JP5591454B2 - Reactor water radioactivity reduction method and nuclear power plant - Google Patents
Reactor water radioactivity reduction method and nuclear power plant Download PDFInfo
- Publication number
- JP5591454B2 JP5591454B2 JP2008115940A JP2008115940A JP5591454B2 JP 5591454 B2 JP5591454 B2 JP 5591454B2 JP 2008115940 A JP2008115940 A JP 2008115940A JP 2008115940 A JP2008115940 A JP 2008115940A JP 5591454 B2 JP5591454 B2 JP 5591454B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor water
- iron
- organic acid
- nuclear power
- power plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
本発明は、原子力発電プラントの放射能低減技術に係るもので、特に、原子力発電プラントの炉水に鉄を注入し、炉心部で生成する放射性イオンをこの鉄と反応させて燃料棒表面でフェライト化させることにより、炉水から放射性核種を除去する炉水放射能低減方法および原子力発電プラントに関する。 The present invention relates to a technique for reducing the radioactivity of a nuclear power plant. In particular, iron is injected into the reactor water of a nuclear power plant, and radioactive ions generated in the core are reacted with the iron to cause ferrite on the fuel rod surface. The present invention relates to a reactor water radioactivity reducing method and a nuclear power plant that remove radionuclides from reactor water.
一般に、原子力発電プラントでは、機器・配管の材料としてステンレス鋼やニッケル基合金などの金属材料が用いられている。これらの金属材料の中には、中性子照射を受けて放射化し、放射性核種を生成するものがある。たとえば、ニッケルの放射化では、式(1)に示す中性子吸収反応により放射性のコバルト58が生成する。 In general, nuclear power plants use metallic materials such as stainless steel and nickel-base alloys as materials for equipment and piping. Some of these metallic materials are activated by neutron irradiation to generate radionuclides. For example, in the activation of nickel, radioactive cobalt 58 is generated by the neutron absorption reaction shown in Formula (1).
58Ni(n,p)58Co (1)
そして、コバルト58からは式(2)に示す中性子吸収反応により放射性のコバルト60が生成する。
58 Ni (n, p) 58 Co (1)
Then, from the cobalt 58, radioactive cobalt 60 is generated by the neutron absorption reaction shown in the formula (2).
59Co(n,γ)60Co (2)
これらの放射性核種の一部は、原子炉の炉水に溶存して配管内を循環し、配管内壁面に付着する。この配管内壁面に付着する放射性核種の増加は、作業員の被ばく量増加につながるおそれがある。
59 Co (n, γ) 60 Co (2)
Some of these radionuclides dissolve in the reactor water and circulate in the piping and adhere to the inner wall surface of the piping. This increase in the radionuclide adhering to the inner wall surface of the pipe may lead to an increase in the dose of workers.
従来、原子力発電プラントの炉水放射能低減技術として、鉄とニッケル或いはコバルトとの比率が一定範囲に入るよう制御し、燃料棒表面でコバルト58或いはコバルト60を鉄と反応させてフェライト(NiFe2O4、CoFe2O4)化させることにより炉水中から除去するものが知られている(特許文献1、2参照)。そして、炉水に注入される鉄の形態としては、鉄イオン(特許文献1参照)や鉄酸化物(特許文献2参照)が選択される。
鉄イオンは、ニッケルやコバルトとの反応性が高く、炉水に注入された鉄イオンのうち燃料棒表面に到達しない割合が比較的大きい。その結果、フェライトを形成するニッケル或いはコバルトとの量的均衡から外れた過剰な鉄が注入されることが懸念される。他方、鉄酸化物は、鉄イオンに比べてニッケルやコバルトとの反応性がきわめて低い。このため、炉水に注入された鉄酸化物のうち燃料棒表面でフェライト形成に供されない割合が増加する。その結果、鉄イオンの場合と同様、フェライトを形成するニッケル或いはコバルトとの量的均衡から外れた過剰な鉄が注入されることが懸念される。炉水に溶存する鉄は、蒸気発生器や濾過器など炉水循環経路の機器に混入して、その寿命を短縮させる要因となるおそれがあった。 Iron ions are highly reactive with nickel and cobalt, and a relatively large proportion of iron ions injected into the reactor water does not reach the fuel rod surface. As a result, there is a concern that excess iron that is out of quantitative balance with nickel or cobalt forming ferrite is injected. On the other hand, iron oxides have very low reactivity with nickel and cobalt compared to iron ions. For this reason, the ratio which is not provided for ferrite formation on the fuel rod surface among the iron oxides injected into the reactor water increases. As a result, as in the case of iron ions, there is a concern that excess iron that is out of quantitative balance with nickel or cobalt forming ferrite is injected. Iron dissolved in the reactor water may be mixed into equipment in the reactor water circulation path, such as a steam generator or a filter, and shorten the life of the reactor.
本発明は上記事情に鑑みてなされたもので、鉄イオンおよび鉄酸化物を用いることなく炉水溶存ニッケルを燃料棒表面で良好にフェライト化でき、炉水放射能濃度を低減できる炉水放射能低減方法および原子力発電プラントを提供することを目的とする。 The present invention was made in view of the above circumstances, and the reactor water radioactivity can be satisfactorily ferritized in the fuel rod surface without using iron ions and iron oxides, and the reactor water radioactivity concentration can be reduced. An object is to provide a reduction method and a nuclear power plant.
上述した目的を達成するため、本発明に係る炉水放射能低減方法では、原子力発電プラントの炉水に鉄を注入し、炉心部で生成する放射性イオンを前記鉄と反応させて燃料棒表面でフェライト化させることにより、前記炉水から放射性核種を除去する炉水放射能低減方法において、前記鉄を、有機酸鉄の形態で前記炉水に注入し、前記有機酸鉄として、フマル酸鉄を用いることを特徴とする。 In order to achieve the above-described object, in the method for reducing reactor water radioactivity according to the present invention, iron is injected into the reactor water of a nuclear power plant, and the radioactive ions generated in the reactor core are reacted with the iron so as to react with the surface of the fuel rod. In the reactor water radioactivity reduction method for removing radionuclides from the reactor water by making it ferritic, the iron is injected into the reactor water in the form of organic acid iron, and iron fumarate is used as the organic acid iron. It is characterized by using .
また、本発明に係る原子力発電プラントでは、炉水に鉄が注入されることにより、炉心部で生成する放射性イオンを前記鉄と反応させて燃料棒表面でフェライト化して前記炉水から放射性核種が除去される原子力発電プラントにおいて、前記炉水に注入される鉄の形態が、有機酸鉄であり、前記有機酸鉄はフマル酸鉄であることを特徴とする。 Further, in the nuclear power plant according to the present invention, when iron is injected into the reactor water, the radioactive ions generated in the reactor core react with the iron to ferritize on the fuel rod surface, and the radionuclide is generated from the reactor water. In the nuclear power plant to be removed, the form of iron injected into the reactor water is organic acid iron, and the organic acid iron is iron fumarate .
本発明によれば、鉄イオンおよび鉄酸化物を用いることなく炉水溶存ニッケルを燃料棒表面で良好にフェライト化でき、炉水放射能濃度を低減できる。 According to the present invention, the reactor water-soluble nickel can be satisfactorily ferritized on the fuel rod surface without using iron ions and iron oxides, and the reactor water radioactivity concentration can be reduced.
本発明に係る炉水放射能低減方法および原子力発電プラントの実施形態を、添付図面を参照して説明する。 Embodiments of a reactor water radioactivity reducing method and a nuclear power plant according to the present invention will be described with reference to the accompanying drawings.
図1は本実施形態の原子力発電プラント100の要部系統図である。この原子力発電プラント100は、本発明に係る炉水放射能低減方法を適用した例である。
FIG. 1 is a system diagram of a principal part of a
原子力発電プラント100は、図1に示すように、原子炉圧力容器101と、給水系(102、103)と、原子炉再循環系(104、105)と、炉水浄化系(106、107、108)と、残留熱除去系(109、110、111)と、高圧給水加熱器112と、鉄注入装置120と、を備える。
As shown in FIG. 1, the
給水系は、燃料棒が配置された炉心部Cを格納する原子炉圧力容器101に炉水を供給するものであり、給水系配管102および給水系ポンプ103から構成される。原子炉再循環系は、炉水を強制循環させ炉心部Cへの炉水供給を制御して原子炉出力を制御するものであり、再循環系配管104および再循環ポンプ105から構成される。炉水浄化系は、通水される炉水をイオン交換樹脂に通して炉水中の不純物を除去するものであり、濾過器106、炉水浄化系配管107および炉水浄化系ポンプ108から構成される。残留熱除去系は、原子炉停止後に燃料の崩壊熱を除去するものであり、熱交換器109、残留熱除去系配管110および残留熱除去系ポンプ111から構成される。熱交換器109は、炉水浄化系へ導く炉水の温度を下げ、また、炉水浄化系から給水系へ導入する冷却材の温度を上昇させるように構成されている。
The water supply system supplies reactor water to the
図2は原子力発電プラント100の鉄注入装置120を示す図である。
FIG. 2 is a diagram showing the
原子力発電プラント100の鉄注入装置120は、炉水に鉄を注入し、燃料棒表面で放射性イオンを注入した鉄と反応させてフェライト化させることにより、炉水から放射性核種を除去するものである。
The
鉄注入装置120は、図1に示すように、給水系配管102における給水系ポンプ103上流側の位置P1、炉水浄化系配管107における濾過器106下流側の位置P2、再循環系配管104における再循環系ポンプ105下流側の位置P3および残留熱除去系配管110における熱交換器109上流側の位置P4に設けられる。これらの位置P1〜P4から、有機酸鉄に属するフマル酸鉄およびシュウ酸鉄を注入する。なお、有機酸鉄を注入する位置は、位置P1〜P4である必要はなく、炉水の放射能低減効果を考慮して適宜設定するものである。
As shown in FIG. 1, the
鉄注入装置120は、貯留槽121、攪拌機構122、分散促進機構123、注入ポンプ124と、バルブ125と、を備える。
The
貯留槽121は、炉水に注入する有機酸鉄を含んだ溶液を貯留するものである。攪拌機構122は、貯留槽121内部にて溶液を攪拌し、有機酸鉄を溶液中で均一分散させるものである。分散促進機構123は、貯留槽121に蓄えられた有機酸鉄を炉水に注入する際に、溶液を攪拌し、有機酸鉄を溶液中で均一分散させるものである。この攪拌機構122および分散促進機構123を備えることで、有機酸鉄が媒体不溶性の場合であっても、その有機酸鉄を炉水に均一注入できる。注入ポンプ124は、位置P1〜P4における高内圧の配管に有機酸鉄を注入するものであり、バルブ125は有機酸鉄の注入およびその停止の操作切り替えに供される。
The
有機酸鉄の注入量は、炉水における鉄濃度がニッケル濃度の2倍になるように調節する。なお、「濃度」は、質量パーセント濃度をいう。この有機酸鉄の注入量は、有機酸鉄の注入により燃料棒表面に形成されるニッケル系フェライトとの量的均衡を考慮して、鉄の過剰注入とならないよう配慮して設定した量である。すなわち、ニッケル系フェライト(NiFe2O4)の含有鉄が、フマル酸鉄(C4H2FeO4)およびシュウ酸鉄(FeC2O4)の含有鉄の2倍であることを考慮した量である。なお、有機酸鉄の注入量は、必ずしも炉水の鉄濃度がニッケル濃度の2倍となるよう調節する必要はない。現行の原子力発電プラントにおける水質を考慮すると、炉水における鉄濃度が0.05ppbから0.5ppbの範囲に入るよう有機酸鉄を注入すれば、注入される鉄により受けるプラントのダメージは無視できる。なお、この有機酸鉄の注入量は、炉水の導電率が制限値を超えないよう調節することも重要である。 The injection amount of the organic acid iron is adjusted so that the iron concentration in the reactor water is twice the nickel concentration. Note that “concentration” refers to mass percent concentration. The injection amount of the organic acid iron is set in consideration of the quantitative balance with the nickel-based ferrite formed on the fuel rod surface by the injection of the organic acid iron so as not to cause excessive injection of iron. . That is, the amount considering that the iron content of nickel-based ferrite (NiFe 2 O 4 ) is twice the iron content of iron fumarate (C 4 H 2 FeO 4 ) and iron oxalate (FeC 2 O 4 ) It is. It should be noted that the amount of organic acid iron injected need not be adjusted so that the iron concentration in the reactor water is twice the nickel concentration. Considering the water quality in the current nuclear power plant, if the organic acid iron is injected so that the iron concentration in the reactor water falls within the range of 0.05 ppb to 0.5 ppb, the damage to the plant caused by the injected iron can be ignored. In addition, it is important to adjust the injection amount of the organic acid iron so that the conductivity of the reactor water does not exceed the limit value.
有機酸鉄の注入操作は、原子力発電プラント100の運転中で、炉水が循環している状態で行うのが好ましい。炉水循環時に有機酸鉄を注入することで、有機酸鉄が炉水循環経路の配管内に付着することを抑制でき、燃料棒が位置する炉心部Cまで有機酸鉄をスムーズに輸送できる。
The operation of injecting the organic acid iron is preferably performed while the
次に、原子力発電プラント100に適用された炉水放射能低減方法の実証試験およびその結果を説明する。
Next, the verification test of the reactor water radioactivity reduction method applied to the
この実証試験は鉄化合物とニッケルとの反応性確認試験であり、試験条件および試験手順は次のとおりである。
1) 鉄2.5mgを含む4つの鉄化合物、酸化水酸化鉄(αFeOOH)、酸化水酸化鉄(γFeOOH)、フマル酸鉄(C4H2FeO4)およびシュウ酸鉄(FeC2O4)を用意し、容量20mLのテフロン製の試験管に入れる。
2) 各試験管に純水15mLを加え、ニッケル1.25mgを含む硫酸ニッケル水溶液を加える。
3) 各試験管に超音波処理を行い、試験管内の内容物を均一に分散させる。
4) その後、純水を入れたオートクレーブ(autoclave)内に試験管を設置する。
5) オートクレーブの蓋を閉めて、285℃で約17時間加熱する。
6) 試験終了後、各試験管の内容物を孔径0.1μmのフィルタで濾過し、蛍光X線分析装置およびX線回折装置により、反応物の形態および組成比を求める。
This demonstration test is a reactivity confirmation test between iron compounds and nickel, and the test conditions and test procedures are as follows.
1) Four iron compounds containing 2.5 mg of iron, iron oxide hydroxide (αFeOOH), iron oxide hydroxide (γFeOOH), iron fumarate (C 4 H 2 FeO 4 ) and iron oxalate (FeC 2 O 4 ) And put into a Teflon test tube with a capacity of 20 mL.
2) Add 15 mL of pure water to each test tube, and add an aqueous nickel sulfate solution containing 1.25 mg of nickel.
3) Apply ultrasonic treatment to each test tube to disperse the contents in the test tube uniformly.
4) Then, place the test tube in an autoclave containing pure water.
5) Close the autoclave lid and heat at 285 ° C for about 17 hours.
6) After completion of the test, the contents of each test tube are filtered through a filter having a pore diameter of 0.1 μm, and the form and composition ratio of the reaction product are determined using a fluorescent X-ray analyzer and an X-ray diffractometer.
図3は鉄化合物とニッケルとの反応性確認試験の結果を示す図である。 FIG. 3 is a diagram showing the results of a reactivity confirmation test between an iron compound and nickel.
試験の結果、図3に示すように、酸化水酸化鉄(αFeOOH、γFeOOH)は、含有鉄の約40%がニッケルと反応せずヘマタイト(Fe2O3)に変化した。これに対し、フマル酸鉄およびシュウ酸鉄は、含有鉄の大半がニッケルフェライト(NiFe2O4)に変化した。つまり、炉水に注入した有機酸鉄であるフマル酸鉄およびシュウ酸鉄は高い割合でニッケルへと変化し、燃料被覆管表面に付着すると予想される。また、ニッケルとコバルトは互いに化学的性質が近似することから、有機酸鉄は高い割合でコバルトと反応してフェライトへと変化し、燃料被覆管表面に付着すると予想される。 As a result of the test, as shown in FIG. 3, in iron oxide hydroxide (αFeOOH, γFeOOH), about 40% of the contained iron did not react with nickel and changed to hematite (Fe 2 O 3 ). On the other hand, most of the iron contained in iron fumarate and iron oxalate was changed to nickel ferrite (NiFe2O4). That is, it is expected that iron fumarate and iron oxalate, which are organic acid irons injected into the reactor water, will change to nickel at a high rate and adhere to the fuel cladding surface. Since nickel and cobalt have similar chemical properties, it is expected that organic acid iron reacts with cobalt at a high rate to change to ferrite and adhere to the surface of the fuel cladding.
原子力発電プラント100によれば、鉄イオンおよび鉄酸化物を用いることなく炉水溶存ニッケルを燃料棒表面で良好にフェライト化でき、炉水放射能濃度を低減できる。
According to the
以上、本発明に係る炉水放射能低減方法および原子力発電プラントを1つの実施形態に基づき説明してきたが、具体的な構成については、この実施形態に限られるものではなく、発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As described above, the method for reducing reactor water radioactivity and the nuclear power plant according to the present invention have been described based on one embodiment. However, the specific configuration is not limited to this embodiment, and departs from the gist of the invention. Unless otherwise, design changes and additions are permitted.
例えば、本実施形態では、有機酸鉄として、フマル酸鉄およびシュウ酸鉄の一方を用いる例を示したが、双方を混合して使用しても良い。加えて、有機酸鉄の種類は特に制限はない。他の有機酸鉄であってもニッケルやコバルトと反応してフェライトを形成するものであれば、本発明の効果を得ることができる。 For example, in the present embodiment, an example in which one of iron fumarate and iron oxalate is used as the organic acid iron is shown, but both may be mixed and used. In addition, the type of organic acid iron is not particularly limited. Even if it is other organic acid iron, if it reacts with nickel and cobalt and forms a ferrite, the effect of the present invention can be acquired.
また、本発明は、沸騰水型原子力発電プラント或いは加圧水型原子力発電プラントのいずれであっても適用できる。なお、図1は沸騰水型原子力発電プラントを例とした構成を示すものであり、加圧水型原子力発電プラントにあっては原子炉再循環系(104、105)を必要とはしない。 Further, the present invention can be applied to either a boiling water nuclear power plant or a pressurized water nuclear power plant. FIG. 1 shows a configuration of a boiling water nuclear power plant as an example, and a pressurized water nuclear power plant does not require a reactor recirculation system (104, 105).
100…原子力発電プラント,101…原子炉圧力容器,102…給水系配管,103…給水系ポンプ,104…再循環系配管,105…再循環系ポンプ,106…濾過器,107…炉水浄化系配管,108…炉水浄化系ポンプ,109…熱交換器,110…残留熱除去系配管,111…残留熱除去系ポンプ,C…炉心部,120…鉄注入装置,121…貯留槽,122…攪拌機構,123…分散促進機構,124…注入ポンプ,125…バルブ,P1〜P4…有機酸鉄の注入位置。
DESCRIPTION OF
Claims (11)
前記鉄を、有機酸鉄の形態で前記炉水に注入し、
前記有機酸鉄として、フマル酸鉄を用いることを特徴とする炉水放射能低減方法。 Reactor water activity reduction that removes radionuclides from the reactor water by injecting iron into the reactor water of a nuclear power plant and reacting the radioactive ions generated in the core with the iron to make it ferritic on the fuel rod surface In the method
Injecting the iron into the reactor water in the form of organic acid iron,
The organic iron, reactor water radioactivity reduction how to comprising using the fumarate iron.
前記炉水に注入される前記鉄の形態が、有機酸鉄であり、
前記有機酸鉄はフマル酸鉄であることを特徴とする原子力発電プラント。 In the nuclear power plant in which the radioactive ions generated in the reactor core are reacted with the iron and ferritized on the surface of the fuel rods to remove the radionuclides from the reactor water by injecting iron into the reactor water.
The form of the iron injected into the reactor water is organic acid iron,
The nuclear power plant, wherein the organic acid iron is iron fumarate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008115940A JP5591454B2 (en) | 2008-04-25 | 2008-04-25 | Reactor water radioactivity reduction method and nuclear power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008115940A JP5591454B2 (en) | 2008-04-25 | 2008-04-25 | Reactor water radioactivity reduction method and nuclear power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009264973A JP2009264973A (en) | 2009-11-12 |
JP5591454B2 true JP5591454B2 (en) | 2014-09-17 |
Family
ID=41391000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008115940A Active JP5591454B2 (en) | 2008-04-25 | 2008-04-25 | Reactor water radioactivity reduction method and nuclear power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5591454B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE536022C2 (en) * | 2008-11-04 | 2013-04-02 | Toshiba Kk | Method for reducing radiation exposure in nuclear power plants via introduction of iron-containing compounds into the cooling system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06103356B2 (en) * | 1990-05-11 | 1994-12-14 | 株式会社日立製作所 | Reactor feedwater iron injection facility for boiling water nuclear power plant |
JPH05126991A (en) * | 1991-10-30 | 1993-05-25 | Ebara Corp | Injecting method for iron into primary coolant system in bwr type nuclear power plant |
US5245642A (en) * | 1991-10-31 | 1993-09-14 | General Electric Company | Method of controlling co-60 radiation contamination of structure surfaces of cooling water circuits of nuclear reactors |
JPH05209991A (en) * | 1992-01-31 | 1993-08-20 | Toshiba Corp | Contamination prevention method for reactor piping |
JP2912525B2 (en) * | 1993-07-01 | 1999-06-28 | 株式会社日立製作所 | BWR plant reactor water control method and apparatus |
JPH1194989A (en) * | 1997-09-22 | 1999-04-09 | Hitachi Ltd | Boiling water reactor power plant and its water quality control method |
JP3289679B2 (en) * | 1998-06-19 | 2002-06-10 | 株式会社日立製作所 | Water quality control method for boiling water nuclear power plant |
JP3945780B2 (en) * | 2004-07-22 | 2007-07-18 | 株式会社日立製作所 | Radionuclide adhesion suppression method and film forming apparatus for nuclear plant components |
JP4555625B2 (en) * | 2004-07-30 | 2010-10-06 | 日立Geニュークリア・エナジー株式会社 | Operation method of nuclear power plant |
JP4567542B2 (en) * | 2005-07-14 | 2010-10-20 | 日立Geニュークリア・エナジー株式会社 | Method for suppressing radionuclide adhesion to nuclear plant components |
-
2008
- 2008-04-25 JP JP2008115940A patent/JP5591454B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009264973A (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6549603B1 (en) | Method of chemical decontamination | |
TWI503845B (en) | Chemical decontamination method of carbon steel components in nuclear power plant | |
EP3296999A1 (en) | Adhesion method of noble metal to carbon steel material of atomic energy plant and adhesion restraint method of radionuclide to carbon steel material of atomic energy plant | |
JP4944542B2 (en) | Method for suppressing elution of nickel and cobalt from structural materials | |
JP5591454B2 (en) | Reactor water radioactivity reduction method and nuclear power plant | |
JP6931622B2 (en) | Method of attaching precious metals to carbon steel members of nuclear power plants and methods of suppressing adhesion of radionuclides to carbon steel members of nuclear power plants | |
JP2011111661A (en) | Method for forming ferrite film on component of nuclear power, method for suppressing progress of stress corrosion cracking, and apparatus for forming ferrite film | |
JP2009210307A (en) | Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device | |
JP2017020786A (en) | Method for noble metal adhesion to structural member of atomic power plant | |
JP4555625B2 (en) | Operation method of nuclear power plant | |
JP4982465B2 (en) | Radioactivity decontamination method and radioactivity decontamination apparatus | |
JP2011149764A (en) | Method for reducing dose of nuclear power plant component member | |
JP5106640B2 (en) | Radiation exposure reduction method | |
JP6640758B2 (en) | Drug injection device and drug injection method in nuclear power plant | |
TWI825540B (en) | Chemical decontamination methods and chemical decontamination devices | |
JP4349956B2 (en) | Operation method of residual heat removal system | |
JP7001534B2 (en) | Method of suppressing adhesion of radionuclides to structural members of nuclear power plants | |
JP7104616B2 (en) | Method of suppressing adhesion of radionuclides to carbon steel components of nuclear power plants | |
JP2000162383A (en) | Operation method for reactor power plant | |
WO2019102768A1 (en) | Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant | |
JP2009222651A (en) | Ferrite film forming method to carbon steel member, and its film forming device | |
JP6894862B2 (en) | Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants | |
JP2018100836A (en) | Method of forming radioactive substance adhesion inhibit coating | |
JP5645759B2 (en) | Dose reduction method for nuclear plant components | |
JP6077260B2 (en) | Method and system for injecting zinc into BWR plant cooling water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100424 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111214 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20111217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140701 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140730 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5591454 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |