JP5502677B2 - Metal plastic working tool with excellent lubrication characteristics and method for producing the same - Google Patents
Metal plastic working tool with excellent lubrication characteristics and method for producing the same Download PDFInfo
- Publication number
- JP5502677B2 JP5502677B2 JP2010215090A JP2010215090A JP5502677B2 JP 5502677 B2 JP5502677 B2 JP 5502677B2 JP 2010215090 A JP2010215090 A JP 2010215090A JP 2010215090 A JP2010215090 A JP 2010215090A JP 5502677 B2 JP5502677 B2 JP 5502677B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- substrate
- plastic working
- hard
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 25
- 239000002184 metal Substances 0.000 title claims description 25
- 238000005461 lubrication Methods 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000576 coating method Methods 0.000 claims description 72
- 239000011248 coating agent Substances 0.000 claims description 63
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical group C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 35
- 239000013078 crystal Substances 0.000 claims description 32
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 30
- 239000007789 gas Substances 0.000 claims description 18
- 238000007733 ion plating Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 238000005755 formation reaction Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000002083 X-ray spectrum Methods 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- -1 titanium carbides Chemical class 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Forging (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、例えば、金型といった治工具においては、その他材と接する作業面に被覆される機能性皮膜について、潤滑性に優れた硬質皮膜およびその被覆方法に関するものである。そして、これらの硬質皮膜を作業面に被覆してなる金属塑性加工用工具に関するものである。 The present invention relates to a hard coating excellent in lubricity and a coating method thereof for a functional coating coated on a work surface in contact with other materials in a jig such as a mold. And it is related with the tool for metal plastic working formed by coat | covering these hard films on a working surface.
従来、鍛造やプレスといった塑性加工には、冷間ダイス鋼、熱間ダイス鋼、高速度鋼といった工具鋼に代表される鋼や、超硬合金等を母材とする治工具が用いられてきた。そして、例えば金属の塑性加工に用いられる治工具の場合、その作業面は被加工材と激しく摺動することによって、表面が著しい損耗を起こす。このため、治工具の作業面には何らかの表面処理を施しておくことで、その耐摩耗性を高める対策が広く行われている。その中でもコーティング(被覆)技術は、ビッカース硬度で1000HVを超えるような硬質皮膜を、基体表面に密着性よく形成できることから、金型や切削工具の寿命改善に大きく寄与している。 Conventionally, jigs such as cold die steel, hot die steel, and high-speed steel such as tool steel, and jigs based on cemented carbide have been used for plastic working such as forging and pressing. . For example, in the case of a jig used for plastic processing of metal, the work surface slides violently with the work material, causing the surface to wear significantly. For this reason, a measure for increasing the wear resistance is widely performed by applying some surface treatment to the work surface of the jig. Among them, the coating (coating) technology greatly contributes to the improvement of the service life of dies and cutting tools because a hard film having a Vickers hardness exceeding 1000 HV can be formed on the substrate surface with good adhesion.
しかしながら、このような治工具においては、特に上記の塑性加工用工具の作業環境がそうであるように、表面の耐摩耗性を高めるだけではなく、被加工材が凝着を起こさないよう、その潤滑特性をも高めることが非常に効果的である。この課題においては、例えばチタン(Ti)の炭化物は、高い耐摩耗性と摺動特性を兼ね備えることから、皮膜として治工具の表面に積極的に利用されている。このチタン炭化物の皮膜は、主に化学蒸着法(CVD法)によって形成されるものであるが(非特許文献1)、その他では、物理蒸着法(PVD法)の一種であるアークイオンプレーティング法によっても形成される(非特許文献2)。また、バナジウム炭化物(VC)の皮膜においても、従来のTD処理に加えて、上記のアークイオンプレーティング法による形成手段が提案されている(特許文献1)。 However, in such jigs and tools, not only the wear resistance of the surface is improved, but also the work material does not cause adhesion, particularly as in the working environment of the plastic working tool described above. It is very effective to improve the lubrication characteristics. In this problem, for example, titanium (Ti) carbide is actively used as a film on the surface of jigs and tools because it has both high wear resistance and sliding properties. The titanium carbide film is formed mainly by a chemical vapor deposition method (CVD method) (Non-Patent Document 1), but otherwise, an arc ion plating method which is a kind of physical vapor deposition method (PVD method). (Non-patent Document 2). Further, in addition to the conventional TD treatment, a means for forming the vanadium carbide (VC) film by the arc ion plating method has been proposed (Patent Document 1).
そして、上記の従来技術に対しては、本出願人は、チタン炭化物皮膜中にダイヤモンドライクカーボン(DLC)に代表されるsp2および/またはsp3結合構造からなる炭素原子を分散させた硬質皮膜を提案した(特許文献2、3)。この硬質皮膜は、高硬度かつ潤滑特性にも優れるものであり、アークイオンプレーティング法によって金属塑性加工用工具の作業面に被覆される。 For the above prior art, the applicant of the present application is a hard film in which carbon atoms having sp 2 and / or sp 3 bond structures represented by diamond-like carbon (DLC) are dispersed in a titanium carbide film. (Patent Documents 2 and 3). This hard film has high hardness and excellent lubrication characteristics, and is coated on the work surface of the metal plastic working tool by the arc ion plating method.
非特許文献1にある従来のCVD法や、そしてTD処理は、いずれも成膜温度が1000℃以上と高温であるため、基体に変形や変寸を生じやすい。よって、これらの被覆処理の結果、その被覆後の工具(金型を含む)形状を調整する必要が生じれば、そのための削り出し作業は容易ではない。一方、特許文献1や非特許文献2のPVD法は、処理温度が低いため、工具の変形や変寸の問題は少ない。そして皮膜特性としても、高い耐摩耗性と摺動特性を兼ね備える。しかし、更なる工具の寿命向上のためには、皮膜が優れた潤滑特性を有した上で、更に皮膜硬度を高めて、工具の耐摩耗性を向上させることが、大きな課題となっている。 The conventional CVD method and non-patent document 1 described in Non-Patent Document 1 and the TD treatment are both high in film formation temperature of 1000 ° C. or higher, so that the substrate is likely to be deformed or deformed. Therefore, if it is necessary to adjust the shape of the tool (including the mold) after the coating as a result of these coating processes, the cutting work for that purpose is not easy. On the other hand, the PVD methods of Patent Document 1 and Non-Patent Document 2 have a low processing temperature, so there are few problems of tool deformation and size change. And also as a film characteristic, it has high abrasion resistance and sliding characteristics. However, in order to further improve the tool life, it has become a major issue to improve the wear resistance of the tool by further increasing the film hardness while the film has excellent lubrication characteristics.
そこで、本出願人が提案した特許文献1、2の硬質皮膜は、その潤滑特性に優れ、硬度も3000HVに及ぶものではあるが、更なる高硬度(例えば3300HV以上)の安定した達成を狙うとなれば、改良の余地があった。本発明は、優れた潤滑特性を維持した上では、特許文献1、2に比して更なる高硬度を達成し得る硬質皮膜とその被覆方法、そして、これらの硬質皮膜を作業面に被覆した金属塑性加工用工具を提供するものである。 Therefore, the hard coatings of Patent Documents 1 and 2 proposed by the present applicant are excellent in lubrication characteristics and have a hardness of up to 3000 HV, but aiming for stable achievement of higher hardness (for example, 3300 HV or more). If it became, there was room for improvement. In the present invention, while maintaining excellent lubrication characteristics, a hard film capable of achieving higher hardness compared to Patent Documents 1 and 2, a coating method thereof, and a work surface coated with these hard films A metal plastic working tool is provided.
本発明者らは、優れた潤滑特性を有しながらも、特許文献1、2に比して更に硬度を高めた硬質皮膜を達成するために、詳細な検討を重ねた。その結果、NaCl型結晶構造からなるチタン炭化物(TiC)の硬質皮膜においては、その皮膜中の結晶粒を微細化することで、皮膜の硬度が飛躍的に向上することを突きとめた。そして、この革新的な知見に併せて、この微細な結晶粒を達成するに好ましいチタン炭化物皮膜の被覆条件をも確立したことで、本発明に至った。 The inventors of the present invention have made detailed studies in order to achieve a hard film having higher lubrication properties than those of Patent Documents 1 and 2 while having excellent lubrication characteristics. As a result, in the hard film of titanium carbide (TiC) having a NaCl type crystal structure, it was found that the hardness of the film is remarkably improved by refining crystal grains in the film. In addition to this innovative knowledge, the present inventors have also established the preferable coating conditions for the titanium carbide film to achieve the fine crystal grains, thereby leading to the present invention.
すわなち本発明は、基体の表面にアークイオンプレーティング法によって被覆される硬質皮膜を有した金属塑性加工用工具であって、前記硬質皮膜は、他材と接する最表面に形成されたチタン炭化物であり、前記チタン炭化物の基地中には非晶質炭素が分散しており、NaCl型結晶構造における(111)面の半価幅が1.75°以上である潤滑特性に優れた金属塑性加工用工具である。前記チタン炭化物は、ビッカース硬さが3300HV以上であることをが望ましい。前記基体の直上にはチタン窒化物からなる中間皮膜を有することが望ましい。 That is, the present invention relates to a metal plastic working tool having a hard film coated on the surface of a substrate by an arc ion plating method , wherein the hard film is formed on the outermost surface in contact with another material. Metal carbide with excellent lubrication characteristics in which amorphous carbon is dispersed in the matrix of titanium carbide and the half width of the (111) plane in the NaCl type crystal structure is 1.75 ° or more. It is a processing tool. The titanium carbide desirably has a Vickers hardness of 3300 HV or more. It is desirable to have an intermediate film made of titanium nitride directly on the substrate.
また本発明は、アークイオンプレーティングによって基体の表面に硬質皮膜を被覆する金属塑性加工用工具の製造方法であって、前記硬質皮膜の被覆にはチタンターゲットを用い、前記基体に−120V〜−150Vのバイアス電圧を印加し、炉内にメタンガスを導入して炉内圧力を2.8Pa〜3.8Paとし、前記基体の最表面にチタン炭化物を被覆する潤滑特性に優れた金属塑性加工用工具の製造方法である。前記炉内にメタンガスを導入する前には、前記炉内に窒素ガスを導入することによって、前記基体の直上にチタン窒化物からなる中間皮膜を被覆することが望ましい。 The present invention also relates to a method for manufacturing a metal plastic working tool for coating a hard coating on the surface of a substrate by arc ion plating, wherein a titanium target is used for coating the hard coating, and -120 V to-is applied to the substrate. A tool for metal plastic working with excellent lubrication characteristics in which a bias voltage of 150 V is applied, methane gas is introduced into the furnace, the pressure in the furnace is 2.8 Pa to 3.8 Pa, and the outermost surface of the substrate is coated with titanium carbide. It is a manufacturing method. Before introducing methane gas into the furnace, it is desirable to introduce an intermediate film made of titanium nitride directly on the substrate by introducing nitrogen gas into the furnace.
本発明によれば、その基本構成自体は従来のチタン炭化物でありながらも、潤滑特性に優れかつ、硬度は従来より飛躍的に高い硬質皮膜の提供が可能となる。そして、この被覆方法も特別高価な装置を必要としない。よって、この硬質被膜を作業面に適用した金属塑性加工用工具であれば、低コストにて、より長い寿命を達成できる。 According to the present invention, it is possible to provide a hard coating that is excellent in lubrication characteristics and has a hardness that is dramatically higher than that of the prior art, although the basic structure itself is a conventional titanium carbide. And this coating method does not require a special expensive apparatus. Therefore, if it is a metal plastic working tool in which this hard coating is applied to the work surface, a longer life can be achieved at low cost.
本発明の特徴は、従来のチタン炭化物でなる硬質皮膜であっても、その結晶粒を微細化させることで皮膜硬度が飛躍的に向上できた点にある。そして、その皮膜の作製方法としては、PVD法の一種であるアークイオンプレーティング法を採用したことと、更にそれによる皮膜作製中のガス雰囲気にはメタンガスを積極的に導入して炉内圧力を制御し、かつ基体に印加するバイアス電圧こそを高い値で制御した点にある。 The feature of the present invention is that the film hardness can be remarkably improved by refining the crystal grains of the conventional hard film made of titanium carbide. As a method for producing the coating, the arc ion plating method, which is a kind of PVD method, was adopted, and methane gas was actively introduced into the gas atmosphere during the production of the coating to increase the pressure in the furnace. The bias voltage applied to the substrate is controlled at a high value.
一般的に炭化物は、窒化物や酸化物によりも潤滑特性に優れており、その中でもチタン炭化物は、高い潤滑特性を有している。しかしながら、チタンと炭素のNaCl型でなる結晶質のチタン炭化物の場合、それを単純に被覆した従来の硬質皮膜の硬さは3000HV以下であった。そこで、チタン炭化物の結晶粒を微細化する本発明の手法を採用することで、上記の皮膜硬度は3000HVを超える域にまで向上し、更なる高硬度化を付加することができる。 In general, carbides have better lubrication properties than nitrides and oxides, and titanium carbides have high lubrication properties. However, in the case of crystalline titanium carbide composed of titanium and carbon NaCl type, the hardness of a conventional hard film simply coated with it was 3000 HV or less. Therefore, by adopting the method of the present invention for refining crystal grains of titanium carbide, the above-mentioned film hardness can be improved to a region exceeding 3000 HV, and further higher hardness can be added.
そして一方では、結晶構造を有する物質中の結晶粒の大きさは、X線回折法によって得られる回折パターンに正確に反映される。つまり具体的には、物質中の実際の結晶粒(微結晶)の大きさに対しては、上記の回折パターンに現れる本物質のピークの広がり(半値幅)は決まりをもった反比例の関係にある。よって、物質中の結晶粒の大きさは、この半値幅によって間接的に特定することが可能である。 On the other hand, the size of the crystal grains in the substance having a crystal structure is accurately reflected in the diffraction pattern obtained by the X-ray diffraction method. In other words, specifically, with respect to the actual size of crystal grains (microcrystals) in the substance, the peak broadening (half-value width) of the substance appearing in the above diffraction pattern is in an inversely proportional relationship. is there. Therefore, the size of the crystal grains in the substance can be indirectly specified by this half width.
そこで、本発明では、その硬質皮膜であるチタン炭化物の結晶粒の大きさの程度を、NaCl型結晶構造における(111)面の半値幅が1.75°以上になるまで微細化することで、該皮膜の硬度が飛躍的に向上し、具体的には3300HV以上、更には3500HV以上、3700HV以上の高硬度皮膜を達成できる。本発明の半値幅は、Cu−Kα線によるθ−2θ法で測定したX線回折線において、その(111)面の相対強度が、バックグラウンドからそのピーク高さの2分の1になる部位の回析線の幅(全幅である)とした。そして、この半値幅が1.75°のときの、上記のチタン炭化物の結晶粒径は、約4.86nmであった。 Therefore, in the present invention, the size of the titanium carbide crystal grains that are the hard coating is refined until the half width of the (111) plane in the NaCl-type crystal structure is 1.75 ° or more, The hardness of the coating is dramatically improved, and specifically, a high hardness coating of 3300 HV or higher, further 3500 HV or higher, 3700 HV or higher can be achieved. The full width at half maximum of the present invention is a region where the relative intensity of the (111) plane is half of the peak height from the background in the X-ray diffraction line measured by the θ-2θ method using Cu-Kα line. The width of the diffraction line was (the full width). When the half width was 1.75 °, the crystal grain size of the titanium carbide was about 4.86 nm.
一方、上記の半値幅が大きすぎる場合、これは結晶粒の微細化が進んで、非晶質の状態に近くなっていることを示している。そして、皮膜の基地自体が非晶質になると、本発明の結晶粒微細化効果に比しては、皮膜硬さが得られなくなる可能性が高い。よって、本発明の上記半値幅は、その基地皮膜自体の特性を害しない範囲、すなわちチタン炭化物の持つ結晶構造が極度に崩れない範囲とすることが好ましい。例えば、半値幅が1.90°以下であれば、その1.90°のときのチタン炭化物の結晶粒径は、約4.48nmであった。 On the other hand, when the above half-value width is too large, this indicates that the crystal grain has been refined and is close to an amorphous state. When the coating base itself becomes amorphous, it is highly possible that the coating hardness cannot be obtained as compared with the crystal grain refining effect of the present invention. Therefore, it is preferable that the half width of the present invention is in a range that does not impair the characteristics of the base coating itself, that is, a range in which the crystal structure of the titanium carbide does not collapse extremely. For example, if the half width was 1.90 ° or less, the crystal grain size of titanium carbide at the 1.90 ° was about 4.48 nm.
本発明に係るチタン炭化物の微細化機構は、それを達成するための好ましい被覆方法は後述するが、その作用根幹は、上述の結晶粒を微細化するための成膜時の基体に印加する高いバイアス電圧と、メタンガスを導入して炉内圧力を特定の範囲で制御して、チタン炭化物を形成する炭素量に比しては、過剰量の炭素を導入することである。これは、チタン炭化物をPVD法で被覆する本発明においては、その成膜中の雰囲気を炭素リッチにすることであり、チタン炭化物の形成に使われない炭素原子が同炭化物結晶の成長抑制に作用するものである。そして、この結果としては、チタン炭化物の結晶質相でなる皮膜基地中に、好ましくは一部あるいは全部が非晶質相の炭素原子(非晶質炭素と呼ぶ)が分散することで、これは更なる皮膜の高硬度化と潤滑特性の向上に寄与する。 As for the refinement mechanism of titanium carbide according to the present invention , a preferable coating method for accomplishing this will be described later, but its action base is high applied to the substrate during film formation for refining the crystal grains described above. By introducing a bias voltage and methane gas and controlling the pressure in the furnace within a specific range, an excessive amount of carbon is introduced as compared with the amount of carbon forming titanium carbide. In the present invention in which titanium carbide is coated by the PVD method, the atmosphere during film formation is made rich in carbon, and carbon atoms that are not used to form titanium carbide act to suppress the growth of the carbide crystal. To do. And as a result of this, carbon atoms (referred to as amorphous carbon), which are preferably partly or entirely amorphous phase, are dispersed in the coating matrix composed of the crystalline phase of titanium carbide. Contributes to further increasing the hardness of the coating and improving the lubrication characteristics.
ここで上記の場合だと、CVD法などで形成される、実質がチタン炭化物の結晶質相のみでなる従来の硬質皮膜(3000HV程度)に比しては、本発明に係る硬質皮膜は非晶質を構成する以外の炭素(フリーカーボン等)も含み得ることから、この炭素自体が硬さ低下の要因となり得る。しかし、本発明に係る硬質皮膜は、上記の通り、基体となるチタン炭化物の結晶質相が微細に制御されていることから、上記炭素の存在をしてもなお、それを十分に補完できる3300HV以上の硬度を容易に達成することができる。そして、非晶質炭素に加えては、上記のフリーカーボン等であっても、それ自体は優れた潤滑特性(低い摩擦係数)を有することから、これらの結果として、本発明に係る硬質皮膜は、従来の粗大なチタン炭化物粒よりなる硬質皮膜に比べて、高硬度かつ優れた潤滑特性を同時に達成する。 That's the case where the above, is formed by a CVD method, is compared with the conventional hard coating substantially is only crystalline phase of titanium carbide (about 3000 HV), a hard coating according to the present invention is amorphous Since carbon other than that constituting the material (free carbon or the like) can also be included, this carbon itself can be a factor in reducing hardness. However, as described above, the hard coating according to the present invention has a finely controlled crystalline phase of titanium carbide as a base, so that even if the carbon is present, it can be sufficiently supplemented with 3300HV. The above hardness can be easily achieved. And in addition to amorphous carbon, even the above-mentioned free carbon etc. itself has excellent lubricating properties (low coefficient of friction), and as a result, the hard film according to the present invention Compared to conventional hard coatings made of coarse titanium carbide grains, it achieves high hardness and excellent lubricating properties at the same time.
また、本発明の場合、上記の基体表面と硬質皮膜の間には、チタン窒化物(TiN)でなる中間皮膜を形成することが、それら相互間の密着性を向上する点で好ましい。本発明が硬質皮膜に採用するチタン炭化物は高硬度であるため、基体上に直接被覆すると、その基体との硬度差が大きい場合、密着性が乏しくなる。そこで、チタン炭化物よりも硬さが低いチタン窒化物を中間層として用いれば、これが基体と硬質皮膜との硬度差を緩和する役割を果たすので、硬質皮膜の密着性を補償する。そして、その金属要素は、硬質皮膜と同じチタンとしているので、密着性の向上には好ましい。 In the case of the present invention, it is preferable to form an intermediate film made of titanium nitride (TiN) between the substrate surface and the hard film from the viewpoint of improving the adhesion between them. Since the titanium carbide employed in the hard coating of the present invention has a high hardness, if it is coated directly on a substrate, the adhesion will be poor if the hardness difference with the substrate is large. Therefore, if titanium nitride having a lower hardness than titanium carbide is used as the intermediate layer, this serves to alleviate the hardness difference between the substrate and the hard coating, thereby compensating for the adhesion of the hard coating. And since the metal element is the same titanium as a hard film, it is preferable for the improvement of adhesiveness.
さらに、上記の中間皮膜にチタン窒化物を適用すれば、それは金色という特別な色を呈している。よって、その上の硬質皮膜には異なる色の皮膜を被覆すれば、使用中に硬質皮膜が摩耗すると金色の層が露出してくるため、皮膜自体の摩耗状況(寿命)を色で判断することができる。このような理由からも、基体表面と硬質皮膜との間には、チタン窒化物を適用することが好ましい。そして、銀色を呈したチタン炭化物を硬質被膜に採用した本発明にとっては、このチタン窒化物との組合わせが、皮膜特性と色判断能の両機能を向上させる上で、より望ましい。 Furthermore, if titanium nitride is applied to the intermediate film, it exhibits a special color called gold. Therefore, if the hard coating on the coating is coated with a different color, the gold layer will be exposed if the hard coating is worn during use, so the wear status (life) of the coating itself should be judged by color. Can do. For this reason, it is preferable to apply titanium nitride between the substrate surface and the hard coating. And for this invention which employ | adopted the titanium carbide which exhibited silver color for the hard film, the combination with this titanium nitride is more desirable when improving both the function of a film | membrane characteristic and color judgment ability.
続いて、本発明の金属塑性加工用工具の製造方法について説明する。つまり具体的には、アークイオンプレーティングによって基体の表面に硬質皮膜を被覆する金属塑性加工用工具の製造方法であって、前記硬質皮膜の被覆にはチタンターゲットを用い、前記基体に−120V〜−150Vのバイアス電圧を印加し、炉内にメタンガスを導入して炉内圧力を2.8Pa〜3.8Paとし、前記基体の最表面にチタン炭化物を被覆する潤滑特性に優れた金属塑性加工用工具の製造方法である。 Then, the manufacturing method of the tool for metal plastic working of this invention is demonstrated. That is, specifically, a method for manufacturing a metal plastic working tool for coating a hard coating on the surface of a substrate by arc ion plating, wherein a titanium target is used for coating the hard coating, and −120 V to the substrate. For metal plastic working with excellent lubrication characteristics, applying a bias voltage of -150 V, introducing methane gas into the furnace to make the furnace pressure 2.8 Pa to 3.8 Pa, and covering the outermost surface of the substrate with titanium carbide It is a manufacturing method of a tool.
まず、本発明に係る硬質皮膜の形成装置には、アークイオンプレーティング法を用いる。従来広く利用されているCVD法、そしてTD処理に代表される塩浴処理法は、その処理温度が高温であることから、被覆物質を形成時の化学反応が平衡状態に近い形で進行し、安定な化合物が形成される。これに対して、プラズマ状態を利用するアークイオンプレーティング法は、被覆物質の形成反応が非平衡を含む状態で進行する。よって、本発明に係るチタン炭化物の微細化機構に従っては、アークイオンプレーティング法であれば、化合物の形成に使われない炭素が多く存在する成膜環境を得られ易いので、本発明にとって好ましい装置要件である。 First, an arc ion plating method is used for the apparatus for forming a hard coating according to the present invention. Conventionally widely used CVD methods and salt bath treatment methods represented by TD treatment have a high treatment temperature, so that the chemical reaction at the time of forming the coating material proceeds in an equilibrium state, A stable compound is formed. On the other hand, the arc ion plating method using the plasma state proceeds in a state in which the formation reaction of the coating material includes non-equilibrium. Therefore, according to the refinement mechanism of titanium carbide according to the present invention, the arc ion plating method makes it easy to obtain a film formation environment in which a large amount of carbon that is not used for the formation of a compound is present. It is a requirement.
次に、微結晶のチタン炭化物でなる本発明に係る硬質皮膜を達成するためには、アークイオンプレーティング中の基体に印加するバイアス電圧の管理が重要となる。つまり、成膜中の基体に衝突するイオンのエネルギーは、バイアス電圧によって変化し、該電圧を高くする程(つまり、負圧の絶対値を大きくする程)、イオンエネルギーは大きくなる。また、このイオンエネルギーが大きくなると共に、皮膜の形成に必要なイオン同士の衝突エネルギーも大きくなる。この結果、本発明に係る硬質皮膜は、その結晶構造を保った状態ながらも、結晶粒の成長は抑制され、微細な結晶構造になると考えられる。よって、硬質皮膜の微細化を達成する本発明にとっては、上記のバイアス電圧を高く制御することが重要であり、具体的には、その負圧の絶対値にて120V以上とする。 Next, in order to achieve a hard coating according to the present invention made of microcrystalline titanium carbide, it is important to manage the bias voltage applied to the substrate during arc ion plating. That is, the energy of ions that collide with the substrate during film formation varies depending on the bias voltage, and the higher the voltage (that is, the greater the absolute value of the negative pressure), the greater the ion energy. In addition, the ion energy increases, and the collision energy between ions necessary for forming the film also increases. As a result, it is considered that the hard coating according to the present invention has a fine crystal structure with the growth of crystal grains being suppressed while maintaining the crystal structure. Therefore, for the present invention to achieve miniaturization of the hard coating, it is important to control the bias voltage high, and specifically, the absolute value of the negative pressure is set to 120 V or more.
なお一方では、上記のバイアス電圧が高くなりすぎると(負圧の絶対値が大きくなりすぎると)、成膜中の放電が不安定となり、皮膜の性質が安定しない。更には、異常放電が基体に損傷を与える懸念もある。よって、本発明では、上記のバイアス電圧は、その負圧の絶対値にて150V以下とする。以上のバイアス電圧の条件に従ったことで、あとはチタンターゲットの使用にメタンガスの導入をもって成膜された本発明に係る硬質皮膜(チタン炭化物)は、そのNaCl型結晶構造における(111)面の半値幅が1.75°以上の微結晶であり、ビッカース硬さも3300HV以上を達成し得る。 On the other hand, if the bias voltage is too high (the absolute value of the negative pressure is too large), the discharge during film formation becomes unstable and the properties of the film are not stable. Furthermore, there is a concern that abnormal discharge may damage the substrate. Therefore, in the present invention, the bias voltage is set to 150 V or less in terms of the absolute value of the negative pressure. By following the above bias voltage conditions, the hard film (titanium carbide) according to the present invention , which was formed by introducing methane gas into the use of a titanium target, has a (111) plane in its NaCl type crystal structure. It is a microcrystal having a full width at half maximum of 1.75 ° or more, and a Vickers hardness of 3300 HV or more can be achieved.
ここで、チタン炭化物の成膜中に導入するガスは実質、上記のメタンガスの1種とし、炉内圧力は2.8Pa〜3.8Paとする。そしてこの炉内圧力の時にはメタンガスの流量は、アークイオンプレーティング装置の容積(すなわち基体を装入するチャンバの容積)に対し、メタンガス流量/装置容積の値にて0.8×10−5〜1.5×10−5(s−1)である。
炉内圧力を2.8Pa〜3.8Paとするのは、これは、健全なチタン炭化物自体の形成に加えては、過剰炭素による結晶粒の成長抑制作用にとっても最適な条件のためである。つまり、炉内圧力が2.8Pa以上で、結晶粒成長抑制に起因する炭素の働きが強まり、皮膜の更なる硬さ向上が達成される。但し、3.8Paを越えると、チャンバ内および皮膜表面に“すす”状の物質が発生し、製品外観を悪くするばかりか、アークイオンプレーティング中のアーク放電が不安定となり易く、生産性に影響を及ぼすことになる。
Here, the gas introduced during the film formation of titanium carbide is substantially one kind of the above methane gas, and the pressure in the furnace is 2.8 Pa to 3.8 Pa. At this furnace pressure, the flow rate of methane gas is 0.8 × 10 −5 to the volume of the arc ion plating apparatus (that is, the volume of the chamber in which the substrate is charged) in terms of the methane gas flow rate / apparatus volume value. 1.5 × 10 −5 (s −1 ).
The reason why the pressure in the furnace is set to 2.8 Pa to 3.8 Pa is because this is an optimum condition not only for the formation of sound titanium carbide itself but also for the effect of suppressing the growth of crystal grains due to excess carbon. That is, when the pressure in the furnace is 2.8 Pa or more, the action of carbon resulting from the suppression of crystal grain growth is strengthened, and the hardness of the coating is further improved. However, if it exceeds 3.8 Pa, a soot-like substance is generated in the chamber and on the surface of the coating, which not only deteriorates the appearance of the product, but also tends to cause unstable arc discharge during arc ion plating, resulting in increased productivity. Will have an impact.
また、メタンガス自体の流量については、炉内圧力を2.8Pa〜3.8Paとした上では、1.0×10−5(m3/s)以上とすることが、硬質皮膜としてのトータル特性を維持する上で好ましい。より望ましくは、1.1×10−5(m3/s)以上である。これに併せては、1.5×10−5(m3/s)を上限に管理することが、更に望ましい。なお、メタンガスは他の炭化水素ガスよりも取り扱いが容易で好ましい。 The flow rate of the methane gas itself is 1.0 × 10 −5 (m 3 / s) or more when the furnace pressure is set to 2.8 Pa to 3.8 Pa. Is preferable in maintaining the above. More desirably, it is 1.1 × 10 −5 (m 3 / s) or more. In conjunction with this, it is more desirable to manage the upper limit of 1.5 × 10 −5 (m 3 / s). Note that methane gas is preferable because it is easier to handle than other hydrocarbon gases.
また、メタンガスを導入する前には、窒素ガスを導入することによって、基体表面にチタン窒化物からなる皮膜を被覆しておくことが、既に述べた通りの、密着性の向上の点では好ましい。 In addition, before introducing methane gas, it is preferable from the viewpoint of improving the adhesion as described above that the surface of the substrate is coated with a titanium nitride film by introducing nitrogen gas.
本発明の金属塑性加工用工具は、その基体となる金属材質について特段に定めるものではない。そして、例えば上記の通りの、冷間ダイス鋼、熱間ダイス鋼、高速度鋼および超硬合金等が使用できる。特には工具鋼が好ましい。これについては、JIS等による規格金属種(鋼種)を含め、従来工具への使用が可能な鋼種として提案のされてきた改良金属種も適用できる。 The metal plastic working tool of the present invention is not particularly defined with respect to the metal material serving as the base. For example, cold die steel, hot die steel, high speed steel, cemented carbide and the like as described above can be used. In particular, tool steel is preferred. In this regard, improved metal types that have been proposed as steel types that can be used for conventional tools, including standard metal types (steel types) according to JIS and the like, can also be applied.
[試料の作製]
表面処理を行う基体として、硬さ64HRCに調整したJIS高速度工具鋼SKH51の板状試験片(幅15mm×長さ18mm×厚さ2mm)と、同円盤状試験片(直径20mm×厚さ5mm)を準備した。板状試験片はコーティングした皮膜の分析用、円盤状試験片は潤滑特性の評価試験用である。そして、これらの平面を鏡面機械研磨した後、アルカリ超音波洗浄を行った。
[Preparation of sample]
As a substrate for surface treatment, a plate-shaped test piece (width 15 mm × length 18 mm × thickness 2 mm) of JIS high-speed tool steel SKH51 adjusted to a hardness of 64 HRC and a disk-shaped test piece (diameter 20 mm × thickness 5 mm) ) Was prepared. The plate-shaped test piece is used for analyzing the coated film, and the disk-shaped test piece is used for evaluating the lubrication characteristics. And after carrying out mirror surface mechanical polishing of these planes, alkali ultrasonic cleaning was performed.
次に、これら2種の基体を一対とした試料No.1〜14に対し、チャンバ容積が1.4m3(処理品の挿入空間は0.3m3)のアークイオンプレーティング装置内において、温度773K、1×10−3Paの真空中で加熱脱ガスを行った後、723Kの温度でのArプラズマによるクリーニングを行った。 Next, a sample No. 1 in which these two types of substrates were paired. Heat degassing in a vacuum at a temperature of 773 K and 1 × 10 −3 Pa in an arc ion plating apparatus having a chamber volume of 1.4 m 3 (the insertion space for the processed product is 0.3 m 3 ) for 1 to 14 After that, cleaning with Ar plasma at a temperature of 723 K was performed.
そして、装置内にはメタンガスを導入し、炉内圧力2〜5Pa、基体に印加するバイアス電圧は−50V〜−150Vに設定して、純Tiターゲット上にアーク放電を発生させ、723KのもとでアークイオンプレーティングによるTiC硬質皮膜のコーティングを行った。TiC硬質皮膜の厚さは、およそ2〜3μmとなる様、コーティング時間を調整した。
なお、試料No.2〜14は、TiC硬質皮膜を被覆する前の基体直上には、炉内圧力3Pa、基体に印加するバイアス電圧を−50V、723Kのもとで、窒素ガスのみを導入することで[流量:4.15(10−5m3/s)]、厚さがおよそ1〜2μmのTiN中間皮膜を被覆している。
Then, methane gas is introduced into the apparatus, the furnace pressure is set to 2 to 5 Pa, the bias voltage applied to the substrate is set to -50 V to -150 V, and arc discharge is generated on the pure Ti target, and the source of 723 K is set. The TiC hard film was coated by arc ion plating. The coating time was adjusted so that the thickness of the TiC hard film was about 2 to 3 μm.
Sample No. In Nos. 2 to 14, the nitrogen pressure alone was introduced just above the substrate before coating with the TiC hard film under a furnace pressure of 3 Pa and a bias voltage applied to the substrate of −50 V and 723 K [flow rate: 4.15 (10 −5 m 3 / s)], covering a TiN intermediate film having a thickness of approximately 1 to 2 μm.
そして一方では、上記の基体に対しては、その直上にCVD法によってTiCを被覆した試料No.15と、同じくTD法によってVCを形成した試料No.16を準備した。各試料のコーティング条件を表1に示す。 On the other hand, for the above-mentioned substrate, the sample No. 1 in which TiC was coated immediately above by the CVD method was used. 15 and sample No. 5 in which VC was formed by the TD method. 16 were prepared. Table 1 shows the coating conditions for each sample.
[試料の評価]
<硬質皮膜の半値幅の測定>
まず、板状試験片を用いて、その最表面に被覆された硬質皮膜の結晶構造を調べた。つまり、試料No.1〜16の硬質皮膜(TiC、VC)においては、そのNaCl型結晶構造における(111)面の半値幅を測定することで、その結晶粒の微細度を評価した。半値幅は、Cu−Kα線によるθ−2θ法で測定したX線回折線にて、その(111)面の相対強度がバックグラウンドからそのピーク高さの2分の1になる部位の回析線の幅(全幅である)とした。
[Sample evaluation]
<Measurement of half width of hard coating>
First, the crystal structure of the hard film coated on the outermost surface was examined using a plate-shaped test piece. That is, sample no. In the 1-16 hard films (TiC, VC), the fineness of the crystal grains was evaluated by measuring the half width of the (111) plane in the NaCl type crystal structure. The half width is the diffraction of the site where the relative intensity of the (111) plane is half of the peak height from the background in the X-ray diffraction line measured by the θ-2θ method using Cu-Kα ray. The width of the line (full width).
<硬質皮膜の硬度の測定>
次に、板状試験片の最表面に被覆された硬質皮膜の硬度を、超微小硬度計を用いて測定した。測定装置には、CSM Instruments社製ナノハードネステスターを使用し、バーコビッチ圧子を用いて、試験片表面への最大荷重9.8mN、押し込み速度19.60mN/分、除荷速度19.60mN/分の条件で測定した。圧子の押し込み深さは、膜厚の10分の1の深さになるように設定した。そして、以上の条件による硬度測定を、各試験片毎に10点行い、その平均値を評価した。
<Measurement of hardness of hard coating>
Next, the hardness of the hard film coated on the outermost surface of the plate-shaped test piece was measured using an ultra-micro hardness meter. As a measuring device, a nanohardness tester manufactured by CSM Instruments was used, and a maximum load 9.8 mN, an indentation speed 19.60 mN / min, and an unloading speed 19.60 mN / min were applied to the test piece surface using a Berkovich indenter. Measured under conditions. The indentation depth of the indenter was set to be 1 / 10th of the film thickness. And the hardness measurement on the above conditions was performed for every 10 test pieces, and the average value was evaluated.
<硬質皮膜の摩擦係数の測定>
そして、円盤状試験片を用い、その最表面に被覆された硬質皮膜の摩擦係数を測定することで、潤滑特性を評価した。摩擦係数は、相手材をJIS軸受鋼SUJ2とした時の動摩擦係数であり、測定装置には、ボールオンディスク型摩擦試験機(CSM Instruments社製トライボメーター)を使用した。測定条件は、常温、大気中にて、硬質皮膜の表面にSUJ2球(直径6mm)を2Nの荷重で押し付けながら、円盤状試験片を150mm/秒の速度で回転させたものである。試験距離は100mとし、その10〜100mの距離範囲において、10m刻み毎に測定した値(計10点)の平均値を、摩擦係数とした。以上の結果を、表2に示す。
<Measurement of friction coefficient of hard coating>
And the lubrication characteristic was evaluated by measuring the friction coefficient of the hard film coat | covered on the outermost surface using a disk shaped test piece. The friction coefficient is a dynamic friction coefficient when the mating material is JIS bearing steel SUJ2, and a ball-on-disk friction tester (a tribometer manufactured by CSM Instruments) was used as a measuring device. The measurement conditions were that the disk-shaped test piece was rotated at a speed of 150 mm / sec while pressing SUJ2 sphere (diameter 6 mm) with a load of 2 N on the surface of the hard coating at room temperature and in the atmosphere. The test distance was 100 m, and the average value of the values measured every 10 m (10 points in total) in the 10 to 100 m distance range was taken as the friction coefficient. The results are shown in Table 2.
〈硬質皮膜の密着性測定〉
皮膜表面に対し、ロックウェル硬さ試験機(株式会社ミツトヨ製AR−10)にてCスケールで圧痕を付けた、そして、その圧痕部位を光学顕微鏡にて観察することで、圧痕周辺の皮膜隔離有無を評価した。
<Measurement of adhesion of hard coating>
The film surface was indented on a C scale with a Rockwell hardness tester (AR-10 manufactured by Mitutoyo Corporation), and the film was isolated around the indentation by observing the indented part with an optical microscope. The presence or absence was evaluated.
アークイオンプレーティング法で被覆した炉内圧力3Paの試料No.1とNo.7〜13そして炉内圧力3.5Paの試料No.14の硬質皮膜については、そのチタン炭化物のNaCl型結晶構造を示す(111)面の半値幅は、成膜時のBias電圧の増加(負圧である)に比例して、拡がっている。そして、これに伴っては、皮膜硬さが向上している。特に、3300HV以上の高硬度を安定して達成するには、Bias電圧は120V以上(負圧である)が好ましい。
なお、Bias電圧または炉内圧力が外れる試料No.2〜8は、皮膜硬さが3300HV以下と従来水準である。
Sample No. 3 with a furnace pressure of 3 Pa coated by the arc ion plating method. 1 and No. 7 to 13 and the sample No. For the 14 hard coating, the half width of the (111) plane showing the NaCl-type crystal structure of the titanium carbide spreads in proportion to the increase in bias voltage (negative pressure) during film formation. Along with this, the film hardness is improved. In particular, in order to stably achieve a high hardness of 3300 HV or higher, the Bias voltage is preferably 120 V or higher (negative pressure).
It should be noted that sample no. Nos. 2 to 8 are conventional levels with a film hardness of 3300 HV or less.
図1は、本発明試料No.13に係る硬質皮膜の表面のX線スペクトルであり、本発明に係る硬質皮膜で得られる典型的なX線スペクトルである。図1にはチタン炭化物のNaCl型結晶構造を示す(111)、(200)、(220)面からのピークが検出されており、本発明に係る硬質皮膜の基本構造が結晶質のチタン炭化物であることがわかる。そして、図2は、同硬質皮膜の断面組織を示す走査型電子顕微鏡写真(400万倍)であって、本発明に係る硬質皮膜の皮膜組織である。図2の場合、その皮膜構造は、チタン炭化物を基本とする微細な結晶質相(測定部においてTi:C[原子比]=46:54)と、それを取り囲む炭素主体の非晶質相(同39:61)からなっており、結晶質相のチタン炭化物粒径は約5nmである。本発明に係る硬質皮膜は、この微細な結晶質相に非晶質相を併せ持つことで、更なる高硬度化と低い摩擦係数を達成する。なお、本発明試料No.7〜14に係る硬質皮膜の皮膜構造も、チタン炭化物を基本とする微細な結晶質相と、それを取り囲む炭素主体の非晶質相からなっていた。 FIG. 13 is an X-ray spectrum of the surface of the hard film according to No. 13 , which is a typical X-ray spectrum obtained with the hard film according to the present invention. The Figure 1 shows a NaCl-type crystal structure of titanium carbide (111), (200), are detected peak from (220) plane, the basic structure of the hard film according to the present invention is titanium carbide crystalline I know that there is. FIG. 2 is a scanning electron micrograph (magnified 4 million times) showing the cross-sectional structure of the hard film, which is the film structure of the hard film according to the present invention. In the case of FIG. 2, the film structure consists of a fine crystalline phase based on titanium carbide (Ti: C [atomic ratio] = 46: 54 in the measurement part) and a carbon-based amorphous phase ( 39:61), and the grain size of titanium carbide in the crystalline phase is about 5 nm. The hard coating film according to the present invention achieves higher hardness and a lower friction coefficient by having an amorphous phase in addition to this fine crystalline phase. In addition, this invention sample No. The film structures of the hard films according to 7 to 14 also consisted of a fine crystalline phase based on titanium carbide and a carbon-based amorphous phase surrounding the fine crystalline phase.
一方、CVD法で被覆した試料No.15の硬質皮膜のX線スペクトルは、図3の通りであり、その(111)面の半値幅は試料No.1〜14のそれに比較して狭い値である。つまり、試料No.15は、その実質が結晶質相のみで構成された従来のチタン炭化物(粒径約32.71nm)であることから、硬さも約3000HV程度であり、そして潤滑特性(摩擦係数)も従来の水準である。これについては、TD法によった試料No.16の硬質皮膜も同様である。 On the other hand, the sample No. The X-ray spectrum of No. 15 hard coating is as shown in FIG. 3, and the half width of the (111) plane is narrower than that of Sample Nos. 1-14. That is, sample no. No. 15 is a conventional titanium carbide (grain size: about 32.71 nm) that is essentially composed of a crystalline phase, so the hardness is about 3000 HV, and the lubricating properties (coefficient of friction) are also at the conventional level. It is. About this, sample no. The same applies to the 16 hard coating.
なお、比較試料No.2〜8の硬質皮膜については、その(111)の半値幅は従来試料No.15、16のそれに比べて大きいにもかかわらず、皮膜硬さは同等である。これは試料No.2〜8の硬質皮膜が、そのチタン炭化物の結晶粒は試料No.15、16よりも微細化されているものの、一方では、その微細化効果を薄めるフリーカーボン等も含んでいるからである。 In addition, comparative sample No. For the hard coatings 2 to 8, the half width of (111) is the conventional sample No. Despite being larger than that of 15 and 16, the film hardness is equivalent. This is sample no. 2 to 8 hard coatings, the titanium carbide crystal grains are sample No. This is because although it is made finer than 15 and 16, on the other hand, it also contains free carbon or the like that diminishes the effect of miniaturization.
本発明は、冷間ならびに温熱間における鍛造およびプレス加工など、金属の塑性加工に用いる工具の作業面に使用できる。また、その摺動特性を考慮すれば、ダイカストおよび鋳造に使用される金型、もしくは鋳抜きピンや、ダイカストの射出機に使用されるピストンリング等の、溶融金属に接して使用される鋳造用部材としても、その作業面への転用が可能である。更に、金型以外の治工具として、例えば機械の摺動部品や、切断刃などに適用することも可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a work surface of a tool used for metal plastic working such as cold and warm forging and press working. Also, considering its sliding characteristics, it is for casting used in contact with molten metal, such as a die used for die casting and casting, or a die ring used for casting or a piston ring used for an injection machine for die casting. As a member, it can be diverted to the work surface. Further, as a tool other than the mold, it can be applied to a sliding part of a machine, a cutting blade, or the like.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010215090A JP5502677B2 (en) | 2009-09-28 | 2010-09-27 | Metal plastic working tool with excellent lubrication characteristics and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009222851 | 2009-09-28 | ||
JP2009222851 | 2009-09-28 | ||
JP2010215090A JP5502677B2 (en) | 2009-09-28 | 2010-09-27 | Metal plastic working tool with excellent lubrication characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011089199A JP2011089199A (en) | 2011-05-06 |
JP5502677B2 true JP5502677B2 (en) | 2014-05-28 |
Family
ID=44107694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010215090A Active JP5502677B2 (en) | 2009-09-28 | 2010-09-27 | Metal plastic working tool with excellent lubrication characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5502677B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6026157B2 (en) * | 2012-07-06 | 2016-11-16 | トーヨーエイテック株式会社 | Hard film formation method |
CN105051245B (en) | 2013-03-28 | 2017-05-17 | Osg株式会社 | Hard film for machining tools and hard film-coated metal machining tool |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3248898B2 (en) * | 1999-03-19 | 2002-01-21 | 日立ツール株式会社 | Hard coating tool |
JP3343727B2 (en) * | 1999-05-19 | 2002-11-11 | 日立ツール株式会社 | Hard coating tool |
JP3586216B2 (en) * | 2001-05-11 | 2004-11-10 | 日立ツール株式会社 | Hard coating tool |
JP4500061B2 (en) * | 2004-02-02 | 2010-07-14 | 株式会社神戸製鋼所 | Hard film formation method |
JP2005344148A (en) * | 2004-06-01 | 2005-12-15 | Sumitomo Electric Ind Ltd | Abrasion-resistant coating and surface-coated cutting tool using the same |
JP2007217771A (en) * | 2006-02-20 | 2007-08-30 | Hitachi Tool Engineering Ltd | Hard film coated member and its manufacturing method |
WO2009025112A1 (en) * | 2007-08-22 | 2009-02-26 | Sumitomo Electric Industries, Ltd. | Surface-coated cutting tool |
-
2010
- 2010-09-27 JP JP2010215090A patent/JP5502677B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011089199A (en) | 2011-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920681B2 (en) | Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof | |
Jin et al. | The influence of plasma nitriding on microstructure and properties of CrN and CrNiN coatings on Ti6Al4V by magnetron sputtering | |
WO2010021285A1 (en) | Nitrogen-containing amorphous carbon film, amorphous carbon layered film, and sliding member | |
JP6015663B2 (en) | Covering material with excellent sliding characteristics | |
EP3643805A1 (en) | Sliding member and coating film | |
JP6396903B2 (en) | Arc PVD coating with enhanced friction and wear reduction properties | |
JP6525310B2 (en) | Coated tools | |
EP3650583A1 (en) | Ta-c based coatings with improved hardness | |
CN114196940A (en) | Composite coating cutter and preparation method and application thereof | |
Kawata et al. | Characterization of multilayer films of Ti Al O C N system prepared by pulsed dc plasma-enhanced chemical vapor deposition | |
Huang et al. | Influence of titanium concentration on mechanical properties and wear resistance to Ti6Al4V of Ti-C: H on cemented carbide | |
JP5714214B2 (en) | Metal plastic working tool and manufacturing method thereof | |
JP6034579B2 (en) | Durable coated tool | |
JP5502677B2 (en) | Metal plastic working tool with excellent lubrication characteristics and method for producing the same | |
JP5616082B2 (en) | Manufacturing method of ceramic coating material | |
WO2021167087A1 (en) | Coated tool | |
JP2006002221A (en) | Chromium-containing diamond-like carbon film and sliding member | |
JP6569376B2 (en) | Carbide tool and manufacturing method thereof | |
JP6250470B2 (en) | Cutting tools | |
JP7509129B2 (en) | Coated mold, method for manufacturing coated mold, and target for forming hard film | |
JP5207116B2 (en) | Hard coating with excellent lubrication characteristics and metal plastic working tools | |
JP2007136597A (en) | Coating member | |
JP2012136775A (en) | Coated mold excellent in adhesion resistance and method for manufacturing the same | |
JP2023135782A (en) | Coated cutting tool | |
JP2006206960A (en) | Sliding member coated with hard film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5502677 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |