[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5587210B2 - サンプリング回路およびこれを用いた受信機 - Google Patents

サンプリング回路およびこれを用いた受信機 Download PDF

Info

Publication number
JP5587210B2
JP5587210B2 JP2010541250A JP2010541250A JP5587210B2 JP 5587210 B2 JP5587210 B2 JP 5587210B2 JP 2010541250 A JP2010541250 A JP 2010541250A JP 2010541250 A JP2010541250 A JP 2010541250A JP 5587210 B2 JP5587210 B2 JP 5587210B2
Authority
JP
Japan
Prior art keywords
circuit
sampling
capacitor
switch
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010541250A
Other languages
English (en)
Other versions
JPWO2010064451A1 (ja
Inventor
陽平 森下
典昭 齊藤
克人 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010541250A priority Critical patent/JP5587210B2/ja
Publication of JPWO2010064451A1 publication Critical patent/JPWO2010064451A1/ja
Application granted granted Critical
Publication of JP5587210B2 publication Critical patent/JP5587210B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H15/00Transversal filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Networks Using Active Elements (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Description

本発明はサンプリング回路及び受信機に関し、特に離散時間アナログ処理により周波数変換やフィルタ処理等の受信信号処理を行う技術に関する。
無線受信機の小型化、低消費電力化やアナログ信号処理部とデジタル信号処理部の一体化を目指すため、従来技術として、高周波信号を直接、離散時間的にサンプリングして受信処理する構成が知られている(例えば、特許文献1参照)。
図1は、特許文献1に開示されているサンプリング回路の全体構成を示す図である。図2は図1の回路に入力される制御信号である。図1のサンプリング回路は、受信したアナログRF信号を、マルチタップ・ダイレクト・サンプリング・ミキサ(Multi-Tap Direct
Sampling Mixer)を用いて周波数変換し、離散時間アナログ信号へ変換している。より具体的には、図1の回路に含まれるキャパシタ間の電荷移動により、FIR(Finite Impulse Response)フィルタ、IIR(Infinite Impulse Response)フィルタの積となるフィルタ特性を実現する。通過域近傍の特性は2次IIRフィルタ特性で決定される。図3Aに広帯域周波数特性、図3Bに通過域近傍の狭帯域周波数特性の一例を示す。
さらに上記構成を基本とする従来技術として、イメージ除去を行なえる構成が知られている(特許文献2)。
図4は特許文献2に開示されているサンプリング回路の全体構成を示す図である。図5は、図4の回路によって得られる周波数特性の例(ローカル(LO)周波数fLO=800MHz)である。LO周波数に対して左右非対称な周波数特性となり、イメージ除去が可能な周波数特性となっている。
米国特許出願公開第2003/0035499号明細書 米国特許出願公開第2005/0233725号明細書
しかしながら、上記の従来技術では、以下に示すような課題を有する。
図1に示すような従来のサンプリング回路ではLO周波数とRF入力周波数が一致するとき最大の利得となり、LO周波数に対してほぼ対称な周波数特性しか実現できないため、イメージ除去には適さない。
図4に示すような構成をとれば、LO周波数に対して非対称な周波数特性を実現し、イメージ除去を行なうことが可能である。しかし、図4に示すような構成では、ヒストリキャパシタとローテートキャパシタの容量比しか変更できるパラメータがない。そのため、このパラメータによって利得が最大になる位置とカットオフ周波数が決まり、それぞれを独立に設定することができない。従って、十分なイメージ抑圧比を得ることができない。例えば、DTVの受信機をLOW−IF方式で構成する場合、イメージリジェクションミクサとしては30dB以上のイメージ抑圧比が必要となるが、従来構成では7dB程度のイメージ抑圧比しか得られない。
さらに、分子は定数項しか設計できないので、伝達関数のゼロを設定することができず、減衰極によって十分な減衰量を得ることもできない。
本発明の目的は、フィルタ設計の自由度が高く、かつ優れたイメージ除去特性を有するサンプリング回路および受信機を提供することである。
本発明のサンプリング回路は、入力信号をサンプリングすることにより、90度位相の異なるI信号とQ信号とを出力するIQ生成回路と、前記IQ生成回路の出力段に並列に接続された複数の離散時間回路と、前記離散時間回路の出力段に配置され、前記複数の離散時間回路の出力を合成する合成回路と、前記離散時間回路の動作を制御するための制御信号を出力するデジタルコントロールユニットと、を有し、前記離散時間回路は、ローテートキャパシタユニットと、ダンプスイッチと、リセットスイッチとから構成される組を二つ有し、前記ローテートキャパシタユニットは、積分スイッチと、メインローテートキャパシタと、サブローテートキャパシタと、放出スイッチと、を有し、入力電荷が前記ローテートキャパシタユニットに入力されるタイミングにおいては、前記メインローテートキャパシタと前記サブローテートキャパシタとが前記積分スイッチを介して並列に接続され、前記ローテートキャパシタユニットから電荷を出力するタイミングにおいては、前記メインローテートキャパシタのみが前記放出スイッチに接続されて出力を決定し、前記複数の離散時間回路の各々は、1次のIIRフィルタ特性を有する、構成を採る。
本発明によれば、フィルタ設計の自由度が高く、かつ優れたイメージ除去特性を実現することができる。
従来のサンプリング回路の構成の一例 従来のサンプリング回路における制御信号の説明に供するタイミングチャート 従来のサンプリング回路により実現されるフィルタ特性の例を示す特性図 従来のサンプリング回路の構成の一例 従来のサンプリング回路により実現されるフィルタ特性の例を示す特性図 本発明の実施の形態1に係るサンプリング受信機の構成を示すブロック図 実施の形態1のサンプリング回路の構成を示すブロック図 実施の形態1のサンプリング回路の構成を示す接続図 実施の形態1の制御信号の説明に供するタイミングチャート 実施の形態1のIQ生成回路の接続図 実施の形態1により実現されるフィルタ特性の例を示す特性図 本発明の実施の形態2のサンプリング回路の構成を示すブロック図 実施の形態2のサンプリング回路の構成を示す接続図 実施の形態2の複素離散時間回路の構成を示す接続図 実施の形態2により実現されるフィルタ特性の例を示す特性図 従来構成と実施の形態1及び2によって実現される特性の比較図 本発明の実施の形態3の複合サンプリング回路の構成を示すブロック図 実施の形態3により実現されるフィルタ特性の例を示す特性図 実施の形態3のサンプリング回路の構成を示す接続図 実施の形態3の複素離散時間回路の構成を示す接続図 本発明の実施の形態4のサンプリング回路の構成を示す接続図 本発明の実施の形態5の受信機の構成 本発明の実施の形態6のサンプリング回路の構成を示す接続図 実施の形態6の制御信号の説明に供するタイミングチャート 実施の形態6のサンプリング回路の別の構成を示す接続図
以下、本発明の実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
図6に、本実施の形態のサンプリング受信機の構成を示す。離散時間サンプリング受信機10は、アンテナ11と、低雑音増幅器(LNA:Low Noise Amplifier)12と、サンプリング回路13と、ローカル周波数発振部14と、A/D(Analog to Digital)変換処理部15と、デジタル受信処理部16とを有する。
このサンプリング受信機10は、搬送波周波数fRFで送信された電磁波21を受信し、この受信信号に対して離散時間的に周波数変換とフィルタ処理を施して所望信号成分を抽出する。そして、サンプリング受信機10は、抽出した所望信号成分をデジタル信号に変換してデジタル受信処理を行い、得られた受信データ27を出力する。
アンテナ11は、図示していない送信局から搬送波周波数fRFで送信された電磁波21を受信し、これをアナログRF信号22に変換する。低雑音増幅器(LNA)12は、アナログRF信号22を増幅して出力する。
サンプリング回路13は、増幅されたアナログRF信号23とローカル周波数信号24とを入力とし、アナログRF信号23をローカル周波数信号(fLO)24を用いて離散時間的に周波数変換してフィルタ処理を行うことで、所望信号成分のみを抽出したベースバンド信号25を出力する。
ローカル周波数発振部14は、サンプリング回路13に対して、サンプリング処理と周波数変換処理に用いるローカル周波数信号(fLO)24を生成して出力する。
A/D変換処理部15は、入力されるベースバンド信号を所定のサンプリング周波数でデジタル値に量子化し、変換したデジタルベースバンド信号26を出力する。
デジタル受信処理部16は、入力されるデジタルベースバンド信号26に対して復調処理や復号処理等の所定のデジタル受信処理を行い、これにより得た受信データ27を出力する。
図7に、本実施の形態のサンプリング回路100の構成を示す。なお、図7において、サンプリング回路100は、図6のサンプリング回路13に相当する。
図7において、IQ生成回路101は、入力される電流信号に対するスイッチングによって受信高周波信号をベースバンドに周波数変換する。そのサンプリングスイッチ用クロックの位相とオン時間の制御により、90度ずれた信号をサンプリングする。電荷共有回路102は、離散時間回路102−1〜102−nを有し、離散時間回路102−1〜102−nは、スイッチとキャパシタによって構成されるパッシブな回路構成をとる。離散時間回路102−1〜102−nの素子値をそれぞれ特定の値に設定し、最後に出力合成回路103で合成することにより、必要とする周波数特性を実現する。
図8に、サンプリング回路100の具体例を示す。始めにサンプリング回路100の構成を説明し、次にその動作を説明する。
サンプリング回路100は、IQ生成回路101と、電荷共有回路102と、出力合成回路103と、デジタルコントロールユニット104とを有する。
IQ生成回路101は、電圧電流変換器(TA:Transconductance Amplifier)1011、サンプリングスイッチ1012〜1015およびヒストリキャパシタ1016〜1019を有する。電荷共有回路102は、離散時間回路102−1〜102−nを有し、離散時間回路102−k(k=1〜4)は、ローテートキャパシタユニット1021−kと
、ダンプスイッチ1022と、リセットスイッチ1023とを有する。ローテートキャパシタユニット1021−k(k=1〜4)は、積分スイッチ10211,10212と、メインローテートキャパシタ10213,10214と、放出スイッチ10215とを有する。
デジタルコントロールユニット104で生成される制御信号S〜Sは、図8に示すように積分スイッチ、放出スイッチ、ダンプスイッチ、リセットスイッチに供給される。ここで、ローテートキャパシタユニット1021−k(k=1〜4)内のメインローテートキャパシタ10213,10214の容量値はそれぞれ所望の特性が得られる値に設定されている。メインローテートキャパシタ10213,10214の容量値は、各ローテートキャパシタユニット1021−kごとに異なる値であってもよいし、同じ値であってもよい。
出力合成回路103は、バッファキャパシタ1031を有する。出力合成回路103の実現はバッファキャパシタ1031を用いた電荷共有によるパッシブな構成に限らない。例えば、バッファキャパシタ1031を並列数と同数用意し、オペアンプによる加算回路で出力することも可能である。
なお、バッファキャパシタ1031の後段をどのような回路構成にするかは、本発明で特に限定されるものではない。例えばバッファキャパシタ1031に蓄積された電荷量による離散信号値をそのままサンプル・ホールドした上でデジタル値に量子化し、以降は離散時間デジタル信号処理を行う構成としてもよい。また別の例としては、バッファキャパシタ1031に蓄積された電荷量による離散信号値を改めて電圧に変換した上で、さらに信号処理する構成としてもよい。
デジタルコントロールユニット104は、ローカル周波数発信部14(図6)から得られる基準のローカル周波数をもとに、IQ生成回路101のサンプリングスイッチ1012〜1015、ローテートキャパシタユニット1021内の、積分スイッチ10211,10212、放出スイッチ10215、ダンプスイッチ1022及びリセットスイッチ1023に対して、制御信号を生成して供給する。
図9は、デジタルコントロールユニット104から出力される制御信号のタイミングチャートを示す。ローカル信号LO〜LOは互いにハイとなる時間がずれた信号であり、ハイとなっている時間はほぼRF信号周期の1/4である。制御信号S〜Sも互いにハイとなる時間がずれた信号である。
なお、本実施の形態では、特許文献1で開示されている構成のうち、フィードバック制御用途のキャパシタやその制御信号については、本発明で限定されるものではなく、説明の簡単化のため、図示と説明を割愛している。
次に、本実施の形態のサンプリング回路100の動作について説明する。
まず、電圧電流変換器(TA)1011は、入力されたアナログRF信号23をアナログRF電流信号に変換し、サンプリングスイッチ1012〜1015によりアナログRF電流信号周期のほぼ1/4のハイ時間を持った互いにハイとなる時間のずれた4相のローカル周波数信号24(図6)でサンプリングする。
アナログRF電流信号に対して、それぞれが90度位相のずれたローカル周波数信号を用いてサンプリングを行うことで、正負の90度ずれた信号を取り出せる。この様子を図10Aに示す。IQ生成回路101の実現は、図8に示す構成に限らない。図10Bに示
すように、IQ生成回路101が、ハイとローの時間が等しいクロックを用いて、正負の90度ずれた信号を生成する構成とすることも可能である。
まず、S〜Sがハイとなるタイミングの動作を説明する。
IQ生成回路101と離散時間回路102−k内の左側のローテートキャパシタユニット1021−1〜1021−4において、サンプリング動作と同時にIIRフィルタリングが行われる。
はじめに、LOがハイの時間において、ヒストリキャパシタ1016とローテートキャパシタユニット1021−1内のメインローテートキャパシタ10213,10214とによってサンプリング信号の電荷が積分される。次に、LOがハイの時間において、ヒストリキャパシタ1017とローテートキャパシタユニット1021−2内のメインローテートキャパシタ10213,10214とによってサンプリング信号の電荷が積分される。続いて、LOがハイの時間において、ヒストリキャパシタ1018とローテートキャパシタユニット1021−3内のメインローテートキャパシタ10213,10214とによってサンプリング信号の電荷が積分される。最後に、LOがハイの時間において、ヒストリキャパシタ1019とローテートキャパシタユニット1021−4内のメインローテートキャパシタ10213,10214とによってサンプリング信号の電荷が積分される。上記のそれぞれの電流積分の初期状態として、ヒストリキャパシタ1016〜1019が一LO周期前の電荷を保持しているので、IIRフィルタ動作が行われる。
また、Sがハイとなるタイミングにおいて、離散時間回路102−kの右側のローテートキャパシタユニット1021−1〜1021−4内の、メインローテートキャパシタ10213がダンプスイッチ1022を介してバッファキャパシタ1031と電荷共有を行い出力電位が決まる。同時に、Sがハイとなるタイミングにおいて離散時間回路102−k内の右側のローテートキャパシタユニット1021−1〜1021−4内のサブローテートキャパシタ10214が放出スイッチ10215を介して接地され電荷が捨てられ、Sがハイとなるタイミングにおいて離散時間回路102−k内の右側のローテートキャパシタユニット1021−1〜1021−4内のメインローテートキャパシタ10213がリセットスイッチ1023を介して接地され電荷が放電される。
続いて、S〜Sがハイとなるタイミングについて説明する。このタイミングでは、離散時間回路102−kの右側のローテートキャパシタユニット1021−1〜1021−4がサンプリング動作を行う。同時にSがハイとなるタイミングにおいて左側のローテートキャパシタユニット1021−1〜1021−4内のメインローテートキャパシタ10213がダンプスイッチ1022を介してバッファキャパシタ1031と電荷共有を行い出力電位が決まる。同時に、Sがハイとなるタイミングにおいて離散時間回路102−k内の左側のローテートキャパシタユニット1021−1〜1021−4内のサブローテートキャパシタ10214が放出スイッチ10215を介して接地され電荷が捨てられ、Sがハイとなるタイミングにおいて離散時間回路102−k内の左側のローテートキャパシタユニット1021−1〜1021−4内のメインローテートキャパシタ10213がリセットスイッチ1023を介して接地され電荷が放電される。
また、バッファキャパシタ1031において電荷共有することによってローテートキャパシタユニット1021−1〜1021−4内のメインローテートキャパシタ10213の電荷が合成され、パッシブな加算回路としての動作が行われる。このときバッファキャパシタ1031に一LO周期前の電荷が保持されていることによってIIRフィルタリングが行われる。
全体の伝達関数は次式で記述できる。
Figure 0005587210
ここで、式(1),式(2)において、TLOはサンプリングスイッチ1012〜1015に入力されるローカル信号LOのサンプリング周期であり、gは電圧電流変換器(TA)1011のトランスコンダクタンス値である。CHkはヒストリキャパシタ1016〜1019の容量値である。CRakはローテートキャパシタユニット1021−1〜1021−4内のメインローテートキャパシタ10213の容量値であり、CRbkは1021−1〜1021−4内のサブローテートキャパシタ10214の容量値である。
ここで注意しなければばらないことは、式(1),式(2)により表現される伝達関数において、回路素子値をただ任意に設定しても、所望のフィルタ周波数応答特性が得られるわけではないことである。所望のフィルタ周波数応答特性を得るための回路素子値の決定方法については、以下に説明する。
まず、式(1),式(2)の回路素子値の決定方法の一例を示す。まず、式(3)に示す伝達関数のプロトタイプの係数値を考える。
Figure 0005587210
ここで、aとして任意の複素数を選択できる。bは一次IIRのカットオフ周波数に対応する任意の正の実数である。任意の周波数fに減衰極を有する伝達関数の係数値は、次式によって求めることができる。
Figure 0005587210
ただし、zN=exp(j2πfNTLO)は任意の正の実数である。ここで、例えば、b2=lb1として、A, l, b1は任意の正の実数とすると、a,aを算出することが可能である。
式(4)によって定められた係数を有する式(3)と式(2)とを比較することにより回路素子値を決定する。
図11に上記の方法を用いて得られる周波数特性の一例(fLO=800MHz)を示す。図11AにLO周波数の左側に減衰極を有する周波数特性の一例を示し、図11BにLO周波数
の右側に減衰極を有する周波数特性の一例を示す。複素数の伝達関数を実現することによって左右非対称な周波数特性を実現できていることがわかる。さらに減衰極を生成することによって大きなイメージ抑圧比を得られていることがわかる。
以上のように本実施の形態によれば、IQ生成回路101で90度位相のずれた信号をサンプルし、それぞれ離散時間回路102−kで重み付けし、最後に出力合成回路103で加算結果を出力することにより、片側に減衰極を有する周波数特性を実現し、優れたイメージ抑圧特性を得ることが可能となる。これによって大きなイメージが存在する場合においてもLOW−IF方式の受信機を構成することが可能となる。
また、本実施の形態で示した構成では、デジタルコントロールユニット104においてローカル周波数信号LOも生成してサンプリングスイッチ1012〜1015へ供給する構成を仮定して説明したが、本発明はこれに限定されるものではない。例えば、サンプリングスイッチ1012に供給するローカル周波数信号LOをデジタルコントロールユニット104とは別に生成して供給する構成としてもよい。
また、本実施の形態で示した構成では、電荷共有後にリセットスイッチ1023によってローテートキャパシタユニット1021−1〜1021−4内のメインローテートキャパシタ10213を接地したが、接地せずに電荷を保持することにより、利得の改善を行うことができる。スイッチの数、制御信号の数を減らすことができ、構成を簡易化できる。
(実施の形態2)
図12に、本実施の形態のサンプリング回路200の構成を示す。複数のIQ生成回路を並列に設け、それぞれのIQ生成回路に複数の離散時間回路を並列に接続し、すべての離散時間回路の出力を合成器で合成する点が、実施の形態1とは異なる。
この構成によれば、左右非対称な減衰極の位置をそれぞれ制御することが可能となり、所望信号周波数に対して左右非対称な位置に強い妨害波を有するシステムに対応することが可能となる。
図13に、サンプリング回路200の具体例を示す。始めにサンプリング回路200の構成を説明し、次にその動作を説明する。
サンプリング回路200は、複素離散時間回路201−1〜201−3から構成される複素電荷共有回路201と、バッファキャパシタ202−1〜202−2から構成される出力合成回路202と、デジタルコントロールユニット104とを有する。
実施の形態1では、一つのバッファキャパシタ1031に接続して出力を決定したが、本実施の形態においては、正相の出力とするバッファキャパシタ202−1と、逆相の出力とするバッファキャパシタ202−2とを差動出力している。
図14に複素離散時間回路201−mの構成を示す。複素離散時間回路201−mはIQ生成回路2011と、離散時間回路2012とを有する。IQ生成回路2011は実施の形態1において示したIQ生成回路101と同様の構成である。離散時間回路2012は実施の形態1に示した電荷共有回路102と同様の構成である。すなわち、複素離散時間回路201−mのそれぞれは、実施の形態1のIQ生成回路101と、電荷共有回路102に対応する。ただし、離散時間回路2012内のローテートキャパシタユニット1021−1と1021−3とを同じ値とし、ローテートキャパシタユニット1021−2と1021−4とを同じ値とし、それぞれが複素数の実部、虚部に対応するようにしている
。デジタルコントロールユニット104から出力される制御信号は実施の形態1と同様に図9で与えられる。
次に、本実施の形態のサンプリング回路200の動作について説明する。
複素離散時間回路201−1〜201−3のそれぞれは、実施の形態1のIQ生成回路101と、電荷共有回路102に対応し、同様の動作を行う。
ただし、本実施の形態では、実施の形態1と出力のバッファキャパシタへの接続が異なる。図13においては、複素離散時間回路201−1〜201−3のI+とQ+とに対応する出力がバッファキャパシタ202−1に接続され、複素離散時間回路201−1〜201−3のI−とQ−とに対応する出力がバッファキャパシタ202−2に接続され、それぞれが同時にLOのタイミングで電荷共有を行い出力の電位が決定するようになっている。また、減衰極を有する周波数特性を得るためには、負の係数を実現する必要があるが、各分岐の係数の符号は、正相、逆相、それぞれのバッファキャパシタへの接続を入れ替えることによって、変更することが可能である。
全体の伝達関数は次式で記述できる。
Figure 0005587210
ここで、式(5),式(6)において、TLOはサンプリングスイッチ1012〜1015に入力されるローカル信号LOで決まるサンプリング周期であり、gは電圧電流変換器(TA)1011のトランスコンダクタンス値である。CHrmはヒストリキャパシタ1016,1018の容量値であり、CHimはヒストリキャパシタ1017,1019の容量値である。CRarmは複素離散時間回路201−m内のローテートキャパシタユニット1021−1,1021−3のメインローテートキャパシタ10213の容量値である。また、CRbrmは複素離散時間回路201−m内のローテートキャパシタユニット1021−1,1021−3のサブローテートキャパシタ10214の容量値である。また、CRaimは複素離散時間回路201−m内のローテートキャパシタユニット1021−2,1021−4のメインローテートキャパシタ10213の容量値である。また、CRbimは複素離散時間回路201−m内のローテートキャパシタユニット1021−2,1021−4のサブローテートキャパシタ10214の容量値である。
ここで注意しなければならないことは、式(5)および式(6)により表現される伝達関数において、回路素子値をただ任意に設定しても、所望のフィルタ周波数応答特性が得られるわけではないことである。
次に、式(5),式(6)の回路素子値の決定方法の一例を示す。まず、式(7)に示す伝達関数のプロトタイプの係数値を考える。
Figure 0005587210
ここで、重要なのはaとして任意の複素数を選択できることである。bは一次IIRのカットオフ周波数に対応する任意の正の実数である。任意の周波数fN1,fN2に減衰極を有する伝達関数の係数値は、次式によって求めることができる。
Figure 0005587210
ただし、zN1=exp(j2πfN1TLO), zN2=exp(j2πfN2TLO)は任意の正の実数である。ここで、例えば、b2=lb1,b3=mb2として、A, l, m, b1は任意の正の実数とすると、a,a,aを算出することが可能である。
式(8)によって係数が決定した式(7)と式(6)とを比較することにより、回路素子値を決定することができる。
図15に上記の方法を用いて得られる周波数特性の例(fLO=800MHz)を示す。図15AにLO周波数の左側に二つの減衰極を有する周波数特性の一例を示す。また、図15BにLO周波数の右側に二つの減衰極を有する周波数特性の一例を示す。また、図15C,図15DにLO周波数の左右非対称な位置に減衰極を有する周波数特性の一例を示す。複素数の伝達関数を実現することによって左右非対称な周波数特性を実現できていることがわかる。
図16に従来技術、実施の形態1、実施の形態2を、ISDB−Tワンセグメント受信機に適用した場合の特性図を示す。従来技術の場合を図16A、実施の形態1の場合を図16B、実施の形態2の場合を図16Cに示している。それぞれ上段が周波数特性の一例、下段が所望帯域(250kHz〜650kHz)とイメージ帯域(-650kHz〜-250kHz)の拡大図である。従来では7dBの減衰量しか得られなかったのに対し、実施の形態1においては18.1dBのイメージ抑圧量が得られ、実施の形態2においては35.1dBという大きなイメージ抑圧量が得られている。減衰極を生成することによって大きなイメージ抑圧比を達成できることがわかる。
以上のように本実施の形態によれば、IQ生成回路2011で90度位相のずれた信号をサンプルし、それぞれ離散時間回路2012で重み付けし、最後に出力合成回路(バッファキャパシタ202−1,202−2)で加算結果を出力することにより、片側に減衰極を有する周波数特性を実現し、優れたイメージ抑圧特性を得ることが可能となる。さらに、並列数に応じた個数の減衰極を実現できるので、左右対称、非対称自由に適切な位置に減衰極を設定することによって、大きな妨害信号が存在する場合においても受信機を構成することが可能となる。
また、ここでは複素離散時間回路201−1〜202−nの並列数nが3の場合を説明したが、任意の並列数nにおいて同様に設計することが可能である。その場合、2n+1並列ではn個の減衰極が得られ、及び2n+2並列ではn個の減衰極が得られる。
(実施の形態3)
図17に、本実施の形態の複合サンプリング回路300の構成を示す。複合サンプリング回路300は、図1のサンプリング回路13として適用可能である。本実施の形態の複合サンプリング回路300は、実施の形態1のサンプリング回路の出力に、さらに離散時間回路(2段目の複素電荷共有回路)を接続し、最終的に合成器(出力合成回路)で合成する構成となっている。すなわち、実施の形態1のサンプリング回路が1段目の複素電荷共有回路を形成し、これに縦続に接続される離散時間回路及び合成器(出力合成回路)が2段目の複素電荷共有回路を形成している。つまり、本実施の形態の複合サンプリング回路300は、実施の形態1のサンプリング回路構成を縦続に接続した構成となっている。この構成により、LO周波数の両側に減衰極を生成でき、各ブランチ間の利得を打ち消しあうことなく、LO周波数の両側に減衰極を生成することが可能となる。
図18において実施の形態1を縦続に接続することの効果(fLO=800MHzにおける周波数特性の例)を示す。図18A,図18BにそれぞれLO周波数の左,右に減衰極を生成した例を示す。図18Aの特性と図18Bの特性との積として実現されるのが図18Cである。つまり、片側減衰極構成の縦続接続により、中心周波数の左右対称に減衰極を生成することが可能となる。これは、実施の形態2のサンプリング回路200で両側に減衰極を生成する場合に比べて、各分岐間の利得の打ち消し合いを小さくしながら、減衰極を生成することを可能にする。つまり、並列数の増加によってLO周波数の両側に減衰極を得る構成に比べて、利得を改善することが可能となる。
図19に、複合サンプリング回路300の具体例を示す。
複合サンプリング回路300は、複素離散時間回路301−1〜301−4から構成される1段目の複素電荷共有回路301と、ローテートキャパシタユニット302−1〜302−4と、出力合成回路303と、デジタルコントロールユニット304とを有する。ここで、ローテートキャパシタユニット302−1〜302−4及び出力合成回路303は、2段目の複素電荷共有回路302を形成する。
ローテートキャパシタユニット302−k(k=1〜4)は、積分スイッチ3021,3022と、メインローテートキャパシタ3023と、サブローテートキャパシタ3024と、放出スイッチ3025とを有する。
出力合成回路303は、ダンプスイッチ3031と、リセットスイッチ3032と、バッファキャパシタ3033とを有する。
図20に複素離散時間回路301−mの構成を示す。複素離散時間回路301−mは実施の形態1で示したサンプリング回路100と同様の構成である。デジタルコントロールユニット304から出力される制御信号は実施の形態1と同様に図10で与えられる。
次に、本実施の形態の複合サンプリング回路300の動作について説明する。
まず、複素離散時間回路301−mはサンプリング回路100と同様の動作を行う。ただし、以下に示す点において実施の形態1とは異なる。
複素離散時間回路の2縦続構成を実現するためには、すなわち、1段目の複素電荷共有回路301の出力段に2段目の複素電荷共有回路302を接続するためには、複素離散時間回路301−1がI+、複素離散時間回路301−2がQ+、複素離散時間回路301−3がI−、複素離散時間回路301−4がQ−にそれぞれ対応する必要がある。そのために、図19に示す構成では、デジタルコントロールユニット304は、複素離散時間回
路301−1,301−3に入力するクロックと、複素離散時間回路301−2,301−4に入力するクロックと、を90度ずらしている。
さらに、複素離散時間回路301−1,301−2の電圧電流変換器(TA)1011のトランスコンダクタンス値gと、複素離散時間回路301−3,301−4の電圧電流変換器(TA)1011のトランスコンダクタンス値gの符号を変えることにより、片側に減衰極を有する周波数特性を有するI+,Q+,I−,Q−のブランチを生成できる。g符号の変更はバランや差動構成の利用によって達成することが可能である。また、実施の形態1において出力の役割を果たしていたバッファキャパシタ1035は、本実施の形態においては次段のヒストリキャパシタの役割を果たすため、複素離散時間回路301−1〜301−4のそれぞれで異なる値に設定する。
次に、複素離散時間回路301−mの出力を入力としてローテートキャパシタユニット302−1〜302−4と出力合成回路303とからなる2段目の複素電荷共有回路302の動作に入る。
複素離散時間回路301−2とローテートキャパシタユニット302−4を接続し、複素離散時間回路301−4とローテートキャパシタユニット302−2を接続しているのは、1段目の複素電荷共有回路301と2段目の複素電荷共有回路302とで伝達関数分子の係数を逆転させるためである。これによって1段目と2段目の減衰極の位置をLO周波数を中心に左右対称にする。
LOがハイとなる時間に、複素離散時間回路301−1,301−3内のバッファキャパシタ1035と、ローテートキャパシタユニット302−1,302−3内のメインローテートキャパシタ3023とサブローテートキャパシタ3024とが電荷共有を行う。
同様に、LOがハイとなる時間に、複素離散時間回路301−2,301−4内のバッファキャパシタ1035と、ローテートキャパシタユニット302−2,302−4内のメインローテートキャパシタ3023とサブローテートキャパシタ3024とが電荷共有を行う。これより、全分岐において2段目の入力電位が決定する。
LOがハイとなる時間に、ローテートキャパシタユニット302−1〜302−4内のメインローテートキャパシタ3023とバッファキャパシタ3033とが電荷共有を行うことによって全体の出力電位が決定する。同時に、ローテートキャパシタユニット302−1〜302−4内のサブローテートキャパシタ3024を、リセットスイッチ3032を介して、接地してリセットする。
LOがハイとなる時間に、ローテートキャパシタユニット302−1〜302−4内のメインローテートキャパシタ3023を、リセットスイッチ3032を介して、接地してリセットし、一連の動作が終わる。
上記動作を繰り返すことによって、全体の伝達関数が決定する。
全体の伝達関数は次式で記述できる。
Figure 0005587210
ここで、式(9)〜式(11)において、TLOはサンプリングスイッチ1012〜1015に入力されるローカル信号LOで決まるサンプリング周期であり、gは電圧電流変換器1011のトランスコンダクタンス値である。また、CH1〜CH4はヒストリキャパシタ1016〜1019の容量値である。また、CRakはローテートキャパシタユニット1021−kのメインローテートキャパシタ10213の容量値であり、CRbkはローテートキャパシタユニット1021−kのサブローテートキャパシタ10214の容量値である。
ここで、注意しなければならないことは、式(9)〜式(11)により表現される伝達関数において、回路素子値をただ任意に設定しても、所望のフィルタ周波数応答特性が得られるわけではないことである。
次に、式(9)〜式(11)の回路素子値の決定方法の一例を示す。まず、式(12)に示す伝達関数のプロトタイプの係数値を考える。
Figure 0005587210
ここで、重要なのはaとして任意の複素数を選択できることである。a*はaの共役をあらわしている。bは一次IIRのカットオフ周波数に対応する任意の正の実数である。任意の周波数fに減衰極を有する伝達関数の係数値は、次式によって求めることができる。
Figure 0005587210
ただし、zN=exp(j2πfNTLO)は任意の正の実数である。ここで、例えば、b2=lb1として、A, l, b1は任意の正の実数とすると、a,aを算出することが可能である。
式(13)によって定められた係数を有する式(12)と式(10)とを比較することにより回路素子値を決定する。
また、式(11),式(12)からわかるように図19に示す回路構成ではプロトタイプと回路の伝達関数を一致させることが出来ておらず、両側対称に減衰極を得るためには素子値の調整が必要となる。
以上のように本実施の形態によれば、実施の形態1に示したような片側に減衰極を有する周波数特性の積算した周波数特性を得ることが可能となり、利得低下を抑えつつ、通過域の両側に減衰極を生成することが可能となる。
なお、以上の説明では、1段目の複素電荷共有回路301として、式(9)〜式(11)に示したように、伝達関数の分子に複素数係数が実現される複素離散時間回路301−mを用いる場合について説明したが、これに限られない。1段目の複素電荷共有回路301に、例えば、伝達関数の分母、又は、分子及び分母に複素数係数が実現される複素離散時間回路を用いてもよい。2段目の複素電荷共有回路302についても同様に、伝達関数の分子、分母、又は、分子及び分母に複素数係数が実現される複素離散時間回路を用いてもよい。
(実施の形態4)
図21に、本実施の形態のサンプリング回路400の構成を示す。実施の形態1で説明した片側に減衰極を有するフィルタ特性を、より簡易な構成で実現するものである。
サンプリング回路400は、IQ生成回路401と、離散時間回路402と、出力合成回路403と、デジタルコントロールユニット404と、を有する。
IQ生成回路401は、電圧電流変換回路(TA)4011と、サンプリングスイッチ4012〜4015と、ヒストリキャパシタ4016〜4018とを有する。離散時間回路402は、積分スイッチ4021〜4023と、ローテートキャパシタ4024〜4026とを有する。
ここで、ヒストリキャパシタ4016〜4018とローテートキャパシタ4024〜4026の容量値はそれぞれ所望の特性が得られる値に設定されている。
出力合成回路403は、ダンプスイッチ4031〜4033と、バッファキャパシタ4034とを有する。デジタルコントロールユニット404は、図9のLO〜LOをサンプリング回路400に供給する。
次に、本実施の形態のサンプリング回路400の動作について説明する。まず、電圧電流変換器(TA)4011は入力されたアナログRF信号23をアナログRF電流信号に変換し、サンプリングスイッチ4012〜4015によりアナログRF電流信号周期のほぼ1/4のハイ時間を持った互いにハイとなる時間のずれた4相のローカル周波数信号でサンプリングする。
離散時間回路402を含めてこのサンプリング動作において同時にIIRフィルタリングが行われることを説明する。
まずLOがハイとなる時間において、ヒストリキャパシタ4016とローテートキャパシタ4024によってサンプリング信号の電荷が積分される。次にLOがハイとなる時間において、ヒストリキャパシタ4017とローテートキャパシタ4025によってサ
ンプリング信号の電荷が積分される。続いてLOがハイとなる時間において、ヒストリキャパシタ4018とローテートキャパシタ4026によってサンプリング信号の電荷が積分され、時間的に離散化した離散信号が形成される。このときヒストリキャパシタ4016〜4018は一LO周期前の電荷を保持しているので、それぞれIIRフィルタ動作を行う。
最後にLOがハイとなる時間において、ローテートキャパシタ4024〜4026とバッファキャパシタ4034とが電荷共有を行うことによって出力の電位が決定される。このときバッファキャパシタ4034は一LO周期前の電荷を保持しているので、IIRフィルタ動作となる。一方で、電圧電流変換器(TA)4011はサンプリングスイッチ4015を介して接地し、入力信号とTA寄生容量の電荷を捨てることで、出力信号読み出し時間を確保している。
全体の伝達関数は次式で表される。なお、ローテートキャパシタの電荷を捨てるタイミングがないため、伝達関数が複雑になるが、ここでは概略を示す。
Figure 0005587210
以下に示す伝達関数のプロトタイプの式(16)と係数を比較することにより、素子値を求める。プロトタイプの係数は、これまでと同様特定の周波数において減衰極を有するという条件を用いて求める。ただし、式(15)の伝達関数ではプロトタイプと特性を一致させることはできないため、所望の特性を得るためには調整が必要となる。
Figure 0005587210
以上のように本実施の形態によれば、LO〜LOのクロックしか用いない簡易な回路構成で、実施の形態1に示したような片側に減衰極を有する周波数特性を実現し、優れたイメージ抑圧特性を得ることが可能となる。
(実施の形態5)
本実施の形態では、実施の形態1〜4において説明した複素型のサンプリング回路を適用することによってLOW−IF方式の受信機の回路規模を削減する手法を述べる。図22に、本実施の形態に係る受信機の回路構成を示す。
図22Aは、イメージリジェクションをデジタル処理で行う構成を示すブロック図である。この構成では、増幅器501と、ミクサ・フィルタ502と、A/D変換回路503とがIQそれぞれ一つずつ必要になり、回路規模が大きくなってしまう。そこで、図22AのA/D変換回路503を削減した受信機の構成を図22Bに示す。この構成では、アナログのポリフェイズフィルタ504でイメージリジェクションを行う。デジタル処理でのイメージリジェクションを行わないので、必要なA/D変換回路503が一つでよく、
回路規模を削減できる。
次に、図22Cに、複素サンプリング回路505を利用することによる回路規模を削減した受信機の構成を示す。複素サンプリング回路505を用いると、1つの入力から得られる信号を用いて複素フィルタ処理が可能となる。複素サンプリング回路505の出力はイメージが除去されているので、アナログ変換回路が1つで済む。すなわち、図22Aの構成と比較して、増幅器501及びA/D変換回路503を1つずつ削減できる。また、図22Bの構成と比較して、増幅器501を1つ削減することができ、また、2つのミクサ・フィルタ502を1つの複素サンプリング回路505に置き換え、ポリフェイズフィルタ504が不要となり、A/D変換回路503を1つ削減することが可能となるため、回路規模を削減することができる。
ダイバーシチ受信構成では、複数のアンテナから受信した信号を、ベースバンドの信号処理によって最大比合成することによって、受信感度を高める。このため、ダイバーシチ受信を行なう場合、複数の受信系統が必要になる。複素型のサンプリング回路は従来構成に比べて1系統あたりの回路規模が小さいので、ダイバーシチ受信構成の回路規模を大幅に削減することが可能となる。なお、ダイバーシチ受信方式において複数系統の受信機がすべて同じ構成である必要はない。最も性能の出る構成で主系統を構成し、簡易な複素サンプリング型の受信系統を複数用意することも可能である。回路規模の削減は面積のみならず消費電力の削減効果も大きい。
(実施の形態6)
本実施の形態では、実施の形態1におけるサンプリング回路の具体的構成の更に別の例を示す。本実施の形態におけるサンプリング回路を用いると、実施の形態1の構成により、実施の形態2に示した任意の並列数をもつ複素並列型の伝達関数を実現することが可能となる。
図23に、本実施の形態のサンプリング回路600の構成を示す。始めに、サンプリング回路600の構成を説明し、次にその動作を説明する。
サンプリング回路600は、IQ生成回路601と、離散時間回路602と、出力合成回路603と、デジタルコントロールユニット604とを有する。
IQ生成回路601は、電圧電流変換器(TA)6011、サンプリングスイッチ6012〜6015およびヒストリキャパシタ6016〜6019を有する。
離散時間回路602は、ローテートキャパシタユニット6021−1〜6021−6,6021−1B〜6021−6Bを有する。ローテートキャパシタユニット6021−1〜6021−6,6021−1B〜6021−6Bは、積分スイッチ60211〜60214と、メインローテートキャパシタ60215,60217と、サブローテートキャパシタ60216,60218と、バッファキャパシタ6021Jと、放出スイッチ6021A,6021D,6021F,6021Iと、ダンプスイッチ60219,6021B,6021C,6021E,6021G,6021Hとを有する。
出力合成回路603はバッファキャパシタ6031,6032を有する。
IQ生成回路601内のヒストリキャパシタ6016〜6019、ローテートキャパシタユニット6021内のメインローテートキャパシタ60215,60217、サブローテートキャパシタ60216,60218,バッファキャパシタ6021J、及び、出力合成回路603内のバッファキャパシタ6031,6032の容量値は、それぞれ所望の
特性が得られる値に設定されている。
デジタルコントロールユニット604は、LO0〜LO3,S0〜S7の制御信号を出力し、IQ生成回路601及び離散時間回路602に供給する。
図24は、デジタルコントロールユニット604から出力される制御信号のタイミングチャートを示す。LO0〜LO3は、周期がRF信号周期とほぼ一致した4相の信号であり、互いにハイとなる時間がずれており、ハイとなっている時間はほぼRF信号周期の1/4である。S0〜S7は、周期がLO0〜3の周期の2倍である8相の信号であり、互いにハイとなる時間がずれており、ハイとなっている時間はLO0〜3がハイとなる時間と一致している。
次に、本実施の形態のサンプリング回路600の動作について説明する。
まず、IQ生成回路601の動作を説明する。
電圧電流変換器(TA)6011は、入力されたアナログRF信号23をアナログRF電流信号に変換し、サンプリングスイッチ6012〜6015に入力する。LO0〜LO3がハイとなっている間、サンプリングスイッチ6012〜6015がオンになり、電圧電流変換器(TA)6011からの電流がヒストリキャパシタ6016〜6019に蓄積されることによって周波数変換が行なわれる。
このとき離散時間回路602内のメインローテートキャパシタ60215,60217、サブローテートキャパシタ60216,60218のうちいずれかが同時に電圧電流変換器(TA)6011に接続されることによって、メインローテートキャパシタ60215,60217、サブローテートキャパシタ60216,60218のうちいずれかに、離散時間回路602の入力電荷が蓄積される。
次に離散時間回路602及び出力合成回路603の動作を説明する。
まずローテートキャパシタユニット6021に着目して、S0、S1、S3がハイとなるタイミングの動作を説明する。
S0、S1、S3のいずれかであるCK0がハイとなるタイミングでは、積分スイッチ60211,60212を介してメインローテートキャパシタ60215,サブローテートキャパシタ60216に入力電荷が蓄積され、入力の動作が行なわれる。このとき、一方で同時に、メインローテートキャパシタ60217,サブローテートキャパシタ60218は重み付けと出力動作を行なう。
S0がハイとなるタイミングで、ダンプスイッチ6021G,6021Eを介して、メインローテートキャパシタ60217,サブローテートキャパシタ60218,バッファキャパシタ6021Jが電荷共有を行なう。バッファキャパシタ6021Jが1タイミング前の電荷を保持していることによってIIRフィルタリングと重み付けが行なわれる。
次にS1がハイとなるタイミングで、メインローテートキャパシタ60217が、ダンプスイッチ6021Hを介して、出力合成回路603内のバッファキャパシタ6031,6032のいずれかに接続され電荷共有を行なう。バッファキャパシタ6031,6032が1タイミング前の電荷を保持していることによってIIRフィルタ動作が行なわれ、出力値が形成される。
最後にS3がハイとなるタイミングで、放出スイッチ6021I,6021Fを介して
、メインローテートキャパシタ60217,サブローテートキャパシタ60218を接地してリセットする。
次にS4、S5、S7がハイとなるタイミングの動作を説明する。
S4、S5、S7のいずれかであるCK1がハイとなるタイミングでは、積分スイッチ60213,60214を介してメインローテートキャパシタ60217,サブローテートキャパシタ60218に入力電荷が蓄積され、入力の動作が行なわれる。このとき、一方で同時に、メインローテートキャパシタ60215,サブローテートキャパシタ60216は重み付けと出力動作を行なう。
S4がハイとなるタイミングで、ダンプスイッチ6021B,60219を介して、メインローテートキャパシタ60215,サブローテートキャパシタ60216,バッファキャパシタ6021Jが電荷共有を行なう。バッファキャパシタ6021Jが1タイミング前の電荷を保持していることによってIIRフィルタリングと重み付けが行なわれる。
次にS5がハイとなるタイミングで、メインローテートキャパシタ60215が、ダンプスイッチ6021Cを介して、出力合成回路603内のバッファキャパシタ6031,6032のいずれかに接続され電荷共有を行なう。バッファキャパシタ6031,6032が1タイミング前の電荷を保持していることによってIIRフィルタ動作が行なわれ出力値が形成される。
最後にS7がハイとなるタイミングで、放出スイッチ6021D,6021Aを介して、メインローテートキャパシタ60215,サブローテートキャパシタ60216を接地してリセットする。
ローテートキャパシタユニット6021は上記の動作をくり返す。
複数存在するローテートキャパシタユニット6021−k(k=1〜6)が同時に、バッファキャパシタ6031,6032のいずれかに接続して電荷共有を行なうことによって、伝達関数の和を実現できる。
ここで図23において、ローテートキャパシタユニットが6種類、計12個用意されていることに着目し、合成後に3並列複素型の特性になる概要を説明する。
ローテートキャパシタユニット6021−1,6021−3,6021−5の系の入力をKとする。すると、ローテートキャパシタユニット6021−2,6021−4,6021−6の系の入力はjKと表すことができる。また、ローテートキャパシタユニット6021−1B,6021−2B,6021−3Bの系の入力は−Kと表すことができる。また、ローテートキャパシタユニット6021−2B,6021−4B,6021−6Bの系の入力は−jKと表すことができる。
それぞれの番号の重み付けがなされたとされると、出力合成回路603内バッファキャパシタ6031の出力値は(K1+jK2)+(K3−jK4)+(−K5+jK6)となり、バッファキャパシタ6032の出力値は(−K1−jK2)+(−K3+jK4)+(K5−jK6)となることがわかる。つまり、3個の複素数の和が正相、逆相で出力されることがわかる。
図23では、ローテートキャパシタユニット6021−4,6021−5が負の係数となるように構成しているが、ローテートキャパシタユニット6021−k,6021−k
Bとバッファキャパシタ6031,6032との接続を入れ替えることによりローテートキャパシタユニット6021−kの係数の正負を入れ替えることが可能である。
なお、図23では複素3並列の場合を示しているが、ローテートキャパシタユニット6021−kを正負のm組使用すれば(mは任意の正の整数)、複素m並列構成を構成することが可能である。
全体の伝達関数を、差分方程式とz変換から、算出してまとめると式(17)のように表すことができる。
Figure 0005587210
ここで、TLOはサンプリングスイッチ6012〜6015に入力されるローカル信号LOで決まるサンプリング周期であり、gmは電圧電流変換器6011のトランスコンダクタンス値である。また、Cはヒストリキャパシタ6016〜6019の容量値である。また、CRmkはローテートキャパシタユニット6021−kのメインローテートキャパシタ60215,60217の容量値である。また、CRskはローテートキャパシタユニット6021−kのサブローテートキャパシタ60216,60218の容量値である。また、CBkはローテートキャパシタユニット6021−kのバッファキャパシタ6021Jの容量値である。
なお、式(17)はローテートキャパシタユニット6021がn個(nは任意の正の整数)ある場合で記述し、ローテートキャパシタユニット6021−k,6021−kBとバッファキャパシタ6031,6032との接続を入れ替えることにより1次IIRの和の係数を入れ替えることが可能であるので±を用いて記述した。
また、式(17)では、数式を簡略化するために式(18)を仮定している。
Figure 0005587210
実施の形態2に示した減衰極を設定する設計手法を用いれば、サンプリング周波数を中心に左右対称、非対称の自由な位置に減衰極を設定することが可能である。
また、図25のような構成をとることで、線形性を改善することが可能である。図23の構成に充電スイッチ7021B、7021F、7021I、7021Mを追加し、メインローテートキャパシタ及びサブローテートキャパシタが特定のタイミングでFB端子に接続される構成となっている。FB端子には、初期電位を定める参照電圧(電流)Vfbが入力される。動作としては、図23の構成においてメインローテートキャパシタ及びサブローテートキャパシタの電荷をリセッした後に、さらにFBに接続されるタイミングを用意することによって、メインローテートキャパシタ及びサブローテートキャパシタに電荷のプリチャージ行なう。
本実施形態を用いると単一の電圧電流変換器(TA)で複素並列構成を実現できるので、電圧電流変換器(TA)のgmバラツキの影響が小さく、半導体製造プロセスにおいて
も精度の良いフィルタ特性が得られる。さらに、電圧電流変換器(TA)の数を削減したことによって消費電力の低減を図ることが可能である。
2008年12月4日出願の特願2008−310001に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
本発明に係るサンプリング回路及び受信機は、無線通信装置における受信部の高周波信号処理回路に有用であり、信号の周波数変換とフィルタ処理を行う場合に適用して好適である。
10 サンプリング受信機
12 低雑音増幅器(LNA:Low Noise Amplifier)
13、100、200、400、600 サンプリング回路
14 ローカル周波数発振部
15 A/D(Analog to Digital)変換処理部
16 デジタル受信処理部
101、401、601、701、2011 IQ生成回路
102 電荷共有回路
102−1〜102−n、2012、402、602 離散時間回路
103、303、403、603 出力合成回路
104、304、404、604 デジタルコントロールユニット
1011、4011、6011、7011 電圧電流変換器(TA)
1012〜1015、4012〜4015、6012〜6015、7012〜7015
サンプリングスイッチ
1016〜1019、4016〜4018、6016〜6019、7016〜7019
ヒストリキャパシタ
1021、302、6021−1〜6021−6、6021−1B〜6021−6B、7021−1〜7021−6、7021−1B〜7021−6B ローテートキャパシタユニット
1022、1032、3031、4031〜4033、60219,6021B、6021C、6021E、6021G、6021H、70219,7021C、7021D、7021G、7021J、7021K ダンプスイッチ
1023、3032 リセットスイッチ
10211、10212、3021、3022、4021〜4023、60211〜60214、70211〜70214 積分スイッチ
10215、3025、4031〜4033、6021A、6021D、6021F、6021I、7021A、7021E、7021H、7021L 放出スイッチ
201、301 複素離散時間回路
202−1、202−2、3033、4034、6021J、6031、6032、7021N、7031、7032 バッファキャパシタ
300 複合サンプリング回路
301、302 複素電荷共有回路
3023、10213、60215、60217、70215、70217 メインローテートキャパシタ
3024、10214、60216、60218、70216、70218 サブローテートキャパシタ
501 増幅器
502 ミクサ・フィルタ
503 A/D変換回路
504 ポリフェイズフィルタ
505 複素サンプリング回路
7021B、7021F、7021I、7021M 充電スイッチ

Claims (13)

  1. 入力信号をサンプリングすることにより、90度位相の異なるI信号とQ信号とを出力するIQ生成回路と、
    前記IQ生成回路の出力段に並列に接続された複数の離散時間回路と、
    前記離散時間回路の出力段に配置され、前記複数の離散時間回路の出力を合成する合成回路と、
    前記離散時間回路の動作を制御するための制御信号を出力するデジタルコントロールユニットと、を有し、
    前記離散時間回路は、ローテートキャパシタユニットと、ダンプスイッチと、リセットスイッチとから構成される組を二つ有し、
    前記ローテートキャパシタユニットは、積分スイッチと、メインローテートキャパシタと、サブローテートキャパシタと、放出スイッチと、を有し、入力電荷が前記ローテートキャパシタユニットに入力されるタイミングにおいては、前記メインローテートキャパシタと前記サブローテートキャパシタとが前記積分スイッチを介して並列に接続され、前記ローテートキャパシタユニットから電荷を出力するタイミングにおいては、前記メインローテートキャパシタのみが前記放出スイッチに接続されて出力を決定し、
    前記複数の離散時間回路の各々は、1次のIIRフィルタ特性を有する、
    サンプリング回路。
  2. 前記IQ生成回路を複数個有し、前記複数のIQ生成回路は並列に接続されており、
    前記複数のIQ生成回路の各々の出力段に、前記複数の離散時間回路が並列に接続されており、
    前記合成回路は、前記複数のIQ生成回路の各々の出力段に接続された前記複数の離散時間回路からのすべての出力を合成する、
    請求項1に記載のサンプリング回路。
  3. 前記IQ生成回路は、
    入力される信号を電圧から電流に変換して出力する1個の電圧電流変換回路と、
    前記電圧電流変換回路の出力段に接続された4個のサンプリングスイッチと、
    前記4個のサンプリングスイッチの各々の出力段に接続された4個のキャパシタと、を有し、
    前記サンプリングスイッチのオン時間は所望信号周期の1/4であり、前記サンプリングスイッチがオフからオンに変わるタイミングは前記サンプリングスイッチの各々において所望信号周期の1/4ずつずれており、前記サンプリングスイッチの各々のオン時間が重ならない、
    請求項1に記載のサンプリング回路。
  4. 前記IQ生成回路は、
    入力される信号を電圧から電流に変換して出力する2個の電圧電流変換回路と、
    前記2個の電圧電流変換回路の各々の出力段に二つずつ接続された計4個のサンプリングスイッチと、
    前記4個のサンプリングスイッチの各々の出力段に接続されたキャパシタと、を有し、
    前記サンプリングスイッチのオン時間は所望信号周期の1/2であり、前記4個のサンプリングスイッチのうち、一つの電圧電流変換回路に接続された2個のサンプリングスイッチがオンからオフに変わるタイミングは所望信号周期の1/2ずれており、前記2個の前記サンプリングスイッチのオン時間が重ならず、
    前記2個の電圧電流変換回路の一方に接続される前記サンプリングスイッチがオンからオフに変わるタイミングと、前記2個の電圧電流変換回路の他方に接続される前記サンプリングスイッチがオンからオフに変わるタイミングとは所望信号周期の1/4ずれている、
    請求項1に記載のサンプリング回路。
  5. 前記合成回路は、ダンプスイッチと、リセットスイッチと、バッファキャパシタと、を有し、
    前記合成回路に入力される電荷を前記バッファキャパシタに積分することによって、入力される電荷の加算結果を合成回路の出力とする、
    請求項1に記載のサンプリング回路。
  6. 複素電荷共有回路と、
    前記複素電荷共有回路の出力段に並列に接続された複数の離散時間回路と、
    前記複数の離散時間回路の出力段に設けられ、前記複数の離散時間回路の出力を合成する合成回路と、
    前記複素電荷共有回路及び前記離散時間回路の動作を制御するための制御信号を出力するデジタルコントロールユニットと、を有し、
    前記離散時間回路は、ローテートキャパシタユニットと、ダンプスイッチと、リセットスイッチとから構成される組を二つ有し、
    前記ローテートキャパシタユニットは、積分スイッチと、メインローテートキャパシタと、サブローテートキャパシタと、放出スイッチと、を有し、入力電荷が前記ローテートキャパシタユニットに入力されるタイミングにおいては、前記メインローテートキャパシタと前記サブローテートキャパシタとが前記積分スイッチを介して並列に接続され、前記ローテートキャパシタユニットから電荷を出力するタイミングにおいては、前記メインローテートキャパシタのみが前記放出スイッチに接続されて出力を決定し、
    前記複数の離散時間回路の各々は、1次のIIRフィルタ特性を有する、
    複合サンプリング回路。
  7. 前記複素電荷共有回路は、請求項1に記載のサンプリング回路の構成を有する、
    請求項に記載の複合サンプリング回路。
  8. 前記合成回路は、ダンプスイッチと、リセットスイッチと、バッファキャパシタと、を有し、
    前記合成回路へ入力される電荷を前記バッファキャパシタに積分することによって、入力される電荷の加算結果を出力する、
    請求項に記載の複合サンプリング回路。
  9. 所望信号と一致した周期をもち、ハイとなる時間が所望信号周期の1/4であり、それぞれの位相が所望信号の1/4ずつずれて、ハイとなる時間が重ならない4相のクロックのみで動作する、
    請求項4に記載のサンプリング回路。
  10. 記離散時間回路の入力は前記IQ生成回路の出力のI+、Q+、I−、Q−のいずれかに接続され、前記IQ生成回路内のキャパシタと同時に電荷を前記メインローテートキャパシタに積分し、
    前記合成回路は、ダンプスイッチと、バッファキャパシタと、を有し、
    前記離散時間回路の出力はそれぞれ前記ダンプスイッチを介して単一の前記バッファキャパシタに接続され、前記離散時間回路の出力電荷を前記バッファキャパシタに積分することによって、出力を得る、
    請求項1に記載のサンプリング回路。
  11. 請求項1記載のサンプリング回路と、
    入力信号を受信するアンテナと、
    前記アンテナが受信した信号を増幅し、増幅された信号を前記サンプリング回路に出力する低雑音増幅器と、
    前記サンプリング回路から出力されるベースバンド信号をアナログデジタル変換して、デジタルベースバンド信号を出力するアナログデジタル変換部と、
    を有する受信機。
  12. LOW−IF受信機であって、
    前記低雑音増幅器を一つと、前記サンプリング回路を一つと、前記アナログデジタル変換部を一つと、
    を有する請求項11に記載の受信機。
  13. 複数の受信機と、前記複数の受信機からのデジタル出力を選択合成するデジタル処理部とで構成されるダイバーシチ受信機であって、
    前記複数の受信機として、請求項12に記載のLOW−IF受信機を少なくとも一つ含む、
    ダイバーシチ受信機。
JP2010541250A 2008-12-04 2009-12-04 サンプリング回路およびこれを用いた受信機 Expired - Fee Related JP5587210B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541250A JP5587210B2 (ja) 2008-12-04 2009-12-04 サンプリング回路およびこれを用いた受信機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008310001 2008-12-04
JP2008310001 2008-12-04
JP2010541250A JP5587210B2 (ja) 2008-12-04 2009-12-04 サンプリング回路およびこれを用いた受信機
PCT/JP2009/006646 WO2010064451A1 (ja) 2008-12-04 2009-12-04 サンプリング回路およびこれを用いた受信機

Publications (2)

Publication Number Publication Date
JPWO2010064451A1 JPWO2010064451A1 (ja) 2012-05-10
JP5587210B2 true JP5587210B2 (ja) 2014-09-10

Family

ID=42233109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010541250A Expired - Fee Related JP5587210B2 (ja) 2008-12-04 2009-12-04 サンプリング回路およびこれを用いた受信機

Country Status (3)

Country Link
US (1) US8599968B2 (ja)
JP (1) JP5587210B2 (ja)
WO (1) WO2010064451A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI376888B (en) * 2008-11-26 2012-11-11 Ind Tech Res Inst Down-conversion filter and communication receiving apparatus
JP5607904B2 (ja) * 2009-08-31 2014-10-15 パナソニック株式会社 ダイレクトサンプリング回路及び受信機
JP6118735B2 (ja) 2012-01-24 2017-04-19 パナソニック株式会社 サンプリングミクサ回路及び受信機
US10084433B2 (en) * 2014-03-13 2018-09-25 Mediatek Inc. Feedforward filter using translational filter
GB2526677B (en) 2014-04-11 2021-06-09 Skyworks Solutions Inc Circuits and methods related to switchless carrier aggregation in radio-frequency receivers
US20200007098A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Dual-Mode Amplification by Varying a Load Impedance
US11683023B1 (en) * 2022-01-06 2023-06-20 National Technology & Engineering Solutions Of Sandia, Llc Programmable delay device enabling large delay in small package

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266452A (ja) * 1996-03-27 1997-10-07 Matsushita Electric Ind Co Ltd 受信装置
JPH10341184A (ja) * 1997-06-09 1998-12-22 Yozan:Kk 信号受信装置および信号受信方法
US20030035499A1 (en) * 2001-08-15 2003-02-20 Staszewski Robert B. Direct radio frequency (RF) sampling with recursive filtering method
US20050233725A1 (en) * 2004-04-20 2005-10-20 Khurram Muhammad Image reject filtering in a direct sampling mixer
WO2006046632A1 (ja) * 2004-10-27 2006-05-04 Nec Corporation ディジタル無線受信装置
JP2006211153A (ja) * 2005-01-26 2006-08-10 Sharp Corp ミキサー
WO2007146090A2 (en) * 2006-06-06 2007-12-21 Qualcomm Incorporated Fast in-phase and quadrature imbalance calibration
WO2007148693A1 (ja) * 2006-06-20 2007-12-27 Panasonic Corporation 離散フィルタ、サンプリングミキサおよび無線装置
JP2008011493A (ja) * 2006-03-07 2008-01-17 Matsushita Electric Ind Co Ltd 離散時間ダイレクトサンプリング回路及び受信機
WO2008032635A1 (fr) * 2006-09-11 2008-03-20 Sony Corporation Circuit de filtre de prélèvement de charges et procédé de prélèvement de charges
WO2008129791A1 (ja) * 2007-03-29 2008-10-30 Panasonic Corporation サンプリングミキサ、フィルタ装置および無線機
WO2009075105A1 (ja) * 2007-12-12 2009-06-18 Panasonic Corporation サンプリングミキサ、直交復調器、及び無線装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856925B2 (en) * 2001-10-26 2005-02-15 Texas Instruments Incorporated Active removal of aliasing frequencies in a decimating structure by changing a decimation ratio in time and space
US8027657B2 (en) * 2001-10-26 2011-09-27 Texas Instruments Incorporated Sampling mixer with asynchronous clock and signal domains
GB0522477D0 (en) * 2005-11-03 2005-12-14 Analog Devices Inc Modulator
US7671658B2 (en) * 2006-05-24 2010-03-02 Panasonic Corporation Mixer having frequency selection function
JP2008099224A (ja) 2006-09-11 2008-04-24 Sony Corp 増幅器、増幅方法、およびフィルタ
KR100793059B1 (ko) * 2006-11-14 2008-01-10 한국전자통신연구원 다중 모드의 다중 대역 신호 수신 장치 및 그 방법
US8005161B2 (en) * 2008-05-01 2011-08-23 International Business Machines Corporation Method, hardware product, and computer program product for performing high data rate wireless transmission
US7994850B2 (en) * 2008-06-25 2011-08-09 Qualcomm, Incorporated Discrete time multi-rate analog filter
WO2010064436A1 (ja) * 2008-12-03 2010-06-10 パナソニック株式会社 サンプリング回路及び受信機

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266452A (ja) * 1996-03-27 1997-10-07 Matsushita Electric Ind Co Ltd 受信装置
JPH10341184A (ja) * 1997-06-09 1998-12-22 Yozan:Kk 信号受信装置および信号受信方法
US20030035499A1 (en) * 2001-08-15 2003-02-20 Staszewski Robert B. Direct radio frequency (RF) sampling with recursive filtering method
US20050233725A1 (en) * 2004-04-20 2005-10-20 Khurram Muhammad Image reject filtering in a direct sampling mixer
WO2006046632A1 (ja) * 2004-10-27 2006-05-04 Nec Corporation ディジタル無線受信装置
JP2006211153A (ja) * 2005-01-26 2006-08-10 Sharp Corp ミキサー
JP2008011493A (ja) * 2006-03-07 2008-01-17 Matsushita Electric Ind Co Ltd 離散時間ダイレクトサンプリング回路及び受信機
WO2007146090A2 (en) * 2006-06-06 2007-12-21 Qualcomm Incorporated Fast in-phase and quadrature imbalance calibration
WO2007148693A1 (ja) * 2006-06-20 2007-12-27 Panasonic Corporation 離散フィルタ、サンプリングミキサおよび無線装置
WO2008032635A1 (fr) * 2006-09-11 2008-03-20 Sony Corporation Circuit de filtre de prélèvement de charges et procédé de prélèvement de charges
WO2008129791A1 (ja) * 2007-03-29 2008-10-30 Panasonic Corporation サンプリングミキサ、フィルタ装置および無線機
WO2009075105A1 (ja) * 2007-12-12 2009-06-18 Panasonic Corporation サンプリングミキサ、直交復調器、及び無線装置

Also Published As

Publication number Publication date
WO2010064451A1 (ja) 2010-06-10
US20110176640A1 (en) 2011-07-21
JPWO2010064451A1 (ja) 2012-05-10
US8599968B2 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
JP5607904B2 (ja) ダイレクトサンプリング回路及び受信機
CN101395798B (zh) 离散时间直接采样电路及接收器
JP5587210B2 (ja) サンプリング回路およびこれを用いた受信機
JP5355589B2 (ja) サンプリング回路およびこれを用いた受信機
US7979046B2 (en) Transceiver development in VHF/UHF/GSM/GPS/bluetooth/cordless telephones
JP5182897B2 (ja) サンプリングフィルタ装置
JP5078988B2 (ja) 離散時間ダイレクトサンプリング回路及び受信機
CN103828244B (zh) 超外差式接收器及接收方法
JP6118735B2 (ja) サンプリングミクサ回路及び受信機
JP5425096B2 (ja) サンプリング回路及び受信機
JP5340170B2 (ja) サンプリングミキサ、直交復調器、及び無線装置
JP5258559B2 (ja) 離散フィルタ、サンプリングミキサおよび無線装置
WO2014085665A1 (en) Sliding if transceiver architecture
US8705675B2 (en) Device and method for receiving RF signals based on heterodyne architecture using complex IF subsampling
JP5114870B2 (ja) フィルタ回路、フィルタリング方法およびコンピュータプログラム
WO2006039949A1 (en) Method of sampling an analogue radiofrequency signal
JP2008219413A (ja) 可変フィルタ
Heragu et al. A concurrent quadrature sub-sampling mixer for multiband receivers
Folkesson et al. Design of RF sampling receiver front-end
Poberezhskiy et al. On implementation of sampling with internal antialiasing filtering in software defined receivers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R151 Written notification of patent or utility model registration

Ref document number: 5587210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees