[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5586502B2 - Method for producing extruded aluminum alloy - Google Patents

Method for producing extruded aluminum alloy Download PDF

Info

Publication number
JP5586502B2
JP5586502B2 JP2011032759A JP2011032759A JP5586502B2 JP 5586502 B2 JP5586502 B2 JP 5586502B2 JP 2011032759 A JP2011032759 A JP 2011032759A JP 2011032759 A JP2011032759 A JP 2011032759A JP 5586502 B2 JP5586502 B2 JP 5586502B2
Authority
JP
Japan
Prior art keywords
mass
thermal conductivity
aluminum alloy
treatment
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011032759A
Other languages
Japanese (ja)
Other versions
JP2012172164A (en
Inventor
繁央 中村
昭一 林
正芳 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Tateyama Inc
Original Assignee
Sankyo Tateyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Tateyama Inc filed Critical Sankyo Tateyama Inc
Priority to JP2011032759A priority Critical patent/JP5586502B2/en
Publication of JP2012172164A publication Critical patent/JP2012172164A/en
Application granted granted Critical
Publication of JP5586502B2 publication Critical patent/JP5586502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

本発明は、高い熱伝導率と高い強度をあわせ持つアルミニウム合金押出形材製造方法に関する。 The present invention relates to a method of manufacturing an aluminum alloy extruded shape having both high strength and high thermal conductivity.

電子機器の放熱のため、従来よりアルミニウム合金の押出形材よりなるヒートシンクが用いられている。ヒートシンクの放熱性能を向上させる手段の1つとして、材料の熱伝導率を高めることが一般的に行われている。代表的な押出用アルミニウム合金であるA6063は、押出性に優れ、複雑な断面形状が得られるが、熱伝導率210W/m・K以上の押出形材を安定的に供給することは困難であった。   Conventionally, a heat sink made of an extruded shape of an aluminum alloy has been used for heat dissipation of electronic equipment. As one means for improving the heat dissipation performance of the heat sink, it is generally performed to increase the thermal conductivity of the material. A6063, which is a typical aluminum alloy for extrusion, has excellent extrudability and a complicated cross-sectional shape, but it is difficult to stably supply an extruded shape having a thermal conductivity of 210 W / m · K or more. It was.

特許文献1には、「Bを添加することで、Al以外の元素、特に熱伝導を低下させるTi,V,Zr,CrをBと晶出物を形成させてアルミニウム母相中に固溶される他の元素の固溶量を低減させると共に、熱間加工後に300〜400℃の温度範囲で焼鈍を行うことにより、母相中に固溶されているMgとSiをMgSiとして析出させ、母相中の固溶量を低減させて熱伝導度の低下を抑制したもの」が記載されている。
特許文献1記載のアルミニウム合金によれば、熱伝導率210W/m・K以上を満足するが、不純物を低減させたことと、熱間加工後に300〜400℃の温度範囲で焼鈍を行ったことでMgSiが粗大に析出することに伴い強度が低下し、JISH4100に規定されるA6063S−T5の機械的性質を満足しない。そのように強度の低いものでは、振動を受ける場所、例えば自動車や電車等の乗り物等に使用することは困難である。
Patent Document 1 states that by adding B, elements other than Al, particularly Ti, V, Zr, and Cr, which lower thermal conductivity, form a crystallized product with B and are dissolved in the aluminum matrix. In addition to reducing the solid solution amount of other elements, annealing is performed in a temperature range of 300 to 400 ° C. after hot working to precipitate Mg and Si dissolved in the matrix as Mg 2 Si. In other words, the amount of solid solution in the matrix phase is reduced to suppress the decrease in thermal conductivity.
According to the aluminum alloy described in Patent Document 1, the thermal conductivity of 210 W / m · K or more is satisfied, but impurities are reduced and annealing is performed in a temperature range of 300 to 400 ° C. after hot working. As Mg 2 Si precipitates coarsely, the strength decreases, and the mechanical properties of A6063S-T5 defined in JISH4100 are not satisfied. Such a low-strength material is difficult to use in places subject to vibration, such as vehicles such as automobiles and trains.

特開2004−217945号公報、3頁、38〜47行JP 2004-217945 A, page 3, lines 38-47

本発明は以上に述べた実情に鑑み、熱伝導率が210W/m・K以上で、且つJISH4100のA6063S−T5の機械的性質を満足するアルミニウム合金押出形材を提供することを目的とする。   An object of the present invention is to provide an extruded aluminum alloy having a thermal conductivity of 210 W / m · K or more and satisfying the mechanical properties of A6063S-T5 of JISH4100.

請求項記載の発明によるアルミニウム合金押出形材の製造方法は、ビレット鋳造時にBを添加し、Bとボライドを形成させて不純物を沈降・除去する処理を行い、Siを0.4〜0.6質量%、Feを0.25質量%以下、Mgを0.45〜0.6質量%含有し、MnとCrとTiをそれぞれ0.02質量%以下、Vを0.01質量%以下に調整したアルミニウム合金ビレットを鋳造し、そのビレットを押出加工し、押出後に過時効処理を行い、熱伝導率を210W/m・K以上とすることを特徴とする。
SiとMgを含有するアルミニウム合金押出形材を200℃前後で加熱すると、Mg Siの析出により時間の経過と共に硬度が上昇し、ある時間が経過すると硬度がピークに達し、その後は硬度が次第に低下する。過時効処理とは、硬度がピークを過ぎる状態まで時効処理することを意味する。
In the method for producing an aluminum alloy extruded profile according to the first aspect of the present invention, B is added during billet casting, B and boride are formed, and impurities are settled and removed, and Si is 0.4 to 0.00. 6 mass%, Fe is 0.25 mass% or less, Mg is 0.45 to 0.6 mass%, Mn, Cr and Ti are 0.02 mass% or less, and V is 0.01 mass% or less. The adjusted aluminum alloy billet is cast, the billet is extruded, an overaging treatment is performed after the extrusion, and the thermal conductivity is 210 W / m · K or more.
When an aluminum alloy extruded shape containing Si and Mg is heated at around 200 ° C., the hardness increases with the lapse of time due to precipitation of Mg 2 Si, the hardness reaches a peak after a certain time, and thereafter the hardness gradually increases. descend. The overaging treatment means that the aging treatment is performed until the hardness exceeds a peak.

請求項記載の発明によるアルミニウム合金押出形材の製造方法は、ビレット鋳造時にBを添加し、Bとボライドを形成させて不純物を沈降・除去する処理を行うことで、熱伝導率を低下させるV,Ti等の不純物が低減し、さらに押出後に過時効処理をすることで母相中に固溶するSiとMgがMgSiとして適度に析出するため、熱伝導率が210W/m・K以上で、且つJISH4100のA6063S−T5の機械的性質を満足するアルミニウム合金押出形材を製造できる。本発明の製造方法によるアルミニウム合金押出形材をヒートシンクに適用することで、高い放熱性能が得られ、しかも高い強度を有しているため、自動車等の振動を受ける所に使用しても、破損したり脱落したりといった問題が生ずるのを防止できる。 The method for producing an aluminum alloy extruded shape according to the first aspect of the present invention reduces the thermal conductivity by adding B during billet casting, forming B and boride, and precipitating and removing impurities. Impurities such as V and Ti are reduced, and further Si and Mg dissolved in the matrix phase are appropriately precipitated as Mg 2 Si by over-aging after extrusion, so that the thermal conductivity is 210 W / m · K. With the above, an aluminum alloy extruded profile satisfying the mechanical properties of A6063S-T5 of JISH4100 can be produced. By applying the aluminum alloy extruded profile according to the production method of the present invention to a heat sink, high heat dissipation performance is obtained, and it has high strength, so it can be damaged even when used in places subject to vibration such as automobiles. It is possible to prevent a problem such as dropping or dropping out.

以下、本発明の実施の形態を説明する。本発明のアルミニウム合金押出形材は、Siを0.4〜0.6質量%、Feを0.25質量%以下、Mgを0.45〜0.6質量%含有し、Mn,Cr,Tiをそれぞれ0.02質量%以下、Vを0.01質量%以下に調整する。 Embodiments of the present invention will be described below. The aluminum alloy extruded profile of the present invention contains 0.4 to 0.6% by mass of Si, 0.25% by mass or less of Fe, and 0.45 to 0.6% by mass of Mg, Mn, Cr, Ti 0.02 mass% or less, respectively, to adjust the V below 0.01 wt%.

Siは、MgSiを析出させて材料に強度を付与するために添加されるものであり、含有量増とともに強度が向上するが、熱伝導率は低下する。よって、高い強度と高い熱伝導率を確保するため、Siは0.4〜0.6質量%とした。 Si is added for precipitating Mg 2 Si to give strength to the material, and the strength increases as the content increases, but the thermal conductivity decreases. Therefore, in order to ensure high strength and high thermal conductivity, Si is set to 0.4 to 0.6% by mass.

Feは、多すぎると熱伝導率が低下するため、0.25質量%以下とした。   If Fe is too much, the thermal conductivity is lowered, so the content was made 0.25% by mass or less.

Mgは、MgSiを析出させて材料に強度を付与するために添加されるものであり、含有量増とともに強度が向上するが、熱伝導率は低下する。よって、高い強度と高い熱伝導率を確保するため、Mgは0.45〜0.6質量%とした。 Mg is added for precipitating Mg 2 Si to give strength to the material, and the strength increases as the content increases, but the thermal conductivity decreases. Therefore, Mg is set to 0.45 to 0.6% by mass in order to ensure high strength and high thermal conductivity.

Mn,Crはアルミニウム合金中に含有されると熱伝導率を低下させる元素であるため、それぞれ0.02質量%以下に調整する。 Since Mn and Cr are elements that lower the thermal conductivity when contained in the aluminum alloy, they are adjusted to 0.02% by mass or less, respectively .

アルミニウム地金には、不可避不純物としてTi,Vが含まれているが、これらはアルミニウム合金中に含有されると熱伝導率を低下させる元素であるため、本発明のアルミニウム合金押出形材では、ビレット鋳造時にBを微量添加し、Bとボライドを形成させてこれらの不純物を沈降・除去する処理(ボロン処理)を行って、Tiを0.02質量%以下、Vを0.01質量%以下に調整する。鋳造時に溶湯中に添加するBの量は、ビレットの径等によって異なるが、例えば0.01質量%添加することで十分な効果が得られる。ビレット及び押出形材には、Bが残っていても残っていなくてもよいが、熱伝導率を上げるためにはBの残存量が少ない方が好ましい。   The aluminum ingot contains Ti and V as inevitable impurities, but since these are elements that lower the thermal conductivity when contained in the aluminum alloy, in the aluminum alloy extruded shape of the present invention, A small amount of B is added during billet casting, and B and boride are formed to settle and remove these impurities (boron treatment). Ti is 0.02% by mass or less, and V is 0.01% by mass or less. Adjust to. The amount of B added to the molten metal at the time of casting varies depending on the billet diameter and the like, but a sufficient effect can be obtained by adding 0.01% by mass, for example. The billet and the extruded profile may or may not contain B, but it is preferable that the remaining amount of B is small in order to increase the thermal conductivity.

上述のようにボロン処理を行って、従前の半連続鋳造方法により、Siを0.4〜0.6質量%、Feを0.25質量%以下、Mgを0.45〜0.6質量%含有し、Mn,Cr,Tiをそれぞれ0.02質量%以下、Vを0.01質量%以下に調整したビレットを鋳造し、凝固によって生じたミクロ偏析を均質化するために、ビレットに熱処理を行う(均質化処理)。その後、ビレットを加熱して所望の断面形状に押出加工する。均質化処理と押出加工は、通常のA6063合金と同様の条件で行うことができる。その後、押出した形材に対して過時効処理を行う。過時効処理は、押出後にAl母相中に固溶しているSiとMgをMgSiとして析出させ、形材の強度と熱伝導率を上げるために行われる。通常、A6063合金の押出形材では、おおむね200℃で2時間加熱する時効処理を行い、強度がピークになるようにするが、本発明ではMgSiの析出がそれよりも進み、強度がピーク付近を過ぎた状態となるまで熱処理する。 Boron treatment is performed as described above, and Si is 0.4 to 0.6 mass%, Fe is 0.25 mass% or less, and Mg is 0.45 to 0.6 mass% by a conventional semi-continuous casting method. In order to homogenize microsegregation caused by solidification by casting a billet containing Mn, Cr and Ti of 0.02% by mass or less and adjusting V to 0.01% by mass or less, respectively , the billet is subjected to heat treatment. Perform (homogenization treatment). Thereafter, the billet is heated and extruded into a desired cross-sectional shape. The homogenization treatment and the extrusion process can be performed under the same conditions as those of a normal A6063 alloy. Thereafter, an overaging treatment is performed on the extruded profile. The overaging treatment is carried out in order to increase the strength and thermal conductivity of the profile by precipitating Si and Mg dissolved in the Al matrix after extrusion as Mg 2 Si. Usually, in the extruded shape of A6063 alloy, an aging treatment is performed by heating at 200 ° C. for 2 hours so that the strength reaches a peak. In the present invention, however, the precipitation of Mg 2 Si progresses further and the strength reaches a peak. It heat-processes until it will pass through the vicinity.

本発明の具体的な実施例を以下に示す。実施例1は、ビレット鋳造時にボロン処理を行い、Si,Fe,Mg,Mn,Cr,Ti,Vの含有量が請求項に特定した範囲の上限付近で、強度が最も高くなる成分のもので、且つ押出後に200℃で16時間加熱する過時効処理をしたものである。実施例2は、ビレット鋳造時にボロン処理を行い、Si,Fe,Mg,Mn,Cr,Ti,Vの含有量が請求項に特定した範囲の下限付近で、熱伝導率が最も高くなる成分のもので、且つ押出後に同様に過時効処理をしたものである。鋳造時に添加したBの量は、いずれも0.01質量%である。なお表1には、Mn,Cr,Ti,Vの合計を記載しているが、個別にはMn,Cr,Tiはそれぞれ0.02質量%以下、Vは0.01質量%以下である。比較例1は、ビレット鋳造時にボロン処理を行い、実施例1と同じ成分としたもので、押出後に通常の時効処理(200℃で2時間加熱)をしたもの、比較例2はビレット鋳造時にボロン処理を行わず、押出後に過時効処理をしたもの、比較例3は従来のA6063合金押出形材であって、鋳造時にボロン処理を行わず、且つ押出後に通常の時効処理をしたものである。 Specific examples of the present invention are shown below. In Example 1, boron treatment is performed at the time of billet casting, and the content of Si, Fe, Mg, Mn, Cr, Ti, V is a component having the highest strength near the upper limit of the range specified in the claims. And after the extrusion, it was over-aged by heating at 200 ° C. for 16 hours. In Example 2, boron treatment is performed at the time of billet casting, and the content of Si, Fe, Mg, Mn, Cr, Ti, V is the component having the highest thermal conductivity in the vicinity of the lower limit of the range specified in the claims. In the same manner, it was over-aged after extrusion. The amount of B added during casting is 0.01% by mass. Table 1 shows the total of Mn, Cr, Ti, and V, but individually Mn, Cr, and Ti are 0.02% by mass or less, and V is 0.01% by mass or less. Comparative Example 1 was treated with boron at the time of billet casting and had the same components as Example 1, and was subjected to normal aging treatment (heating at 200 ° C. for 2 hours) after extrusion, and Comparative Example 2 was boron at the time of billet casting. Comparative example 3 is a conventional A6063 alloy extruded shape, which is not subjected to boron treatment during casting, and is subjected to normal aging treatment after extrusion.

Figure 0005586502
Figure 0005586502

実施例1,2、比較例1〜3の各押出形材について、機械的性質(引張強さ、0.2%耐力、伸び)、導電率及び熱伝導率の試験を行った。その結果を表2に示す。   For each of the extruded shapes of Examples 1 and 2 and Comparative Examples 1 to 3, mechanical properties (tensile strength, 0.2% yield strength, elongation), electrical conductivity, and thermal conductivity were tested. The results are shown in Table 2.

Figure 0005586502
Figure 0005586502

表2に示すとおり、ビレット鋳造時にボロン処理を行い且つ押出後に過時効処理をした実施例1及び実施例2は、何れもJISH4100のA6063S−T5の規格を十分に満足する優れた機械的性質を示し、尚且つ210W/m・K以上の高い熱伝導率が得られることが確認された。ビレット鋳造時にボロン処理を行い、且つ押出後に通常の時効処理を行った比較例1は、引張強さと耐力は実施例1,2より高いが、熱伝導率は210W/m・Kよりも低くなった。ボロン処理を行わずに押出後に過時効処理を行った比較例2は、引張強さと耐力が実施例1よりも劣り、熱伝導率も210W/m・Kより低くなった。また実施例1,2は、ボロン処理を行わず、押出後に通常の時効処理をした比較例3と比較して、引張強さと耐力が向上し、熱伝導率も向上した。   As shown in Table 2, Example 1 and Example 2, which were boron-treated during billet casting and over-aged after extrusion, both have excellent mechanical properties that sufficiently satisfy the A6063S-T5 standard of JISH4100. In addition, it was confirmed that a high thermal conductivity of 210 W / m · K or more was obtained. In Comparative Example 1 in which boron treatment was performed during billet casting and normal aging treatment was performed after extrusion, the tensile strength and proof stress were higher than those in Examples 1 and 2, but the thermal conductivity was lower than 210 W / m · K. It was. In Comparative Example 2 in which the overaging treatment was performed after extrusion without performing the boron treatment, the tensile strength and the yield strength were inferior to those of Example 1, and the thermal conductivity was also lower than 210 W / m · K. In Examples 1 and 2, the tensile strength and yield strength were improved and the thermal conductivity was improved as compared with Comparative Example 3 in which boron treatment was not performed and normal aging treatment was performed after extrusion.

以上の結果より明らかなように、ビレット鋳造時にボロン処理を行ってMn,Cr,Tiをそれぞれ0.02質量%以下、Vを0.01質量%以下に調整し、Siを0.4〜0.6質量%、Feを0.25質量%以下、Mgを0.45〜0.6質量%とし、押出後に過時効処理を行った本発明のアルミニウム合金押出形材は、熱伝導率を低下させるV,Ti等の不純物が低減し、さらに押出後に過時効処理をすることで母相中に固溶するSiとMgがMgSiとして適度に析出するため、熱伝導率が210W/m・K以上で、且つJISH4100のA6063S−T5の機械的性質を満足するものとなる。したがって本アルミニウム合金押出形材をヒートシンクに適用することで、高い放熱性能が得られ、しかも高い強度を有しているため、自動車等の振動を受ける所に使用しても、破損したり脱落したりといった問題が生ずるのを防止できる。 As is clear from the above results, boron treatment was performed during billet casting to adjust Mn, Cr, and Ti to 0.02 mass% or less and V to 0.01 mass% or less, respectively , and Si to 0.4 to 0 .6 mass%, Fe is 0.25 mass% or less, Mg is 0.45 to 0.6 mass%, and the aluminum alloy extruded profile of the present invention that has been over-aged after extrusion has reduced thermal conductivity. Impurities such as V and Ti are reduced, and Si and Mg dissolved in the matrix phase are appropriately precipitated as Mg 2 Si by over-aging treatment after extrusion, so that the thermal conductivity is 210 W / m · K or more and satisfy the mechanical properties of A6063S-T5 of JISH4100. Therefore, by applying this aluminum alloy extruded shape to a heat sink, high heat dissipation performance is obtained and it has high strength, so it can be damaged or dropped even if it is used in a place subject to vibration such as an automobile. Can be prevented from occurring.

本発明は以上に述べた実施形態に限定されない。合金成分は、特許請求の範囲に記載の範囲で適宜変更することができ、また特許請求の範囲に記載されていない元素を含有するものであってもよい。過時効処理は、あまりに長時間行うと強度が低下してJISH4100のA6063S−T5の機械的性質を満足しなくなるので(例えば実施例2の合金成分の場合、200℃で72時間以上の過時効処理を行うと、0.2%耐力がJISH4100のA6063S−T5に規定の110N/mmを下回る)、JISH4100のA6063S−T5の機械的性質を満足するものが得られる範囲で、過時効処理の温度と時間を適宜変更することができる。用途はヒートシンクに限定されるものではなく、高い熱伝導率、高い導電率が求められるものに広く用いることができる。 The present invention is not limited to the embodiments described above. The alloy component can be appropriately changed within the scope described in the claims, and may contain elements not described in the claims. If the overaging treatment is performed for an excessively long time, the strength decreases and the mechanical properties of A6063S-T5 of JISH4100 are not satisfied (for example, in the case of the alloy component of Example 2, overaging treatment at 200 ° C. for 72 hours or more) Doing, 0.2% proof stress is below 110N / mm 2 specified in A6063S-T5 in JISH4100), to the extent that can be obtained, thereby satisfying the mechanical properties of A6063S-T5 of JISH4100, temperature overaging And the time can be changed as appropriate. Applications are not limited to heat sinks, but can be widely used for those requiring high thermal conductivity and high electrical conductivity.

Claims (1)

ビレット鋳造時にBを添加し、Bとボライドを形成させて不純物を沈降・除去する処理を行い、Siを0.4〜0.6質量%、Feを0.25質量%以下、Mgを0.45〜0.6質量%含有し、MnとCrとTiをそれぞれ0.02質量%以下、Vを0.01質量%以下に調整したアルミニウム合金ビレットを鋳造し、そのビレットを押出加工し、押出後に過時効処理を行い、熱伝導率を210W/m・K以上とすることを特徴とするアルミニウム合金押出形材の製造方法。 At the time of billet casting, B is added, B and boride are formed, and impurities are settled and removed. Si is 0.4 to 0.6 mass%, Fe is 0.25 mass% or less, and Mg is 0.00. containing from 45 to 0.6 wt%, Mn, Cr, and Ti 0.02 wt%, respectively less, casting the aluminum alloy billet with an adjusted V below 0.01 wt%, and extruding the billet, extrusion A method for producing an extruded aluminum alloy material, characterized in that an overaging treatment is performed later and the thermal conductivity is 210 W / m · K or more.
JP2011032759A 2011-02-18 2011-02-18 Method for producing extruded aluminum alloy Expired - Fee Related JP5586502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032759A JP5586502B2 (en) 2011-02-18 2011-02-18 Method for producing extruded aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032759A JP5586502B2 (en) 2011-02-18 2011-02-18 Method for producing extruded aluminum alloy

Publications (2)

Publication Number Publication Date
JP2012172164A JP2012172164A (en) 2012-09-10
JP5586502B2 true JP5586502B2 (en) 2014-09-10

Family

ID=46975361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032759A Expired - Fee Related JP5586502B2 (en) 2011-02-18 2011-02-18 Method for producing extruded aluminum alloy

Country Status (1)

Country Link
JP (1) JP5586502B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033609A (en) * 2018-08-30 2020-03-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY SHEET
KR102203717B1 (en) * 2019-03-08 2021-01-15 한국생산기술연구원 Aluminium alloy enhanced thermal conductivity and formability and manufacturing method for Extrusion molding product thereof
CN115161523B (en) * 2022-06-30 2023-01-20 苏州浪潮智能科技有限公司 Aluminum alloy section for radiator and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316585A (en) * 1996-05-30 1997-12-09 Kobe Steel Ltd Power transmission tube and its production
JP2002309329A (en) * 2001-04-10 2002-10-23 Aisin Keikinzoku Co Ltd Al-Mg-Si ALLOY EXTRUSION SHAPE MATERIAL HAVING EXCELLENT HEAT CONDUCTIVITY
ATE507316T1 (en) * 2002-03-01 2011-05-15 Showa Denko Kk METHOD FOR PRODUCING AN AL-MG-SI ALLOY PLATE
JP3951921B2 (en) * 2003-01-09 2007-08-01 日本軽金属株式会社 Manufacturing method of aluminum alloy processed material of 58.1IACS% or more

Also Published As

Publication number Publication date
JP2012172164A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5758402B2 (en) Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
JP6406971B2 (en) Method for producing aluminum alloy member
JP2011058047A (en) Method for producing aluminum alloy thick plate having excellent strength and ductility
CN108728703B (en) Al-Zn-Cu alloy and preparation method thereof
JP6378937B2 (en) Method for producing aluminum alloy member
JP2022093988A (en) Manufacturing method of forged aluminum alloy and forged aluminum alloy
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP5586502B2 (en) Method for producing extruded aluminum alloy
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
WO2012133651A1 (en) Copper alloy and method for producing copper alloy
EP3505648B1 (en) High-strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for producing internal combustion engine piston
JP2021143370A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
KR101680046B1 (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
KR101999155B1 (en) Method of fabricating Al-Si casting alloy
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2011063884A (en) Heat-resistant aluminum alloy wire
WO2007114521A1 (en) 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JP4796563B2 (en) Aluminum casting alloy for heat treatment and manufacturing method of aluminum alloy casting having excellent rigidity
JP4820572B2 (en) Manufacturing method of heat-resistant aluminum alloy wire
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees