JP5587830B2 - Flat cable for charging electric vehicles - Google Patents
Flat cable for charging electric vehicles Download PDFInfo
- Publication number
- JP5587830B2 JP5587830B2 JP2011128268A JP2011128268A JP5587830B2 JP 5587830 B2 JP5587830 B2 JP 5587830B2 JP 2011128268 A JP2011128268 A JP 2011128268A JP 2011128268 A JP2011128268 A JP 2011128268A JP 5587830 B2 JP5587830 B2 JP 5587830B2
- Authority
- JP
- Japan
- Prior art keywords
- cable
- conductor
- charging
- electric vehicle
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 claims description 57
- 239000012212 insulator Substances 0.000 claims description 19
- 238000004804 winding Methods 0.000 description 32
- 238000009413 insulation Methods 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 12
- 229920000915 polyvinyl chloride Polymers 0.000 description 8
- 239000004800 polyvinyl chloride Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Insulated Conductors (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本発明は、電気自動車のバッテリを充電するために使用される電気自動車充電用ケーブルに関するものである。 The present invention relates to an electric vehicle charging cable used for charging a battery of an electric vehicle.
動力源としてバッテリに蓄電された電力を用いて走行する電気自動車の実用化が進んでいる。これらの電気自動車は、各家庭に供給されている商用電源、または屋外の充電施設から電力供給を受けて、バッテリを充電している。 バッテリの充電には、電源供給口と車両搭載の電源バッテリとを接続する電気自動車充電用ケーブルが用いられている。この種の充電用ケーブルには、大電流を安全に電気自動車のバッテリに供給して短時間で充電を完了させるために、比較的断面積の大きな導体が用いられることにより、ケーブル外径が大きくなり柔軟性が損なわれる。そのために、収納性や取扱い性の面から柔軟性のある電気自動車充電用ケーブルが提案されている。 An electric vehicle that travels using electric power stored in a battery as a power source has been put into practical use. These electric vehicles charge a battery by receiving power supply from a commercial power source supplied to each household or an outdoor charging facility. For charging the battery, an electric vehicle charging cable that connects a power supply port and a power supply battery mounted on the vehicle is used. This type of charging cable uses a conductor with a relatively large cross-sectional area to safely supply a large current to the battery of an electric vehicle and complete charging in a short time, thereby increasing the outer diameter of the cable. Flexibility is lost. Therefore, a flexible electric vehicle charging cable has been proposed in terms of storage and handling.
特開平7−226112号公報には、素線径0.10〜0.32mmの素線を複数本撚り合わせて成る集合撚線をさらに複数本撚り合わせて複合撚線を形成し、この複合撚線の外側に絶縁被覆を形成して線心を構成し、3本の線心を層外径の10〜20倍の撚りピッチで撚り合わせ、その外側にポリエステル系可塑剤を含有したポリ塩化ビニル系樹脂組成物からなるシースを形成して柔軟性を付与し、取扱い性を良くして収納スペースを小さくできる電気自動車充電用ケーブルが開示されている。 In JP-A-7-226112, a composite twisted wire is formed by further twisting a plurality of aggregate strands formed by twisting a plurality of strands having a strand diameter of 0.10 to 0.32 mm. Polyvinyl chloride containing an insulation coating on the outside of the wire to form a wire core, twisting the three wire cores at a twist pitch of 10 to 20 times the outer diameter of the layer, and containing a polyester plasticizer on the outside An electric vehicle charging cable is disclosed in which a sheath made of a resin-based resin composition is formed to provide flexibility, improve handling, and reduce storage space.
上述の特開平7−226112号公報に示された電気自動車充電用ケーブルは、取扱い性や収納スペースを小さくするために柔軟性を良くして曲げやすくしているが、ケーブルの断面積を小さくすることや、充電後、ケーブルを収納するためにリールなどの巻取体に巻き取るときに、ケーブルが巻き乱れ状態になることを防止するケーブル構造にはなっていない。 The electric vehicle charging cable disclosed in Japanese Patent Laid-Open No. 7-226112 is improved in flexibility and easy to bend in order to reduce handling and storage space, but it reduces the cross-sectional area of the cable. In addition, the cable structure is not designed to prevent the cable from being disturbed when it is wound up on a winding body such as a reel to store the cable after charging.
ケーブルの断面積が大きいと、ケーブルをリールなどの巻取体の胴部の幅方向に沿って巻きつけたときに、巻取体の限られたスペースに「巻取れる長さ」が少なくなるという問題が生じる。また、図7に示すようにケーブルを巻取体に巻き取る際に巻き乱れ状態になると、次に述べるようなトラブルが生じる
(1)限られた収納スペースにおいて、計画した長さのケーブル巻取りができなくなる。
(2)巻取体からケーブルが逸脱したりして、ケーブルを痛めたり、最悪の場合は導体が断線したりする。
(3)使用時にケーブルを巻取体から繰り出す時に、ケーブルが絡んで繰り出しにくくなる。
(4)ケーブルに極端な折ぐせがつき、その折ぐせのところから導体断線しやすくなる。
If the cross-sectional area of the cable is large, when the cable is wound along the width direction of the body of the winding body such as a reel, the “winding length” is reduced in a limited space of the winding body. Problems arise. Also, as shown in FIG. 7, when the cable is wound around the winding body, the following trouble occurs.
(1) In the limited storage space, it is impossible to wind up the cable of the planned length.
(2) The cable may deviate from the winding body and damage the cable, or in the worst case, the conductor may be disconnected.
(3) When the cable is unwound from the winder during use, the cable becomes entangled and becomes difficult to unwind.
(4) The cable is extremely folded and the conductor is easily disconnected from the folded position.
上記巻き乱れのトラブルを防止するために、ケーブルを整列巻きにする必要が生じ、その方法としてトラバースさせながら巻取体に対するケーブル進入角度が概一定になるようにして、ケーブルを巻取体の巻胴部に沿って巻き取る方法が知られている。 In order to prevent the above-mentioned trouble of winding disturbance, it is necessary to arrange the cable in an aligned manner. As a method for this, the cable entry angle with respect to the winding body is made substantially constant while traversing, and the cable is wound on the winding body. A method of winding along the trunk is known.
そのためには、ケーブルの最終ガイド位置と巻取体間を離さざるを得なくなり、巻取体の設置スペースが大きくなるという問題が生じる。また、巻取体の両側(回転体鍔位置)にリミットスイッチ等の機構を設けておき、巻取体の端部を認識させて折り返し位置で容易に折り返しができるようにして、ケーブルを巻取体に整列に巻き取らせる必要も生じる。 For this purpose, there is no choice but to separate the final guide position of the cable from the winding body, resulting in a problem that the installation space for the winding body becomes large. In addition, a mechanism such as a limit switch is provided on both sides of the winding body (rotating body saddle position) so that the end of the winding body can be recognized so that it can be easily folded back at the folding position. There is also a need for the body to wind up in alignment.
このため、トラバース機構を備えた巻取り装置または器具が必要になるため、ケーブルを巻き取るためのスペースが大きくなることやそれに掛かる費用が発生するなどの問題があった。 For this reason, since the winding device or instrument provided with the traverse mechanism is required, there is a problem that a space for winding the cable becomes large and costs for the winding occur.
また、充電用ケーブルは、大電流を安全に電気自動車のバッテリに供給して短時間で充電を完了するために、比較的断面積の大きな導体が用いられることによりケーブル外径が大きくなる。ケーブル外径が大きくなるほど剛性が高くなり弾性変形し難くなるため、充電用ケーブルを緩やかに屈曲させるために大きな屈曲半径(曲率半径)が必要になり、そのため、ケーブルを収納するために大きなスペース枠が必要になり、大きな巻取体を確保する必要が生じた。 In addition, the charging cable supplies a large current to the battery of the electric vehicle safely and completes the charging in a short time, so that the outer diameter of the cable is increased by using a conductor having a relatively large cross-sectional area. The larger the cable outer diameter, the higher the rigidity and the less likely it is to be elastically deformed. Therefore, a large bend radius (curvature radius) is required to gently bend the charging cable. Therefore, a large space frame is required to store the cable. It became necessary to secure a large winding body.
また、ケーブルの収納スペースを小さくするための簡便な方法として、背景技術に記載したような柔軟なケーブルで曲げ易くして、ケーブル巻取体に巻かないで輪状に巻いて収納する方法もあるが、この方法では、充電の際にケーブルを繰り出すときに、ケーブルの絡みつきや取り出しにくさが生じてしまう。 In addition, as a simple method for reducing the storage space for the cable, there is a method of making it easy to bend with a flexible cable as described in the background art and storing it by winding it in a ring shape without winding it around the cable winder. In this method, when the cable is unwound during charging, the cable becomes entangled and difficult to take out.
本発明は前記課題を解決するためになされたもので、導体発熱による温度上昇を抑制できるケーブル構造にすることにより導体断面積を小さくして、ケーブルの断面積を減少することによってケーブルの収納体積を小さくすることを可能にし、かつ整列に巻き取る装置または器具を使用することなく整列巻きを可能にした電気自動車充電ケーブルを提供することにある。 The present invention has been made in order to solve the above-described problems. The cable storage volume is reduced by reducing the cross-sectional area of the cable by reducing the cross-sectional area of the cable by making the cable structure capable of suppressing the temperature rise due to the heat generation of the conductor. It is an object of the present invention to provide an electric vehicle charging cable that makes it possible to reduce the size of the electric vehicle and makes it possible to perform the alignment winding without using a device or an instrument for winding up the alignment.
上述の目的を達成するために、請求項1に係る発明は、電気自動車と給電口を接続して電気自動車を充電する充電用ケーブルにおいて、給電線用導体、接地線用導体および信号制御線用導体のそれぞれに絶縁体を被覆してなる絶縁線心を平面状に配置し、各絶縁線心のうち給電用導体の絶縁線心を、平面状に配置された他の絶縁線心の両端に配置して隣接して並べ、該複数本の絶縁 線心外周に外部シースを被覆して平面状に一体に形成し、これにより給電線用導体の断面積を小さくすることと整列巻きを可能にすることにより、ケーブルの収納体積を小さくすることと巻き乱れを防止することを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is a charging cable for charging an electric vehicle by connecting the electric vehicle and a power supply port, for a power line conductor, a ground line conductor, and a signal control line. Insulating cores that cover each of the conductors are arranged in a plane, and the insulation cores of the feeding conductors of each of the insulation cores are arranged at both ends of the other insulation cores arranged in a plane. Arrange and arrange adjacent to each other, cover the outer periphery of the plurality of insulated cores with an outer sheath, and form them integrally in a flat shape, thereby reducing the cross-sectional area of the feeder conductor and aligning winding By doing so, the cable storage volume is reduced and winding disturbance is prevented.
また、請求項2に係る発明は、請求項1の給電線用絶縁線心および接地線用絶縁線心の導体を複数本に分割して絶縁体を被覆した複数本の絶縁線心を、両端に並列に並べて構成されることを特徴とする。 According to a second aspect of the present invention, there is provided a plurality of insulated wire cores in which the conductors of the feeder wire insulation wire core and the ground wire insulation wire core of claim 1 are divided into a plurality of wires and covered with an insulator. Are arranged side by side in parallel.
また、請求項3に係わる発明は、上記の各々の絶縁線心間が外部シースにより充填されることを特徴とする。 The invention according to claim 3 is characterized in that a space between each of the above-described insulated wire cores is filled with an outer sheath.
本発明の電気自動車充電用ケーブル構造によれば、導体断面積を小さくすることによって、ケーブルの断面積を減少することにより、ケーブルの収納体積をコンパクトにすることができるため、ケーブルの巻取体を小型化することができる。また、巻取体にケーブルを巻き取るときにケーブルの巻き乱れの発生を防止し、計画した長さのケーブルの巻取りができなくなったり、ケーブルに折りぐせがついたり、巻取体からケーブルが逸脱してケーブルを痛めたりといった問題をなくすことができる。 According to the cable structure for charging an electric vehicle of the present invention, the cable storage volume can be made compact by reducing the cross-sectional area of the cable by reducing the cross-sectional area of the conductor. Can be miniaturized. Also, when winding the cable on the winder, it prevents the cable from being distorted, making it impossible to wind the cable of the planned length, causing the cable to be folded, It is possible to eliminate problems such as deviating and damaging the cable.
また、電気自動車に備えられたバッテリは、一般家庭に備えた商用電源によっても充電可能になっている。商用電源によって電気自動車を充電する時には、ケーブルが電気自動車のバッテリに接続された状態で、トランク内の巻取体に巻かれた充電ケーブルを外部に引き延ばして、住宅の外壁に設けられた家庭用商用電力のコンセントに接続して充電が行われる。本発明のケーブルを用いれば、トランク内という制限されたスペースにコンパクトに収納することができる。しかも、充電の際のケーブルの巻取りおよび繰り出し作業において、ケーブルが絡まることも解消できる。 Further, the battery provided in the electric vehicle can be charged by a commercial power source provided in a general household. When charging an electric vehicle with a commercial power source, the cable is connected to the battery of the electric vehicle, and the charging cable wound around the winding body in the trunk is extended to the outside, and the household Charging is performed by connecting to a commercial power outlet. If the cable of the present invention is used, it can be stored compactly in a limited space in the trunk. In addition, the cable can be prevented from being entangled during winding and unwinding of the cable during charging.
以下に本発明に係る充電用平型ケーブルの実施形態について説明する。本発明の電気自動車充電用平型ケーブルは、次の知見に基づいて創案されたものである。 Embodiments of a flat cable for charging according to the present invention will be described below. The flat cable for charging an electric vehicle of the present invention has been created based on the following knowledge.
(1)平型ケーブル構造による導体断面積の減少
一般に、ケーブルには、ケーブルに用いられる導体断面積に応じて導通する電流の上限が限定されている。これは、導体断面積に対して過剰に大きな電流を導通した場合にはジュール熱により導体が発熱し、導体を被覆している絶縁体が熱により溶けてしまう可能性があるためである。このように、導体の発熱により絶縁体が溶けることによって導体そのものが露出すると電気回路の短絡や、場合によっては発火等の不都合が生じる。このため、導体の発熱温度と周囲温度の和が絶縁体の最高許容温度(絶縁体の性能を保持するのに許容し得る最高温度)を超えないようにする必要がある。
(1) Reduction of conductor cross-sectional area by flat cable structure Generally, the upper limit of the electric current conducted in a cable is limited according to the conductor cross-sectional area used for the cable. This is because when an excessively large current is conducted with respect to the conductor cross-sectional area, the conductor generates heat due to Joule heat, and the insulator covering the conductor may be melted by heat. In this way, if the conductor itself is exposed by melting the insulator due to the heat generated by the conductor, inconveniences such as a short circuit of the electric circuit and, in some cases, ignition may occur. For this reason, it is necessary that the sum of the heat generation temperature of the conductor and the ambient temperature does not exceed the maximum allowable temperature of the insulator (the maximum temperature allowable for maintaining the performance of the insulator).
ケーブルの許容電流(常時流すことができる最大電流値)は次の式で計算される。
I=η0√{(T1―T)/(rR)}
ここに I:許容電流(A)
r :絶縁線心のT1℃における導体実効抵抗(Ω/cm)
R :絶縁線心の全熱抵抗(℃cm/W)
T1:絶縁体の最高許容温度(絶縁体耐熱温度)
T :周囲温度(℃)
η0:絶縁線心多数配置の場合の許容電流減少係数
絶縁線心の全熱抵抗Rは次の式により計算される。
R=R1+R2
R1=(P1/2π)loge(d2/d1)(℃・cm/W) R2=(10P2/πd2)(℃・cm/W)
ここに
R1:絶縁体の熱抵抗(℃・cm/W)
R2:絶縁線心表面の熱抵抗(℃・cm/W)
d1:導体外径(mm)
d2:絶縁体外径(mm)
P1:絶縁体の固有熱抵抗(℃・cm/W)
P2:表面放散の固有熱抵抗(℃・cm/W)
The allowable current of the cable (the maximum current value that can always flow) is calculated by the following formula.
I = η0√ {(T1-T) / (rR)}
Where I: Allowable current (A)
r: Conductor effective resistance (Ω / cm) at T1 ° C. of the insulated wire core
R: Total thermal resistance of insulated wire core (° C. cm / W)
T1: Maximum allowable temperature of insulator (insulator heat-resistant temperature)
T: Ambient temperature (° C)
η0: Allowable current reduction coefficient in the case of multiple insulated wire cores The total thermal resistance R of the insulated wire cores is calculated by the following equation.
R = R1 + R2
R1 = (P1 / 2π) loge (d2 / d1) (° C./cm/W) R2 = (10P2 / πd2) (° C./cm/W)
R1: Thermal resistance of insulator (℃ ・ cm / W)
R2: Thermal resistance of the insulation core surface (℃ ・ cm / W)
d1: Outer diameter of conductor (mm)
d2: Insulator outer diameter (mm)
P1: Insulator's intrinsic thermal resistance (℃ ・ cm / W)
P2: Specific heat resistance of surface dissipation (℃ ・ cm / W)
上式から、ケーブルの許容電流は下記によって変化する。
(1)絶縁線心のT1℃における導体実効抵抗(電気抵抗によって発熱量が異なるため)
(2)絶縁線心多数配置方法(絶縁線心配置方法により熱放散のし易さが異なるため)
(3)絶縁体の種類(絶縁被覆の許容温度が絶縁体によって異なるため)
(4)周囲温度(周囲温度が高いと、絶縁被覆の許容温度に達するまでの電流が少なくなるため)
ここで、上記(3)の絶縁体および(4)の周囲温度を一定にして、同一の許容電流を有するケーブルを製作する場合、両端に給電用絶縁線心を配置することによって、放熱効果により許容電流減少係数(η0)の値を大きくできる平型構造の絶縁線心配置の方が、丸型構造の絶縁線心配置よりも絶縁線心のT1℃における導体実効抵抗(r)を大きくすることができる。このことから、導体実効抵抗(r)は導体断面積に反比例するので、絶縁線心を平型配置にすることにより丸型配置よりも導体断面積(すなわち、径)を小さくすることができる。
From the above formula, the allowable current of the cable varies according to the following.
(1) Conductor effective resistance at T1 ° C of the insulation core (because the amount of heat generated varies depending on the electrical resistance)
(2) Insulation core arrangement method (because the ease of heat dissipation differs depending on the insulation core arrangement method)
(3) Kind of insulator (because the allowable temperature of insulation coating varies depending on the insulator)
(4) Ambient temperature (because the ambient temperature is high, the current required to reach the allowable insulation coating temperature decreases)
Here, when the cable having the same allowable current is manufactured with the insulator (3) and the ambient temperature of (4) being constant, by disposing a power feeding insulation core at both ends, The insulation resistance of the flat structure that can increase the allowable current reduction coefficient (η0) has a larger effective conductor resistance (r) at T1 ° C. than the arrangement of the insulation structure of the round structure. be able to. From this, the conductor effective resistance (r) is inversely proportional to the conductor cross-sectional area, so that the conductor cross-sectional area (that is, the diameter) can be made smaller than the round arrangement by arranging the insulating cores in a flat arrangement.
上述より、同一な許容電流を有するケーブルを製作する場合、本発明の平型構造ケーブルの方が従来の丸型構造ケーブルより導体断面積を小さくできることにより、ケーブル断面積を減少することができる。 From the above, when manufacturing cables having the same allowable current, the cross-sectional area of the flat structure cable of the present invention can be reduced by making the conductor cross-sectional area smaller than that of the conventional round structure cable.
また、平型構造にすることにより、ケーブルを複数層にわたって巻き取っても図6に示すように巻き状態が乱れることなく、ケーブルを整列状態に巻き取ることができるようになる。このことにより、ケーブルの収納部の小型化が達成できる。 Further, by adopting a flat structure, even when the cable is wound over a plurality of layers, the cable can be wound in an aligned state without disturbing the winding state as shown in FIG. As a result, the size of the cable housing can be reduced.
以下に本発明に係る充電用平型ケーブルの実施例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of a flat cable for charging according to the present invention will be described in detail with reference to the drawings.
図1は、家屋に引き入れられた商用電源を電気自動車に給電する第1実施形態に係る充電用平型ケーブルの断面図であり、このケーブルの構成を表1に示す。本例のケーブルは絶縁体が最高許容温度60℃のPVCを用いた周囲温度30℃で使用される許容電流が15Aの平型ケーブルである。平型ケーブル構造における絶縁線心多数配置の場合の許容電流減少係数(η0)は、日本電線工業会規格 JCS 0168−1「33KV以下電力ケーブルの許容電流計算」の3−3項「気中多条布設による低減率」の 表3.1によれば、η0=1である。
このことから、上述の式より許容電流15A、絶縁体最高許容温度60℃、周囲温度30℃における給電用絶縁線心1の導体実効抵抗(r)を求めることによって、給電用絶縁線心1の導体断面積を求めると1.04mm2になる。本例では導体断面積が1.04mm2になるように0.127mmφの素線を82本撚り合わせた外径1.3mmφの導体を用いた。また、接地用絶縁線心2の導体は、給電線用絶縁線心1と同じ電流量が流れることを想定して、給電用絶縁線心1と同じ断面積の導体を用いた。信号制御用絶縁線心3の導体断面積は、送信される信号によって決定されるが、本例では素線径0.127mmφの素線を60本撚り合わせた断面積0.76mm2の外径1.1mmφの導体を用いた。
そして、各々の導体の外側に厚さ0.8mmの最高許容温度60℃のPVCの絶縁被覆を形成した。次に給電用絶縁線心を両端に配置して4本の絶縁線心を隣接して並べ、その外側に厚さ1.0mmのシース4を被覆して平面状に一体に形成した。この充電用平型ケーブルの寸法は高さ5.2mm×幅14.3mmであり、ケーブル占有面積は74.4mm2であった。なお、ケーブル占有面積は、リール等の巻取体に巻き取った際の実質の収納体積を考慮して矩形(高さ×幅)で求めた。
FIG. 1 is a cross-sectional view of a flat cable for charging according to a first embodiment for supplying a commercial power source drawn into a house to an electric vehicle. Table 1 shows the configuration of the cable. The cable of this example is a flat cable having an allowable current of 15 A, which is used at an ambient temperature of 30 ° C. using PVC whose insulator is a maximum allowable temperature of 60 ° C. The allowable current reduction coefficient (η0) in the case of a large number of insulated wire cores arranged in a flat cable structure is the 3-3 “Creativity in Japan” of JCS 0168-1 “Calculation of allowable current of power cable of 33KV or less”. According to Table 3.1 of “Reduction rate due to strip installation”, η0 = 1.
From this, by obtaining the conductor effective resistance (r) of the power supply insulation core 1 at the allowable current 15A, the maximum allowable insulator temperature 60 ° C., and the ambient temperature 30 ° C. from the above formula, The conductor cross-sectional area is calculated to be 1.04 mm 2 . In this example, a conductor having an outer diameter of 1.3 mmφ in which 82 strands of 0.127 mmφ were twisted so that the conductor cross-sectional area was 1.04 mm 2 was used. In addition, the conductor of the grounding insulating core 2 was a conductor having the same cross-sectional area as that of the feeding insulating core 1 on the assumption that the same amount of current flows as that of the insulating core 1 for feeding line. The conductor cross-sectional area of the signal control insulating wire core 3 is determined by a signal to be transmitted. In this example, the outer diameter of a cross-sectional area of 0.76 mm 2 obtained by twisting 60 strands having a strand diameter of 0.127 mmφ. A 1.1 mmφ conductor was used.
Then, a PVC insulating coating having a thickness of 0.8 mm and a maximum allowable temperature of 60 ° C. was formed on the outside of each conductor. Next, an insulating wire core for power feeding was arranged at both ends, and four insulating wire cores were arranged adjacent to each other, and a sheath 4 having a thickness of 1.0 mm was coated on the outer side to integrally form a planar shape. This charging flat cable had a height of 5.2 mm and a width of 14.3 mm, and the cable occupation area was 74.4 mm 2 . In addition, the cable occupation area was calculated | required by the rectangle (height x width) in consideration of the actual storage volume at the time of winding up on winding bodies, such as a reel.
図2は、第2の実施形態に係る充電用平型ケーブルの断面図であり、このケーブルの構成を表2に示す。なお本例は、実施例1の一部を変更したものであるからその変更部分について説明し、実施例1と同一もしくは均等構成と考えられる部分には同一符号を付して重複する説明は省略する。
実施例1の給電線用絶縁線心の導体および接地線用絶縁線心の導体を2分割して、この各々の導体の外側に厚さ0.8mmの最高許容温度60℃のPVCの絶縁被覆を形成した。
そして、分割した給電用絶縁線心の2心をそれぞれ両端に配置し、実施例1と同様に絶縁線心を隣接して並べ、その外側に厚さ1.0mmのシース4を被覆して平面状に一体に形成した。この充電用平型ケーブルの寸法は高さ4.7mm×幅20mmであり、ケーブル占有面積は94.0mm2であった。なお、ケーブル占有面積は、実施例1と同様に矩形(高さ×幅)で求めた。
FIG. 2 is a cross-sectional view of a charging flat cable according to the second embodiment, and Table 2 shows the configuration of this cable. In this example, a part of Example 1 is changed, so the changed part will be described, and parts that are considered to be the same as or equivalent to Example 1 are denoted by the same reference numerals and redundant description is omitted. To do.
The conductor of the insulated wire core for the feeder line and the conductor of the insulated wire core for the ground line in Example 1 were divided into two, and the insulation coating of PVC having a thickness of 0.8 mm and a maximum allowable temperature of 60 ° C. was formed outside each of the conductors. Formed.
Then, the two insulated power supply cores are arranged at both ends, respectively, and the insulation cores are arranged adjacent to each other in the same manner as in the first embodiment. Formed integrally. The dimensions of the charging flat cable were 4.7 mm high × 20 mm wide, and the cable occupation area was 94.0 mm 2 . In addition, the cable occupation area was calculated | required by the rectangle (height x width) similarly to Example 1. FIG.
図3は、第3の実施形態に係る充電用平型ケーブルの断面図であり、このケーブルは実施例1の各々の絶縁線心間が外部シースにより充填されている構成のものである。 FIG. 3 is a cross-sectional view of a flat cable for charging according to the third embodiment, and this cable has a configuration in which a space between each insulated wire core of Example 1 is filled with an external sheath.
比較例1として、図4は、家屋に引き入れられた商用電源を電気自動車に給電する従来の充電用丸型ケーブルの断面図であり、このケーブルの構成を表1に示す。
本例のケーブルは絶縁体が最高許容温度60℃のPVCを用いた周囲温度30℃で使用される許容電流が15Aの丸型ケーブルである。
丸型ケーブルの多心収束による許容電流低減係数はη0=0.995×n−0.362の式から求められる。(nは絶縁線心の本数)
本例のケーブルは、発熱に係わる給電線用絶縁線心は2心なので、この丸型ケーブルの多心収束による許容電流低減係数は上式からη0=0.77になる。
このことから、上述の式より許容電流15A,絶縁体最高許容温度60℃、周囲温度30℃における給電用絶縁線心5の導体実効抵抗(r)を求めることによって、給電用絶縁線心5の導体断面積を求めると1.60mm2になる。本例では導体断面積が1.60mm2になるように0.127mmφの素線を126本撚り合わせた外径1.6mmφの導体を用いた。また、接地用絶縁線心6の導体は、実施例1に記述した同じ理由で給電線用絶縁線心5と同じ断面積の導体を用いた。信号制御用絶縁線心7の導体断面積は、送信される信号によって決定されるが、本例では実施例1と同じ素線径0.127mmφの素線を60本撚り合わせた断面積0.76mm2の外径1.1mmφの導体を用いた。
そして、各々の導体の外側に厚さ0.8mmの最高許容温度60℃のPVCの絶縁被覆を形成した。次に、給電用絶縁線心2心、接地用絶縁線心1心、信号制御用絶縁線心1心の4心の絶縁線心を撚り合わせ、その外側に厚さ1.0mmのシース8を被覆した。
この充電用丸型ケーブルの外径は9.7mmφであり、ケーブル占有面積は94.1mm2であった。なお、ケーブル占有面積は、実施例1同様に矩形(外径×外径)で求めた。
As Comparative Example 1, FIG. 4 is a cross-sectional view of a conventional charging round cable for supplying electric power to a commercial power source drawn into a house. Table 1 shows the configuration of this cable.
The cable of this example is a round cable with an allowable current of 15 A, which is used at an ambient temperature of 30 ° C. using PVC whose insulator is a maximum allowable temperature of 60 ° C.
The allowable current reduction coefficient due to multi-core convergence of the round cable can be obtained from the equation η 0 = 0.995 × n−0.362. (N is the number of insulated wire cores)
Since the cable of this example has two insulation cores for the power supply line related to heat generation, the allowable current reduction coefficient due to multi-core convergence of this round cable is η0 = 0.77 from the above equation.
From this, by obtaining the conductor effective resistance (r) of the power supply insulation core 5 at the allowable current 15A, the maximum allowable insulator temperature 60 ° C., and the ambient temperature 30 ° C. from the above formula, The conductor cross-sectional area is 1.60 mm 2 . In this example, a conductor having an outer diameter of 1.6 mmφ obtained by twisting 126 strands of 0.127 mmφ so that the conductor cross-sectional area is 1.60 mm 2 was used. Further, as the conductor of the grounding insulating core 6, a conductor having the same cross-sectional area as that of the feeder insulating core 5 was used for the same reason described in the first embodiment. The conductor cross-sectional area of the signal control insulating wire core 7 is determined by the transmitted signal, but in this example, the cross-sectional area of 60 strands of the same strand diameter 0.127 mmφ as in Example 1 is twisted. A conductor with an outer diameter of 1.1 mmφ and 76 mm 2 was used.
Then, a PVC insulating coating having a thickness of 0.8 mm and a maximum allowable temperature of 60 ° C. was formed on the outside of each conductor. Next, four insulated wire cores, namely, two insulated wire cores for power feeding, one insulated wire core for grounding, and one insulated wire core for signal control, are twisted, and a sheath 8 having a thickness of 1.0 mm is formed on the outside thereof. Covered.
The outer diameter of this charging round cable was 9.7 mmφ, and the cable occupation area was 94.1 mm 2 . In addition, the cable occupation area was calculated | required by the rectangle (outer diameter x outer diameter) similarly to Example 1.
比較例2として、図5は、第2の比較例の充電用丸型ケーブルの断面図であり、このケーブルの構成を表2に示す。
なお本例は、比較例1の一部を変更したものであるからその変更部分について説明し、比較例1と同一部分については重複する説明は省略する。
比較例1の給電線用絶縁線心の導体および接地線用絶縁線心の導体を2分割して、この各々の導体の外側に厚さ0.8mmの最高許容温度60℃のPVCの絶縁被覆を形成した。
次に、給電線用絶縁線心4心、接地用絶縁線心2心、信号制御用絶縁線心1心の7心の絶縁線心を撚り合わせ、その外側に厚さ1.0mmのシース8を被覆した。
この充電用丸型ケーブルの外径は10.3mmであり、ケーブル占有面積は106.1mm2であった。なお、ケーブル占有面積は、実施例1と同様に矩形(外径×外径)で求めた。
As Comparative Example 2, FIG. 5 is a cross-sectional view of the charging round cable of the second comparative example, and Table 2 shows the configuration of this cable.
In addition, since this example changes a part of the comparative example 1, the changed part is demonstrated and the overlapping description is abbreviate | omitted about the same part as the comparative example 1. FIG.
The conductor of the insulated wire core for the feeder line and the conductor of the insulated wire core for the ground line of Comparative Example 1 were divided into two, and an insulation coating of PVC having a maximum allowable temperature of 60 ° C. with a thickness of 0.8 mm was formed on the outside of each conductor. Formed.
Next, seven insulated cores, ie, four insulated wire cores for power supply lines, two insulated cores for grounding, and one insulated core for signal control, are twisted together, and a sheath 8 having a thickness of 1.0 mm is formed on the outside thereof. Was coated.
The outer diameter of this charging round cable was 10.3 mm, and the cable occupation area was 106.1 mm 2 . In addition, the cable occupation area was calculated | required by the rectangle (outer diameter x outer diameter) similarly to Example 1.
表1および表2の実施例と比較例を対比(実施例1と比較例1および実施例2と比較例2の対比)してわかるように、同一許容電流のケーブルにおいて、本発明の電気自動車用平型ケーブルは、従来の電気自動車用丸型ケーブルに比べて、ケーブル占有面積を10〜20%減少することができた。 As can be seen by comparing the Examples and Comparative Examples in Tables 1 and 2 (Comparison between Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2), the electric vehicle of the present invention is used in the cables having the same allowable current. The flat cable for use was able to reduce the cable occupation area by 10 to 20% compared to the conventional round cable for electric vehicles.
このことにより、本発明のケーブルは、限られた収納枠に多くのケーブルを収納できるため、収納部の小型化が達成できるとともに、ケーブルを巻き取っても巻き状態が乱れることがなく、かつ、ケーブルを整列状態に巻き取ることができ、しかも、巻き取ったケーブルを繰り出す際に巻取体から絡まった状態で繰り出されることを防止できた。 As a result, the cable of the present invention can store many cables in a limited storage frame, so that the storage portion can be reduced in size, and the winding state is not disturbed even if the cable is wound, and The cable could be wound up in an aligned state, and when the wound-up cable was unwound, it could be prevented from being unwound from the winder.
本発明は上述の実施例に限定されず種々の変形例を採用できる。例えば、実施例では許容電流15A,絶縁体は最高許容温度60℃のPVC、周囲温度30℃の場合で説明したが、いかなる許容電流、絶縁体の種類・最高許容温度、周囲温度においても本発明の趣旨を逸脱しない範囲で同様の効果が得られる。 The present invention is not limited to the above-described embodiments, and various modifications can be adopted. For example, in the embodiment, the description has been given of the case where the allowable current is 15A, the insulator is PVC having the maximum allowable temperature of 60 ° C, and the ambient temperature is 30 ° C. Similar effects can be obtained without departing from the spirit of the present invention.
1 平型ケーブルの給電用絶縁線心
2 平型ケーブルの接地用絶縁線心
3 平型ケーブルの信号制御用絶縁線心
4 平型ケーブルのシース
5 丸型ケーブルの給電用絶縁線心
6 丸型ケーブルの接地用絶縁線心
7 丸型ケーブルの信号制御用絶縁線心
8 丸型ケーブルのシース
1 Flat cable power supply insulation core 2 Flat cable ground insulation core 3 Flat cable signal control insulation core 4 Flat cable sheath 5 Round cable power supply insulation core 6 Round Insulated wire core 7 for cable grounding Insulated wire core 8 for signal control of round cable Sheath of round cable
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128268A JP5587830B2 (en) | 2011-06-08 | 2011-06-08 | Flat cable for charging electric vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128268A JP5587830B2 (en) | 2011-06-08 | 2011-06-08 | Flat cable for charging electric vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012256480A JP2012256480A (en) | 2012-12-27 |
JP5587830B2 true JP5587830B2 (en) | 2014-09-10 |
Family
ID=47527876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011128268A Active JP5587830B2 (en) | 2011-06-08 | 2011-06-08 | Flat cable for charging electric vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5587830B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6230924B2 (en) * | 2014-01-29 | 2017-11-15 | 矢崎エナジーシステム株式会社 | Cable housing device |
US9656560B2 (en) * | 2014-12-15 | 2017-05-23 | Ford Global Technologies, Llc | Charge cycle strategy for vehicles using smaller cross section cable |
US10377264B2 (en) | 2015-01-30 | 2019-08-13 | Ford Global Technologies, Llc | Vehicle conductive charge port having cooling infrastructure |
CN107680730A (en) * | 2017-09-29 | 2018-02-09 | 特瓦特能源科技有限公司 | DC charging wire harness, electrical connection module and charging port component |
CN108932992A (en) * | 2018-07-20 | 2018-12-04 | 安徽德源电缆集团有限公司 | A kind of charging pile tension shielding insulated cable |
CN109243688A (en) * | 2018-09-26 | 2019-01-18 | 安徽特种电缆集团有限公司 | A kind of high temperature resistant highly-flexible reel flat cable |
CN115547552A (en) * | 2022-09-26 | 2022-12-30 | 广州南洋电缆集团有限公司 | Flat medium-voltage reel cable and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0680217U (en) * | 1993-04-27 | 1994-11-08 | 古河電気工業株式会社 | Flat communication cable with shielded communication wire core bundle |
JPH07226112A (en) * | 1994-02-09 | 1995-08-22 | Sumitomo Wiring Syst Ltd | Electric charge cable for electric vehicle |
JPH10249544A (en) * | 1997-03-06 | 1998-09-22 | Toyota Motor Corp | Power feeding cable for welding machine |
JP2001160322A (en) * | 1999-12-02 | 2001-06-12 | Toyota Autom Loom Works Ltd | Cable for power supply |
JP2004268105A (en) * | 2003-03-10 | 2004-09-30 | Toshiba Plant Systems & Services Corp | Welding cable |
-
2011
- 2011-06-08 JP JP2011128268A patent/JP5587830B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012256480A (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5587830B2 (en) | Flat cable for charging electric vehicles | |
JP6228486B2 (en) | Electric wire and wire harness | |
WO2013125679A1 (en) | Electrical wire routing structure, and electrical wire with external cladding member | |
RU2013142446A (en) | SUPERCONDUCTING CABLES AND METHODS OF THEIR PRODUCTION | |
JP2013152789A (en) | Multi-conductor cable and method of manufacturing the same | |
JP2012243550A (en) | High voltage electric wire and manufacturing method of high voltage electric wire | |
JP2016110836A (en) | Cabtyre cable and cable with connector | |
WO2015005403A1 (en) | Wire harness | |
KR20050087545A (en) | Manufacturing method and the system for fireproof cable | |
JP6940291B2 (en) | Fireproof cable | |
US11569003B2 (en) | Composite cable and composite harness | |
JP2012198996A (en) | Flat cable, and wiring harness | |
KR101192243B1 (en) | Optic electrical complex cable mounting power supply cable unit | |
JP2014096247A (en) | Cable | |
US11460653B2 (en) | Optical-electric composite cable and method for manufacturing the same | |
KR101046565B1 (en) | High frequency cable for on line electronic vehicle having triple twisted structure | |
CN109559844B (en) | Power transmission cable | |
CN210223607U (en) | Conductive telescopic hose | |
JP5273572B2 (en) | Laying the superconducting cable | |
CN210575183U (en) | Low-smoke halogen-free flame-retardant wire | |
CN215007620U (en) | Polyvinyl chloride insulation control cable | |
KR20160000286U (en) | Multicore cable | |
CN218214771U (en) | Liquid cooling charging cable | |
JP2015116099A (en) | Wire Harness | |
CN217035170U (en) | Cable structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130801 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140715 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5587830 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |