[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5596933B2 - Method for producing gypsum-based molded body - Google Patents

Method for producing gypsum-based molded body Download PDF

Info

Publication number
JP5596933B2
JP5596933B2 JP2009084210A JP2009084210A JP5596933B2 JP 5596933 B2 JP5596933 B2 JP 5596933B2 JP 2009084210 A JP2009084210 A JP 2009084210A JP 2009084210 A JP2009084210 A JP 2009084210A JP 5596933 B2 JP5596933 B2 JP 5596933B2
Authority
JP
Japan
Prior art keywords
gypsum
mass
molded body
colemanite
based molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009084210A
Other languages
Japanese (ja)
Other versions
JP2009263218A (en
Inventor
昌彦 山本
光春 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2009084210A priority Critical patent/JP5596933B2/en
Publication of JP2009263218A publication Critical patent/JP2009263218A/en
Application granted granted Critical
Publication of JP5596933B2 publication Critical patent/JP5596933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)

Description

本発明は、石膏系成形体製造方法に関する。 The present invention relates to a method for producing a plaster-base molded article.

水和性石膏を水和反応させた石膏系成形体は、マトリックスを形成する二水石膏が結晶水を多く含んでいる。このような石膏系成形体においては、100〜200℃に加熱されると、上記結晶水が離脱して放出されることにより、温度上昇が抑制され、耐火性能に優れることから、間仕切壁等の内装建材として広く使用されている。なお、石膏系成形体を自立壁材として使用する場合には、リブが設けられていると好適である(例えば、下記特許文献1等参照)ことから、押出成形法(例えば、下記特許文献2等参照)により製造されることが多い。他方、板状の石膏系成形体を製造する場合には、抄造法(例えば、下記特許文献3等参照)により製造されることが多い。このような押出成形法や抄造法によって製造される石膏系成形体は、代表的な石膏系成形体である石膏プラスタボードのような表裏面の紙が不要であるので、石膏プラスタボードよりもさらに優れた耐火性能を有している。   In a gypsum-based molded body obtained by hydrating hydratable gypsum, dihydrate gypsum forming a matrix contains a large amount of crystal water. In such a gypsum-based molded body, when heated to 100 to 200 ° C., the crystal water is released and released, so that the temperature rise is suppressed and the fire resistance performance is excellent. Widely used as interior building material. In addition, when using a gypsum-type molded object as a self-supporting wall material, since it is suitable if the rib is provided (for example, refer patent document 1 etc. below), it is an extrusion molding method (for example patent document 2 below). Etc.) in many cases. On the other hand, when a plate-like gypsum-based molded body is manufactured, it is often manufactured by a papermaking method (for example, see Patent Document 3 below). A gypsum-based molded body produced by such an extrusion molding or papermaking method does not require front and back paper such as gypsum plasterboard, which is a typical gypsum-based molded body, so it is even more than gypsum plasterboard. Excellent fire resistance.

特開平10−205022号公報Japanese Patent Laid-Open No. 10-205022 特開平1−051359号公報JP-A-1-051359 特開昭60−042267号公報Japanese Patent Laid-Open No. 60-042267 特開平1−224252号公報JP-A-1-224252 特開平6−001645号公報JP-A-6-001645 特開2007−303953号公報JP 2007-303953 A

ところで、前述したような石膏系成形体においては、前記結晶水が100〜200℃の温度で離脱してしまうと、温度が急速に上昇してしまうことから、200℃以上の温度で結晶水の離脱反応を生じる化合物をさらに含有させることにより、耐火性能のさらなる向上を図ることが考えられている。   By the way, in the gypsum-based molded body as described above, when the crystal water is detached at a temperature of 100 to 200 ° C., the temperature rises rapidly. It is considered to further improve the fire resistance by further containing a compound that causes a withdrawal reaction.

このため、例えば、200〜230℃の温度で結晶水の離脱反応を生じる水酸化アルミニウムを前記石膏系成形体にさらに混合することが考えられるものの、水酸化アルミニウムの結晶水の離脱温度が二水石膏の結晶水の離脱温度に近いことから、耐火性能のさらなる向上を十分に図りにくくなっていた。   For this reason, for example, although it is conceivable that aluminum hydroxide that causes a detachment reaction of crystal water at a temperature of 200 to 230 ° C. is further mixed with the gypsum-based molded body, the crystallization water release temperature of aluminum hydroxide is two water. Since it is close to the separation temperature of gypsum crystal water, it has been difficult to sufficiently improve the fire resistance.

このようなことから、本発明は、耐火性能のさらなる向上を十分に図ることができる石膏系成形体製造方法を提供することを目的とする。 For this reason, the present invention aims to provide a method of manufacturing a gypsum-based molded body can be further improved fire performance sufficiently.

述した課題を解決するための、本発明に係る石膏系成形体の製造方法は、石膏をマトリックスとして、繊維を0.8〜9.8質量%、コレマナイトを56.2〜85質量%含有し、押出成形法によって成形される石膏系成形体を製造する方法であって、水和性石膏10〜35質量%と、繊維1〜10質量%と、コレマナイト60〜86.2質量%とを含む固形原料に対して、増粘剤と水を加えて混練して混練物とし、前記混練物を押出成形法により成形した後に養生して硬化させることを特徴とする。 For solving the problems described before mentioned method for manufacturing a gypsum-based molded body according to the present invention, the gypsum as a matrix, fibers from 0.8 to 9.8 wt%, 56.2 to 85 wt% of colemanite containing And a method for producing a gypsum-based molded article formed by an extrusion molding method, comprising 10 to 35% by mass of hydrated gypsum, 1 to 10% by mass of fibers, and 60 to 86.2% by mass of colemanite. A thickening agent and water are added to the solid raw material to be kneaded to form a kneaded product, and the kneaded product is molded by an extrusion method and then cured and cured.

また、本発明に係る石膏系成形体の製造方法は、上述した石膏系成形体の製造方法において、前記コレマナイトとの合計量が86.2質量%以下となるように、前記固形原料が充填材を含んでいることを特徴とする。   The method for producing a gypsum-based molded body according to the present invention is the above-described method for producing a gypsum-based molded body, wherein the solid raw material is a filler so that the total amount with the colemanite is 86.2% by mass or less. It is characterized by including.

本発明に係る石膏系成形体製造方法によれば、コレマナイトを8.5〜85質量%(より好ましくは20〜85質量%)含有することから、マトリックスを形成している二水石膏の結晶水の離脱温度(100〜200℃)や水酸化アルミニウムの結晶水の離脱温度(200〜230℃)よりも高い温度領域(400℃)でも結晶水をさらに離脱させることができるので、耐火性能のさらなる向上を十分に図ることができ、高性能な耐火間仕切壁等の内装建材として好適に利用することができる。さらに、1m2面積当たりの1mmの厚さ当たりに含有する単位コレマナイト量UCが145g以上であると共に、3mm以上の厚さを有していると、中性子遮蔽性能を向上させることができるので、半導体製造工場やコンピュータルーム等の内装建材として使用すれば、宇宙から地上に降り注ぐ中性子による半導体製品の不良品発生やコンピュータの誤作動の防止等を図ることができる。 According to the method of manufacturing gypsum-based molded body according to the present invention, the colemanite 8.5 to 85 mass% (more preferably 20 to 85 wt%) because it contains crystals of dihydrate gypsum forming the matrix Since the crystal water can be further released even in a temperature range (400 ° C.) higher than the water release temperature (100 to 200 ° C.) and the aluminum hydroxide crystallization water release temperature (200 to 230 ° C.), Further improvement can be sufficiently achieved, and it can be suitably used as an interior building material such as a high-performance fireproof partition wall. Furthermore, when the unit colemanite amount U C contained per 1 mm 2 per 1 m 2 area is 145 g or more and the thickness is 3 mm or more, the neutron shielding performance can be improved. If it is used as an interior building material in a semiconductor manufacturing factory or a computer room, it is possible to prevent the generation of defective semiconductor products due to neutrons falling from space into the ground and the malfunction of computers.

本発明に係る石膏系成形体及びその製造方法の効果を確認するために行った確認試験Bにおける試験体3の示差熱分析(TG−DTA)結果を表すチャートである。It is a chart showing the differential thermal analysis (TG-DTA) result of the test body 3 in the confirmation test B performed in order to confirm the effect of the gypsum-type molded object which concerns on this invention, and its manufacturing method. 本発明に係る石膏系成形体及びその製造方法の効果を確認するために行った確認試験Bにおける試験体4の示差熱分析(TG−DTA)結果を表すチャートである。It is a chart showing the differential thermal analysis (TG-DTA) result of the test body 4 in the confirmation test B performed in order to confirm the effect of the gypsum-type molded object which concerns on this invention, and its manufacturing method. 本発明に係る石膏系成形体及びその製造方法の効果を確認するために行った確認試験Bにおける試験体6の示差熱分析(TG−DTA)結果を表すチャートである。It is a chart showing the differential thermal analysis (TG-DTA) result of the test body 6 in the confirmation test B performed in order to confirm the effect of the gypsum-type molded object which concerns on this invention, and its manufacturing method. 本発明に係る石膏系成形体及びその製造方法の効果を確認するために行った確認試験Bにおける試験体8の示差熱分析(TG−DTA)結果を表すチャートである。It is a chart showing the differential thermal analysis (TG-DTA) result of the test body 8 in the confirmation test B performed in order to confirm the effect of the gypsum-type molded object which concerns on this invention, and its manufacturing method. 本発明に係る石膏系成形体及びその製造方法の効果を確認するために行った確認試験Bにおける比較体1の示差熱分析(TG−DTA)結果を表すチャートである。It is a chart showing the differential thermal analysis (TG-DTA) result of the comparison body 1 in the confirmation test B performed in order to confirm the effect of the gypsum-type molded object which concerns on this invention, and its manufacturing method.

本発明に係る石膏系成形体及びその製造方法の実施形態を以下に説明するが、本発明は以下に説明する実施形態のみに限定されるものではない。   Embodiments of a gypsum-based molded body and a method for producing the same according to the present invention will be described below, but the present invention is not limited only to the embodiments described below.

本実施形態に係る石膏系成形体は、石膏をマトリックスとして、繊維を0.8〜9.8質量%、コレマナイトを8.5〜85質量%(より好ましくは20〜85質量%)含有するものである。   The gypsum-based molded body according to the present embodiment contains 0.8 to 9.8% by mass of fiber and 8.5 to 85% by mass (more preferably 20 to 85% by mass) of fiber with gypsum as a matrix. It is.

上記石膏としては、II型無水石膏やα−半水石膏やβ−半水石膏等のような水和性石膏が挙げられ、当該水和性石膏を水和反応させて硬化させることにより二水石膏としてマトリックスを形成している。   Examples of the gypsum include hydrated gypsum such as type II anhydrous gypsum, α-hemihydrate gypsum, β-hemihydrate gypsum, and the like. A matrix is formed as gypsum.

上記繊維は、成形する際の成形助材であると共に、成形後の補強の役割を担うものであり、セルロースパルプを必須とし、ガラス繊維,炭素繊維,ガラスウール,ロックウール,セラミックスウール等のような無機質繊維や、ポリアミド,ポリプロピレン,ポリビニルアルコール(ビニロン),ポリエステル,ポリエチレン,アクリル等の合成繊維等のような補強繊維を上記セルロースパルプの一部と置き換えて利用することができる。   The above fiber is a molding aid during molding, and plays a role of reinforcement after molding. Cellulose pulp is essential, and glass fiber, carbon fiber, glass wool, rock wool, ceramic wool, etc. Reinforcing fibers such as inorganic fibers and synthetic fibers such as polyamide, polypropylene, polyvinyl alcohol (vinylon), polyester, polyethylene, and acrylic can be used in place of part of the cellulose pulp.

上記繊維は、その含有量を0.8〜9.8質量%にする必要がある。なぜなら、上記繊維の含有量が0.8質量%未満であると、十分に補強することが難しくなってしまう一方、上記繊維の含有量が9.8質量%を越えると、前記マトリックス中への当該繊維の分散にムラを生じやすいと共に、均質性や表面平滑性が低下してしまうだけでなく、不燃性能の低下を引き起こしやすくなってしまうからである。   The fiber needs to have a content of 0.8 to 9.8% by mass. This is because if the fiber content is less than 0.8% by mass, it will be difficult to reinforce sufficiently, whereas if the fiber content exceeds 9.8% by mass, This is because the dispersion of the fibers is likely to be uneven and not only the homogeneity and the surface smoothness are lowered, but also the nonflammability performance is likely to be lowered.

このとき、上記セルロースパルプの含有量が0.8質量%未満にならないようにすると共に、上記セルロースパルプと上記補強繊維との合計含有量が9.8質量%を超えないようにする必要がある。なお、上記補強繊維は、その長さが10mm以下(好適には6mm以下)であると好ましく、その含有量が、2.8質量%以下であると好ましい。   At this time, it is necessary that the content of the cellulose pulp does not become less than 0.8% by mass and that the total content of the cellulose pulp and the reinforcing fiber does not exceed 9.8% by mass. . The length of the reinforcing fiber is preferably 10 mm or less (preferably 6 mm or less), and the content thereof is preferably 2.8% by mass or less.

また、上記セルロースパルプは、必要に応じて、パルパー、ディスクリファイナー、コーン型リファイナー、ディスインテグレータ、ハンマーミル等のような湿式や乾式の汎用の粉砕機や解繊機等によって、叩解を予め施しておくと好ましい。叩解度としては、カナダ標準フリーネス(CSF)で700〜50mlの範囲であると好ましい。   In addition, the cellulose pulp is preliminarily pulverized by a wet or dry general-purpose pulverizer or fibrillator such as a pulper, a disc refiner, a corn type refiner, a disintegrator, and a hammer mill as necessary. And preferred. The beating degree is preferably in the range of 700 to 50 ml in Canadian Standard Freeness (CSF).

カルシウム系硼酸鉱物の一種である上記コレマナイト(2CaO・3B23・5H2O)は、その含有量を8.5〜85質量%(より好ましくは20〜85質量%)にする必要がある。なぜなら、コレマナイトの含有量が8.5質量%未満であると、耐火性能のさらなる向上を十分に図ることが難しくなってしまい、コレマナイトの含有量が85質量%を超えると、強度の低下を引き起こしやすくなってしまうからである。 The colemanite (2CaO.3B 2 O 3 .5H 2 O), which is a kind of calcium borate mineral, needs to have a content of 8.5 to 85% by mass (more preferably 20 to 85% by mass). . Because, if the content of colemanite is less than 8.5% by mass, it becomes difficult to sufficiently improve the fire resistance, and if the content of colemanite exceeds 85% by mass, the strength is lowered. Because it becomes easy.

また、上記石膏系成形体は、必要に応じて、石灰石(炭酸カルシウム),珪石,スラグ,フライアッシュ,二水石膏,マイカ,ウォラストナイト等のような粉末や粘土類、パーライト,バーミキュライト,シラスバルーン等のような軽量材、製品の廃材の粉砕品(スクラップ)等の充填材を上記コレマナイトの一部と置き換えて含有することも可能である。   In addition, the above-mentioned gypsum-based molded body may be made of powder or clay such as limestone (calcium carbonate), silica, slag, fly ash, dihydrate gypsum, mica, wollastonite, pearlite, vermiculite, shirasu. It is also possible to include a filler such as a lightweight material such as a balloon or a pulverized product (scrap) of a product waste material in place of a part of the colemanite.

このとき、上記コレマナイトの含有量が8.5質量%未満にならないようにすると共に、上記コレマナイトと上記充填材との合計含有量が85質量%を超えないようにする必要がある。なお、上記充填材の含有量は、20質量%以下であると好ましい。   At this time, it is necessary that the content of the colemanite does not become less than 8.5% by mass and the total content of the colemanite and the filler does not exceed 85% by mass. In addition, it is preferable that content of the said filler is 20 mass% or less.

このような石膏系成形体を製造する本実施形態に係る石膏系成形体の製造方法は、水和性石膏10〜89質量%(より好ましくは10〜75.6質量%)と、繊維1〜10質量%と、コレマナイト10〜86.2質量%(より好ましくは23.3〜86.2質量%)とを含む固形原料に対して、水を加えて混合し、成形した後に養生して硬化させるようにする。   The method for producing a gypsum-based molded body according to this embodiment for manufacturing such a gypsum-based molded body includes 10 to 89% by mass (more preferably 10 to 75.6% by mass) of hydratable gypsum and 1 to 1 fiber. Solid material containing 10% by mass and colemanite 10-86.2% by mass (more preferably 23.3-86.2% by mass) is added with water, mixed, molded, cured and cured. I will let you.

ここで、上記水和性石膏として、上記II型無水石膏を使用する場合には、水和反応速度が遅いことから、水和反応を促進させる反応速度調整剤(硬化促進剤)を適用すると好ましい。他方、上記水和性石膏として、α−半水石膏やβ−半水石膏を使用する場合には、水和反応速度が速いことから、水和反応を遅延させる反応速度調整剤(硬化遅延剤)を適用すると好ましい。   Here, when using the above-mentioned type II anhydrous gypsum as the hydrating gypsum, it is preferable to apply a reaction rate adjusting agent (curing accelerator) that promotes the hydration reaction because the hydration reaction rate is slow. . On the other hand, when α-hemihydrate gypsum or β-hemihydrate gypsum is used as the hydratable gypsum, the reaction rate adjusting agent (setting retarder) delays the hydration reaction because the hydration reaction rate is high. ) Is preferred.

上記硬化促進剤としては、Na2SO4,K2SO4等のような硫酸塩、KAl(SO42・12H2O等のようなミョウバン類、NaCl,CaCl2等の塩化物、Na2CO3等のような炭酸塩、NaNO3,NH4NO3等のような硝酸塩等の公知のものを挙げることができ、これらを単独又は併用して利用することができる。 Examples of the curing accelerator include sulfates such as Na 2 SO 4 and K 2 SO 4 , alums such as KAl (SO 4 ) 2 · 12H 2 O, chlorides such as NaCl and CaCl 2 , Na Examples thereof include known salts such as carbonates such as 2 CO 3 and nitrates such as NaNO 3 and NH 4 NO 3 , and these can be used alone or in combination.

上記硬化遅延剤としては、カルボン酸(塩類含む),アミノ酸(塩類含む),蛋白質(変性体含む)等の公知のものを挙げることができ、これらを単独又は併用して利用することができる。   As said hardening retarder, well-known things, such as carboxylic acid (a salt is included), an amino acid (a salt is included), protein (a modified body is included), etc. can be mentioned, These can be utilized individually or in combination.

上記反応速度調整剤は、上記水和性石膏100質量%に対して、0.005〜3.0質量%(好ましくは0.01〜2.0質量%)の割合(外割)で使用すると好ましい。   When the reaction rate adjusting agent is used in a ratio (external ratio) of 0.005 to 3.0% by mass (preferably 0.01 to 2.0% by mass) with respect to 100% by mass of the hydratable gypsum. preferable.

なお、押出成形により製造する場合には、押出成形を行うための助剤として、増粘剤を固形原料(反応速度調整剤を除く)に対して0.2〜2.0質量%の割合(外割)で加えておくと好ましい。   In addition, when manufacturing by extrusion molding, as an auxiliary | assistant for performing extrusion molding, the ratio (0.2-2.0 mass%) of a thickener with respect to a solid raw material (except reaction rate regulator) ( It is preferable to add it in the “Outside Discount”.

上記増粘剤としては、エチレンオキシド重合体、アクリルアミド重合体、ポリビニルアルコール、メチルセルロース、ヒドロキシエチルセルロース等のような水溶性高分子剤等が挙げられる。   Examples of the thickener include water-soluble polymer agents such as ethylene oxide polymer, acrylamide polymer, polyvinyl alcohol, methyl cellulose, hydroxyethyl cellulose and the like.

また、上記繊維の混合量は、1〜10質量%にする必要がある。なぜなら、上記繊維の混合量が1質量%未満であると、成形体を十分に補強することが難しくなってしまう一方、上記繊維の混合量が10質量%を越えると、成形時に前記マトリックス中に当該繊維が十分に分散しにくくなってしまうと共に、成形体の均質性や表面平滑性が低下してしまうだけでなく、不燃性能の低下を引き起こしやすくなってしまうからである。   Moreover, the mixing amount of the said fiber needs to be 1-10 mass%. This is because if the mixing amount of the fibers is less than 1% by mass, it becomes difficult to sufficiently reinforce the molded body. On the other hand, if the mixing amount of the fibers exceeds 10% by mass, This is because the fibers are difficult to disperse sufficiently, and not only the uniformity and surface smoothness of the molded body are lowered, but also the nonflammability performance is liable to be lowered.

ここで、上記繊維(セルロースパルプ)の一部を必要に応じて前記補強繊維に置き換えて混合することも可能である。このとき、上記セルロースパルプの混合量が上記下限値未満にならないようにすると共に、上記セルロースパルプと上記補強繊維との合計混合量が上記上限値を超えないようにする必要がある。なお、上記補強繊維の混合量は、3質量%以下にすると好ましい。   Here, it is also possible to replace a part of the fiber (cellulose pulp) with the reinforcing fiber as necessary and to mix them. At this time, it is necessary that the mixing amount of the cellulose pulp does not become less than the lower limit value and that the total mixing amount of the cellulose pulp and the reinforcing fiber does not exceed the upper limit value. The mixing amount of the reinforcing fibers is preferably 3% by mass or less.

また、上記コレマナイトの混合量は、10〜86.2質量%(より好ましくは23.3〜86.2質量%)にする必要がある。なぜなら、コレマナイトの含有量が10質量%未満であると、成形体において、耐火性能のさらなる向上を十分に図ることが難しくなってしまい、コレマナイトの含有量が86.2質量%を超えると、成形体の強度の低下を引き起こしやすくなってしまうからである。   The amount of the colemanite mixed needs to be 10 to 86.2% by mass (more preferably 23.3 to 86.2% by mass). This is because when the content of colemanite is less than 10% by mass, it becomes difficult to sufficiently improve the fire resistance in the molded body. When the content of colemanite exceeds 86.2% by mass, molding is performed. This is because it tends to cause a decrease in the strength of the body.

ここで、上記コレマナイトの一部を必要に応じて前記充填材に置き換えて混合することも可能である。このとき、上記コレマナイトの混合量が上記下限値未満にならないようにすると共に、上記コレマナイトと上記充填材との合計混合量が上記上限値を超えないようにする必要がある。なお、前記充填材の混合量は、20質量%以下にすると好ましい。   Here, a part of the colemanite may be mixed with the filler as necessary. At this time, it is necessary that the mixing amount of the colemanite does not become less than the lower limit value and that the total mixing amount of the colemanite and the filler does not exceed the upper limit value. The mixing amount of the filler is preferably 20% by mass or less.

このような各種原料を用いて、押出成形法や抄造法やモールドプレス成形法等のような各種方法により、上述した石膏系成形体を製造することができる。   Using such various raw materials, the above-described gypsum-based molded body can be produced by various methods such as an extrusion molding method, a papermaking method, and a mold press molding method.

具体的には、例えば、押出成形法により製造する場合には、アイリッヒ型ミキサー等のような混合機に上記固形原料や上記増粘剤を投入して高速攪拌することにより均一に混合してから、当該固形原料に対して約25質量%の割合(外割)の水(混練水)を加えながらさらに均一に混合して混合物とした後、当該混合物を双腕式ニーダー等のような混合機に投入して均一に混練することにより、混練物を得る。なお、反応速度調整剤を添加する場合には、上記水(混練水)に予め混合しておいて当該水(混練水)と共に上記固形原料に加えることも可能である。   Specifically, for example, in the case of producing by an extrusion molding method, the solid raw material and the thickener are introduced into a mixer such as an Eirich type mixer and mixed uniformly by high-speed stirring. Then, after adding water (kneading water) at a ratio (external ratio) of about 25% by mass to the solid raw material, the mixture is further uniformly mixed to obtain a mixture, and then the mixture is mixed with a mixer such as a double-arm kneader. And then kneaded uniformly to obtain a kneaded product. In addition, when adding a reaction rate regulator, it is also possible to mix with the said water (kneading water) previously, and to add to the said solid raw material with the said water (kneading water).

そして、上記混練物をスクリュー型真空押出成形機等のような押出成形機により押出成形して、未硬化成形体を得た後、当該未硬化成形体を養生して硬化させることにより、石膏系成形体を得ることができる。   Then, the kneaded product is extruded by an extrusion molding machine such as a screw type vacuum extrusion molding machine to obtain an uncured molded body, and then the uncured molded body is cured and cured to obtain a gypsum system. A molded body can be obtained.

また、例えば、抄造法により製造する場合には、パルパー等のような混合装置に前記固形原料を投入すると共に、当該固形原料の濃度が3〜10質量%程度となるように水を加えて混合することにより原料スラリを製造した後、当該スラリを抄造機により抄造し、当該抄造機のメイキングロールに所定の厚さまで巻き取って未硬化成形体を得た後、当該未硬化成形体を必要に応じてプレス機で加圧成形してから、養生して硬化させることにより、石膏系成形体を得ることができる。   Also, for example, in the case of manufacturing by a papermaking method, the solid raw material is introduced into a mixing device such as a pulper, and water is added so that the concentration of the solid raw material is about 3 to 10% by mass. After manufacturing the raw material slurry, the slurry is made by a paper machine, wound up to a predetermined thickness on a making roll of the paper machine to obtain an uncured molded body, and then the uncured molded body is required. Correspondingly, after pressing with a press machine and curing and curing, a gypsum-based molded body can be obtained.

なお、このような抄造法により製造する場合には、前記繊維を3質量%以上とすると、抄造性を高めることができるので、好ましい。また、反応速度調整剤を添加する場合には、上記水に予め混合しておいて当該水と共に上記固形原料に加えることも可能である。   In addition, when manufacturing by such a papermaking method, it is preferable to make the said fiber 3 mass% or more because papermaking properties can be improved. Moreover, when adding a reaction rate regulator, it is also possible to mix with the said water beforehand and to add to the said solid raw material with the said water.

上記養生は、水和性石膏として、II型無水石膏を使用した場合には、例えば、0〜22℃の温度範囲で行われ(例えば、上記特許文献3等参照)、水和性石膏として、α−半水石膏やβ−半水石膏等の半水石膏を使用した場合には、例えば、室内での普通養生により行われる。このような養生により、水和性石膏が水と反応して二水石膏を生成しマトリックスを形成して硬化する。   The above curing is carried out in a temperature range of 0 to 22 ° C., for example, when a type II anhydrous gypsum is used as a hydrating gypsum (see, for example, Patent Document 3 above), When hemihydrate gypsum such as α-hemihydrate gypsum and β-hemihydrate gypsum is used, for example, it is carried out by ordinary curing indoors. By such curing, the hydratable gypsum reacts with water to form dihydrate gypsum, forms a matrix and hardens.

なお、養生が終了した時点における二水石膏への反応割合(二水化率)は、II型無水石膏の場合には、モル比で約55〜85%の範囲であり、半水石膏の場合には、ほぼ100%に近く、大半が二水石膏に反応しており、未反応のまま残存する半水石膏がごくわずかとなっている。   In addition, the reaction rate (dihydration rate) to dihydrate gypsum at the time when curing is completed is in the range of about 55 to 85% in terms of molar ratio in the case of type II anhydrous gypsum. Almost 100%, most of them react with dihydrate gypsum, and very little hemihydrate gypsum remains unreacted.

このようにして養生して硬化した成形体を必要に応じて乾燥、加工(研磨、切断等)等することにより、見掛け密度が1.6〜1.7g/cm3程度の石膏系成形体を製造することができる。 The molded body thus cured and hardened is dried, processed (polished, cut, etc.), etc. as necessary to obtain a gypsum-based molded body having an apparent density of about 1.6 to 1.7 g / cm 3. Can be manufactured.

このようにして製造された石膏系成形体は、コレマナイトを8.5〜85質量%(より好ましくは20〜85質量%)含有していることから、二水石膏の結晶水の離脱温度(100〜200℃)や水酸化アルミニウムの結晶水の離脱温度(200〜230℃)よりも高い温度領域(400℃)でも結晶水をさらに離脱させることができるので、耐火性能のさらなる向上を十分に図ることができ、高性能な耐火間仕切壁等の内装建材として好適に利用することができる。   Since the gypsum-based molded body thus produced contains 8.5 to 85 mass% (more preferably 20 to 85 mass%) of colemanite, the desorption temperature of crystal water of dihydrate gypsum (100 ˜200 ° C.) and crystallization water can be further released even in a temperature range (400 ° C.) higher than the crystallization water release temperature of aluminum hydroxide (200 ° C. to 230 ° C.). And can be suitably used as an interior building material such as a high-performance fireproof partition wall.

また、1m2面積当たりの1mmの厚さ当たりに含有する単位コレマナイト量UCが145g以上であると共に、3mm以上の厚さを有していると、中性子遮蔽性能を向上させることができるので、例えば、半導体製造工場やコンピュータルーム等の内装建材として使用すれば、半導体製品の中性子による不良品発生の防止や、コンピュータの中性子による誤作動の防止等を図ることができる。 Moreover, since the unit colemanite amount U C contained per 1 mm 2 per 1 m 2 area is 145 g or more and the thickness is 3 mm or more, the neutron shielding performance can be improved. For example, if it is used as an interior building material in a semiconductor manufacturing factory, a computer room, etc., it is possible to prevent the generation of defective products due to neutrons in semiconductor products and the malfunction of computers due to neutrons.

さらに、コレマナイトが、抗菌性や抗カビ性や防藻性を有していることから、抗菌性や抗カビ性や防藻性を要求される箇所の建材として好適に利用することができる。   Furthermore, since colemanite has antibacterial, antifungal and antialgal properties, it can be suitably used as a building material where antibacterial, antifungal and antialgal properties are required.

なお、石膏系成形体は、その形状が特に限定されることはなく、平坦な板型をなす形状はもちろんのこと、例えば、リブ部を有する形状等であっても、本発明を適用することができる。   Note that the shape of the gypsum-based molded body is not particularly limited, and the present invention is applicable to not only a flat plate shape but also a shape having a rib portion, for example. Can do.

また、上述した実施形態においては、押出成形法や抄造法によって製造する場合について説明したが、本発明はこれに限らず、例えば、モールドプレス成形法による加圧脱水法等のような他の公知の方法によっても製造することができる。   Further, in the above-described embodiment, the case of manufacturing by an extrusion molding method or a papermaking method has been described. However, the present invention is not limited to this, and other known methods such as a pressure dehydration method by a mold press molding method, for example. It can also be manufactured by this method.

ところで、上記繊維、上記コレマナイト、上記充填材は、石膏系成形体における含有割合範囲と、製造時における混合割合範囲とにおいて、その数値に差異があるが、これは、上記水和性石膏が水と反応して二水和物となり、当該石膏の1モル当たりの分子量が変化するからである。   By the way, the fiber, the colemanite, and the filler have different numerical values in the content ratio range in the gypsum-based molded product and the mixing ratio range in production. This is because the hydrating gypsum is water. This is because it reacts with the dihydrate to change the molecular weight per mole of the gypsum.

本発明に係る石膏系成形体及びその製造方法の効果を確認するため、以下のような確認試験を行った。   In order to confirm the effects of the gypsum-based molded article and the production method thereof according to the present invention, the following confirmation test was performed.

[試験体の作製]
下記の表1に示す原料を下記の表2,3に示す割合でアイリッヒ型ミキサーに投入して高速回転で乾式混合(1分間)してから、混練水を添加しながら低速回転で湿式混合(5分間)することにより混合物を得た後、当該混合物を双腕式ニーダーに投入して混練することにより(10分間)、上記原料を均一に分散させた混練物1〜5をそれぞれ得た。次に、上記混練物1〜5をスクリュー型真空押出成形機に投入して、下記の表4に示す厚さの板状に押出成形し(幅600mm,長さ1820mm)、養生させて(10℃,RH76%,7日間)硬化させた後、ジェット乾燥機で乾燥させることにより(ノズル吹出130℃で20分)、下記の表4に示す割合の試験体1A,1B,2,3A,3B,4A,4B,5A,5Bをそれぞれ作製した。なお、比較のため、下記の表1〜3に示す混練物αを作製して下記の表4に示す割合の比較体αも併せて作製した。
[Preparation of specimen]
The raw materials shown in Table 1 below are put into an Eirich mixer at the ratios shown in Tables 2 and 3 below and dry-mixed at high speed (for 1 minute), and then wet-mixed at low speed while adding kneading water ( 5 minutes), and then the mixture was put into a double-arm kneader and kneaded (10 minutes) to obtain kneaded materials 1 to 5 in which the raw materials were uniformly dispersed. Next, the kneaded materials 1 to 5 are put into a screw type vacuum extrusion molding machine, extruded into a plate having a thickness shown in Table 4 below (width 600 mm, length 1820 mm), and cured (10 After curing with a jet dryer (nozzle blowing at 130 ° C. for 20 minutes), the test specimens 1A, 1B, 2, 3A, 3B in the ratios shown in Table 4 below are cured. , 4A, 4B, 5A, 5B were prepared. For comparison, a kneaded material α shown in Tables 1 to 3 below was prepared, and a comparative body α having a ratio shown in Table 4 below was also prepared.

Figure 0005596933
Figure 0005596933

Figure 0005596933
Figure 0005596933

Figure 0005596933
Figure 0005596933

Figure 0005596933
Figure 0005596933

[確認試験A]
作製した上記試験体1A,1B,2,3A,3B,4A,4B,5A,5B及び上記比較体αの石膏の水和率、見掛け密度、曲げ強さをそれぞれ求めた。その結果を下記の表5に示す。なお、石膏の水和率は、試験体及び比較体を粉砕して恒温(45℃)となるまで乾燥して質量測定した後、仮焼(200℃)して質量測定し、その質量減少量に基づいて、石膏の混合量から算出し、見掛け密度は、乾燥機(40℃)内で恒量となった試験体及び比較体の質量及び体積を測定して、その質量及び体積から算出し、曲げ強さは、日本工業規格(JIS)「A 5430」で規定されている「10.3.2」に準拠して3号試験片(寸法:400mm×500mm)を適用して測定した(スパン:400mm)。
[Confirmation test A]
The test specimens 1A, 1B, 2, 3A, 3B, 4A, 4B, 5A, and 5B thus prepared and the gypsum of the comparative body α were determined for the hydration rate, apparent density, and bending strength, respectively. The results are shown in Table 5 below. In addition, the hydration rate of gypsum is obtained by pulverizing the test specimen and the comparative specimen and drying the specimen until it reaches constant temperature (45 ° C.), measuring the mass, calcining (200 ° C.), measuring the mass, and reducing the mass. Based on the amount of gypsum mixed, the apparent density is measured from the mass and volume of the test body and the comparative body measured constant mass in the dryer (40 ℃), The bending strength was measured by applying a No. 3 test piece (dimension: 400 mm × 500 mm) in accordance with “10.3.2” defined in Japanese Industrial Standard (JIS) “A 5430” (span. : 400 mm).

Figure 0005596933
Figure 0005596933

上記表5からわかるように、試験体1A,1B,2,3A,3B,4A,4B,5A,5B(コレマナイト含有品)は、比較体α(炭酸カルシウム含有品:従来品)と比べると、水和率が約10%程度低くなってしまうと共に、コレマナイトの含有率が大きくなるほど見掛け密度が小さくなる一方、ほとんど同程度の曲げ強さを発現できることが確認された。   As can be seen from Table 5 above, the specimens 1A, 1B, 2, 3A, 3B, 4A, 4B, 5A, and 5B (containing the colemanite) are compared with the comparative body α (containing the calcium carbonate: conventional product). It was confirmed that the hydration rate was reduced by about 10% and the apparent density was reduced as the content of colemanite was increased, while almost the same bending strength could be expressed.

[確認試験B]
上記試験体2,3A,4A,5A及び上記比較体αの示差熱分析(TG−DTA)を行った。その結果を図1〜5に示す。
[Verification test B]
Differential thermal analysis (TG-DTA) of the test bodies 2, 3A, 4A, 5A and the comparative body α was performed. The results are shown in FIGS.

図1〜5からわかるように、比較体α(炭酸カルシウム含有品:従来品/図5)は、100〜200℃の温度範囲で石膏の脱水反応を生じるだけであるのに対し、試験体2,3A,4A,5A(コレマナイト含有品/図1〜4)は、100〜200℃の温度範囲で石膏の脱水反応を生じると共に、300〜400℃の温度範囲で吸熱反応を生じ、二段階で熱を吸収することが認められた。よって、本発明に係る石膏系成形体は、耐火性能を向上できることが確認された。   As can be seen from FIGS. 1 to 5, the comparative body α (calcium carbonate-containing product: conventional product / FIG. 5) only causes the dehydration reaction of gypsum in the temperature range of 100 to 200 ° C., whereas the test sample 2 , 3A, 4A, 5A (containing colemanite / FIGS. 1 to 4) cause gypsum dehydration reaction in the temperature range of 100 to 200 ° C. and endothermic reaction in the temperature range of 300 to 400 ° C. in two stages. Absorbed heat was observed. Therefore, it was confirmed that the gypsum-type molded object which concerns on this invention can improve fireproof performance.

[確認試験C]
上記試験体1A,1B,2,3A,3B,4A,4B,5A,5B及び上記比較体αの熱中性子遮蔽性能試験を行った。その結果を下記の表6に示す。なお、熱中性子遮蔽性能試験は、独立行政法人日本原子力研究開発機構の研究用原子炉「JPR−3M」の中性子ビーム実験施設内の即発γ線分析装置を使用し、まず、ブランクの状態で、単位時間当たりに通過する熱中性子の計数値(CB)を測定した後、上記試験体1A,1B,2,3A,3B,4A,4B,5A,5B、上記比較体αをセットした状態で、単位時間当たりに透過する熱中性子の計数値(CS)を測定し、下記の式(1)に基づいて、熱中性子遮蔽率NCを求めた。また、1m2面積当たりの1mmの厚さ当たりに含有されている単位コレマナイト量UCも表6に併せて記載する。
[Confirmation test C]
Thermal neutron shielding performance tests were conducted on the specimens 1A, 1B, 2, 3A, 3B, 4A, 4B, 5A, 5B and the comparative body α. The results are shown in Table 6 below. In addition, the thermal neutron shielding performance test uses the prompt γ-ray analyzer in the neutron beam experimental facility of the research nuclear reactor “JPR-3M” of the Japan Atomic Energy Agency. After measuring the count value (C B ) of thermal neutrons passing per unit time, the test specimens 1A, 1B, 2, 3A, 3B, 4A, 4B, 5A, 5B, and the comparative body α are set. The count value (C S ) of thermal neutrons per unit time was measured, and the thermal neutron shielding rate N C was determined based on the following equation (1). The amount of unit colemanite U C contained per 1 mm thickness per 1 m 2 area is also shown in Table 6.

C(%)=100−(CS/CB)×100 (1) N C (%) = 100− (C S / C B ) × 100 (1)

Figure 0005596933
Figure 0005596933

上記表6からわかるように、比較体α(コレマナイトなし:従来品)は、熱中性子をほとんど遮蔽することなく透過させてしまうのに対し、試験体1A,1B,2,3A,3B,4A,4B,5A,5B(コレマナイト含有)は、熱中性子の60%以上を透過させることなく遮蔽することができ、特に、試験体2,3A,3B,4A,4B,5A,5Bは、熱中性子の90%以上を透過させることなく遮蔽でき、非常に好ましいことが確認された。   As can be seen from Table 6 above, the comparative body α (no colemanite: conventional product) allows the thermal neutrons to pass through almost without shielding, whereas the test bodies 1A, 1B, 2, 3A, 3B, 4A, 4B, 5A, 5B (containing colemanite) can shield 60% or more of thermal neutrons without transmitting, and in particular, the test bodies 2, 3A, 3B, 4A, 4B, 5A, 5B It was confirmed that 90% or more can be shielded without transmitting, which is very preferable.

本発明に係る石膏系成形体及びその製造方法は、耐火性能のさらなる向上を十分に図ることができるので、高性能な耐火間仕切壁等の内装建材として好適に利用することができ、さらに、中性子遮蔽性能を向上できることから、半導体製造工場やコンピュータルーム等の内装建材として好適であり、産業上、極めて有益に利用することができる。
Since the gypsum-based molded body and the method for producing the same according to the present invention can sufficiently improve the fire resistance, it can be suitably used as an interior building material such as a high-performance fire-resistant partition wall. Since the shielding performance can be improved, it is suitable as an interior building material for a semiconductor manufacturing factory, a computer room, etc., and can be used extremely beneficially industrially.

Claims (2)

石膏をマトリックスとして、繊維を0.8〜9.8質量%、コレマナイトを56.2〜85質量%含有し、押出成形法によって成形される石膏系成形体を製造する方法であって、
水和性石膏10〜35質量%と、繊維1〜10質量%と、コレマナイト60〜86.2質量%とを含む固形原料に対して、増粘剤と水を加えて混練して混練物とし、前記混練物を押出成形法により成形した後に養生して硬化させる
ことを特徴とする石膏系成形体の製造方法。
A method for producing a gypsum-based molded article containing 0.8 to 9.8% by mass of fibers and 56.2 to 85% by mass of colemanite using gypsum as a matrix, and molded by an extrusion method ,
Thickener and water are added to a solid raw material containing 10 to 35% by mass of hydrating gypsum, 1 to 10% by mass of fibers, and 60 to 86.2% by mass of colemanite, and kneaded to obtain a kneaded product. A method for producing a gypsum-based molded article, wherein the kneaded product is molded by an extrusion molding method and then cured and cured.
請求項に記載の石膏系成形体の製造方法において、
前記コレマナイトとの合計量が86.2質量%以下となるように、前記固形原料が充填材を含んでいる
ことを特徴とする石膏系成形体の製造方法。
In the manufacturing method of the gypsum type molded object according to claim 1 ,
The method for producing a gypsum-based molded body, wherein the solid raw material contains a filler so that the total amount with the colemanite is 86.2% by mass or less.
JP2009084210A 2008-03-31 2009-03-31 Method for producing gypsum-based molded body Active JP5596933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084210A JP5596933B2 (en) 2008-03-31 2009-03-31 Method for producing gypsum-based molded body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008090032 2008-03-31
JP2008090032 2008-03-31
JP2009084210A JP5596933B2 (en) 2008-03-31 2009-03-31 Method for producing gypsum-based molded body

Publications (2)

Publication Number Publication Date
JP2009263218A JP2009263218A (en) 2009-11-12
JP5596933B2 true JP5596933B2 (en) 2014-09-24

Family

ID=41389550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084210A Active JP5596933B2 (en) 2008-03-31 2009-03-31 Method for producing gypsum-based molded body

Country Status (1)

Country Link
JP (1) JP5596933B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989099B1 (en) * 2012-04-04 2014-11-21 Techniwood IMPROVED MULTIPLY PANEL.
KR101646925B1 (en) * 2014-05-20 2016-08-09 오광석 Chelate composition for preventing discoloration of surface of panel for construction and panel composition for construction containing the same
CN118495908B (en) * 2024-07-12 2024-09-24 湖南人健宝固高新科技发展有限公司 Gypsum-based building solid waste admixture and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128819A (en) * 1974-09-05 1976-03-11 Chiyoda Kenzai Kogyo TAIKA SEINITOMUSETSUKOBOODONOSEIZOHOHO
JPS586704B2 (en) * 1979-06-28 1983-02-05 秩父セメント株式会社 Neutron beam shielding material
JPH07112945B2 (en) * 1988-03-01 1995-12-06 淺野スレート株式会社 Gypsum molded plate manufacturing method
JP2761750B2 (en) * 1989-03-15 1998-06-04 淺野スレート株式会社 Gypsum molded plate manufacturing method
JPH0688824B2 (en) * 1990-02-19 1994-11-09 新日鐵化学株式会社 Inflatable inorganic material
JP2986986B2 (en) * 1991-10-09 1999-12-06 浅野スレート株式会社 Manufacturing method of high strength gypsum board
JP3293938B2 (en) * 1993-03-30 2002-06-17 株式会社エーアンドエーマテリアル Fiber-containing gypsum board and method for producing the same
JP5302734B2 (en) * 2008-03-31 2013-10-02 株式会社エーアンドエーマテリアル Method for producing gypsum-based molded body

Also Published As

Publication number Publication date
JP2009263218A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
Wang et al. Study on the improvement of the waterproof and mechanical properties of hemihydrate phosphogypsum-based foam insulation materials
Hao et al. Study on preparation and properties of modified magnesium oxychloride cement foam concrete
US10093577B2 (en) Fiber-reinforced carbonated hydraulic inorganic molded plate and method for producing same
NZ528311A (en) Low bulk density calcium silicate hydrate strength accelerant additive for curing cementitious products
WO2013048351A1 (en) Gypsum-based composition for construction material and system
Hakamy et al. Effect of calcined nanoclay on the durability of NaOH treated hemp fabric-reinforced cement nanocomposites
Santos et al. Effect of colloidal silica on the mechanical properties of fiber–cement reinforced with cellulosic fibers
CN108698926A (en) Geopolymer composite material and mineral polymer base composition
Shen et al. Early properties and microstructure evolution of alkali-activated brick powder geopolymers at varied curing humidity
JPH03237051A (en) High strength calcium silicate formed body and its manufacture
JP5596933B2 (en) Method for producing gypsum-based molded body
JPS58208163A (en) Manufacture of inorganic hardened body
US20140272439A1 (en) Low embodied energy wallboard
JP4453997B2 (en) High strength hardened calcium silicate
JPWO2018003612A1 (en) Fiber-reinforced carbonated cement molding and method for producing the same
Esan Review of gypsum reinforced composites as building materials
Sonprasarn et al. Microstructure and mechanical performance of fiber-reinforced cement composites made with nucleating-agent activated coal-fired power plant bottom ash
JPH01320243A (en) Lightweight cement composition
Kotwica et al. Effect of metakaolinite on properties of alkali activated slag materials
JPH07133147A (en) Geopolymer-modified gypsum base building material
JP2017137208A (en) Manufacturing method of fiber contaminated gypsum board
Álvarez et al. Characterization of a New Lightened Gypsum-Based Material Reinforced with Fibers. Materials 2021, 14, 1203
Nithipaiboon et al. Impact of the hybrid-aluminum additive on the hydration kinetics of Portland cement in fiber-reinforced cement composites
US20120245254A1 (en) Inorganic board and inorganic board production method
RU2805440C1 (en) Neutron shielding building panel based on gypsum and method for manufacturing neutron shielding beams building panel based on gypsum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R150 Certificate of patent or registration of utility model

Ref document number: 5596933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250