. The same applies to the flow path F2, and the noise decreases as the flow path F2 proceeds from the downstream side to the upstream side. Therefore, leakage of noise from the flow path forming member 36 and the air filter 30 is suppressed.

また、図11に示すように、ポンプ部44に吸引される空気が、流路F1,F2を本体46aの外周面に沿って流れることによって、当該空気が本体46aの熱を吸収する。また、当該空気によって冷却される流路形成部材36も本体46aの熱を吸収する。これによって本体46aひいては電動モータ46が冷却される。   Further, as shown in FIG. 11, the air sucked into the pump unit 44 flows through the flow paths F1 and F2 along the outer peripheral surface of the main body 46a, so that the air absorbs the heat of the main body 46a. The flow path forming member 36 cooled by the air also absorbs the heat of the main body 46a. Thereby, the main body 46a and the electric motor 46 are cooled.

図1に戻って、各燃料電池20のアノード20bでは、メタノール水溶液の供給に伴って二酸化炭素および水素イオンが生成される。生成された水素イオンは、電解質膜20aを介してカソード20cに流入し、そのカソード20cに供給された空気中の酸素と電気化学反応する。これによって、水分(水および水蒸気)および電気エネルギが生成される。つまり、各燃料電池20ひいてはセルスタック14において発電が行われる。セルスタック14の温度は各種反応に伴って発生する熱によって上昇し、セルスタック14の出力はその温度上昇に伴って上昇する。燃料電池システム10は、セルスタック14が約60℃で定常的に発電可能な通常運転に移行する。セルスタック14からの電力は、二次電池の充電や外部の電子機器の駆動等に利用される。   Returning to FIG. 1, at the anode 20b of each fuel cell 20, carbon dioxide and hydrogen ions are generated with the supply of the aqueous methanol solution. The generated hydrogen ions flow into the cathode 20c through the electrolyte membrane 20a, and electrochemically react with oxygen in the air supplied to the cathode 20c. This produces moisture (water and water vapor) and electrical energy. That is, power generation is performed in each fuel cell 20 and thus in the cell stack 14. The temperature of the cell stack 14 rises due to heat generated by various reactions, and the output of the cell stack 14 rises as the temperature rises. The fuel cell system 10 shifts to a normal operation in which the cell stack 14 can generate power constantly at about 60 ° C. The electric power from the cell stack 14 is used for charging a secondary battery, driving an external electronic device, and the like.

各燃料電池20のアノード20bで生成された二酸化炭素および未反応メタノールを含むメタノール水溶液は、セルスタック14のアノード出口I2およびパイプP2を介して水溶液タンク16に還流される。   The aqueous methanol solution containing carbon dioxide and unreacted methanol generated at the anode 20b of each fuel cell 20 is returned to the aqueous solution tank 16 via the anode outlet I2 of the cell stack 14 and the pipe P2.

セルスタック14のカソード出口I4からは、各カソード20cで生成された水分、クロスオーバーによって各カソード20cに移動した水分(水および水蒸気)、各カソード20cで生成された二酸化炭素、および未反応の空気等を含む排気ガスが排出される。カソード出口I4からの排気ガスは、パイプP5を介して水タンク18に与えられる。排気ガスに含まれる水は、水タンク18に回収される。水が回収された後の排気ガスは、パイプP6を介して外部へ排出される。   From the cathode outlet I4 of the cell stack 14, moisture generated at each cathode 20c, moisture (water and water vapor) moved to each cathode 20c due to crossover, carbon dioxide generated at each cathode 20c, and unreacted air Exhaust gas containing etc. is discharged. The exhaust gas from the cathode outlet I4 is given to the water tank 18 through the pipe P5. The water contained in the exhaust gas is collected in the water tank 18. The exhaust gas after the water is recovered is discharged to the outside through the pipe P6.

なお、ポンプ部44の駆動に伴う騒音は、ポンプ部44の下流側にも伝播する。しかし、ポンプ部44の駆動に伴う騒音がパイプP6から外部に漏れることはほとんどない。これは、セルスタック14内の複雑な形状の流路で騒音が十分に減衰されるためである。   Note that the noise accompanying the drive of the pump unit 44 also propagates downstream of the pump unit 44. However, the noise accompanying the drive of the pump unit 44 hardly leaks from the pipe P6 to the outside. This is because the noise is sufficiently attenuated in the complicatedly shaped flow path in the cell stack 14.

このような燃料電池システム10によれば、ポンプ部44の駆動に伴う騒音が流路形成部材36に形成されている流路F1,F2を進むことによって流路F1,F2で反射して下流側から上流側に伝播しにくくなる。つまり、ポンプ部44の駆動に伴う騒音を流路F1,F2で減衰させることができる。したがって、ポンプ部44の駆動に伴う騒音が流路形成部材36の上流側のエアフィルタ30から外部に漏れることを抑制できる。具体的には、流路形成部材36を用いなければ通常運転時のエアフィルタ30からの騒音は70dB程度であるのに対し、流路形成部材36を用いることによって通常運転時のエアフィルタ30からの騒音を60dB程度に抑えることができる。このようにポンプ部44の駆動に伴う騒音を流路F1,F2で減衰させることによって、小型な構成で確実に騒音を低減できる。   According to the fuel cell system 10 as described above, the noise accompanying the drive of the pump unit 44 travels through the flow paths F1 and F2 formed in the flow path forming member 36 and is reflected by the flow paths F1 and F2 to the downstream side. It becomes difficult to propagate to the upstream side. That is, the noise accompanying driving of the pump unit 44 can be attenuated by the flow paths F1 and F2. Therefore, it is possible to suppress the noise accompanying the driving of the pump unit 44 from leaking to the outside from the air filter 30 on the upstream side of the flow path forming member 36. Specifically, if the flow path forming member 36 is not used, the noise from the air filter 30 during normal operation is about 70 dB, whereas using the flow path forming member 36 causes the noise from the air filter 30 during normal operation. Noise can be reduced to about 60 dB. In this way, by attenuating the noise accompanying the driving of the pump unit 44 through the flow paths F1 and F2, the noise can be reliably reduced with a small configuration.

また、ポンプ部44に吸引される空気が本体46aの外周面に沿うように流路F1,F2を流れることによって、当該空気および流路形成部材36に電動モータ46の熱を効率よく吸収させることができ、電動モータ46を効率よく冷却できる。これによってポンプ部44の駆動停止直後であっても、電動モータ46の温度が上昇し過ぎることを防止できる。空気の流通によって十分に冷却された流路形成部材36が本体46aに接しているので、ポンプ部44の駆動停止後には、特に流路形成部材36によって本体46aから熱を奪うことができ、電動モータ46の温度が上昇し過ぎることを防止できる。具体的には、流路形成部材36を用いなければ、通常運転時の電動モータ46の温度は70℃程度になり、ポンプ部44の駆動停止直後の電動モータ46の温度は100℃程度になってしまう。これに対し、流路形成部材36を用いることによって通常運転時の電動モータ46の温度を50℃程度に保つことができ、ポンプ部44の駆動停止直後であっても電動モータ46の温度を80℃程度に抑えることができる。このように電動モータ46を効率よく冷却できるので、電動モータ46ひいては燃料電池システム10の耐久性を向上できる。   Further, the air sucked into the pump portion 44 flows through the flow paths F1 and F2 so as to be along the outer peripheral surface of the main body 46a, so that the air and the flow path forming member 36 can efficiently absorb the heat of the electric motor 46. The electric motor 46 can be cooled efficiently. As a result, the temperature of the electric motor 46 can be prevented from rising excessively even immediately after the pump unit 44 is stopped. Since the flow path forming member 36 sufficiently cooled by the air flow is in contact with the main body 46a, heat can be taken away from the main body 46a by the flow path forming member 36 especially after the pump unit 44 is stopped. It is possible to prevent the temperature of the motor 46 from rising excessively. Specifically, if the flow path forming member 36 is not used, the temperature of the electric motor 46 during normal operation is about 70 ° C., and the temperature of the electric motor 46 immediately after the pump unit 44 is stopped is about 100 ° C. End up. On the other hand, the temperature of the electric motor 46 during normal operation can be maintained at about 50 ° C. by using the flow path forming member 36, and the temperature of the electric motor 46 can be set to 80 even immediately after the driving of the pump unit 44 is stopped. It can be suppressed to about ℃. Since the electric motor 46 can be efficiently cooled in this way, the durability of the electric motor 46 and thus the fuel cell system 10 can be improved.

さらに、電動モータ46の熱を十分に吸収した空気をセルスタック14に供給できるので、セルスタック14に効率よく発電させることができ、通常運転に迅速に移行させることができる。   Furthermore, since air that has sufficiently absorbed the heat of the electric motor 46 can be supplied to the cell stack 14, the cell stack 14 can be efficiently generated and can be quickly shifted to normal operation.

流路F1,F2が屈曲した形状を有することによって、ポンプ部44の駆動に伴う騒音が下流側により反射しやすくなり、騒音をより低減できる。   Since the flow paths F1 and F2 have a bent shape, noise associated with the driving of the pump unit 44 is easily reflected on the downstream side, and noise can be further reduced.

ポンプ部44に与えられるべき全ての空気が流路F1,F2を流れるように金属パイプ72a,72bを用いて流路形成部材36とポンプ部44とを接続することによって、流路F1,F2により多くの空気を流すことができ、電動モータ46をより効率よく冷却できる。また、ポンプ部44の駆動に伴う騒音を効果的に流路F1,F2に与えることができ、騒音をより低減できる。   By connecting the flow path forming member 36 and the pump section 44 using the metal pipes 72a and 72b so that all the air to be supplied to the pump section 44 flows through the flow paths F1 and F2, the flow paths F1 and F2 A lot of air can flow, and the electric motor 46 can be cooled more efficiently. Moreover, the noise accompanying the drive of the pump part 44 can be effectively given to the flow paths F1 and F2, and the noise can be further reduced.

エアポンプ34および流路形成部材36を収容部材38に収容することによって、騒音をより低減できる。収容部材38と40との二重構造を採用することによって、騒音をより効果的に低減できる。収容部材38と40との間に繊維状部材42を設けることによって、騒音をより一層低減できる。   By housing the air pump 34 and the flow path forming member 36 in the housing member 38, noise can be further reduced. By adopting a double structure of the housing members 38 and 40, noise can be reduced more effectively. By providing the fibrous member 42 between the housing members 38 and 40, noise can be further reduced.

騒音をさらに低減させるためには、図7に破線で示すように、第2リング状部材50a,50bおよび第3リング状部材52a,52bにそれぞれ板状の反射部材76を設けてもよい。つまり、流路F1,F2に反射部材76を設けてもよい。なお、図7には、リブ60a,68a側(流路F1)に設けられる反射部材76が破線で示されているが、リブ60b,68b側(流路F2)にも同様に反射部材76が設けられることはいうまでもない。   In order to further reduce noise, plate-like reflecting members 76 may be provided on the second ring-shaped members 50a and 50b and the third ring-shaped members 52a and 52b, respectively, as indicated by broken lines in FIG. That is, the reflecting member 76 may be provided in the flow paths F1 and F2. In FIG. 7, the reflecting member 76 provided on the ribs 60a and 68a side (flow path F1) is indicated by a broken line, but the reflecting member 76 is similarly provided on the ribs 60b and 68b side (flow path F2). Needless to say, it is provided.

図14は、反射部材76を設けた場合の流路F1における騒音の進み方を示す図解図である。図14に示すように、第2リング状部材50a,50bおよび第3リング状部材52a,52bのそれぞれにおいて、複数(ここでは2つ)の反射部材76は、流路F1を挟んで上流側と下流側とに離れた位置から下流側に向かって突出するように流路F1に設けられている。流路F1に反射部材76を設けることによって、ポンプ部44の駆動に伴う騒音が反射部材76によっても図14に破線で示すように下流側に反射される。なお、流路F2においても同様に反射部材76によって騒音が反射されることはいうまでもない。   FIG. 14 is an illustrative view showing how noise proceeds in the flow path F1 when the reflecting member 76 is provided. As shown in FIG. 14, in each of the second ring-shaped members 50a and 50b and the third ring-shaped members 52a and 52b, a plurality of (here, two) reflecting members 76 are disposed upstream of the flow path F1. It is provided in the flow path F1 so as to protrude toward the downstream side from a position away from the downstream side. By providing the reflection member 76 in the flow path F1, noise accompanying the driving of the pump unit 44 is also reflected downstream by the reflection member 76 as indicated by a broken line in FIG. Needless to say, noise is similarly reflected by the reflecting member 76 in the flow path F2.

このような反射部材76を流路F1,F2に設けることによって、下流側からの騒音を反射部材76によっても反射させることができ、騒音をより低減できる。反射部材76が流路F1,F2の下流側に向かって突出するように流路F1,F2に設けられることによって、上流側から下流側へと円滑に空気を流通させることができるとともに、下流側からの騒音をより反射させやすくなる。したがって、セルスタック14への空気供給を円滑に行うことができるとともに、騒音をより一層低減できる。   By providing such a reflection member 76 in the flow paths F1 and F2, noise from the downstream side can be reflected also by the reflection member 76, and noise can be further reduced. By providing the reflecting member 76 in the flow paths F1 and F2 so as to protrude toward the downstream side of the flow paths F1 and F2, air can be smoothly circulated from the upstream side to the downstream side, and the downstream side. It becomes easier to reflect the noise from. Therefore, air can be smoothly supplied to the cell stack 14, and noise can be further reduced.

なお、第2リング状部材50a,50bおよび第3リング状部材52a,52bにおける反射部材76の数は任意に設定できる。また、反射部材76は、第2リング状部材50a,50bおよび第3リング状部材52a,52bの全てに設けずともよく、任意のリング状部材にのみ反射部材76を設けることができる。さらに、反射部材の形状は、板状に限定されず、ポンプ部44の駆動に伴う騒音を効率よく反射させることができれば任意に設定できる。   The number of reflection members 76 in the second ring-shaped members 50a and 50b and the third ring-shaped members 52a and 52b can be arbitrarily set. Further, the reflection member 76 may not be provided on all of the second ring-shaped members 50a, 50b and the third ring-shaped members 52a, 52b, and the reflection member 76 can be provided only on an arbitrary ring-shaped member. Furthermore, the shape of the reflecting member is not limited to a plate shape, and can be arbitrarily set as long as noise accompanying driving of the pump unit 44 can be efficiently reflected.

第1リング状部材、第2リング状部材の本体および第3リング状部材の本体の形状は上述の実施形態に限定されない。たとえば図15に示す第1リング状部材78、第2リング状部材80および第3リング状部材82を、流路形成部材に用いてもよい。   The shapes of the first ring-shaped member, the second ring-shaped member main body, and the third ring-shaped member main body are not limited to the above-described embodiments. For example, the first ring-shaped member 78, the second ring-shaped member 80, and the third ring-shaped member 82 shown in FIG. 15 may be used as the flow path forming member.

図15に示すように、第1リング状部材78は、略C字の板状に形成されており、略四角板状の外形を有している。第1リング状部材78には、上述の第1リング状部材48と同様に、貫通孔54c,54dが設けられている。第1リング状部材78は、外形が異なることを除けば上述の第1リング状部材48と同様に構成されている。   As shown in FIG. 15, the first ring-shaped member 78 is formed in a substantially C-shaped plate shape, and has a substantially square plate-like outer shape. Similar to the first ring-shaped member 48 described above, the first ring-shaped member 78 is provided with through holes 54c and 54d. The 1st ring-shaped member 78 is comprised similarly to the above-mentioned 1st ring-shaped member 48 except the external shape differing.

図16は、第2リング状部材80の正面図である。図15および図16に示すように、第2リング状部材80は本体56aを含む。本体56aは、略C字の枠状に形成されている。本体56aの外周面は、第2リング状部材80を第1リング状部材78に繋げたときに第1リング状部材78の外周面と面一になるように形成されている。本体56aの内周面には、上述の第2リング状部材50aと同様に、突起58a、リブ60c,60dおよび出口62c、62dが設けられている。第2リング状部材80は、外形が異なることを除けば上述の第2リング状部材50aと同様に構成されている。   FIG. 16 is a front view of the second ring-shaped member 80. As shown in FIGS. 15 and 16, the second ring-shaped member 80 includes a main body 56a. The main body 56a is formed in a substantially C-shaped frame shape. The outer peripheral surface of the main body 56 a is formed to be flush with the outer peripheral surface of the first ring-shaped member 78 when the second ring-shaped member 80 is connected to the first ring-shaped member 78. Similar to the second ring-shaped member 50a described above, a protrusion 58a, ribs 60c and 60d, and outlets 62c and 62d are provided on the inner peripheral surface of the main body 56a. The second ring-shaped member 80 is configured in the same manner as the above-described second ring-shaped member 50a except that the outer shape is different.

図15に示すように、第3リング状部材82は本体64aを含む。本体64aは、第2リング状部材80の本体56aと同形状かつ同寸法に形成されている。第3リング状部材82の本体64aの内周面には、上述の第3リング状部材52aと同様に、突起66a、リブ68c,68dが設けられ、リブ68c,68dにはそれぞれ貫通孔70c,70dが設けられている。第3リング状部材82は、外形が異なることを除けば上述の第3リング状部材52aと同様に構成されている。   As shown in FIG. 15, the third ring-shaped member 82 includes a main body 64a. The main body 64a is formed in the same shape and the same size as the main body 56a of the second ring-shaped member 80. Similar to the third ring-shaped member 52a described above, a protrusion 66a and ribs 68c and 68d are provided on the inner peripheral surface of the main body 64a of the third ring-shaped member 82. The ribs 68c and 68d have through-holes 70c and 70c, respectively. 70d is provided. The third ring-shaped member 82 is configured in the same manner as the third ring-shaped member 52a described above except that the outer shape is different.

図15および図16に示すように、第2リング状部材80において本体56aの内周側には、湾曲されかつ多数の貫通孔が形成された2つの板状部材84が突起58aおよび空隙G2を挟んで上下に配置されている。板状部材84は、たとえばアルミニウムやステンレス等からなる。板状部材84と本体56aの内周面との間には、たとえばスチールウールからなる繊維状部材86が詰められている。第3リング状部材82についても同様であり、本体64aの内周側には2つの板状部材84が配置されており、板状部材84と本体64aの内周面との間には繊維状部材86が詰められている。この場合、板状部材84および繊維状部材86が流路形成部材の流路に設けられる吸音部材として機能する。   As shown in FIGS. 15 and 16, in the second ring-shaped member 80, two plate-shaped members 84 that are curved and have a large number of through holes are formed on the inner peripheral side of the main body 56a so that the projection 58a and the gap G2 are formed. It is arranged on the top and bottom. The plate member 84 is made of, for example, aluminum or stainless steel. A fibrous member 86 made of, for example, steel wool is packed between the plate member 84 and the inner peripheral surface of the main body 56a. The same applies to the third ring-shaped member 82, and two plate-like members 84 are disposed on the inner peripheral side of the main body 64 a, and a fibrous shape is provided between the plate-like member 84 and the inner peripheral surface of the main body 64 a. A member 86 is packed. In this case, the plate member 84 and the fibrous member 86 function as a sound absorbing member provided in the flow path of the flow path forming member.

このように第2リング状部材80および第3リング状部材82において流路の一部に板状部材84および繊維状部材86を設けることによって、騒音を屈曲した流路で減衰させつつ板状部材84および繊維状部材86によって吸収することもできる。詳しくは、騒音を板状部材84の多数の貫通孔を通過させることによって吸収した後に、さらに繊維状部材86によって騒音を吸収できる。このように簡単にかつ効率的に騒音を吸収できるので、騒音が上流側により伝播しにくくなり、騒音をより低減できる。   Thus, by providing the plate-shaped member 84 and the fibrous member 86 in a part of the flow path in the second ring-shaped member 80 and the third ring-shaped member 82, the plate-shaped member is attenuated in the curved flow path. 84 and the fibrous member 86 can also be absorbed. Specifically, after absorbing the noise by passing a large number of through holes of the plate-like member 84, the noise can be further absorbed by the fibrous member 86. Since noise can be absorbed easily and efficiently in this way, it becomes difficult for noise to propagate to the upstream side, and noise can be further reduced.

繊維状部材86に代えてたとえば、銅やステンレス等からなり、連続気泡を有する無塵性の金属発泡体を吸音部材として第2リング状部材80および第3リング状部材82の内周面側に配置してもよい。上述の板状部材84は、スチールウールからなる繊維状部材86の位置ずれを防止するとともに、ポンプ部44の駆動に伴って繊維状部材86を構成する繊維が下流側に流れることを防止する機能も有している。吸音部材として無塵性の金属発泡体を用いる場合、当該金属発泡体をたとえば本体56a,64aの内周面に貼り付けることができ、かつ金属発泡体の一部が下流側に流れることもない。したがって、この場合、板状部材84を省略してもよい。   Instead of the fibrous member 86, for example, a dust-free metal foam made of copper, stainless steel or the like and having open cells is used as a sound absorbing member on the inner peripheral surface side of the second ring member 80 and the third ring member 82. You may arrange. The plate-like member 84 described above prevents the fiber member 86 made of steel wool from being displaced and prevents the fibers constituting the fiber member 86 from flowing downstream as the pump unit 44 is driven. Also have. When a dust-free metal foam is used as the sound absorbing member, the metal foam can be attached to, for example, the inner peripheral surfaces of the main bodies 56a and 64a, and a part of the metal foam does not flow downstream. . Therefore, in this case, the plate member 84 may be omitted.

なお、流路に設けられる吸音部材は、貫通孔を有する板状部材、繊維状部材および金属発泡体から任意に選択できかつ任意に組み合わせることができる。   The sound absorbing member provided in the flow path can be arbitrarily selected from a plate-shaped member having a through hole, a fibrous member, and a metal foam, and can be arbitrarily combined.

また、第1収容部材と第2収容部材との間に設けられる吸音部材は、上述の繊維状部材42に限定されず、金属発泡体であってもよいし、繊維状部材と金属発泡体との組み合わせであってもよい。   Further, the sound absorbing member provided between the first housing member and the second housing member is not limited to the fibrous member 42 described above, and may be a metal foam, or the fibrous member and the metal foam. A combination of these may be used.

なお、流路形成部材に用いる第2リング状部材および第3リング状部材の数は、上述の流路形成部材36のように2つずつに限定されない。第2リング状部材と第3リング状部材とを1つずつ用いて流路形成部材を構成してもよいし、3つ以上の第2リング状部材と第3リング状部材とを用いて流路形成部材を構成してもよい。より多くの第2リング状部材および第3リング状部材を用いて流路形成部材の流路の屈曲を増やすほど、騒音を低減できる。また、より多くの第2リング状部材および第3リング状部材を用いて流路形成部材の流路を長くするほど、電動モータ46を効率よく冷却できる。流路形成部材によって電動モータ46をどの程度覆うかは、求められる騒音低減の程度および電動モータ46の冷却の程度に応じて任意に設定できる。   Note that the number of the second ring-shaped member and the third ring-shaped member used for the flow path forming member is not limited to two as in the above-described flow path forming member 36. The flow path forming member may be configured by using the second ring member and the third ring member one by one, or the flow may be formed by using three or more second ring members and third ring members. A path forming member may be configured. Noise can be reduced as the number of the second ring-shaped member and the third ring-shaped member is increased to increase the bending of the flow path forming member. Moreover, the electric motor 46 can be cooled more efficiently as the flow path of the flow path forming member is made longer by using more second ring-shaped members and third ring-shaped members. The extent to which the electric motor 46 is covered with the flow path forming member can be arbitrarily set according to the required degree of noise reduction and the degree of cooling of the electric motor 46.

また、流路形成部材は、別体の第1リング状部材、第2リング状部材および第3リング状部材によって構成されるものに限定されず、一体物であってもよい。   Further, the flow path forming member is not limited to one constituted by a separate first ring-shaped member, second ring-shaped member, and third ring-shaped member, and may be an integral member.

また、流路形成部材に形成される流路の数は、上述の流路形成部材36のように2つに限定されない。流路形成部材に形成される流路の数は、1つであってもよいし、3つ以上であってもよい。   Further, the number of flow paths formed in the flow path forming member is not limited to two as in the flow path forming member 36 described above. The number of flow paths formed in the flow path forming member may be one, or may be three or more.

また、流路形成部材に形成される流路の形状は、上述の実施形態に限定されない。たとえば、連続した山形を呈するように屈曲を繰り返しつつ延びる流路(たとえば鋸歯状に延びる流路)を流路形成部材に形成してもよい。騒音を効果的に低減させるためには、流路形成部材の流路が90・以下の角度で屈曲していることが好ましい。さらに、流路形成部材の流路は、必ずしも屈曲していなくてもよく、騒音を効果的に低減できるならばたとえば螺旋状であってもよい。このように騒音を効果的に低減できる任意の形状を、流路形成部材の流路の形状として採用できる。   Moreover, the shape of the flow path formed in the flow path forming member is not limited to the above-described embodiment. For example, a channel (for example, a channel extending in a sawtooth shape) that extends while being bent repeatedly to form a continuous mountain shape may be formed in the channel forming member. In order to effectively reduce noise, it is preferable that the flow path of the flow path forming member bends at an angle of 90 · or less. Furthermore, the flow path of the flow path forming member does not necessarily have to be bent, and may be spiral, for example, as long as noise can be effectively reduced. Thus, any shape that can effectively reduce noise can be adopted as the shape of the flow path of the flow path forming member.

さらに、流路形成部材に形成される流路は、上述の流路F1,F2のように本体46aの外周面に空気を直接流すものに限定されない。つまり、上述の流路F1,F2のように、その壁が本体46aの外周面を含むものに限定されない。たとえば、流路形成部材の内部を屈曲しながら延びるように流路形成部材に流路を設け、流路形成部材の内部で空気を流すようにしてもよい。   Furthermore, the flow path formed in the flow path forming member is not limited to the one that allows air to flow directly to the outer peripheral surface of the main body 46a like the above-described flow paths F1 and F2. That is, the wall is not limited to the one including the outer peripheral surface of the main body 46a like the above-described flow paths F1 and F2. For example, a flow path may be provided in the flow path forming member so as to extend while bending the inside of the flow path forming member, and air may flow inside the flow path forming member.

具体的には、図17および図18に示すような流路形成部材36aを用いることができる。流路形成部材36aは、第1リング状部材88、第2リング状部材90a,90bおよび第3リング状部材92a,92bを含む。   Specifically, a flow path forming member 36a as shown in FIGS. 17 and 18 can be used. The flow path forming member 36a includes a first ring-shaped member 88, second ring-shaped members 90a and 90b, and third ring-shaped members 92a and 92b.

図17は流路形成部材36aを右上前方からみた分解斜視図である。図18は流路形成部材36aを右上後方からみた分解斜視図である。また、図19は第2リング状部材90a,90bの正面図であり、図20は第3リング状部材92a,92bの正面図である。   FIG. 17 is an exploded perspective view of the flow path forming member 36a as viewed from the upper right front. FIG. 18 is an exploded perspective view of the flow path forming member 36a as viewed from the upper right rear. FIG. 19 is a front view of the second ring-shaped members 90a and 90b, and FIG. 20 is a front view of the third ring-shaped members 92a and 92b.

第1リング状部材88は、Oリング状に構成されている点を除いて第1リング状部材48と同様に構成されている。第2リング状部材90aと第2リング状部材90bとは同様に構成されている。第2リング状部材90a,90bは、電動モータ46の本体46aの外周面に接触する内周部材94を有しかつOリング状に形成されている点を除いて、第2リング状部材50a,50bと同様に構成されている。第3リング状部材92aと第3リング状部材92bとは同様に構成されている。第3リング状部材92a,92bは、電動モータ46の本体46aの外周面に接触する内周部材96を有しかつOリング状に形成されている点を除いて、第3リング状部材52a,52bと同様に構成されている。   The first ring-shaped member 88 is configured in the same manner as the first ring-shaped member 48 except that it is configured in an O-ring shape. The second ring-shaped member 90a and the second ring-shaped member 90b are configured similarly. The second ring-shaped members 90a and 90b have an inner peripheral member 94 that is in contact with the outer peripheral surface of the main body 46a of the electric motor 46, and are formed in an O-ring shape. The configuration is the same as 50b. The third ring-shaped member 92a and the third ring-shaped member 92b are configured similarly. The third ring-shaped members 92a and 92b have an inner peripheral member 96 that comes into contact with the outer peripheral surface of the main body 46a of the electric motor 46 and are formed in an O-ring shape. The configuration is the same as 52b.

図17および図18に示すように、これらのリング状部材は、前方側から第1リング状部材88、第2リング状部材90a、第3リング状部材92a、第2リング状部材90bおよび第3リング状部材92bの順に配置され、一体化される。   As shown in FIG. 17 and FIG. 18, these ring-shaped members are, from the front side, the first ring-shaped member 88, the second ring-shaped member 90a, the third ring-shaped member 92a, the second ring-shaped member 90b and the third ring-shaped member. The ring-shaped members 92b are arranged in this order and integrated.

このような流路形成部材36aによれば、流路形成部材36aの内部に、屈曲しながら延びる流路を設けることができ、空気は本体46aの外周面に接触することなく流路形成部材36aの内部を流れる。   According to such a flow path forming member 36a, the flow path forming member 36a can be provided with a flow path that extends while being bent, and the air does not contact the outer peripheral surface of the main body 46a and the flow path forming member 36a. Flowing inside.

なお、上述の実施形態では、供給機構としてルーツブロア型のポンプ部44を用いる場合について説明したが、供給機構はこれに限定されない。供給機構として、たとえばダイヤフラム型やピストン型等のポンプ部を用いるようにしてもよい。   In the above-described embodiment, the case where the roots blower type pump unit 44 is used as the supply mechanism has been described. However, the supply mechanism is not limited thereto. As the supply mechanism, for example, a pump unit such as a diaphragm type or a piston type may be used.

上述の実施形態では、モータとして電動モータ46を用いる場合について説明したが、モータはこれに限定されない。   In the above-described embodiment, the case where the electric motor 46 is used as the motor has been described. However, the motor is not limited to this.

上述の実施形態では、供給機構であるポンプ部44とモータである電動モータ46とが一体的に設けられたエアポンプ34を用いる場合について説明したが、供給機構とモータとは分離されていてもよい。   In the above-described embodiment, the case where the air pump 34 in which the pump unit 44 that is the supply mechanism and the electric motor 46 that is the motor are integrally used is described, but the supply mechanism and the motor may be separated. .

接続部材は、上述の金属パイプ72a,72b(金属製のパイプ)に限定されない。接続部材として、たとえば合成樹脂製のパイプを用いるようにしてもよい。   The connection member is not limited to the above-described metal pipes 72a and 72b (metal pipes). For example, a pipe made of synthetic resin may be used as the connection member.

上述の実施形態では、収容部材38と40とを含む二重構造の収容部材を用いる場合について説明したが、収容部材はこれに限定されない。1つの収容部材によって構成される収容部材を用いてもよい。   In the above-described embodiment, the case where a double-structured housing member including the housing members 38 and 40 is used has been described, but the housing member is not limited to this. You may use the accommodation member comprised by one accommodation member.

上述の実施形態では、収容部材38にエアポンプ34および流路形成部材36を収容する場合について説明したが、流路形成部材36のみを収容する(覆う)収容部材を用いてもよい。   Although the case where the air pump 34 and the flow path forming member 36 are accommodated in the accommodating member 38 has been described in the above-described embodiment, an accommodating member that accommodates (covers) only the flow path forming member 36 may be used.

上述の実施形態では、燃料としてメタノールを、燃料水溶液としてメタノール水溶液を用いたが、これに限定されず、燃料としてエタノール等のアルコール系燃料、燃料水溶液としてエタノール水溶液等のアルコール系水溶液を用いてもよい。   In the above embodiment, methanol is used as the fuel, and methanol aqueous solution is used as the fuel aqueous solution. However, the present invention is not limited to this, and alcohol-based fuel such as ethanol may be used as the fuel, and alcohol-based aqueous solution such as ethanol aqueous solution may be used as the fuel aqueous solution. Good.

上述の実施形態では、直接メタノール型燃料電池システムについて説明したが、この発明はこれに限定されない。この発明は、改質器搭載型燃料電池システムや水素ガスを燃料として燃料電池に供給する水素型燃料電池システムにも適用できる。   In the above-described embodiment, the direct methanol fuel cell system has been described, but the present invention is not limited to this. The present invention can also be applied to a reformer-mounted fuel cell system and a hydrogen fuel cell system that supplies hydrogen gas to a fuel cell as fuel.

この発明は、自動二輪車等の輸送機器、またはパーソナルコンピュータ等の電子機器に搭載される燃料電池システムにも適用できる。また、据え付け(固定)タイプの燃料電池システムにも適用できる。   The present invention can also be applied to a fuel cell system mounted on transportation equipment such as a motorcycle or electronic equipment such as a personal computer. The present invention can also be applied to a stationary (fixed) type fuel cell system.

10 燃料電池システム
14 燃料電池セルスタック
20 燃料電池(燃料電池セル)
28 エアポンプユニット
34 エアポンプ
36,36a 流路形成部材
38,40 収容部材
42,86 繊維状部材
44 ポンプ部
46 電動モータ
48,78,88 第1リング状部材
50a,50b,80,90a,90b 第2リング状部材
52a,52b,82,92a,92b 第3リング状部材
72a,72b 金属パイプ
76 反射部材
84 板状部材
F1,F2 流路
C1〜C4 湾曲部
S1〜S5 直進部
10 Fuel cell system 14 Fuel cell stack 20 Fuel cell (fuel cell)
28 Air pump unit 34 Air pump 36, 36a Flow path forming member 38, 40 Housing member 42, 86 Fibrous member 44 Pump part 46 Electric motor 48, 78, 88 First ring-shaped member 50a, 50b, 80, 90a, 90b Second Ring-shaped member 52a, 52b, 82, 92a, 92b Third ring-shaped member 72a, 72b Metal pipe 76 Reflecting member 84 Plate-shaped member F1, F2 Flow path C1-C4 Curved portion S1-S5 Straight portion

Claims (9)

燃料電池と、
前記燃料電池に空気を供給するための供給機構と、
前記供給機構を駆動するためのモータと、
前記モータに接するように前記モータの表面に設けられ、前記供給機構に与えられるべき空気が流れる流路を形成する流路形成部材と、
前記供給機構に与えられるべき全ての空気が前記流路を流れるように前記流路形成部材と前記供給機構とを接続する接続部材とを備え
前記流路は、サーペンタイン状、鋸歯状または螺旋状に形成される、燃料電池システム。
A fuel cell;
A supply mechanism for supplying air to the fuel cell;
A motor for driving the supply mechanism;
A flow path forming member provided on the surface of the motor so as to be in contact with the motor and forming a flow path through which air to be supplied to the supply mechanism flows;
And a connecting member all the air to be supplied to the feed mechanism to connect the supply mechanism and the flow path forming member so as to flow the channel,
The flow path is a fuel cell system formed in a serpentine shape, a sawtooth shape, or a spiral shape .
前記流路は屈曲した形状を有する、請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the flow path has a bent shape. 前記流路の下流側からの音を反射させるために前記流路に設けられる反射部材をさらに含む、請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, further comprising a reflecting member provided in the flow path for reflecting sound from the downstream side of the flow path. 前記反射部材は、前記流路の下流側に向かって前記流路に突出するように設けられる、請求項に記載の燃料電池システム。 The fuel cell system according to claim 3 , wherein the reflection member is provided so as to protrude from the flow path toward the downstream side of the flow path. 前記流路に設けられる吸音部材をさらに含む、請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, further comprising a sound absorbing member provided in the flow path. 前記吸音部材は、貫通孔を有する板状部材、繊維状部材および金属発泡体の少なくともいずれか1つを含む、請求項に記載の燃料電池システム。 6. The fuel cell system according to claim 5 , wherein the sound absorbing member includes at least one of a plate-like member having a through hole, a fibrous member, and a metal foam. 前記流路形成部材を収容する収容部材をさらに含む、請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, further comprising a housing member that houses the flow path forming member. 前記収容部材は、前記流路形成部材を収容する第1収容部材と、前記第1収容部材を収容する第2収容部材とを含む、請求項に記載の燃料電池システム。 The fuel cell system according to claim 7 , wherein the housing member includes a first housing member that houses the flow path forming member and a second housing member that houses the first housing member. 前記第1収容部材と前記第2収容部材との間に設けられる吸音部材をさらに含む、請求項に記載の燃料電池システム。 The fuel cell system according to claim 8 , further comprising a sound absorbing member provided between the first housing member and the second housing member.
JP2009180392A 2008-08-08 2009-08-03 Fuel cell system Expired - Fee Related JP5503917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180392A JP5503917B2 (en) 2008-08-08 2009-08-03 Fuel cell system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008205940 2008-08-08
JP2008205940 2008-08-08
JP2009180392A JP5503917B2 (en) 2008-08-08 2009-08-03 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2010062142A JP2010062142A (en) 2010-03-18
JP5503917B2 true JP5503917B2 (en) 2014-05-28

Family

ID=41528390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180392A Expired - Fee Related JP5503917B2 (en) 2008-08-08 2009-08-03 Fuel cell system

Country Status (3)

Country Link
JP (1) JP5503917B2 (en)
DE (1) DE102009036363B4 (en)
TW (1) TWI389382B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102646454B1 (en) * 2019-07-16 2024-03-13 에프씨피 퓨얼 셀 파워트레인 게엠베하 Integrated backplane for fuel cell systems and fuel cell modules

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010023671A1 (en) 2010-06-12 2011-12-15 Daimler Ag Fuel cell system with a fuel cell arranged in a housing
EP2608302B1 (en) 2010-08-17 2015-09-30 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
WO2023232292A1 (en) * 2022-06-01 2023-12-07 Eaton Intelligent Power Limited Roots-type compressor system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105010U (en) * 1982-12-29 1984-07-14 本田技研工業株式会社 Exhaust pipe
US5957667A (en) * 1997-05-23 1999-09-28 Ballard Generation Systems Inc. Oilless compressor with a pressurizable crankcase and motor containment vessel
DE10027350B4 (en) * 2000-06-02 2010-05-12 General Motors Corporotion, Detroit Compressor arrangement for the operation of a fuel cell system and a method for cooling and / or sound insulation of a compressor assembly
JP2002343394A (en) * 2001-05-22 2002-11-29 Matsushita Electric Works Ltd Fuel cell power generating system
JP3951697B2 (en) * 2001-12-14 2007-08-01 株式会社デンソー Screw type compressor
JP2003247495A (en) * 2002-02-21 2003-09-05 Ebara Corp Silencing box and fluid machinery
JP2008066102A (en) * 2006-09-07 2008-03-21 Yamaha Corp Air supply device for fuel cell
JP4859121B2 (en) * 2006-09-26 2012-01-25 日東工業株式会社 Circuit breaker
JP2008084564A (en) * 2006-09-26 2008-04-10 Toshiba Corp Fuel cell device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102646454B1 (en) * 2019-07-16 2024-03-13 에프씨피 퓨얼 셀 파워트레인 게엠베하 Integrated backplane for fuel cell systems and fuel cell modules
US12136755B2 (en) 2019-07-16 2024-11-05 Fcp Fuel Cell Powertrain Gmbh Fuel cell system and integration back-plane for fuel cell modules

Also Published As

Publication number Publication date
TW201010167A (en) 2010-03-01
JP2010062142A (en) 2010-03-18
DE102009036363A1 (en) 2010-02-18
DE102009036363B4 (en) 2015-02-05
TWI389382B (en) 2013-03-11

Similar Documents

Publication Publication Date Title
JP6184689B2 (en) Silencers for reducing noise in fuel cell systems
JP4686362B2 (en) Fuel cell system and fuel cell vehicle
JP5503917B2 (en) Fuel cell system
JP2006151298A (en) Fuel cell powered vehicle
JP2013143379A (en) Hybrid noise eliminator providing vapor liquid separation function in fuel cell system
US20120201709A1 (en) Compressor
US9543610B2 (en) Fuel cell vehicle
CN112786923B (en) Fuel cell system
JP2017043256A (en) Fuel cell vehicle
JP2008311016A (en) Battery pack
JP6491585B2 (en) Fuel cell system
EP1898484A2 (en) Apparatus for supplying air to fuel cell
KR20060097932A (en) Pump having noise suppression and sound proof structure and fuel cell system using same
JP2007226991A (en) Fuel cell
JP5217229B2 (en) Vehicle with fuel cell
JP2008074291A (en) Piping structure for vehicle
JP2007247630A (en) Compressed gas module for fuel cell
JP5508915B2 (en) Fuel cell system
JP5350966B2 (en) Humidification module
JP2014071943A (en) On-vehicle fuel cell system
JP2010212121A (en) Fuel cell vehicle
JP2008052969A (en) Fuel cell system
JP5011685B2 (en) FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP2006253110A (en) Pump having noiseproof and dustproof structure, and fuel cell system employing the same
JP2008147135A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5503917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees