[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5591614B2 - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP5591614B2
JP5591614B2 JP2010168463A JP2010168463A JP5591614B2 JP 5591614 B2 JP5591614 B2 JP 5591614B2 JP 2010168463 A JP2010168463 A JP 2010168463A JP 2010168463 A JP2010168463 A JP 2010168463A JP 5591614 B2 JP5591614 B2 JP 5591614B2
Authority
JP
Japan
Prior art keywords
measurement space
measurement
air
inflow
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010168463A
Other languages
Japanese (ja)
Other versions
JP2012026973A (en
Inventor
浩一 酒井
博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2010168463A priority Critical patent/JP5591614B2/en
Publication of JP2012026973A publication Critical patent/JP2012026973A/en
Application granted granted Critical
Publication of JP5591614B2 publication Critical patent/JP5591614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Nuclear Medicine (AREA)

Description

本発明は、例えばPET装置やCT装置等の測定装置に関する。   The present invention relates to a measuring apparatus such as a PET apparatus or a CT apparatus.

上記技術分野における測定装置を用いて被検体の測定を行う場合には、測定装置自体が大きな熱源であるため、測定装置が配置される測定室内を比較的低温(例えば24℃程度)に維持する必要がある。そのため、被検体が麻酔を施された動物である場合には、体温が低下することにより代謝機能が低下してしまうため、正確な測定データが得られないことがある。そこで、載置された被検体を保温するための板状のヒータを備えた保温機器が提案されている(例えば、特許文献1参照)。このような保温機器を用いた測定においては、被検体が載置されたヒータごと被検体を測定空間に挿入して、被検体を保温しながら測定を行う。   When measuring a subject using a measurement apparatus in the above technical field, the measurement apparatus itself is a large heat source, and therefore the measurement chamber in which the measurement apparatus is arranged is maintained at a relatively low temperature (for example, about 24 ° C.). There is a need. Therefore, when the subject is an anesthetized animal, the metabolic function is lowered due to a decrease in body temperature, so that accurate measurement data may not be obtained. In view of this, there has been proposed a heat retention device including a plate-like heater for retaining the placed subject (for example, see Patent Document 1). In measurement using such a heat retaining device, the subject is inserted into the measurement space together with the heater on which the subject is placed, and measurement is performed while keeping the subject warm.

実用新案登録第3151723号公報Utility Model Registration No. 3151723

しかしながら、上述したような保温機器においては、被検体のヒータに接触している部分と接触していない部分との間で保温効果に差が生じてしまい、結果として被検体の保温が十分に行えない場合がある。また、上述したような保温機器を用いて測定を行う際には、測定空間に挿入されたヒータを含む保温機器が測定に悪影響を及ぼし、正確な測定結果を得られない場合がある。   However, in the above-described heat retaining device, there is a difference in the heat retaining effect between the portion that is in contact with the heater of the subject and the portion that is not in contact, and as a result, the subject can be sufficiently kept warm. There may not be. Further, when performing measurement using the above-described heat retaining device, the heat retaining device including the heater inserted in the measurement space may adversely affect the measurement, and an accurate measurement result may not be obtained.

本発明は、そのような事情に鑑みてなされたものであり、被検体を十分に保温可能であると共に正確な測定が可能な測定装置を提供することを課題とする。   This invention is made | formed in view of such a situation, and makes it a subject to provide the measuring apparatus which can hold | maintain a subject sufficiently and can perform an exact measurement.

上記課題を解決するために、本発明に係る測定装置は、被検体が配置される筒状の測定空間が設けられた筐体と、筐体内に設置され、被検体から発せられる電磁波を検出する検出器と、検出器を冷却するために筐体内に空気を導入する導入手段と、導入手段により筐体内に導入されて検出器で温められた空気を筐体外に導出する導出手段と、導入手段により筐体内に導入されて検出器で温められた空気を測定空間内に流入させる流入手段と、測定空間内に流入される空気の流入量が測定空間の温度に応じて調節されるように、導出手段及び流入手段の少なくとも一方を制御する制御手段と、を備えることを特徴とする。   In order to solve the above-described problems, a measurement apparatus according to the present invention detects a electromagnetic wave emitted from a subject, which is provided in a case provided with a cylindrical measurement space in which the subject is disposed, and the case. A detector; introduction means for introducing air into the housing to cool the detector; deriving means for deriving air introduced into the housing by the introduction means and heated by the detector; and introduction means Inflow means for introducing the air introduced into the housing and heated by the detector into the measurement space, and the inflow amount of the air flowing into the measurement space is adjusted according to the temperature of the measurement space, And control means for controlling at least one of the derivation means and the inflow means.

この測定装置では、検出器を冷却するために筐体内に導入されて検出器で温められた空気を測定空間内に流入させることにより、測定空間内に配置された被検体を保温する。このため、被検体の各部分で保温効果に差が生じることが避けられるので、測定空間内において被検体を十分に保温することができる。しかも、この測定装置では、被検体を保温するために空気を用いるので、保温機器等が測定に悪影響を及ぼすことがなく、正確な測定結果を得ることができる。   In this measurement apparatus, the air that is introduced into the housing and is warmed by the detector to cool the detector is caused to flow into the measurement space, so that the subject placed in the measurement space is kept warm. For this reason, since it is avoided that a difference in the heat insulation effect occurs in each part of the subject, the subject can be sufficiently kept warm in the measurement space. In addition, in this measurement apparatus, air is used to keep the subject warm, so that the heat keeping device or the like does not adversely affect the measurement, and an accurate measurement result can be obtained.

ここで、制御手段は、測定空間の温度を上げる場合には、筐体外に導出される空気の導出量が減少すると共に測定空間内に流入される空気の流入量が増加するように導出手段及び流入手段の少なくとも一方を制御し、測定空間の温度を下げる場合には、導出量が増加すると共に流入量が減少するように導出手段及び流入手段の少なくとも一方を制御することが好ましい。この場合、温められた空気の筐体外への導出量と測定空間内への流入量とを調節することによって、測定空間の温度を調節できる。換言すれば、測定空間の温度を調節する際にも、検出器を冷却するために筐体内に導入される空気の導入量を維持することができる。したがって、被検体の保温を十分に行いつつ検出器を適切に冷却することができる。   Here, when the temperature of the measurement space is increased, the control means reduces the amount of air derived outside the housing and decreases the amount of air introduced into the measurement space and increases the amount of air inflow into the measurement space. When controlling at least one of the inflow means and lowering the temperature of the measurement space, it is preferable to control at least one of the derivation means and the inflow means so that the derived amount increases and the inflow amount decreases. In this case, the temperature of the measurement space can be adjusted by adjusting the amount of the warmed air that is led out of the housing and the amount of inflow into the measurement space. In other words, even when the temperature of the measurement space is adjusted, the amount of air introduced into the housing for cooling the detector can be maintained. Therefore, the detector can be appropriately cooled while sufficiently warming the subject.

また、流入手段は、測定空間の一方の開口部から測定空間の他方の開口部に向けて空気を流入させてもよい。或いは、流入手段は、測定空間の内部から測定空間の一方及び他方の開口部に向けて空気を流入させてもよい。   Further, the inflow means may cause air to flow from one opening portion of the measurement space toward the other opening portion of the measurement space. Alternatively, the inflow means may allow air to flow from the inside of the measurement space toward one and the other opening of the measurement space.

また、導出手段及び流入手段は、弁及びファンの少なくとも一方を含むことが好ましい。この場合、測定空間内に流入される空気の流入量を正確に調節することができる。   Further, it is preferable that the lead-out means and the inflow means include at least one of a valve and a fan. In this case, the amount of air flowing into the measurement space can be accurately adjusted.

さらに、被検体はヒト以外の動物であり、流入手段は、空気と共に麻酔ガスを測定空間内に流入させることが好ましい。この場合、被検体の麻酔が効いている時間を長くすることができる。   Further, the subject is an animal other than a human, and the inflow means preferably causes anesthetic gas to flow into the measurement space together with air. In this case, the time during which the anesthesia of the subject is effective can be lengthened.

本発明によれば、被検体を十分に保温可能であると共に正確な測定が可能な測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the measuring apparatus which can hold | maintain a test object sufficiently and can perform an exact measurement can be provided.

本発明に係る測定装置の第1実施形態としてのPET装置の斜視図である。1 is a perspective view of a PET apparatus as a first embodiment of a measuring apparatus according to the present invention. 図1に示されたPET装置の断面図である。It is sectional drawing of the PET apparatus shown by FIG. 図1に示されたPET装置の背面図である。FIG. 2 is a rear view of the PET apparatus shown in FIG. 1. 本発明に係る測定装置の第2実施形態としてのPET装置の断面図である。It is sectional drawing of the PET apparatus as 2nd Embodiment of the measuring apparatus which concerns on this invention. 本発明に係る測定装置の第3実施形態としてのPET装置の断面図である。It is sectional drawing of PET apparatus as 3rd Embodiment of the measuring apparatus which concerns on this invention. 図5に示されたPET装置の背面図である。FIG. 6 is a rear view of the PET apparatus shown in FIG. 5.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において、同一又は相当部分には同一の符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

[第1実施形態]
図1は、本発明に係る測定装置の第1実施形態としてのPET装置の斜視図である。図1に示されるように、PET装置1は、筒状(トンネル状)の測定空間Sが設けられた筐体2と、マウスやヒト等の被検体Tが載置されるベッド3と、測定空間Sの中心軸CLの方向にベッド3を進退させる駆動部4とを備えている。このようなPET装置1は、複数のスライス位置において被検体Tの断層像を取得するために、陽電子放出核種(陽電子を放出する放射性同位元素)で標識された薬剤が投与された被検体Tから放出されるγ線等の放射線(電磁波)を検出する装置である。なお、被検体Tの断層像を取得する際には、被検体Tは、駆動部4によるベッド3の移動により、測定空間S内に配置される。
[First Embodiment]
FIG. 1 is a perspective view of a PET apparatus as a first embodiment of a measuring apparatus according to the present invention. As shown in FIG. 1, a PET apparatus 1 includes a casing 2 provided with a cylindrical (tunnel-shaped) measurement space S, a bed 3 on which a subject T such as a mouse or a human is placed, and a measurement. And a drive unit 4 for moving the bed 3 back and forth in the direction of the central axis CL of the space S. Such a PET device 1 is configured to obtain a tomographic image of the subject T at a plurality of slice positions from the subject T to which a drug labeled with a positron emitting nuclide (a radioactive isotope that emits positrons) is administered. It is an apparatus for detecting radiation (electromagnetic waves) such as γ-rays emitted. When acquiring a tomographic image of the subject T, the subject T is arranged in the measurement space S by the movement of the bed 3 by the drive unit 4.

図2は、図1に示されたPET装置の模式的な断面図である。図2に示されるように、筐体2内においては、複数のスライス位置のそれぞれに対応するように検出部5が中心線CLの方向に複数配列されることにより、放射線検出器6が構成されている。このように構成された放射線検出器6は、検出器駆動回路(不図示)を有しており、この検出器駆動回路に対して電源ユニット7から電源が供給されることにより駆動される。そして、放射線検出器6は、上述したように被検体Tから放出される放射線を検出し、その検出結果を示す情報を、計測サーバ8や信号処理ユニット9に送信する。なお、ここでは、放射線検出器6が中心軸CLの方向に3つ配列されることにより、1つの検出器モジュールMが構成されている。   FIG. 2 is a schematic cross-sectional view of the PET apparatus shown in FIG. As shown in FIG. 2, in the housing 2, the radiation detector 6 is configured by arranging a plurality of detection units 5 in the direction of the center line CL so as to correspond to each of a plurality of slice positions. ing. The radiation detector 6 configured in this way has a detector drive circuit (not shown), and is driven by supplying power from the power supply unit 7 to the detector drive circuit. The radiation detector 6 detects the radiation emitted from the subject T as described above, and transmits information indicating the detection result to the measurement server 8 and the signal processing unit 9. Here, one detector module M is configured by arranging three radiation detectors 6 in the direction of the central axis CL.

ここで、筐体2の前面2aには、放射線検出器6を冷却するために筐体2内に空気を導入する吸気ファン(導入手段)10が配設されている。また、筐体2の前面2aには、電源ユニット7及び計測サーバ8を冷却するために筐体2内に空気を導入する吸気ファン11及び吸気ファン12が配設されている。さらに、筐体2の背面2bには、信号処理ユニット9を冷却するために筐体2内に空気を導入する吸気ファン13が配設されている。図3(a)は、筐体における信号処理ユニットが設けられた部分の模式的な背面図である。図3(a)に示されるように、吸気ファン13は筐体2の幅方向に沿って複数(ここでは5つ)配設されている。なお、吸気ファン10〜12についても、吸気ファン13と同様に、それぞれ複数配設されていてもよい。   Here, an intake fan (introducing means) 10 that introduces air into the housing 2 to cool the radiation detector 6 is disposed on the front surface 2 a of the housing 2. In addition, an intake fan 11 and an intake fan 12 that introduce air into the casing 2 in order to cool the power supply unit 7 and the measurement server 8 are disposed on the front surface 2 a of the casing 2. Further, an intake fan 13 that introduces air into the housing 2 in order to cool the signal processing unit 9 is disposed on the back surface 2 b of the housing 2. FIG. 3A is a schematic rear view of a portion of the housing where the signal processing unit is provided. As shown in FIG. 3A, a plurality of (here, five) intake fans 13 are arranged along the width direction of the housing 2. Note that a plurality of intake fans 10 to 12 may be provided in the same manner as the intake fan 13.

このように配設された吸気ファン10〜13から筐体2内に導入される比較的温度の低い空気(冷気)は、図2の白抜き矢印に示されるように、放射線検出器6、電源ユニット7、計測サーバ8、及び信号処理ユニット9にそれぞれ供給され、放射線検出器6、電源ユニット7、計測サーバ8、及び信号処理ユニット9をそれぞれ冷却することによって温められる。   Air having a relatively low temperature (cold air) introduced into the housing 2 from the intake fans 10 to 13 arranged in this way is the radiation detector 6, the power source, as indicated by the white arrow in FIG. 2. The radiation is supplied to the unit 7, the measurement server 8, and the signal processing unit 9, and warmed by cooling the radiation detector 6, the power supply unit 7, the measurement server 8, and the signal processing unit 9.

筐体2の背面2bには、そのようにして温められた比較的温度の高い空気(暖気)を、筐体2外に導出する排気ファン(導出手段、流入手段)20が配設されている。図3(b)は、筐体における放射線検出器が設けられた部分の模式的な背面図である(同図において筐体は省略されている)。図3(b)に示されるように、排気ファン20は、測定空間Sの縁部に沿って放射状に複数(ここでは12個)配置された検出器モジュールMの後端部近傍に複数(ここでは十字状に4つ)設けられている。これにより、暖気は、図2の黒塗り矢印に示されるように流動し、排気ファン20によって筐体2外に排出される。   On the back surface 2b of the housing 2, an exhaust fan (leading means, inflow means) 20 for guiding the relatively warm air (warm air) thus heated out of the housing 2 is disposed. . FIG. 3B is a schematic rear view of a portion where the radiation detector is provided in the housing (the housing is omitted in the figure). As shown in FIG. 3B, a plurality of exhaust fans 20 (here, twelve) are arranged near the rear end of the detector module M arranged radially (here, twelve) along the edge of the measurement space S. Then there are four crosses). Thus, the warm air flows as indicated by the black arrows in FIG. 2 and is discharged out of the housing 2 by the exhaust fan 20.

ここで、排気ファン20のそれぞれには、ダクト(流入手段)21の一端21aが接続されている。このダクト21の他端21bは、排気口として筐体2の背面側における測定空間Sの開口部S1に配置されている。したがって、排気ファン20によって排出された暖気は、図2及び図3(b)の黒塗り矢印に示されるようにダクト21内を流通し、測定空間Sの一方の開口部S1から他方の開口部S2に向けて測定空間S内に流入される。このように測定空間Sに暖気が流入されることによって、測定空間Sの温度が上昇すると共に測定空間Sに配置された被検体Tの保温がなされる。なお、ダクト21は、蛇腹状に形成されており、排気口である他端21bの配置位置が、被検体Tの種類や大きさに合わせて調節可能に構成されている。   Here, one end 21 a of a duct (inflow means) 21 is connected to each of the exhaust fans 20. The other end 21b of the duct 21 is disposed in the opening S1 of the measurement space S on the back side of the housing 2 as an exhaust port. Therefore, the warm air exhausted by the exhaust fan 20 circulates in the duct 21 as shown by the black arrows in FIGS. 2 and 3B, and the one opening S1 of the measurement space S is changed to the other opening. It flows into the measurement space S toward S2. As the warm air flows into the measurement space S in this way, the temperature of the measurement space S rises and the subject T arranged in the measurement space S is kept warm. The duct 21 is formed in a bellows shape, and the arrangement position of the other end 21b that is an exhaust port can be adjusted according to the type and size of the subject T.

このようなダクト21における排気ファン20と対向する位置には、電磁弁(導出手段)22が設けられている。したがって、電磁弁22を開状態とすることにより、排気ファン20によって排出された暖気の一部又は全部が測定空間Sに流入されずに、電磁弁22から外部(PET装置1が設置された測定室内)に導出される。一方で、電磁弁22を閉状態とすることにより、排気ファン20によって筐体2外に排出された暖気の全部がダクト21によって測定空間S内に流入される。   An electromagnetic valve (leading means) 22 is provided at a position facing the exhaust fan 20 in the duct 21. Therefore, by opening the electromagnetic valve 22, a part or all of the warm air exhausted by the exhaust fan 20 is not flowed into the measurement space S, but from the electromagnetic valve 22 to the outside (measurement in which the PET apparatus 1 is installed). To the room). On the other hand, by setting the electromagnetic valve 22 in the closed state, all of the warm air discharged out of the housing 2 by the exhaust fan 20 flows into the measurement space S by the duct 21.

PET装置1は、この電磁弁22の開閉を制御する例えばコンピュータ等の制御部(制御手段:不図示)を備えている。この制御部は、測定空間S内に流入される暖気の流入量が測定空間Sの温度に応じて調節されるように、電磁弁22の開閉を制御する。より具体的には、この制御部は、測定空間Sの温度を上げる場合には、測定室内(すなわち筐体2外)への暖気の導出量が減少すると共に測定空間S内への暖気の流入量が増加するように電磁弁22の開閉を制御する。一方、この制御部は、測定空間Sの温度を下げる場合には、測定室内への暖気の導出量が増加すると共に測定空間S内への暖気の流入量が減少するように電磁弁22の開閉を制御する。なお、制御部は、測定室内への暖気の導出量及び測定空間S内への暖気の流入量を調整するに際し、電磁弁22の開閉の制御に加えて排気ファン20の制御を行ってもよい。また、PET装置1は、測定空間Sの温度を検出する測定空間温度モニタを備え、制御部は、その測定空間温度モニタの検出結果を利用して上記の制御を行ってもよい。   The PET apparatus 1 includes a control unit (control means: not shown) such as a computer that controls opening and closing of the electromagnetic valve 22. This control unit controls the opening and closing of the electromagnetic valve 22 so that the amount of warm air flowing into the measurement space S is adjusted according to the temperature of the measurement space S. More specifically, when the temperature of the measurement space S is increased, the control unit decreases the amount of warm air derived into the measurement chamber (that is, outside the housing 2) and flows warm air into the measurement space S. The opening and closing of the solenoid valve 22 is controlled so that the amount increases. On the other hand, when the temperature of the measurement space S is lowered, the control unit opens and closes the electromagnetic valve 22 so that the amount of warm air derived into the measurement chamber increases and the amount of warm air flowing into the measurement space S decreases. To control. Note that the control unit may control the exhaust fan 20 in addition to controlling the opening and closing of the electromagnetic valve 22 when adjusting the amount of warm air derived into the measurement chamber and the amount of warm air flowing into the measurement space S. . The PET apparatus 1 may include a measurement space temperature monitor that detects the temperature of the measurement space S, and the control unit may perform the above-described control using the detection result of the measurement space temperature monitor.

以上説明したように、本実施形態に係るPET装置1では、放射線検出器6等を冷却するために筐体2に導入されて放射線検出器6等で温められた空気(暖気)を測定空間S内に流入させることにより、測定空間S内に配置された被検体Tを保温する。このため、被検体Tの各部分で保温効果に差が生じることが避けられるので、測定空間S内において被検体Tを十分に保温することができる。しかも、本実施形態に係るPET装置1では、被検体Tを保温するために空気を用いるので、例えばヒータを含む保温機器等を測定空間S内に挿入する必要がない。したがって、保温機器等が測定に悪影響を及ぼすことがなく、正確な測定結果を得ることができる。また、本実施形態に係るPET装置1では、測定空間Sの一方の開口部S1から他方の開口部S2に向けて測定空間S内に暖気を流入させる。このため、筐体2外に排出された暖気を測定室内に効率良く排出できる。   As described above, in the PET apparatus 1 according to the present embodiment, air (warm air) introduced into the housing 2 and heated by the radiation detector 6 or the like to cool the radiation detector 6 or the like is measured in the measurement space S. By flowing in, the subject T arranged in the measurement space S is kept warm. For this reason, it is possible to avoid a difference in the heat retaining effect in each part of the subject T, and thus the subject T can be sufficiently warmed in the measurement space S. Moreover, in the PET apparatus 1 according to the present embodiment, air is used to keep the subject T warm, so that it is not necessary to insert a heat keeping device including a heater or the like into the measurement space S, for example. Therefore, an accurate measurement result can be obtained without adversely affecting the measurement by a heat retaining device or the like. Further, in the PET apparatus 1 according to the present embodiment, warm air is caused to flow into the measurement space S from one opening S1 of the measurement space S toward the other opening S2. For this reason, the warm air discharged | emitted out of the housing | casing 2 can be discharged | emitted efficiently in a measurement chamber.

さらに、本実施形態に係るPET装置1では、制御部が電磁弁22の開閉を制御することにより、暖気の測定室内への導出量と測定空間S内への流入量とを調節して、測定空間の温度を調節する。このため、測定空間Sの温度を調節する際にも、放射線検出器6等を冷却するために筐体2内に導入される空気の導入量を維持することができる。したがって、被検体Tの保温を十分に行いつつ放射線検出器6等を効果的に冷却することができる。   Further, in the PET apparatus 1 according to the present embodiment, the control unit controls the opening and closing of the electromagnetic valve 22 to adjust the amount of warm air derived into the measurement chamber and the amount of inflow into the measurement space S to perform measurement. Adjust the temperature of the space. For this reason, when adjusting the temperature of the measurement space S, it is possible to maintain the amount of air introduced into the housing 2 in order to cool the radiation detector 6 and the like. Therefore, the radiation detector 6 and the like can be effectively cooled while sufficiently maintaining the temperature of the subject T.

なお、PET装置1は、ダクト21の他端21bである排気口から排出される空気の温度を検出する排気口温度モニタと、排気口温度モニタが検出した温度を示す情報を表示する温度表示装置30と、設定温度の入力を受け付ける温度入力装置と、をさらに備えることができる。その場合、上述した制御部は、排気口温度モニタが検出した温度を示す情報に基づいて、排気口から排出される空気の温度が温度入力装置から入力された設定温度となるように、排気ファン20と電磁弁22とを制御する。これにより、被検体Tの保温状態を、測定に適した状態に維持することができる。   The PET apparatus 1 includes an exhaust port temperature monitor that detects the temperature of air exhausted from the exhaust port that is the other end 21b of the duct 21, and a temperature display device that displays information indicating the temperature detected by the exhaust port temperature monitor. 30 and a temperature input device that accepts an input of a set temperature. In that case, the control unit described above is configured so that the temperature of the air discharged from the exhaust port becomes the set temperature input from the temperature input device based on the information indicating the temperature detected by the exhaust port temperature monitor. 20 and the solenoid valve 22 are controlled. Thereby, the heat retention state of the subject T can be maintained in a state suitable for measurement.

また、PET装置1は、筐体2内の温度を検出する筐体内温度モニタをさらに備えることができる。この場合、制御部は、筐体内温度モニタが検出した温度を示す情報に基づいて、吸気ファン10〜13及び排気ファン20を制御し、筐体2内の温度を所定の温度で一定に維持する。これにより、放射線検出器6等を適切に冷却することができる。   The PET apparatus 1 can further include an in-housing temperature monitor that detects the temperature in the housing 2. In this case, the control unit controls the intake fans 10 to 13 and the exhaust fan 20 based on the information indicating the temperature detected by the in-case temperature monitor, and maintains the temperature in the case 2 at a predetermined temperature. . Thereby, the radiation detector 6 etc. can be cooled appropriately.

[第2実施形態]
図4は、本実施形態に係るPET装置の模式的な断面図である。図4に示されるように、本実施形態に係るPET装置1Aは、第1実施形態に係るPET装置1に対して、ベッド3に替えてベッド43を備える点、及び、ダクト21に替えてダクト(流入手段)41を備える点で異なっている。ベッド43は、被検体Tが載置されない所定の位置において、少なくとも1つの開口が設けられている。また、ダクト41は、それぞれの一端41aが排気ファン20に接続されると共に、他端41b同士が互いに接続されている。ダクト41同士の接続部41cには、ベッド43と測定空間Sの内壁Saとの間の位置において、排気口としての開口41dが形成されている。
[Second Embodiment]
FIG. 4 is a schematic cross-sectional view of the PET apparatus according to the present embodiment. As shown in FIG. 4, the PET apparatus 1 </ b> A according to this embodiment includes a bed 43 instead of the bed 3 with respect to the PET apparatus 1 according to the first embodiment, and a duct instead of the duct 21. (Inflow means) 41 is different. The bed 43 is provided with at least one opening at a predetermined position where the subject T is not placed. The duct 41 has one end 41a connected to the exhaust fan 20 and the other end 41b connected to each other. An opening 41d as an exhaust port is formed in the connection portion 41c between the ducts 41 at a position between the bed 43 and the inner wall Sa of the measurement space S.

したがって、排気ファン20から排出された暖気は、図4の黒塗り矢印に示されるように、ダクト41内を流通して、その開口41dからベッド43と測定空間Sの内壁Saとの間(すなわち測定空間S内)に流入されて、ベッド43の開口を通じてベッド43に載置された被検体Tの保温に供される。なお、ダクト41についても、ダクト21と同様に、排気ファン20と対向する位置には電磁弁22が設けられている。したがって、制御部が、電磁弁22の開閉を制御することにより、暖気の測定室内への導出量と測定空間S内への流入量とを調節して、測定空間Sの温度を調節することができる。   Therefore, the warm air exhausted from the exhaust fan 20 flows through the duct 41 as shown by the black arrow in FIG. 4, and the space between the bed 43 and the inner wall Sa of the measurement space S (that is, the opening 41d) Into the measurement space S), the sample T placed on the bed 43 is provided with heat through the opening of the bed 43. The duct 41 is also provided with an electromagnetic valve 22 at a position facing the exhaust fan 20, as with the duct 21. Therefore, the controller can adjust the temperature of the measurement space S by controlling the opening and closing of the electromagnetic valve 22 to adjust the amount of warm air introduced into the measurement chamber and the amount of inflow into the measurement space S. it can.

以上説明したように、本実施形態に係るPET装置1Aによれば、PET装置1と同様にして、測定空間S内において被検体Tを十分に保温することができると共に、正確な測定結果を得ることができる。さらに、本実施形態に係るPET装置1Aでは、暖気が被検体Tに直接あたらないので、暖気の影響を被検体Tへ与えることなく測定を行うことができる。   As described above, according to the PET apparatus 1A according to the present embodiment, the subject T can be sufficiently warmed in the measurement space S and an accurate measurement result can be obtained in the same manner as the PET apparatus 1. be able to. Furthermore, in the PET apparatus 1A according to the present embodiment, since warm air does not directly hit the subject T, measurement can be performed without affecting the subject T by the warm air.

[第3実施形態]
図5は、本実施形態に係るPET装置の模式的な断面図である。図5に示されるように、本実施形態に係るPET装置1Bは、第1実施形態に係るPET装置1に対して、測定空間Sの内面に複数の開口Sbが形成されている点、ファン(導入手段、流入手段)50を有する点、電磁弁(導出手段)52を有する点、排気ファン20を有さない点、及び、ダクト21を有さない点で異なっている。
[Third Embodiment]
FIG. 5 is a schematic cross-sectional view of the PET apparatus according to the present embodiment. As shown in FIG. 5, the PET apparatus 1B according to the present embodiment is different from the PET apparatus 1 according to the first embodiment in that a plurality of openings Sb are formed on the inner surface of the measurement space S. It is different in that it has an introduction means, an inflow means) 50, has an electromagnetic valve (leading means) 52, does not have an exhaust fan 20, and does not have a duct 21.

ファン50は、図5,6に示されるように、測定空間Sの縁部に沿って放射状に複数(ここでは12個)配置された検出器モジュールMのそれぞれの後端部近傍に2個ずつ(すなわち合計24個)設けられている。これらのファン50により、図5の白抜き矢印に示されるように冷気が筐体2内に導入されると共に、図5,6の黒塗り矢印に示されるように、放射線検出器6同士の間及び放射線検出器6と筐体2の内壁との間を通って暖気が流通させられて、測定空間Sの開口Sbを通じて測定空間S内に暖気が流入させられる。このように、PET装置1Bでは、測定空間Sの内部から測定空間Sの一方の開口部S1及び他方の開口部S2に向けて測定空間S内に暖気が流入される。   As shown in FIGS. 5 and 6, two fans 50 are provided in the vicinity of the rear end of each of the detector modules M that are radially arranged along the edge of the measurement space S (12 in this case). (That is, a total of 24). These fans 50 introduce cool air into the housing 2 as shown by the white arrows in FIG. 5 and between the radiation detectors 6 as shown by the black arrows in FIGS. The warm air is circulated between the radiation detector 6 and the inner wall of the housing 2, and the warm air is caused to flow into the measurement space S through the opening Sb of the measurement space S. Thus, in the PET apparatus 1B, warm air flows into the measurement space S from the inside of the measurement space S toward the one opening S1 and the other opening S2 of the measurement space S.

なお、電磁弁52は、筐体2の前面2a及び背面2bにおける測定空間Sの縁部近傍に複数(例えば4つ)設けられている。したがって、制御部が、電磁弁52の開閉を制御することによって、暖気の筐体2外への導出量と測定空間S内への流入量とを調節して、測定空間の温度を調節することができる。   A plurality of (for example, four) solenoid valves 52 are provided in the vicinity of the edge of the measurement space S on the front surface 2a and the back surface 2b of the housing 2. Therefore, the control unit controls the opening and closing of the electromagnetic valve 52, thereby adjusting the amount of warm air derived outside the housing 2 and the amount of inflow into the measurement space S to adjust the temperature of the measurement space. Can do.

以上説明したように、本実施形態に係るPET装置1Bによれば、PET装置1と同様にして、測定空間S内において被検体Tを十分に保温することができると共に、正確な測定結果を得ることができる。さらに、本実施形態に係るPET装置1Bでは、暖気を測定空間S内に流入させるためのダクトを設ける必要がないので、PET装置の構成を簡素化できると共に、PET装置の製造コストを低下させることができる。   As described above, according to the PET apparatus 1B according to the present embodiment, the subject T can be sufficiently kept in the measurement space S and an accurate measurement result can be obtained in the same manner as the PET apparatus 1. be able to. Furthermore, in the PET apparatus 1B according to the present embodiment, since it is not necessary to provide a duct for allowing warm air to flow into the measurement space S, the configuration of the PET apparatus can be simplified and the manufacturing cost of the PET apparatus can be reduced. Can do.

なお、上述した第1〜3実施形態に係るPET装置1,1A,1Bにおいては、被検体Tがヒト以外の動物である場合には、排気ファン20、ダクト21,41又はファン50等を用いて、暖気と共に麻酔ガスを測定空間S内に流入させることができる。そのようにすれば、被検体Tの麻酔が効いている時間を長くすることができる。   In the PET apparatuses 1, 1A, 1B according to the first to third embodiments described above, when the subject T is an animal other than a human, the exhaust fan 20, the ducts 21, 41, the fan 50, or the like is used. Thus, the anesthetic gas can flow into the measurement space S together with the warm air. By doing so, the time during which the anesthesia of the subject T is effective can be lengthened.

また、上記第1〜3実施形態においては、本発明に係る測定装置としてPET装置について説明したが、本発明に係る被検体から発せられる電磁波を検出する測定装置はPET装置に限定されない。本発明に係る被検体から発せられる電磁波を検出する測定装置は、例えば、CT装置やMRI装置にも好適に適用することができる。   In the first to third embodiments, the PET apparatus has been described as the measurement apparatus according to the present invention. However, the measurement apparatus for detecting electromagnetic waves emitted from the subject according to the present invention is not limited to the PET apparatus. The measurement apparatus for detecting electromagnetic waves emitted from the subject according to the present invention can be suitably applied to, for example, a CT apparatus and an MRI apparatus.

1…PET装置、2…筐体、6…放射線検出器、10…吸気ファン(導入手段)、20…排気ファン(導出手段、流入手段)、21,41…ダクト(流入手段)、22,52…電磁弁(導出手段)、50…ファン(導入手段、流入手段)。
DESCRIPTION OF SYMBOLS 1 ... PET apparatus, 2 ... Housing | casing, 6 ... Radiation detector, 10 ... Intake fan (introduction means), 20 ... Exhaust fan (lead-out means, inflow means), 21, 41 ... Duct (inflow means), 22, 52 ... Solenoid valve (leading means), 50 ... Fan (introducing means, inflow means).

Claims (6)

被検体が配置される筒状の測定空間が設けられた筐体と、
前記筐体内に設置され、前記被検体から発せられる電磁波を検出する検出器と、
前記検出器を冷却するために前記筐体内に空気を導入する導入手段と、
前記導入手段により前記筐体内に導入されて前記検出器で温められた前記空気を前記筐体外に導出する導出手段と、
前記導入手段により前記筐体内に導入されて前記検出器で温められた前記空気を前記測定空間内に流入させる流入手段と、
前記測定空間内に流入される前記空気の流入量が前記測定空間の温度に応じて調節されるように、前記導出手段及び前記流入手段の少なくとも一方を制御する制御手段と、を備えることを特徴とする測定装置。
A casing provided with a cylindrical measurement space in which the subject is arranged;
A detector that is installed in the housing and detects electromagnetic waves emitted from the subject;
Introducing means for introducing air into the housing to cool the detector;
Deriving means for deriving the air introduced into the casing by the introducing means and heated by the detector out of the casing;
Inflow means for introducing the air, which is introduced into the casing by the introduction means and warmed by the detector, into the measurement space;
Control means for controlling at least one of the derivation means and the inflow means so that an inflow amount of the air flowing into the measurement space is adjusted according to a temperature of the measurement space. A measuring device.
前記制御手段は、前記測定空間の温度を上げる場合には、前記筐体外に導出される前記空気の導出量が減少すると共に前記測定空間内に流入される前記空気の流入量が増加するように前記導出手段及び前記流入手段の少なくとも一方を制御し、前記測定空間の温度を下げる場合には、前記導出量が増加すると共に前記流入量が減少するように前記導出手段及び前記流入手段の少なくとも一方を制御することを特徴とする請求項1記載の測定装置。   When the temperature of the measurement space is increased, the control means decreases the amount of the air that is led out of the housing and increases the amount of the air that flows into the measurement space. When controlling at least one of the derivation means and the inflow means and lowering the temperature of the measurement space, at least one of the derivation means and the inflow means so that the derivation amount increases and the inflow amount decreases. The measuring apparatus according to claim 1, wherein: 前記流入手段は、前記測定空間の一方の開口部から前記測定空間の他方の開口部に向けて前記空気を流入させることを特徴とする請求項1又は2記載の測定装置。   The measurement apparatus according to claim 1, wherein the inflow unit causes the air to flow from one opening of the measurement space toward the other opening of the measurement space. 前記流入手段は、前記測定空間の内部から前記測定空間の一方及び他方の開口部に向けて前記空気を流入させることを特徴とする請求項1又は2記載の測定装置。   The measurement apparatus according to claim 1, wherein the inflow unit causes the air to flow from the inside of the measurement space toward one and the other opening of the measurement space. 前記導出手段及び前記流入手段は、弁及びファンの少なくとも一方を含むことを特徴とする請求項1〜4のいずれか一項記載の測定装置。   The measuring apparatus according to claim 1, wherein the derivation unit and the inflow unit include at least one of a valve and a fan. 前記被検体はヒト以外の動物であり、
前記流入手段は、前記空気と共に麻酔ガスを前記測定空間内に流入させることを特徴とする請求項1〜5のいずれか一項記載の測定装置。

The subject is a non-human animal;
The measurement apparatus according to claim 1, wherein the inflow unit causes an anesthetic gas to flow into the measurement space together with the air.

JP2010168463A 2010-07-27 2010-07-27 measuring device Expired - Fee Related JP5591614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168463A JP5591614B2 (en) 2010-07-27 2010-07-27 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168463A JP5591614B2 (en) 2010-07-27 2010-07-27 measuring device

Publications (2)

Publication Number Publication Date
JP2012026973A JP2012026973A (en) 2012-02-09
JP5591614B2 true JP5591614B2 (en) 2014-09-17

Family

ID=45780048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168463A Expired - Fee Related JP5591614B2 (en) 2010-07-27 2010-07-27 measuring device

Country Status (1)

Country Link
JP (1) JP5591614B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409092B2 (en) * 2010-11-15 2013-04-02 Kabushiki Kaisha Toshiba Medical imaging system that redirects heat waste for patient pallet heating
JP6232385B2 (en) * 2012-12-05 2017-11-15 株式会社日立製作所 Magnetic resonance imaging apparatus and method of operating cooling fan motor of magnetic resonance imaging apparatus
JP2014147465A (en) * 2013-01-31 2014-08-21 Hitachi Medical Corp X-ray device
JP6257922B2 (en) * 2013-05-23 2018-01-10 東芝メディカルシステムズ株式会社 Nuclear medicine imaging device and gantry device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101608U (en) * 1981-12-29 1983-07-11 株式会社島津製作所 Radial computer tomography device
JP2619437B2 (en) * 1987-12-02 1997-06-11 株式会社日立製作所 Inspection equipment using nuclear magnetic resonance
JPH0898825A (en) * 1994-09-30 1996-04-16 Shimadzu Corp Mri system
US6535754B2 (en) * 2001-03-30 2003-03-18 The United States Of America As Represented By The Department Of Health And Human Services Lever coil sensor for respiratory and cardiac motion
JP2002336236A (en) * 2001-05-11 2002-11-26 Ge Medical Systems Global Technology Co Llc X-ray ct scan system and control method
JP4551621B2 (en) * 2003-01-10 2010-09-29 株式会社東芝 X-ray CT system heat release system
JP2007101556A (en) * 2006-12-04 2007-04-19 Hitachi Ltd Nuclear medicine diagnosis system, positron emission tomography scanner, and detector unit
DE102007037313B4 (en) * 2007-08-08 2009-11-12 Siemens Ag Computed tomography device with a gantry for holding components of a recording system rotatably arranged about a system axis
JP2009082331A (en) * 2007-09-28 2009-04-23 Toshiba Corp Magnetic resonance imaging apparatus
DE102008010937B4 (en) * 2008-02-25 2010-07-08 Siemens Aktiengesellschaft Cooling device for conditioning an examination room of a medical examination device and medical examination device with a cooling device

Also Published As

Publication number Publication date
JP2012026973A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US11402521B2 (en) System and method for cooling components in an imaging system
US20240151863A1 (en) Systems for pet imaging
JP5348940B2 (en) X-ray computed tomography system
JP5591614B2 (en) measuring device
EP2548215B1 (en) Diagnostic imaging apparatus with airflow cooling system
CN105264362B (en) Closed x-ray imaging system
RU2484773C2 (en) Cooling of portal frame
US11903749B2 (en) Nuclear medicine tomography system comprising a detector carrier housing and a heat pump configured to cool air within the detector carrier housing
CN209074649U (en) CT detector
US12121299B2 (en) Thermal cooling ring for radiation therapy system
JP5972552B2 (en) Medical imaging system
CN107510469A (en) CT equipment, detection device and its probe assembly
JP2010099396A (en) Pet-ct apparatus
CN109152299A (en) The radiator structure and detecting devices of probe assembly
US20050100128A1 (en) Method and control device for controlling the temperature of a detector system inside a computed tomography unit
WO2023277954A1 (en) Feedback cooling system for an imaging system
CN109820533A (en) A kind of CT rotary frame and CT equipment
CN209402923U (en) Probe assembly and its radiator structure
CN104939854B (en) Thermal management system, X-ray detection device and computerized tomography equipment
CN221980957U (en) Animal anesthesia heat preservation device and PET system
CN217219042U (en) Emission type computed tomography system and medical imaging equipment
WO2017101620A1 (en) System and method for cooling imaging system
JP6257922B2 (en) Nuclear medicine imaging device and gantry device
CN117796956A (en) Animal anesthesia heat preservation device and PET system
KR101227577B1 (en) A camera used to examine the thermal shock of the display panel device maintains constant temperature and automatic control methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees