[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5590659B2 - Method and apparatus for producing organic single crystal thin film in magnetic field - Google Patents

Method and apparatus for producing organic single crystal thin film in magnetic field Download PDF

Info

Publication number
JP5590659B2
JP5590659B2 JP2010044727A JP2010044727A JP5590659B2 JP 5590659 B2 JP5590659 B2 JP 5590659B2 JP 2010044727 A JP2010044727 A JP 2010044727A JP 2010044727 A JP2010044727 A JP 2010044727A JP 5590659 B2 JP5590659 B2 JP 5590659B2
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
substrate
single crystal
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010044727A
Other languages
Japanese (ja)
Other versions
JP2011181698A (en
Inventor
則之 吉本
俊行 荒木
博之 藤代
智 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2010044727A priority Critical patent/JP5590659B2/en
Publication of JP2011181698A publication Critical patent/JP2011181698A/en
Application granted granted Critical
Publication of JP5590659B2 publication Critical patent/JP5590659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、磁場中有機単結晶薄膜作成法及び作成装置に関する。   The present invention relates to a method and apparatus for producing an organic single crystal thin film in a magnetic field.

現在のSiなどの無機半導体デバイスの製造プロセスは、高価なクリンルームと高価な真空プロセス装置を使うため製造コストが高い。また、単結晶のインゴットから切り出して加工するため基材のほとんどを最終的には廃棄してしまう使い方となっており環境面への影響も大きな問題となっている。   The current manufacturing process of inorganic semiconductor devices such as Si is expensive because it uses an expensive clean room and an expensive vacuum process apparatus. Further, since it is cut out from a single crystal ingot and processed, most of the base material is finally discarded, and the influence on the environment is a big problem.

また、現状研究段階にある有機半導体を実用化するためにはその性能を飛躍的に高め、かつ安価な大気中での製膜を可能とする溶液による結晶成長工法が必須課題と考えられる。   In order to put organic semiconductors currently in the research stage into practical use, a crystal growth method using a solution that dramatically improves the performance and enables film formation in the air at low cost is considered an essential issue.

結晶成長工法として、蒸着法、ドロップ・キャスト法などが知られている。
蒸着法、ドロップ・キャスト法などで作成する有機半導体薄膜の結晶のグレインサイズは、直径が数〜数十μmと小さくチャネル間(50μm程度)に多くのグレインバウンダリを保有することとなり結果的にキャリア移動度の低下を招いている。
Known crystal growth methods include vapor deposition and drop casting.
The crystal grain size of organic semiconductor thin films prepared by vapor deposition, drop-casting, etc. is as small as several to several tens of μm, and many grain boundaries are held between channels (about 50 μm), resulting in carriers. The mobility is lowered.

また、蒸着膜は薄く均質な膜であるが単結晶薄膜の形成に不利で薄膜作成には高価な真空装置を必要としドロップ・キャスト法に比べ作成プロセスが難易である。
ドロップ・キャスト膜は製法は容易だが、膜厚が厚く凸凹でかつグレイン同士が重なりあうため高いキャリア移動度を実現し難い。
Further, the deposited film is a thin and homogeneous film, but it is disadvantageous for the formation of a single crystal thin film, and an expensive vacuum apparatus is required for producing the thin film, and the production process is difficult compared with the drop-cast method.
Although the drop cast film is easy to manufacture, it is difficult to achieve high carrier mobility because the film thickness is thick and uneven, and the grains overlap each other.

これらの理由から製法が容易でキャリア移動度が高い両方の条件を満足する工法が確立できない現状がある。
溶液工法では、必要な部分のみに溶液を塗布できるため材料の無駄が生じない。また既存技術のインクジェットやディスペンサなどの安価で容易な塗布方式を応用できる。そして溶液塗布後に、考案する有機半導体薄膜の製造工法をつかって単結晶化を行いTFT性能と耐久性の高い有機半導体薄膜を実現する。
For these reasons, there is a current situation in which a manufacturing method that satisfies both the conditions of easy manufacturing and high carrier mobility cannot be established.
In the solution method, the solution can be applied only to a necessary portion, so that no material is wasted. In addition, an inexpensive and easy coating method such as an existing ink jet or dispenser can be applied. Then, after applying the solution, the organic semiconductor thin film having high TFT performance and durability is realized by performing single crystallization using the organic semiconductor thin film manufacturing method devised.

本工法は、製造プロセスの低コスト化と材料の低コスト化、高い耐環境性能と高い半導体性能を同時に満足する工法を特徴としている。   This construction method is characterized by a construction method that simultaneously satisfies the requirements of cost reduction of manufacturing process, material cost reduction, high environmental resistance and high semiconductor performance.

本発明は、高価なクリンルームと高価な真空プロセス装置を使うことなく低コストで製造でき、廃棄部分も少なく環境性に優れ、かつ結晶品質が高いことによる例えば半導体性能の高い有機単結晶薄膜作成法を提供することを目的とする。
また、安価な大気中での溶液による成膜を可能とし欠陥や不純物の取り込を軽減でき、結晶の割れが生じない低温での結晶成長工法である有機単結晶薄膜作成法を提供することを目的とする。
さらに、製造プロセスの低コスト化と環境性能と半導体性能向上を有する有機半導体単結晶薄膜作成法工法を提供することを目的とする。
The present invention can be manufactured at low cost without using an expensive clean room and expensive vacuum process equipment, has few waste parts, is environmentally friendly, and has high crystal quality. The purpose is to provide the law.
In addition, it is possible to provide a method for producing an organic single crystal thin film that is a low-temperature crystal growth method that enables film formation with a solution in an inexpensive atmosphere, reduces the incorporation of defects and impurities, and does not cause crystal cracking. Objective.
It is another object of the present invention to provide a method for producing an organic semiconductor single crystal thin film having a low manufacturing process cost, environmental performance, and improved semiconductor performance.

請求項1に係る発明は、溶媒中に有機材料を有する溶液の液滴を基板上に設け、該液滴の一端を薄くし他端を厚くして、該液滴の一端側の溶媒を蒸発させることにより結晶を析出させるとともに、該液滴の一端を薄くした薄い部分を磁場によって他端に移動させることにより結晶を順次析出させる有機単結晶薄膜の作成法であって、前記液滴は反磁性を有し、液滴の一端には超伝導マグネットによって、強磁場が印加され、強磁場の強度が、0.05T以上であり、前記基板の移動速度によって、前記結晶の成長速度を変化させることを特徴とする有機単結晶薄膜の作成法である。
請求項2に係る発明は、液滴を外部から密封する半密封セル中にて、前記溶液の蒸気圧を制御し、前記超伝導マグネットの位置と前記基板との相対的な移動速度で、前記結晶の成長を制御することを特徴とする請求項1記載の有機単結晶薄膜の作成法。
請求項3に係る発明は、前記有機材料は、分子構造中に芳香環を有する有機化合物であることを特徴とする請求項1または2記載の有機単結晶薄膜の作成法である。
請求項4に係る発明は、基板を保持するための手段と、前記基板を移動するための手段と、前記基板上の液滴の一端から他端に順次磁場を印加できるように配置された磁場を印加するための手段とで構成された有機単結晶薄膜の成膜装置であって、前記液滴は反磁性を有し、液滴の一端には超伝導マグネットによって、強磁場が印加され、強磁場の強度が、0.05T以上であり、前記基板の移動速度によって、基板に対する強磁場の変化を調整して、前記結晶の成長速度を変化させたことを特徴とする有機単結晶薄膜の成膜装置である。
請求項5に係る発明は、液滴を外部から密封する半密封セル中にて、前記溶液の蒸気圧が制御され、前記超伝導マグネットの位置と前記基板との相対的な移動速度で、前記結晶の成長が制御されることを特徴とする請求項4記載の有機単結晶薄膜の成膜装置である。
分子構造中に芳香環を有する有機化合物の多くは、反磁性を示すことが知られている。有機溶媒などの反磁性の液体を強磁場中に置くと、液体には磁場の外に出ようとする力(モーゼ効果)が生じ、液の外形が変化する。このように外形が変化した状態で、溶質を含む溶液から溶媒をゆっくりと蒸発させると、液の最も薄い場所で局所的に溶質が濃縮され、磁石の位置により液体中に意図的に高濃度領域を形成することが可能である。この方法を利用し、基板上の任意の場所に核形成させ、また、磁石の位置を相対的に移動させることにより、種結晶の側面に選択的に溶質を供給することが可能である。我々は、2テスラに着磁された酸化物超伝導体のバルク超伝導マグネットを用いればよい。
The invention according to claim 1, droplets of a solution containing an organic material in a solvent is provided on the substrate, and thickening the thinner the other end one end of the liquid droplet, the evaporation one end side of the solvent of the droplets together to precipitate crystals by, a preparation method of the organic single crystal thin film are sequentially deposited crystals by moving the thin portion having a reduced end of the droplets to the other end by the magnetic field, the droplets are anti It has magnetism, a strong magnetic field is applied to one end of the droplet by a superconducting magnet, the strength of the strong magnetic field is 0.05T or more, and the growth rate of the crystal is changed by the moving speed of the substrate. This is a method for producing an organic single crystal thin film.
The invention according to claim 2 controls the vapor pressure of the solution in a semi-sealed cell that seals droplets from the outside, and at a relative moving speed between the position of the superconducting magnet and the substrate, 2. The method for producing an organic single crystal thin film according to claim 1, wherein crystal growth is controlled .
The invention according to claim 3 is the method for producing an organic single crystal thin film according to claim 1 or 2, wherein the organic material is an organic compound having an aromatic ring in a molecular structure .
According to a fourth aspect of the present invention, there is provided a means for holding a substrate, a means for moving the substrate, and a magnetic field arranged so that a magnetic field can be sequentially applied from one end to the other end of a droplet on the substrate. A device for forming an organic single crystal thin film composed of a means for applying the liquid, wherein the droplet has diamagnetism, and a strong magnetic field is applied to one end of the droplet by a superconducting magnet, An organic single crystal thin film characterized in that the strength of the strong magnetic field is 0.05 T or more, and the growth rate of the crystal is changed by adjusting the change of the strong magnetic field relative to the substrate according to the moving speed of the substrate . A film forming apparatus.
In the invention according to claim 5, the vapor pressure of the solution is controlled in a semi-sealed cell that seals droplets from the outside, and the relative movement speed between the position of the superconducting magnet and the substrate is 5. The organic single crystal thin film forming apparatus according to claim 4, wherein crystal growth is controlled .
Many organic compounds having an aromatic ring in the molecular structure are known to exhibit diamagnetism. When a diamagnetic liquid such as an organic solvent is placed in a strong magnetic field, a force (Moses effect) is generated in the liquid to move out of the magnetic field, and the external shape of the liquid changes. When the solvent is slowly evaporated from the solution containing the solute with the outer shape changed in this manner, the solute is concentrated locally at the thinnest place of the liquid, and the high concentration region is intentionally in the liquid depending on the position of the magnet. Can be formed. Using this method, it is possible to nucleate at an arbitrary position on the substrate and to move the position of the magnet relatively to selectively supply the solute to the side surface of the seed crystal. We may use an oxide superconductor bulk superconducting magnet magnetized to 2 Tesla.

本工法により安価な大気中での製膜を可能とし、溶液による欠陥や不純物の取り込を軽減できる。 This method makes it possible to form a film in the air at a low cost and reduce defects and impurities taken up by the solution.

本発明の磁場中単結晶成長の原理を示す図である。It is a figure which shows the principle of the single-crystal growth in a magnetic field of this invention. 本発明の磁場中単結晶成長の原理を示す図である。It is a figure which shows the principle of the single-crystal growth in a magnetic field of this invention. 実施例において用いた成膜装置の概念図である。It is a conceptual diagram of the film-forming apparatus used in the Example. 実施例において形成した薄膜トランジスタの概念図である。It is a conceptual diagram of the thin-film transistor formed in the Example. 実施例において成膜した膜の平面外観図である。It is a plane external view of the film | membrane formed into a film in the Example. ドロップ・キャスト法で成膜した膜の平面外観図である。It is a plane external view of the film | membrane formed into a film by the drop cast method. 蒸着法で成膜した膜の平面外観図である。It is a plane external view of the film | membrane formed into a film by the vapor deposition method.

(作成手順)
図1、図2に示すように、極性を持つ溶媒に有機半導体材料を適宜な濃度で溶かし、滴下する溶液を留めておく為の親水/疎水性パターニング(液滴側が親水性)を基板に施す。超電導マグネットなどの磁力などで基板に滴下した溶液の片方の端を極薄に整形する。極薄化した溶液の末端では溶媒の僅かな蒸発でも溶液の厚い部分より溶質の比率を極端に高くすることができる。その為、パターンの末端から優先的に結晶を析出させることが出来る。
この時溶媒は磁力により結晶析出と同時に移動・蒸発し基板上には結晶だけが残る理想的な状態となっている。
(Create procedure)
As shown in FIGS. 1 and 2, the substrate is subjected to hydrophilic / hydrophobic patterning (droplet side is hydrophilic) to dissolve the organic semiconductor material in an appropriate concentration in a solvent having polarity and to keep the dropped solution. . Shape one end of the solution dripped onto the substrate with a magnetic force such as a superconducting magnet. At the end of the ultra-thinned solution, even a slight evaporation of the solvent can make the solute ratio extremely higher than the thick part of the solution. Therefore, crystals can be preferentially deposited from the end of the pattern.
At this time, the solvent moves and evaporates at the same time as the precipitation of crystals due to the magnetic force, so that only the crystals remain on the substrate.

印加しながらすることにより、該液滴の印加磁場を溶有機半導体媒中に基板液滴を上に液滴を留める親水/疎水パターニングにて磁場により液滴の片端を極薄化することで半密封セルの僅かな蒸発において溶液中の溶質の比率が高まり優先的に極薄化した溶液末端部に結晶核が形成し、溶液側方向に向かって結晶が必然的に配向する。   While applying, the magnetic field applied to the droplets is reduced by half-thinning one end of the droplets by the magnetic field by hydrophilic / hydrophobic patterning that keeps the droplets on the substrate in the dissolved organic semiconductor medium. A slight evaporation of the sealed cell increases the ratio of solutes in the solution, and crystal nuclei are formed at the end of the preferentially thinned solution, and the crystals are inevitably oriented toward the solution side.

この時、不純物や欠陥は溶液側へ凝集あるいは抜けるためドロップ・キャスト膜の様な液滴周辺から結晶が析出し中心部に不純物や欠陥が残り結晶の質を落とすことが無い。
さらに優勢な結晶粒に合わせた結晶成長を続けると劣勢な結晶粒が淘汰され溶液整形・移動方向に最も合った結晶軸の大口径単結晶薄膜を形成することが出来る。
また、末端から結晶を析出させることで結晶の成長方向は溶液の厚い方向に向かってのみ成長出来る。それにより結晶が成長できる方向が一方向となる。結晶成長速度に合わせ溶液を整形・移動させることで成長速度の速い結晶軸(キャリア移動度が高い結晶軸に等しい)のみを優先的に成長させることができる。その結果、最終的に溶液移動軸に最も合致する結晶が優位となり単結晶薄膜を形成させることが出来る。これにより高いキャリア移動度を持つTFTの実現を可能とした。
At this time, since impurities and defects are aggregated or removed to the solution side, crystals are deposited from around the droplets such as a drop-cast film, so that impurities and defects remain in the central portion and the quality of the crystals does not deteriorate.
Further, if crystal growth is continued in accordance with the dominant crystal grains, the inferior crystal grains are trapped, and a large-diameter single crystal thin film having a crystal axis most suitable for the solution shaping / moving direction can be formed.
Further, by precipitating the crystal from the end, the crystal can grow only in the direction of the thicker solution. Thereby, the direction in which the crystal can grow is one direction. By shaping and moving the solution in accordance with the crystal growth rate, it is possible to preferentially grow only a crystal axis with a high growth rate (equal to a crystal axis with high carrier mobility). As a result, the crystal that best matches the solution movement axis finally becomes dominant, and a single crystal thin film can be formed. As a result, a TFT having high carrier mobility can be realized.

(材料など)
本発明において、基体としては、例えば、ガラス,プラスチック,石英,アンドープ・シリコン,高ドープ・シリコン等種々の材質のものが用いられる。プラスチックとしては、ポリカーボネート,マイラー,ポリイミドを含む群等種々の材質のものがある。また、これらに表面装飾を施しても良い。実施の形態では結晶質基板が用いられる。結晶質基板としては、例えば、Si単結晶基板,表面装飾したSi単結晶基板,KCl等の結晶性基板がある
液状体(液滴)は、薄膜材料を含有する。一般的には薄膜材料を溶媒に溶解して作成する。液状体は水と同程度の粘度であっても用いることができる。粘度としては、0.0001〜10Pa・sが好ましい。粘度が高すぎると端部の薄膜化のための磁気力を大きくせざるを得なくなる。
(Materials etc.)
In the present invention, various substrates such as glass, plastic, quartz, undoped silicon, and highly doped silicon are used as the substrate. The plastic includes various materials such as polycarbonate, mylar, and polyimide. Moreover, you may give surface decoration to these. In the embodiment, a crystalline substrate is used. Examples of the crystalline substrate include a Si single crystal substrate, a surface-decorated Si single crystal substrate, and a crystalline substrate such as KCl. The liquid material (droplet) contains a thin film material. Generally, it is prepared by dissolving a thin film material in a solvent. The liquid can be used even if it has the same viscosity as water. The viscosity is preferably 0.0001 to 10 Pa · s. If the viscosity is too high, the magnetic force for thinning the edge must be increased.

薄膜材料としては、例えば、有機材料、無機材料、半導体材料、金属材料を用いることができる。反磁性材料が好ましい。例えば、有機材料を用いる。
有機材料としては、例えば、縮合多環式水素系有機物が用いられる。
縮合多環式水素系有機物の例として以下の材料が例示される。
As the thin film material, for example, an organic material, an inorganic material, a semiconductor material, or a metal material can be used. Diamagnetic materials are preferred. For example, an organic material is used.
As the organic material, for example, a condensed polycyclic hydrogen-based organic material is used.
Examples of the condensed polycyclic hydrogen-based organic material include the following materials.

ペンタレン,インデン,ナフタレン,アズレン,ヘプタレン,ビフェニレン,as−インダセン,s−インダセン,アセナフチレン,フルオレン,フェナレン,フェナントレン,アントラセン,フルオランテン,アセフェナントリレン,アセアントレン,トリフェニレン,ピレン,クリセン,テトラセン,ポレイアデン,ピセン,ペリレン,ペンタフェン,ペンタセン,テトラフェニレン,ヘキサフェン,ヘキサセン,ルビセン,コロレン,トリナフチレン,ヘプタフェン,ヘプタセン,ピラントレン,オバレンまたはこれらの誘導体から選択される1又は2種以上の材料があげられる。
また次の化合物が好適に用いられる。

Figure 0005590659
Pentalene, indene, naphthalene, azulene, heptalene, biphenylene, as-indacene, s-indacene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, acephenanthrylene, aceanthrene, triphenylene, pyrene, chrysene, tetracene, poleneden, Examples thereof include one or more materials selected from picene, perylene, pentaphen, pentacene, tetraphenylene, hexaphen, hexacene, rubicene, corolene, trinaphthylene, heptaphene, heptacene, pyranthrene, obalene, or derivatives thereof.
The following compounds are preferably used.
Figure 0005590659

一方、溶媒としては、薄膜材料を溶解可能な液体ならばその種類は問わない。
具体的には、有機材料について、溶解度などを実際に実験により調査して最適な溶媒を選択すればよい。
印加する磁場強度は0.05T(テスラ)以上が好ましく、1T以上がより好ましく、2T以上がさらに好ましい。上限は特になく、達成可能な強度ならばよい。
On the other hand, the type of the solvent is not limited as long as it is a liquid capable of dissolving the thin film material.
More specifically, the optimal solvent may be selected by actually examining the solubility of the organic material through experiments.
The applied magnetic field strength is preferably 0.05T (Tesla) or more, more preferably 1T or more, and further preferably 2T or more. There is no particular upper limit, as long as it is achievable strength.

磁場の印加は超伝導バルク磁石を用いることが好ましい。コイルによる磁場の印加の場合には、磁場の大きさHは大きくできても磁場勾配(dH/dt)には限界がある。磁気力F(=(dH/dt)・H)として所望の値が得ることができず、反磁性が大きくない薄膜材料によってはモーゼ効果を必ずしも達成できない。それに対して、超伝導バルク磁石の場合にはdH/dtを大きくすることが可能なため所望の磁気力Fを得ることが可能となる。   The magnetic field is preferably applied using a superconducting bulk magnet. In the case of applying a magnetic field by a coil, the magnetic field gradient (dH / dt) is limited even though the magnitude H of the magnetic field can be increased. A desired value cannot be obtained as the magnetic force F (= (dH / dt) · H), and the Moses effect cannot always be achieved by a thin film material that is not large in diamagnetism. On the other hand, in the case of a superconducting bulk magnet, dH / dt can be increased, so that a desired magnetic force F can be obtained.

また、超伝導磁石による磁場空間内で磁場の印加を行なう場合には、被着接体に容易に強磁場を印加することができ、薄膜の形成においては、磁場が強い程薄膜の分子配列を密にすることができるので、より一層、配向性を向上させ、結晶を大きく形成することができるようになる。   In addition, when a magnetic field is applied in a magnetic field space by a superconducting magnet, a strong magnetic field can be easily applied to the adherend. In forming a thin film, the molecular arrangement of the thin film is increased as the magnetic field is stronger. Since it can be made dense, it is possible to further improve the orientation and to form a large crystal.

図3に示す様な半密封セル中にて溶液の蒸発量を制限し、結晶析出状態が観察でき、基板移動速度にフィードバック出来る機構にて本工法の試験を行った。
液滴が形成された基板の周囲はOリングにより取り囲まれ、Oリングの上にはガラスなどの板が載置されている。これにより、その内部は密閉される。密閉されていない場合には、溶媒の蒸発が発生しやすくなる。特に液滴の薄くなった部分は溶媒が蒸発しやくなり、そのため析出が各所で起こり多結晶となってしまうことがある。密閉した場合には、溶媒及び溶質の材料にもよるが、0.5mmまで薄くなったときに析出がおきやすい。
また、半密封セルは溶媒の蒸気圧を制御できる機構であれば結晶成長制御性はさらに向上できる。観察部においては、偏光と微分干渉の機能を持った顕微鏡において溶液内部の析出する結晶先端が観察することが必要である。これによって成長速度を割り出すことが出来る。
In this semi-sealed cell as shown in FIG. 3, the evaporation amount of the solution was limited, the crystal precipitation state was observed, and the test of the present method was conducted with a mechanism capable of feeding back to the substrate moving speed.
The periphery of the substrate on which the droplets are formed is surrounded by an O-ring, and a plate such as glass is placed on the O-ring. Thereby, the inside is sealed. If it is not hermetically sealed, the solvent tends to evaporate. In particular, in the portion where the droplet is thinned, the solvent is likely to evaporate, so that precipitation may occur in various places and become polycrystalline. In the case of sealing, although depending on the solvent and the solute material, precipitation is likely to occur when the thickness is reduced to 0.5 mm.
Moreover, if the semi-sealed cell is a mechanism that can control the vapor pressure of the solvent, the crystal growth controllability can be further improved. In the observation unit, it is necessary to observe the crystal tip that precipitates inside the solution in a microscope having polarization and differential interference functions. This makes it possible to determine the growth rate.

親水性/疎水性パターニングは、材料やTFT性能に適した処理剤を選択するが、ここではSi/SiO/親水性/疎水性パターニング/有機半導体の構成であれば、シランカップリング剤を液滴側でテフロン(登録商標)摩擦転写を外側に配置し液滴を保持する。この様な機構で下記の条件で結晶成長を行う。 For hydrophilic / hydrophobic patterning, a treatment agent suitable for the material and TFT performance is selected. Here, in the case of Si / SiO 2 / hydrophilic / hydrophobic patterning / organic semiconductor configuration, a silane coupling agent is used as a liquid. A Teflon® friction transfer is placed outside on the drop side to hold the drop. With such a mechanism, crystal growth is performed under the following conditions.

<本工法での結晶成長条件の一例>
1、基板温度 16℃〜20℃
2、溶液量 0.1cc
3、溶液濃度 DS2T;2.4mg/3cc
DS2T
4、パターンサイズ 20mm×30mm
5、蒸発速度(蒸気圧) 0.03cc/h
6、基板親水性度合い シランカップリング 〜 ベアウエハー
7、溶液移動速度 0.5〜10mm/h
8、溶液厚み ≦1μm
9、半密封セルサイズ 60mmφ×4mmt
10、相対的磁場強さ 0.9〜1.1T
11、溶媒 モノクローベンゼン
<Example of crystal growth conditions in this method>
1. Substrate temperature 16 ℃ ~ 20 ℃
2. Solution volume 0.1cc
3. Solution concentration DS2T; 2.4mg / 3cc
DS2T
4. Pattern size 20mm x 30mm
5. Evaporation rate (vapor pressure) 0.03cc / h
6. Substrate hydrophilicity Silane coupling-Bare wafer 7, Solution moving speed 0.5-10 mm / h
8. Solution thickness ≦ 1μm
9. Semi-sealed cell size 60mmφ × 4mmt
10. Relative magnetic field strength 0.9-1.1T
11. Solvent Monochlorobenzene

上記条件により単結晶薄膜を作成し、図4に示す構造のトランジスタにより特性を評価した。
試験結果を他の方法により作成した場合と比較して表1に示す。
なお、表1における必要特性は、図4に示す構造のトランジスタについて主に次の観点から規定した。
・図A部の有機半導体と電極の高密着性
・図B部の有機半導体の厚みが薄いこと、グレインサイズが大きいこと、キレツが無いこと、グレイン同士の接合が電気的に遮断されていないこと
・図C部の有機半導体とSiOの密着性が高いこと。
→膜凹凸が無く滑らか
→チャネル間にグレインバウンダリがないこと
→チャネル間に亀裂がないこと
→SiO界面にキャリアトラップがないこと
A single crystal thin film was prepared under the above conditions, and the characteristics were evaluated using a transistor having the structure shown in FIG.
The test results are shown in Table 1 in comparison with the case where the test results were prepared by other methods.
The necessary characteristics in Table 1 were mainly defined from the following viewpoint for the transistor having the structure shown in FIG.
・ High adhesion between organic semiconductor and electrode in part A ・ Thickness of organic semiconductor in part B, large grain size, no cracks, and no electrical connection between grains. -The adhesion between the organic semiconductor and SiO 2 in part C in the figure is high.
→ Smooth without film irregularities → No grain boundary between channels → No crack between channels → No carrier trap at SiO 2 interface

<DS2Tの本工法での結晶品質の優位性>

Figure 0005590659
薄膜トランジスタの要件である薄くて基板に密着した滑らかでチャネル間全面を覆う大口径単結晶薄膜を実現した。 <Superiority of crystal quality in DS2T method>
Figure 0005590659
A thin, large-diameter single-crystal thin film covering the entire surface between channels, which is a thin and close contact with the substrate, which is a requirement for thin film transistors, has been realized.

また、成膜した膜の外観図を図5に示す。図5の縦幅が約1mmであり、非常に大きな単結晶の膜が得られたことがわかる。なお、図6はドロップ・キャスト法により、図7は蒸着法により成膜した膜を示す。   FIG. 5 shows an external view of the formed film. The vertical width of FIG. 5 is about 1 mm, and it can be seen that a very large single crystal film was obtained. 6 shows a film formed by a drop-cast method, and FIG. 7 shows a film formed by a vapor deposition method.

溶質としてTIPS-pentacene、溶媒にモノクロロベンゼンを用いた。厚さ300nmの熱酸化膜を表面に持つシリコンウエハ上に未飽和溶液を滴下し、強磁場中に挿入した。磁石側の溶液の端はモーゼ効果により厚みが薄くなり他端は厚くなった。溶媒をゆっくりと蒸発させることにより、磁場側の端のみからTIPS-pentaceneの多結晶が生成した。その後、磁石の位置を溶液側に移動させることにより結晶の成長先端に過飽和溶液を供給し、面内で一方向に結晶が成長した。基板の移動速度によって結晶の成長速度変化させることが可能であり、異なる成長速度で結晶薄膜を作製した。結果として、10mmオーダーの単結晶膜を作製し、トランジスタ特性を確認した。   TIPS-pentacene was used as a solute, and monochlorobenzene was used as a solvent. An unsaturated solution was dropped onto a silicon wafer having a 300 nm thick thermal oxide film on its surface and inserted into a strong magnetic field. The end of the solution on the magnet side became thinner due to the Moses effect, and the other end became thicker. By slowly evaporating the solvent, TIPS-pentacene polycrystals were formed only from the end of the magnetic field. Thereafter, the supersaturated solution was supplied to the growth tip of the crystal by moving the position of the magnet to the solution side, and the crystal grew in one direction in the plane. The crystal growth rate can be changed depending on the moving speed of the substrate, and crystal thin films were produced at different growth rates. As a result, a single crystal film of the order of 10 mm was produced and the transistor characteristics were confirmed.

本発明は、機能性薄膜及びその製膜技術に関し、詳しくは、電子写真感光体、太陽電池などに有用な異方導電性膜(異方導電性膜、異方光導電性膜など)や光メモリー、カラーフィルターなどに有用な光学的異方性膜、及びこれらの製造方法に関する。   The present invention relates to a functional thin film and a film forming technique thereof, and more specifically, an anisotropic conductive film (an anisotropic conductive film, an anisotropic photoconductive film, etc.) useful for an electrophotographic photosensitive member, a solar cell, etc. The present invention relates to an optically anisotropic film useful for a memory, a color filter, and the like, and a manufacturing method thereof.

これらの薄膜の配向性が向上し、結晶が大きくなると、キャリアの移動度が向上して品質の高い半導体材料を提供できるようになる。
そして、縮合多環式水素系有機物として、ペンタレン,ペリレン,ペンタセン等の縮合多環式水素の35種の基本環及びこれらの誘導体から選択する場合には、これらの物質は、トランジスタデバイス等の半導体材料の薄膜として機能させることができ、これらの配向性が向上し、結晶が大きくなると、キャリアの移動度が向上して品質の高い半導体材料を提供できるようになる。その結果、高品質な有機半導体薄膜において、有機トランジスタ(FET)や有機発光素子を実現し、更にこれらを用いた有機薄膜トランジスタ(TFT)による液晶及び有機EI表示パネルの駆動等に応用され、小型電子機器の低コスト化,軽量化を促進し、産業分野や社会生活への多大な貢献が期待できる。
When the orientation of these thin films is improved and the crystal size is increased, carrier mobility is improved and a high-quality semiconductor material can be provided.
When the condensed polycyclic hydrogen-based organic substance is selected from 35 basic rings of condensed polycyclic hydrogen such as pentalene, perylene, pentacene, and derivatives thereof, these substances are used for semiconductors such as transistor devices. It can be made to function as a thin film of materials, and when these orientations are improved and the crystal size is increased, carrier mobility is improved and a high-quality semiconductor material can be provided. As a result, organic transistors (FETs) and organic light-emitting elements are realized in high-quality organic semiconductor thin films, and applied to driving liquid crystal and organic EI display panels using organic thin film transistors (TFTs) using these. It can be expected to contribute greatly to industrial fields and social life by promoting cost reduction and weight reduction of equipment.

Claims (5)

溶媒中に有機材料を有する溶液の液滴を基板上に設け、該液滴の一端を薄くし他端を厚
くして、
液滴の一端側の溶媒を蒸発させることにより結晶を析出させるとともに、
該液滴の一端を薄くした薄い部分を磁場によって他端に移動させることにより結晶を順次析出させる有機単結晶薄膜の作成法であって、
前記液滴は反磁性を有し、液滴の一端には超伝導マグネットによって、強磁場が印加され、
強磁場の強度が、0.05T以上であり、
前記基板の移動速度によって、前記結晶の成長速度を変化させることを特徴とする有機単結晶薄膜の作成法。
A droplet of a solution having an organic material in a solvent is provided on a substrate, and one end of the droplet is thinned and the other end is thickened.
Together to precipitate crystals by evaporating the one end side of the solvent of the droplets,
A method for producing an organic single crystal thin film in which crystals are sequentially deposited by moving a thin portion of one end of the droplet thinned to the other end by a magnetic field ,
The droplet has diamagnetism, and a strong magnetic field is applied to one end of the droplet by a superconducting magnet.
The strength of the strong magnetic field is 0.05T or more,
A method for producing an organic single crystal thin film , wherein the growth rate of the crystal is changed according to the moving speed of the substrate .
液滴を外部から密封する半密封セル中にて、前記溶液の蒸気圧を制御し、前記超伝導マグネットの位置と前記基板との相対的な移動速度で、
前記結晶の成長を制御することを特徴とする請求項1記載の有機単結晶薄膜の作成法。
In a semi-sealed cell that seals droplets from the outside, the vapor pressure of the solution is controlled, and the relative movement speed between the position of the superconducting magnet and the substrate is as follows:
2. The method for producing an organic single crystal thin film according to claim 1, wherein growth of the crystal is controlled .
前記有機材料は、分子構造中に芳香環を有する有機化合物であることを特徴とする請求項1または2記載の有機単結晶薄膜の作成法。 The method for producing an organic single crystal thin film according to claim 1 or 2, wherein the organic material is an organic compound having an aromatic ring in a molecular structure . 基板を保持するための手段と、
前記基板を移動するための手段と、
前記基板上の液滴の一端から他端に順次磁場を印加できるように配置された磁場を印加するための手段とで構成された有機単結晶薄膜の成膜装置であって、
前記液滴は反磁性を有し、液滴の一端には超伝導マグネットによって、強磁場が印加され、
強磁場の強度が、0.05T以上であり、
前記基板の移動速度によって、基板に対する強磁場の変化を調整して、前記結晶の成長速度を変化させたことを特徴とする有機単結晶薄膜の成膜装置。
Means for holding the substrate;
Means for moving the substrate;
A device for forming an organic single crystal thin film comprising a means for applying a magnetic field arranged so that a magnetic field can be sequentially applied from one end to the other end of a droplet on the substrate ,
The droplet has diamagnetism, and a strong magnetic field is applied to one end of the droplet by a superconducting magnet.
The strength of the strong magnetic field is 0.05T or more,
An organic single crystal thin film forming apparatus , wherein a growth rate of the crystal is changed by adjusting a change in a strong magnetic field with respect to the substrate according to a moving speed of the substrate .
液滴を外部から密封する半密封セル中にて、
前記溶液の蒸気圧が制御され、前記超伝導マグネットの位置と前記基板との相対的な移動速度で、
前記結晶の成長が制御されることを特徴とする請求項4記載の有機単結晶薄膜の成膜装置。
In a semi-sealed cell that seals droplets from the outside,
The vapor pressure of the solution is controlled, and the relative moving speed between the position of the superconducting magnet and the substrate,
The organic single crystal thin film forming apparatus according to claim 4, wherein growth of the crystal is controlled .
JP2010044727A 2010-03-01 2010-03-01 Method and apparatus for producing organic single crystal thin film in magnetic field Expired - Fee Related JP5590659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044727A JP5590659B2 (en) 2010-03-01 2010-03-01 Method and apparatus for producing organic single crystal thin film in magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044727A JP5590659B2 (en) 2010-03-01 2010-03-01 Method and apparatus for producing organic single crystal thin film in magnetic field

Publications (2)

Publication Number Publication Date
JP2011181698A JP2011181698A (en) 2011-09-15
JP5590659B2 true JP5590659B2 (en) 2014-09-17

Family

ID=44692908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044727A Expired - Fee Related JP5590659B2 (en) 2010-03-01 2010-03-01 Method and apparatus for producing organic single crystal thin film in magnetic field

Country Status (1)

Country Link
JP (1) JP5590659B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061743B2 (en) * 2013-03-15 2017-01-18 富士フイルム株式会社 Method for forming organic semiconductor film
JP2016174019A (en) 2015-03-16 2016-09-29 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Substrate for monocrystalline film formation, and method for manufacturing monocrystalline film by use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3806472B2 (en) * 1996-11-18 2006-08-09 株式会社アドアップ Thin film forming apparatus and thin film forming method
JP4736340B2 (en) * 2004-03-31 2011-07-27 大日本印刷株式会社 Organic semiconductor structure, manufacturing method thereof, and organic semiconductor device
US7964440B2 (en) * 2004-12-20 2011-06-21 Palo Alto Research Center Incorporated Phase-separated composite films and methods of preparing the same
JPWO2007119703A1 (en) * 2006-04-14 2009-08-27 コニカミノルタホールディングス株式会社 Method for producing crystalline organic semiconductor thin film, organic semiconductor thin film, electronic device and thin film transistor
JP2008170515A (en) * 2007-01-09 2008-07-24 Konica Minolta Holdings Inc Surface treatment material, substrate, and method of treating surface of substrate, thin film transistor, and method of manufacturing semiconductor device
JP5273429B2 (en) * 2007-09-19 2013-08-28 国立大学法人岩手大学 Thin film manufacturing method

Also Published As

Publication number Publication date
JP2011181698A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
Tao et al. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method
US7622371B2 (en) Fused nanocrystal thin film semiconductor and method
Soeda et al. Inch-size solution-processed single-crystalline films of high-mobility organic semiconductors
Wang et al. High-performance organic field-effect transistors based on single and large-area aligned crystalline microribbons of 6, 13-dichloropentacene
Li et al. Patterning technology for solution-processed organic crystal field-effect transistors
US8309393B2 (en) Method of producing a single-crystal thin film of an organic semiconductor compound
CN103436949B (en) A kind of monocrystal thin films of organic semiconductor compound and preparation method and application
CN114808136B (en) Method for preparing large-area organic single crystal array based on liquid bridge phenomenon
US20130143357A1 (en) Method of forming organic thin film and organic thin film forming apparatus, as well as method of manufacturing organic device
JP5590659B2 (en) Method and apparatus for producing organic single crystal thin film in magnetic field
Zhu et al. Unidirectional and crystalline organic semiconductor microwire arrays by solvent vapor annealing with PMMA as the assisting layer
CN113972299B (en) In SiO 2 Preparation method for growing germanium sulfide monocrystal film on substrate
CN1331194C (en) A method for making metal induced polysilicon film having diffuse layer above metal
Zhang et al. Brush-controlled oriented growth of TCNQ microwire arrays for field-effect transistors
CN110085738B (en) Organic single crystal spin valve and preparation method and application thereof
CN115216748B (en) Preparation method of tellurium film and semiconductor device
JP5273429B2 (en) Thin film manufacturing method
JP7260885B2 (en) Organic Single-Crystal Heterojunction Composite Film, Production Method and Use Thereof
CN111092150B (en) Organic spin valve device and preparation method and application thereof
CN116685180A (en) Preparation of organic single crystal active layer with single crystal domain and uniform molecular layer number and high-uniformity semiconductor device array
KR102072888B1 (en) Method for doping of graphene films by using graphene oxides
JP4136409B2 (en) Method of attaching condensed polycyclic hydrogen-based organic thin films
CN106298449B (en) Low-temperature treatment method for improving uniformity and dispersibility of ZnO film
KR102183047B1 (en) Method for doping of graphene films by using graphene oxides
JP2013175744A (en) Semiconductor device and manufacturing apparatus of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140613

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140725

R150 Certificate of patent or registration of utility model

Ref document number: 5590659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees