[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5585094B2 - Radiation position detector position calculation method and apparatus - Google Patents

Radiation position detector position calculation method and apparatus Download PDF

Info

Publication number
JP5585094B2
JP5585094B2 JP2010012616A JP2010012616A JP5585094B2 JP 5585094 B2 JP5585094 B2 JP 5585094B2 JP 2010012616 A JP2010012616 A JP 2010012616A JP 2010012616 A JP2010012616 A JP 2010012616A JP 5585094 B2 JP5585094 B2 JP 5585094B2
Authority
JP
Japan
Prior art keywords
light receiving
axis direction
scintillator
receiving element
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010012616A
Other languages
Japanese (ja)
Other versions
JP2011149883A (en
Inventor
直子 稲玉
秀雄 村山
憲悟 澁谷
泰賀 山谷
幹生 菅
秀昭 羽石
光男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
National Institute of Radiological Sciences
Original Assignee
Hamamatsu Photonics KK
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, National Institute of Radiological Sciences filed Critical Hamamatsu Photonics KK
Priority to JP2010012616A priority Critical patent/JP5585094B2/en
Publication of JP2011149883A publication Critical patent/JP2011149883A/en
Application granted granted Critical
Publication of JP5585094B2 publication Critical patent/JP5585094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Description

本発明は、放射線を吸収したときに発光する、少なくとも一つの光学的に不連続な領域を有する外形が略直方体状のシンチレータブロックの隣り合う2面以上に受光素子を光学結合した放射線位置検出器の各受光素子の出力信号を演算して放射線吸収位置を特定する放射線位置検出器の位置演算方法及び装置に係り、特に、放射線を吸収した時に発光する立方体もしくは直方体のシンチレータ素子を3次元配列したシンチレータブロックの表面に複数の受光素子を光学結合したDepth−of−Interaction(DOI)検出器に用いるのに好適な、放射線位置検出器の位置演算方法及び装置に関する。ここで光学的に不連続な領域とは、例えば分割されたシンチレータ素子同士の接合部の他、特開2009−270971に記載されたような、屈折率が周囲と異なる領域、光を散乱する領域、回折型レンズを構成する領域等、それにより光が進行方向を変えたり速度を変えたりする面状又は点状の領域を意味する。   The present invention relates to a radiation position detector in which a light receiving element is optically coupled to two or more adjacent surfaces of a scintillator block having a substantially rectangular parallelepiped outer shape, which emits light when absorbing radiation. In particular, the present invention relates to a position calculation method and apparatus for a radiation position detector for calculating a radiation absorption position by calculating an output signal of each light receiving element, and in particular, a cubic or cuboid scintillator element that emits light when absorbing radiation is three-dimensionally arranged. The present invention relates to a position calculation method and apparatus for a radiation position detector suitable for use in a depth-of-interaction (DOI) detector in which a plurality of light receiving elements are optically coupled to the surface of a scintillator block. Here, the optically discontinuous region is, for example, a region where the refractive index is different from the surroundings, a region that scatters light, as described in JP2009-270971, in addition to the joint portion between the divided scintillator elements. It means a surface-like or dot-like region in which light changes its traveling direction or speed, such as a region constituting a diffractive lens.

従来、PET検出器用の受光素子には光電子増倍管(PMT)が用いられてきた。PMTはPET装置に組み込まれたときに被検者の側(シンチレータの上面)に位置すると放射線検出の際の散乱体となり、シンチレータの側面に結合すると放射線を検出できない領域が増してPET装置の感度が落ちるため、図1(a)に示す如く、PMT12をシンチレータ(図では細かなシンチレータ素子を配列したシンチレータブロック)10の底面のみに結合していた。シンチレータブロック10内の放射線を吸収した場所の2次元的な位置特定は、底面に複数のPMT、または位置弁別型PMT(PS−PMT)12を結合し、その信号のアンガー計算によって行う。図1(b)に例示する如く、アンガー計算の結果を表した2次元(2D)位置ヒストグラム上に、吸収した位置に対応した応答が現れるが、光学的に不連続な領域を内部に持たない一塊の1個のシンチレータブロックの代わりに細かなシンチレータ素子を配列したシンチレータブロックを用いる場合、各シンチレータ素子の応答が不連続に現れ、各シンチレータ素子位置を判別しやすくなって都合がよい。   Conventionally, a photomultiplier tube (PMT) has been used as a light receiving element for a PET detector. When the PMT is located on the subject side (upper surface of the scintillator) when incorporated in the PET apparatus, it becomes a scatterer for radiation detection, and when combined with the side surface of the scintillator, the area where radiation cannot be detected increases and the sensitivity of the PET apparatus Therefore, as shown in FIG. 1A, the PMT 12 is coupled only to the bottom surface of the scintillator (scintillator block in which fine scintillator elements are arranged in the figure) 10. Two-dimensional positioning of the place where the radiation in the scintillator block 10 is absorbed is performed by connecting a plurality of PMTs or position-discriminating type PMTs (PS-PMT) 12 to the bottom surface and performing an anger calculation of the signals. As illustrated in FIG. 1B, a response corresponding to the absorbed position appears on the two-dimensional (2D) position histogram representing the result of the anger calculation, but does not have an optically discontinuous region inside. When using a scintillator block in which fine scintillator elements are arranged instead of a single scintillator block, a response of each scintillator element appears discontinuously, and it is convenient that the position of each scintillator element can be easily determined.

PMTはシンチレータの底面にのみ結合するという条件の元、受光素子に対し深さ方向の位置(DOI情報)を得るためにシンチレータブロックに様々な工夫がなされた。しかし、近年、アバランシェフォトダイオード(APD)やガイガーモードAPD(製品名としてSi−PM、 MPPC(Multi−Pixel Photon Counter)などとも呼ばれる)などの半導体受光素子が急速な発展を遂げ、それを受けてPS−PMTを半導体受光素子に置き換えたPET検出器の研究がなされるようになってきた。小型で薄い半導体受光素子は新たな検出器の構造も可能であり、体積の小さい半導体受光素子では、例えば、検出器の上面に配置しても散乱体となることはない。そのことを利用し、図2(a)(b)に示す如く、シンチレータブロック10の上下面に受光素子(図2(a)では上面側のフォトダイオード14と下面(底面)側のPS−PMT12、図2(b)では上下面共、位置弁別型APD16)を結合し、それらの信号の比率でDOI情報を得るDOI検出法(非特許文献1、2参照)や、図2(c)に示す如く、側面に受光素子(APD16)を結合し、その信号よりDOI方向の位置を特定するDOI検出器の研究もなされている(非特許文献3参照)。図2(c)のように側面に受光素子を接続する手法では、APD16での検出位置がそのままDOI情報となるだけでなく、シンチレータの広い面を受光素子に結合するためシンチレーション光が効率よく得られ光量の損失が少ないが、受光素子の分だけPET装置にしたときのパッキングフラクションが小さくなる。   Under the condition that the PMT is bonded only to the bottom surface of the scintillator, various measures have been made on the scintillator block in order to obtain a position (DOI information) in the depth direction with respect to the light receiving element. However, in recent years, semiconductor light-receiving elements such as avalanche photodiodes (APD) and Geiger mode APDs (product names are also called Si-PM, MPPC (Multi-Pixel Photon Counter), etc.) have made rapid development. Research has been made on PET detectors in which PS-PMT is replaced with semiconductor light-receiving elements. A small and thin semiconductor light-receiving element can have a new detector structure, and a semiconductor light-receiving element having a small volume does not become a scatterer even when arranged on the upper surface of the detector. 2 (a) and 2 (b), the light receiving elements (in FIG. 2A, the photodiode 14 on the upper surface side and the PS-PMT 12 on the lower surface (bottom surface) side are provided on the upper and lower surfaces of the scintillator block 10. In FIG. 2B, the position discrimination type APD 16) is combined on both the upper and lower surfaces, and the DOI detection method (see Non-Patent Documents 1 and 2) for obtaining DOI information by the ratio of those signals, or FIG. As shown, a DOI detector that couples a light receiving element (APD 16) to the side surface and identifies the position in the DOI direction from the signal has also been studied (see Non-Patent Document 3). In the method of connecting the light receiving element to the side surface as shown in FIG. 2C, not only the detection position in the APD 16 becomes the DOI information as it is, but also the scintillator light is efficiently obtained because the wide surface of the scintillator is coupled to the light receiving element. Although the loss of the light amount is small, the packing fraction when the PET apparatus is made by the amount of the light receiving element is reduced.

又、発明者らは、図2(d)に示す如く、立方体もしくは直方体のシンチレータ素子を
3次元配列したシンチレータブロックの表面に複数の半導体受光素子18を光学結合したDOI検出器の研究を行っている(特許文献1、2、非特許文献4参照)。つまり、シンチレータブロック10の辺に沿った3方向をx軸、y軸、z軸とすると、xy平面、xz平面、yz平面それぞれに受光素子が配置され、受光素子信号の演算により放射線検出位置のx軸成分、y軸成分、z軸成分を決定する。シンチレータブロックが1個の光学的に不連続な領域を内部に持たない一塊のシンチレータ素子で構成されxy平面、xz平面、yz平面それぞれ1面ずつに位置弁別型でない受光素子を配置する検出器構造については、他のグループにより提案され、シミュレーションにより放射線検出位置特定の方法が考察されている(非特許文献5参照)が、未だ実験データの発表はなされていない。
Further, as shown in FIG. 2D, the inventors have studied a DOI detector in which a plurality of semiconductor light receiving elements 18 are optically coupled to the surface of a scintillator block in which cubic or cuboid scintillator elements are three-dimensionally arranged. (See Patent Documents 1 and 2 and Non-Patent Document 4). That is, assuming that the three directions along the side of the scintillator block 10 are the x-axis, y-axis, and z-axis, the light receiving elements are arranged on the xy plane, the xz plane, and the yz plane, respectively. An x-axis component, a y-axis component, and a z-axis component are determined. A detector structure in which the scintillator block is composed of a single scintillator element that does not have one optically discontinuous region inside, and a light receiving element that is not a position discrimination type is arranged on each of the xy plane, the xz plane, and the yz plane. For this, a method for specifying a radiation detection position has been considered by another group (see Non-Patent Document 5), but no experimental data has been published yet.

受光素子を配置するシンチレータブロックが小さなシンチレータ素子の3次元配列で構成される場合、図3(a)に示す如く、あるシンチレータ素子が放射線を吸収して発したシンチレーション光は、シンチレータ素子間物質とシンチレータ素子との光学的不連続特性により、そのシンチレータ素子を含む列(シンチレータ素子が立方体の場合、前後、左右、上下方向の3方向の列)内に多く広がる傾向がある。また、その列の両端のシンチレータ素子から得られる光量は、発光点の位置に大きく依存するが、シンチレータ素子の表面が鏡面状態の場合は、伝搬途中の光量の減衰が少ないため、たとえ端のシンチレータ素子で発したシンチレーション光であっても、その近くの受光素子より得る信号と反対側の受光素子より得る信号との差は大きくない(非特許文献6、7参照)。図3(b)は一列に配置したシンチレータブロック10´の例であるが、シンチレータの両端に光学結合した受光素子18をそれぞれA、Bとすると、シンチレータの受光素子B側から放射線照射位置を受光素子A側にずらしていくと、図3(c)に示す如く、AとBそれぞれの受光量は照射位置までの距離に比例して増減するが、図3(c)左側に示すシンチレータ表面が鏡面の場合は、同じく右側に示す粗面の場合と異なり、シンチレータの端に照射しても両側の受光素子A、B間の出力差は小さい。放射線検出位置は受光素子AとBの信号の出力の比で特定するため、照射位置による信号の変化量が少ないと位置識別の精度が悪くなる。つまり、検出器の位置分解能が悪くなる。ここで、シンチレータ素子間物質とは、空気や光学接着剤、あるいは、シンチレータ素子自体であるが、特開2009−270971に記載されたような、屈折率が周囲と異なる領域、光を散乱する領域、回折型レンズを構成する領域等、それにより光が進行方向を変えたり速度を変えたりする面状又は点状の光学的に不連続な領域を指す。   When the scintillator block in which the light receiving element is arranged is configured by a three-dimensional array of small scintillator elements, as shown in FIG. 3A, the scintillation light emitted by a scintillator element absorbing radiation is Due to the optical discontinuity characteristic with the scintillator element, there is a tendency that the scintillator element spreads widely in a row including the scintillator element (in the case where the scintillator element is a cube, three rows in the front and rear, left and right, and up and down directions). In addition, the amount of light obtained from the scintillator elements at both ends of the column largely depends on the position of the light emitting point, but when the surface of the scintillator element is in a mirror state, the attenuation of the amount of light during propagation is small. Even in the case of scintillation light emitted from an element, the difference between a signal obtained from a nearby light receiving element and a signal obtained from the opposite light receiving element is not large (see Non-Patent Documents 6 and 7). FIG. 3B shows an example of the scintillator block 10 'arranged in a line. If the light receiving elements 18 optically coupled to both ends of the scintillator are A and B, the radiation irradiation position is received from the light receiving element B side of the scintillator. When shifted to the element A side, as shown in FIG. 3C, the received light amounts of A and B increase and decrease in proportion to the distance to the irradiation position, but the scintillator surface shown on the left side of FIG. In the case of the mirror surface, unlike the case of the rough surface shown on the right side, the output difference between the light receiving elements A and B on both sides is small even when the end of the scintillator is irradiated. Since the radiation detection position is specified by the ratio of the signal output of the light receiving elements A and B, if the amount of change in the signal due to the irradiation position is small, the accuracy of position identification deteriorates. That is, the position resolution of the detector is deteriorated. Here, the substance between the scintillator elements is air, an optical adhesive, or the scintillator element itself, but a region having a different refractive index from the surroundings, a region that scatters light, as described in JP-A-2009-270971. An area constituting a diffractive lens, etc., refers to an optically discontinuous area in the form of a plane or a spot where light travels in a different direction or changes its speed.

特開2004−279057号公報JP 2004-279057 A 特開2009−121929号公報JP 2009-121929 A

J. S.Huber, W. W.Moses, M. S. Andreaco, and O. Petterson, “An LSO scintillator array for a PET detector module with depth of interaction measurement,” IEEE Trans. Nucl. Sci., Vol. 48, No. 3, pp. 684-688, June 2001.JSHuber, WWMoses, MS Andreaco, and O. Petterson, “An LSO scintillator array for a PET detector module with depth of interaction measurement,” IEEE Trans. Nucl. Sci., Vol. 48, No. 3, pp. 684 -688, June 2001. Y. Shao, R. W. Silverman, R. Farrell, L. Cirignano, R. Grazioso, K. S. Shah, G. Visser, M. Clajus, T. O. Tumer, and S. R. Cherry, “Design strudies of a high resolution PET detector using APD array,” IEEE Trans. Nucl. Sci., Vol. 47, No. 3, pp. 1051-1057, June 2000.Y. Shao, RW Silverman, R. Farrell, L. Cirignano, R. Grazioso, KS Shah, G. Visser, M. Clajus, TO Tumer, and SR Cherry, “Design strudies of a high resolution PET detector using APD array, ”IEEE Trans. Nucl. Sci., Vol. 47, No. 3, pp. 1051-1057, June 2000. C. S. Levin, “Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection,” IEEE Trans. Nucl. Sci., Vol. 49, No. 5, pp. 2236-2243, October 2002.CS Levin, “Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection,” IEEE Trans. Nucl. Sci., Vol. 49, No. 5, pp. 2236-2243, October 2002 . Y. Yazaki, H. Murayama, N. Inadama, A. Ohmura, H. Osada, F. Nishikido, K. Shibuya, T. Yamaya, E. Yoshida, T. Moriya, T. Yamashita, H. Kawai, “Preliminary study on a new DOI PET detector with limited number of photo-detectors,” The 5th Korea-Japan Joint Meeting on Medical Physics, Sept 10-12, 2008, Jeju, Korea, YI-R2-3, 2008.Y. Yazaki, H. Murayama, N. Inadama, A. Ohmura, H. Osada, F. Nishikido, K. Shibuya, T. Yamaya, E. Yoshida, T. Moriya, T. Yamashita, H. Kawai, “Preliminary study on a new DOI PET detector with limited number of photo-detectors, ”The 5th Korea-Japan Joint Meeting on Medical Physics, Sept 10-12, 2008, Jeju, Korea, YI-R2-3, 2008. J. W. LeBlanc and R..A. Thompson, “A novel PET detector block with three dimensional hit position encoding” IEEE Nuclear Science Symposium Conference Record, J1-2, Portland, Oregon, 2003.J. W. LeBlanc and R..A. Thompson, “A novel PET detector block with three dimensional hit position encoding” IEEE Nuclear Science Symposium Conference Record, J1-2, Portland, Oregon, 2003. T. Umehara, H. Murayama, T. Omura, H. Ishibashi, H. Kawai, N. Inadama, T. Kasahara, N. Orita, and T. Tsuda, “Basic study on pulse height of distribution of DOI detectors constructed of stucked crystal element,” IEEE Nuclear Science Symposium Conference Record, M10-29, Norfolk, Virginia, 2002.T. Umehara, H. Murayama, T. Omura, H. Ishibashi, H. Kawai, N. Inadama, T. Kasahara, N. Orita, and T. Tsuda, “Basic study on pulse height of distribution of DOI detectors constructed of stucked crystal element, ”IEEE Nuclear Science Symposium Conference Record, M10-29, Norfolk, Virginia, 2002. Y. Shao, K. Meadors, R. W. Silverman, R. Farrell, L. Cirignano, R. Grazioso, K. S. Shah, and S. R. Cherry, “Dual APD array readout of LSO crystals: optimization of crystal surface treatment,” IEEE Trans. Nucl. Sci., Vol. 49, No. 3, pp. 649-654, June 2002.Y. Shao, K. Meadors, RW Silverman, R. Farrell, L. Cirignano, R. Grazioso, KS Shah, and SR Cherry, “Dual APD array readout of LSO crystals: optimization of crystal surface treatment,” IEEE Trans. Nucl Sci., Vol. 49, No. 3, pp. 649-654, June 2002.

図1に例示したように、シンチレータブロック10の1面に受光素子12が結合している従来の検出器では、放射線検出位置の特定は、複数の受光素子、または位置弁別型PMT(PS−PMT)の位置演算の結果を表した2D位置ヒストグラム上で行う。図4(a)に示すように、シンチレーション光を複数の受光素子で検出する場合、位置演算は通常、各方向に対するアンガー計算によって行われ、例えばx軸方向の位置演算は、以下の式で表わされる。ここで、受光点(受光素子の位置またはPS−PMTのアノードの位置)は、x軸方向に対してn列(図4ではn=4)あるとする。
Wxi:x方向の位置演算の際にi列目の受光点の信号にかける係数
Sxi:x方向に対しi列にある受光点の信号の和
As illustrated in FIG. 1, in the conventional detector in which the light receiving element 12 is coupled to one surface of the scintillator block 10, the radiation detection position is specified by a plurality of light receiving elements or position discriminating type PMT (PS-PMT ) Is performed on a 2D position histogram representing the result of position calculation. As shown in FIG. 4A, when scintillation light is detected by a plurality of light receiving elements, position calculation is usually performed by anger calculation for each direction. For example, position calculation in the x-axis direction is expressed by the following expression. It is. Here, it is assumed that the light receiving points (the position of the light receiving element or the position of the anode of the PS-PMT) are n columns (n = 4 in FIG. 4) in the x-axis direction.
Wxi: Coefficient applied to the light receiving point signal in the i-th column when calculating the position in the x direction Sxi: Sum of signals from the light receiving points in the i-th row in the x direction

重み付けを受光点のxの原点からの距離に比例させると、演算結果は受光点の位置に対応した分布をとる。図4(b)に示す如く、y軸方向についても同様の演算をして、結果をx軸、y軸の座標として表したものが2D位置ヒストグラムであり、多くの放射線を検出しイベント数をためると、シンチレータブロックが小さなシンチレータ素子配列で構成される場合、図4(c)に示すように2D位置ヒストグラム上に各シンチレータ素子に対応した分布が現れる。この個々の分布を素子応答と呼ぶ。ここで、素子応答が重なると、それに対応する素子間の識別が不可能となり、素子サイズの検出位置分解能が保てなくなるので、各素子応答間の距離が離れているほど分離が良く、放射線を検出した素子の識別能、つまり検出位置の識別能が良いことになる。従って、2D位置ヒストグラム上に素子応答が均一に並ぶのが良い。   When the weighting is proportional to the distance from the origin of x of the light receiving point, the calculation result has a distribution corresponding to the position of the light receiving point. As shown in FIG. 4 (b), the same calculation is performed for the y-axis direction, and the result is expressed as x-axis and y-axis coordinates, which is a 2D position histogram. Therefore, when the scintillator block is composed of a small scintillator element array, a distribution corresponding to each scintillator element appears on the 2D position histogram as shown in FIG. This individual distribution is called an element response. Here, if the element responses overlap, it becomes impossible to distinguish between the corresponding elements, and the detection position resolution of the element size cannot be maintained. The discriminating ability of the detected element, that is, the discriminating ability of the detection position is good. Therefore, it is preferable that the element responses are arranged uniformly on the 2D position histogram.

以上、従来の検出器では受光点の位置は2次元(x、y)であったのに対し、発明者らが開発中のDOI検出器のように、受光素子配置により受光点が3次元に分布する検出器を考える。図5(a)に示すように、シンチレータブロック10が光学的に不連続な領域を内部に持たない一塊のシンチレータで構成される場合、従来法通りx軸に直交する両端面の受光素子を含め得られた受光素子信号x1〜x4すべてを用い、受光点の位置に対応させたアンガー計算を行うと、x軸に直交する両端面において受光素子(x1およびx4)を除去して代わりに黒紙や反射材を貼る場合に比べ放射線検出位置の特定が改善されるが、シンチレータ素子で構成されるシンチレータブロックの場合、すべての信号を用いると2D位置ヒストグラム上で素子応答の分離が悪くなることが分かった。   As described above, in the conventional detector, the position of the light receiving point is two-dimensional (x, y), but the light receiving point is three-dimensional by the arrangement of the light receiving element as in the DOI detector being developed by the inventors. Consider a distributed detector. As shown in FIG. 5 (a), when the scintillator block 10 is composed of a lump scintillator that does not have an optically discontinuous region inside, it includes light receiving elements on both end surfaces orthogonal to the x-axis as in the conventional method. When all the obtained light receiving element signals x1 to x4 are used and an anger calculation corresponding to the position of the light receiving point is performed, the light receiving elements (x1 and x4) are removed from both end surfaces orthogonal to the x axis, and black paper is used instead. However, in the case of a scintillator block composed of scintillator elements, if all signals are used, separation of element responses on the 2D position histogram may be worsened. I understood.

受光点が3次元に分布する場合、シンチレータブロックが光学的に不連続な領域を内部に持たない一塊のシンチレータで構成される検出器では、x軸方向の放射線検出位置特定でx軸に直交する面の受光素子は、図5(b)に示す如く、シンチレータ10の1面(底面)のみに配列した場合に受光するはずの光を手前で受光するのと等価であると考えてよい。   When the light receiving points are distributed three-dimensionally, in a detector composed of a single scintillator in which the scintillator block does not have an optically discontinuous region inside, the radiation detection position is specified in the x-axis direction and is orthogonal to the x-axis. As shown in FIG. 5B, the light receiving element on the surface may be considered to be equivalent to receiving light that should be received when arranged on only one surface (bottom surface) of the scintillator 10.

以下、シンチレータブロックと受光素子の構成について検討する。ここでは、次のように仮定し、これを理想的条件と称する。
(1)BGOシンチレータのようにシンチレータの屈折率が大きい。
(2)シンチレータ表面は鏡面とする。
(3)シンチレータ内で光の吸収や散乱は無い。
Hereinafter, the configuration of the scintillator block and the light receiving element will be examined. Here, it is assumed as follows and this is referred to as an ideal condition.
(1) The refractive index of a scintillator is large like a BGO scintillator.
(2) The scintillator surface is a mirror surface.
(3) There is no light absorption or scattering in the scintillator.

今、図6(a)に示す如く、光学的に不連続な領域を内部に持たない一塊のシンチレータブロック(モノリシックとも称する)の場合と、図6(b)に示す如く、小さなシンチレータ素子を光学的不連続の面で3次元配列してブロックを構成した3次元配列の場合を考える。ここで、ブロック10の6面を位置感応型受光素子20で覆う。   Now, as shown in FIG. 6A, a single scintillator block (also referred to as a monolithic) having no optically discontinuous region inside, and a small scintillator element as shown in FIG. Consider the case of a three-dimensional array in which a block is configured by three-dimensionally arraying on a plane discontinuous surface. Here, the six surfaces of the block 10 are covered with the position sensitive light receiving element 20.

シンチレータ内での発光状態を図7(a)及び(b)に比較して示す。図7(a)に示すモノリシックの場合、シンチレーション光は広く広がるため、特に発光点が受光器から離れている場合、受光器からのD2信号はx軸方向の位置情報に鈍感であり、x軸座標は、D2信号に加えて、D1信号とD3信号の強度比を用いて割り出す。一方、図7(b)に示す3次元配列の場合、理想的条件下では、内部のシンチレータ素子を含む列(シンチレータ素子が立方体の場合、前後、左右、上下方向の3方向の列)に沿って、シンチレーション光が広がらずに直線的に伝わる。すなわち、D1信号とD3信号はx軸方向の位置情報に鈍感であるため、x軸座標は、D2信号とD4信号を用いて割り出すことなる。   The light emission state in the scintillator is shown in comparison with FIGS. 7 (a) and 7 (b). In the case of the monolithic shown in FIG. 7A, since the scintillation light spreads widely, the D2 signal from the light receiver is insensitive to the position information in the x-axis direction, particularly when the light emitting point is away from the light receiver, and the x-axis The coordinates are determined using the intensity ratio of the D1 signal and the D3 signal in addition to the D2 signal. On the other hand, in the case of the three-dimensional array shown in FIG. 7B, under ideal conditions, along a column including internal scintillator elements (when the scintillator element is a cube, three columns in the front, rear, left, and right directions). Thus, the scintillation light is transmitted linearly without spreading. That is, since the D1 signal and the D3 signal are insensitive to position information in the x-axis direction, the x-axis coordinates are determined using the D2 signal and the D4 signal.

即ち、理想的条件下において、モノリシックと3次元配列には、次のような違いがある(非特許文献5参照)。
(1)モノリシックは、主に各座標ごとに直交する受光素子信号で演算する。
(2)3次元配列では、各座標ごとに、その軸方向の受光素子で演算する。
(3)すなわち、モノリシックと3次元配列は、両極端の位置演算となっている。
That is, under ideal conditions, there are the following differences between monolithic and three-dimensional arrays (see Non-Patent Document 5).
(1) Monolithic calculation is performed mainly by light receiving element signals orthogonal to each coordinate.
(2) In a three-dimensional array, calculation is performed by the light receiving element in the axial direction for each coordinate.
(3) That is, the monolithic and the three-dimensional array are both extreme position calculations.

これに対し、理想的条件下ではなく現実の条件下において、3次元配列は、図8に示す如く、次のような違いがある。
(1)シンチレータ素子の属する列以外の受光素子にも光が分配される。
(2)光の配分のされ方がシンチレータ素子の配置に依存する。
(3)理想的条件下での3次元配列とモノリシックとの混合である。
In contrast, the three-dimensional array has the following differences as shown in FIG.
(1) Light is distributed to light receiving elements other than the column to which the scintillator elements belong.
(2) How light is distributed depends on the arrangement of the scintillator elements.
(3) A mixture of a three-dimensional array and monolithic under ideal conditions.

3次元配列の利点は次のとおりである。
(1)一様な放射線照射で、個別のシンチレータ素子に対応する不連続な計数ピークが得られるため、位置の校正がし易く、保守が容易である。
(2)計数ピークのカウントは、シンチレータ素子の容積で物理的に規格化がされている。
(3)電子回路系の変動に対する性能の劣化を、比較的低く抑えることができる。
(4)6面を覆う受光器を、多数の小型受光素子と反射材との混合2次元配列に変更した場合、モノリシックでは反射材からの雑多な散乱光により、中央の位置弁別性能は大幅に低下すると考えられるが、3次元配列方式では、反射光の方向が3次元配列の光学的不連続性によって制限されるため、発光素子の判別性能に大きな影響を与えない。
The advantages of the three-dimensional array are as follows.
(1) Since discontinuous counting peaks corresponding to individual scintillator elements can be obtained by uniform radiation irradiation, position calibration is easy and maintenance is easy.
(2) The count of the count peak is physically standardized by the volume of the scintillator element.
(3) Deterioration of performance against fluctuations in the electronic circuit system can be suppressed to a relatively low level.
(4) When the light receiver covering the six surfaces is changed to a mixed two-dimensional array of a large number of small light receiving elements and reflectors, the center position discrimination performance is greatly increased due to the scattered light from the reflectors in the monolithic case. Although it is considered to decrease, in the three-dimensional arrangement method, the direction of reflected light is limited by the optical discontinuity of the three-dimensional arrangement, so that the discrimination performance of the light emitting element is not greatly affected.

簡単のため、受光素子は6×6×6の3次元結晶素子配列の各結晶素子に1つずつ結合しているものとする。x方向に対してアンガー計算を行う場合、図9(a)に示すようにxy平面とxz平面の受光素子はx軸方向の受光点の位置としてはx1〜x6に区別される。そしてx軸方向に直交するyz平面のx軸方向両端のyz左面とyz右面の受光素子の出力信号は、それぞれx1またはx6に相当する位置情報であるため、それぞれx1またはx6に含まれることになると考える。図3(a)に示したように、例えば図9(a)のシンチレータ素子Aで発光したシンチレーション光は、シンチレータ列に沿って広がる傾向にある。x、y、z軸方向にそれぞれシンチレーション光が1/3ずつ広がるとすると、図9(b)に示すように、シンチレータ素子Aの位置するx5の他に、x6だけでなく、x5の位置と関係のないx1にも信号が出ることになる。その状態での位置演算の結果は中央に寄りx軸方向の素子識別能を劣化させる。つまり、シンチレータ素子間物質による光広がりの制御によって、シンチレータ素子Aからy軸方向(図の上下方向)とz軸方向(図の前後方向)に伝搬する光により、シンチレータ素子サイズに相当する位置分解能が得られるのに対し、x軸方向(図の左右方向)に伝搬する光の比率により求まる位置分解能が前述のように劣る傾向にあることにより、全ての信号を用いた位置演算では分解能が劣ることになる。   For simplicity, it is assumed that one light receiving element is coupled to each crystal element in a 6 × 6 × 6 three-dimensional crystal element array. When performing the anger calculation with respect to the x direction, as shown in FIG. 9A, the light receiving elements on the xy plane and the xz plane are classified into x1 to x6 as the positions of the light receiving points in the x axis direction. The output signals of the light receiving elements on the yz left surface and the yz right surface at both ends of the yz plane orthogonal to the x axis direction are positional information corresponding to x1 or x6, respectively, and are therefore included in x1 or x6, respectively. I think. As shown in FIG. 3A, for example, the scintillation light emitted from the scintillator element A in FIG. 9A tends to spread along the scintillator array. If the scintillation light spreads by 1/3 each in the x, y, and z axis directions, as shown in FIG. 9 (b), in addition to x5 where the scintillator element A is located, A signal is also output to irrelevant x1. The result of the position calculation in that state is close to the center and deteriorates the element discrimination ability in the x-axis direction. That is, the position resolution corresponding to the scintillator element size by the light propagating from the scintillator element A in the y-axis direction (vertical direction in the figure) and the z-axis direction (front-back direction in the figure) by controlling the light spread by the substance between the scintillator elements. However, the position resolution obtained by the ratio of the light propagating in the x-axis direction (left and right direction in the figure) tends to be inferior as described above, so that the position calculation using all signals is inferior in resolution. It will be.

したがって、図10に示す如く、位置演算の際にはx軸方向に伝搬する光を受光するx軸方向両端の2つのyz平面に結合する受光素子の信号を故意に除外することにより、分解能の劣化を防ぐことができる。より明らかなのは図9(c)に示すように端のシンチレータ素子Bで検出した場合であり、x1の信号を位置演算に用いると、応答がx1側に引き寄せられ、隣の列のシンチレータ素子Aの応答との分離が悪くなる。そこで、このように両端面x1、x6の出力信号しか無い場合は、出力信号が小さいyz左面の受光素子の信号を除外する。   Therefore, as shown in FIG. 10, in the position calculation, by deliberately excluding the signals of the light receiving elements coupled to the two yz planes at both ends of the x axis direction that receive the light propagating in the x axis direction, Deterioration can be prevented. More clearly, the detection is performed by the scintillator element B at the end as shown in FIG. 9C. When the signal of x1 is used for position calculation, the response is drawn to the x1 side, and the scintillator element A of the adjacent column Separation from response is poor. Therefore, when there are only output signals from both end faces x1 and x6 in this way, the signal of the light receiving element on the left side of the yz with a small output signal is excluded.

従来は、正確に放射線検出位置を決定するためには得られた信号のすべてを用いて演算するのが常識とされてきたが、本発明手法では3次元それぞれの軸方向の位置決めの際に一部の信号を使用しないで演算する点に特徴がある。ただし、使用しない信号は各軸方向の演算で異なるため、不必要な受光素子信号はなく、すべての信号がそれぞれ2方向の位置演算に使用されることになる。なお、検出する放射線のエネルギーやシンチレータの種類、シンチレータおよびシンチレータブロック全体の光学的条件などによっては、完全に除外することなく、低い値を重み係数として乗算して信号値を残すこともできる。   Conventionally, in order to accurately determine the radiation detection position, it has been common knowledge to use all of the obtained signals, but in the method of the present invention, the three-dimensional positioning is performed at the time of axial positioning. It is characterized in that the calculation is performed without using the signal of the part. However, since signals that are not used differ depending on the calculation in each axis direction, there is no unnecessary light receiving element signal, and all signals are used for position calculation in two directions. Depending on the energy of the radiation to be detected, the type of scintillator, the optical conditions of the scintillator and the entire scintillator block, etc., it is possible to leave a signal value by multiplying a low value as a weighting factor without completely excluding it.

本発明は、上記知見に基づいてなされたもので、放射線を吸収したときに発光する、少なくとも一つの光学的に不連続な領域を有する外形が略直方体状のシンチレータブロックの隣り合う2面以上に受光素子を光学結合した放射線位置検出器の各受光素子の出力信号を演算して放射線吸収位置を特定する放射線位置検出器の位置演算方法において、位置を特定したい軸方向の端部に受光素子がある場合は、該軸方向と交差する面上の受光素子の出力信号を除外するようにしたものである。 The present invention has been made on the basis of the above knowledge, and the outer shape having at least one optically discontinuous region that emits light when absorbing radiation is formed on two or more adjacent surfaces of a substantially rectangular parallelepiped scintillator block. In the position calculation method of the radiation position detector that specifies the radiation absorption position by calculating the output signal of each light receiving element of the radiation position detector optically coupled to the light receiving element, the light receiving element is located at the end in the axial direction where the position is to be specified. In some cases, the output signal of the light receiving element on the surface intersecting the axial direction is excluded .

、位置演算に際して、互いに直交するx軸方向、y軸方向、z軸方向について、x軸方向の位置決めの際は、x軸方向両端の少なくとも一方におけるyz平面上の受光素子の出力信号を除外し、y軸方向の位置決めの際は、y軸方向両端の少なくとも一方におけるxz平面上の受光素子の出力信号を除外し、z軸方向の位置決めの際は、z軸方向両端の少なくとも一方におけるxy平面上の受光素子の出力信号を除外することができる。 Further, when position calculation, the x-axis direction orthogonal to each other, y-axis, the z-axis direction, during the positioning of the x-axis direction, the output signal of the light receiving element on the yz plane in at least one of x-axis direction end When the positioning in the y-axis direction is excluded, the output signals of the light receiving elements on the xz plane at at least one of both ends in the y-axis direction are excluded, and in the positioning in the z-axis direction, the output signals at at least one of both ends in the z-axis direction are excluded. The output signal of the light receiving element on the xy plane can be excluded.

本発明は、又、放射線を吸収したときに発光する、少なくとも一つの光学的に不連続な領域を有する外形が略直方体状のシンチレータブロックの隣り合う2面以上に受光素子を光学結合した放射線位置検出器の各受光素子の出力信号を演算して放射線吸収位置を特定する放射線位置検出器の位置演算装置において、位置を特定したい軸方向の端部に受光素子がある場合は、該軸方向と交差する面上の受光素子の出力信号を除外する手段を備えた放射線位置検出器の位置演算装置を提供するものである。 The present invention also provides a radiation position in which a light receiving element is optically coupled to two or more adjacent surfaces of a scintillator block having a substantially rectangular parallelepiped shape that emits light when absorbing radiation. In the position calculation device of the radiation position detector that calculates the output signal of each light receiving element of the detector and specifies the radiation absorption position, if there is a light receiving element at the end in the axial direction for which the position is to be specified, there is provided a position calculation apparatus of the radiation position detector with means to exclude the output signal of the light receiving element on the intersecting plane.

以下、シンチレータブロックの表面6面でxy面に平行な2面をxy上面、xy下面、xz面に平行な2面をxz後面、xz前面、yz面に平行な2面をyz右面、yz左面とし、ここでは、6面に受光素子が配置されている前提で説明する。なお、各面それぞれ受光点(受光素子の位置またはPS−PMTのアノードの位置)はj(j=x,y,z)方向に対してnAj列あるとする(A=1(xy上面),2(xy下面),3(xz後面),4(xz前面),5(yz右面),6(yz左面))。 Hereinafter, the six surfaces of the scintillator block that are parallel to the xy surface are the xy upper surface, the xy lower surface, the two surfaces parallel to the xz surface are the xz rear surface, the xz front surface, the two surfaces parallel to the yz surface are the yz right surface, and the yz left surface. Here, the description will be made on the assumption that the light receiving elements are arranged on the six surfaces. The light receiving points (the positions of the light receiving elements or the positions of the anodes of the PS-PMT) on each surface are assumed to be in n A j columns with respect to the j (j = x, y, z) direction (A = 1 (xy upper surface). ), 2 (xy lower surface), 3 (xz rear surface), 4 (xz front surface), 5 (yz right surface), 6 (yz left surface)).

本発明では、面A上の受光素子信号群SAから求められる放射線位置j(j=x,y,z)は、j方向の位置演算を表す関数をfj( )とすると、
j=fj(Cj,1×S1,Cj,2×S2,Cj,3×S3,Cj,4×S4,Cj,5×S5,Cj,6×S6 )
となる。
In the present invention, the radiation position is obtained from the light receiving element signal groups S A on the surface A j (j = x, y , z) , when the function representing the position calculation of the j direction and f j (),
j = f j (C j, 1 × S 1, C j, 2 × S 2, C j, 3 × S 3, C j, 4 × S 4, C j, 5 × S 5, C j, 6 × S 6)
It becomes.

ここで、Cj,A:j方向の位置演算をする際のA面への重み係数
であり、各面への重み係数が求める位置方向jによって異なる点が最大の特徴となる。
Here, C j, A is a weighting coefficient for the A plane when position calculation in the j direction is performed, and the greatest feature is that the weighting coefficient for each plane differs depending on the position direction j to be obtained.

各面への重み係数の例を以下に示す。   Examples of weighting factors for each surface are shown below.

例えば図11に示す受光素子配置でx方向の位置演算をする場合、x軸に直交する面の信号を使わないとすると各面への重み係数は、
x,1=1,Cx,2=1,Cx,3=1,Cx,4=1,Cx,5=0,Cx,6=0
となる。同様に、y方向の位置演算にはy軸に直交する面の信号を使わず、z方向の位置演算にはz軸に直交する面の信号を使わないとすると、
y,1=1,Cy,2=1,Cy,3=0,Cy,4=0,Cy,5=1,Cy,6=1
z,1=0,Cz,2=0,Cz,3=1,Cz,4=1,Cz,5=1,Cz,6=1
となる。
For example, when the position calculation in the x direction is performed with the light receiving element arrangement shown in FIG. 11, if the signal of the surface orthogonal to the x axis is not used, the weighting coefficient for each surface is
C x, 1 = 1, C x, 2 = 1, C x, 3 = 1, C x, 4 = 1, C x, 5 = 0, C x, 6 = 0
It becomes. Similarly, if the position calculation in the y direction does not use the signal of the plane orthogonal to the y axis, and the position calculation in the z direction does not use the signal of the plane orthogonal to the z axis,
C y, 1 = 1, C y, 2 = 1, C y, 3 = 0, C y, 4 = 0, C y, 5 = 1, C y, 6 = 1
C z, 1 = 0, C z, 2 = 0, C z, 3 = 1, C z, 4 = 1, C z, 5 = 1, C z, 6 = 1
It becomes.

j( )は、問わないが、一般的なアンガー計算法を用いる場合、本発明による位置演算は、以下で表される。
Aji:面Aでのj方向の位置演算の際にi列目の受光点の信号にかける係数
Aji:面Aでj方向に対しi列にある受光点の信号の和
Although f j () does not matter, when a general anger calculation method is used, the position calculation according to the present invention is expressed as follows.
W A ji: Coefficient applied to the light receiving point signal in the i-th column when calculating the position in the j-direction on the surface A S A ji: Sum of signals of light receiving points in the i-th row in the j-direction on the surface A

使用する4面の受光素子について、列の数nは、
1x=5,n2x=4,n3x=(4)(図では不明),n4x=4
となる。
For the four-sided light receiving element to be used, the number n of rows is
n 1 x = 5, n 2 x = 4, n 3 x = (4) (not shown in the figure), n 4 x = 4
It becomes.

したがって、例えばWを受光素子の位置を比例的に表した係数とすると、x方向の位置xは次式で計算される。
Therefore, for example, when W is a coefficient that proportionally represents the position of the light receiving element, the position x in the x direction is calculated by the following equation.

ここで、SNは、図12に示される受光素子番号Nの出力である。図12において、見えないxz後面(A=3)とyz左面(A=6)には、それぞれ4×4と2×2の受光素子配置を仮定している。 Here, S N is the output of the light receiving element number N shown in FIG. In FIG. 12, it is assumed that the invisible xz rear surface (A = 3) and the yz left surface (A = 6) have light receiving element arrangements of 4 × 4 and 2 × 2, respectively.

シンチレータブロックが光学的に不連続な領域を内部に持たない一塊のシンチレータで構成される場合、位置演算ではシンチレーション光の広がった先の受光素子信号が影響することになる。発光位置から離れるほど光量は減衰し、統計誤差が大きくなる。シンチレータブロックをシンチレータ素子または同等の光学条件により構成することで、光の広がりが抑制され、統計誤差の少ない信号が得られる。従来は、受光素子の3次元配置でもシンチレータブロックが光学的に不連続な領域を内部に持たない一塊のシンチレータの場合と同じ計算をすることにより、その利点が活かされなかったが、本発明手法により放射線検出位置特定の性能が改善された。   In the case where the scintillator block is composed of a lump of scintillators that do not have optically discontinuous regions inside, the light receiving element signal that has spread the scintillation light affects the position calculation. As the distance from the light emitting position increases, the light intensity decreases and the statistical error increases. By configuring the scintillator block with a scintillator element or equivalent optical conditions, the spread of light is suppressed, and a signal with little statistical error is obtained. Conventionally, even if the scintillator block does not have an optically discontinuous region in the three-dimensional arrangement of the light receiving elements, the same calculation as in the case of a lump scintillator has not been utilized, but the method of the present invention As a result, the radiation detection position identification performance was improved.

本発明は、受光素子の出力信号を、求めたい位置方向に応じて異なる重み付け又は選択するという新たな発想に基づくだけであり、新たな技術を導入したり処理を複雑にしたりすることなしに素子識別能の向上が可能となる。   The present invention is only based on a new idea of differently weighting or selecting an output signal of a light receiving element depending on a desired position and direction, and without introducing a new technique or complicating processing. The discrimination ability can be improved.

また、本発明手法は、PS−PMTなど半導体受光素子以外の受光素子を3次元配列にした放射線検出器に対しても適用可能である。
また、本発明法による効果は、アンガー計算による位置演算に限ったものではなく、最尤推定による位置演算法など、多用な放射線位置演算法に適用できる。
The technique of the present invention can also be applied to a radiation detector in which light receiving elements other than semiconductor light receiving elements such as PS-PMT are arranged in a three-dimensional array.
Further, the effect of the method of the present invention is not limited to position calculation by anger calculation, but can be applied to various radiation position calculation methods such as position calculation method by maximum likelihood estimation.

(a)シンチレータブロックを用いた従来の検出器の一例の斜視図、及び(b)その2次元(2D)位置ヒストグラムを示す図(A) A perspective view of an example of a conventional detector using a scintillator block, and (b) a diagram showing its two-dimensional (2D) position histogram. 従来のDOI検出器の様々な例を示す斜視図Perspective views showing various examples of conventional DOI detectors (a)シンチレータの3次元配列内の光広がりを示す斜視図、(b)一連のシンチレータ内の光の伝搬を示す図、及び(c)シンチレータの表面状態が鏡面の場合と粗面の場合の両端の受光素子の受光量を比較して示す図(A) A perspective view showing the light spread in a three-dimensional array of scintillators, (b) a diagram showing light propagation in a series of scintillators, and (c) a case where the surface state of the scintillator is a mirror surface or a rough surface The figure which compares and shows the light reception quantity of the light receiving element of both ends アンガー計算の説明図Illustration of anger calculation シンチレータブロックが1個のシンチレータで構成される場合の受光についての説明図Explanatory drawing about light reception when a scintillator block is constituted by one scintillator シンチレータブロックが(a)モノリシックの場合と(b)3次元配列の場合の検出器を比較して示す図The figure which compares and shows the detector in case the scintillator block is (a) monolithic and (b) three-dimensional arrangement 同じく、シンチレータ内での発光を比較して示す図Similarly, the figure which compares the light emission inside the scintillator 同じく、現実の3次元配列の光の状態を示す図Similarly, the figure which shows the state of the light of an actual three-dimensional arrangement 細かなシンチレータ素子の3次元配列で構成されるシンチレータブロックの全表面に受光素子を結合させた場合の位置演算を示す図The figure which shows the position calculation at the time of making a light receiving element couple | bond with the whole surface of the scintillator block comprised by the three-dimensional arrangement | sequence of a fine scintillator element 同じく本発明による位置演算の例を示す図The figure which similarly shows the example of the position calculation by this invention 同じく本発明による位置演算方法の一例を示す説明図Explanatory drawing which similarly shows an example of the position calculation method by this invention 同じく本発明による位置演算方法の具体例を示す説明図Explanatory drawing which similarly shows the specific example of the position calculation method by this invention 本発明の第1実施形態における(a)検出器の構成、及び、(b)位置演算方法を示す図The figure which shows the (a) structure of a detector and (b) position calculation method in 1st Embodiment of this invention. 本発明の第2実施形態における検出器の構成を示す図The figure which shows the structure of the detector in 2nd Embodiment of this invention. (a)位置演算に全信号を用いた場合(従来)と(b)選択した信号を用いた場合(本発明)の2D位置ヒストグラム(シミュレーション)を比較して示す図(A) Comparison of 2D position histograms (simulations) when using all signals for position calculation (conventional) and (b) using selected signals (present invention) (a)位置演算に全信号を使用した場合(従来)と(b)選択した信号を用いた場合(本発明)の中央と端のシンチレータ素子列の応答のプロファイルとpeak-to-valleyの値、及び、(c)(a)と(b)に示されている中央の応答のプロファイルのピーク位置を互いに合わせたものを示す図(A) When using all signals for position calculation (conventional) and (b) using selected signals (present invention), response profiles and peak-to-valley values at the center and end scintillator element arrays (C) and (c) are diagrams showing the peak positions of the central response profiles shown in (a) and (b) combined with each other. 実験のセットアップを示す図Diagram showing experimental setup 実験により得られた、(a)位置演算に全信号を用いた場合(従来)と(b)選択した信号を用いた場合(本発明)の2D位置ヒストグラムを比較して示す図FIG. 8 is a diagram showing a comparison of 2D position histograms obtained by experiments in which (a) all signals are used for position calculation (conventional) and (b) a selected signal is used (invention).

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図13(a)に示す如く、立方体のシンチレータ素子を3次元配列したシンチレータブロック10の全表面に複数の受光素子20を光学結合したDOI検出器において、図13(b)にフローを示す如く、x軸方向の位置を演算をする際には、x軸方向両端におけるyz平面であるyz右面及びyz左面のデータを除外して(ステップ100)、x軸方向の位置xを演算し(ステップ102)、y軸方向の位置を演算する際には、y軸方向両端におけるxz平面であるxz後面及びxz前面のデータを除外して(ステップ110)、y軸方向の位置yを演算し(ステップ112)、z軸方向の位置を演算する際には、z軸方向の両端面であるxy上面及びxy下面のデータを除外して(ステップ120)、z軸方向の演算する(ステップ122)ことにより、位置(x、y、z)を決定する(ステップ130)ようにしたものである。   As shown in FIG. 13A, the first embodiment of the present invention is a DOI detector in which a plurality of light receiving elements 20 are optically coupled to the entire surface of a scintillator block 10 in which cubic scintillator elements are three-dimensionally arranged. As shown in the flow in (b), when calculating the position in the x-axis direction, data on the yz right surface and yz left surface, which are yz planes at both ends of the x-axis direction, are excluded (step 100), and the x-axis direction is excluded. Is calculated (step 102), and when calculating the position in the y-axis direction, data on the xz rear surface and the xz front surface, which are xz planes at both ends in the y-axis direction, are excluded (step 110), and the y-axis is calculated. When calculating the position y in the direction (step 112) and calculating the position in the z-axis direction, the data on the xy upper surface and the xy lower surface, which are both end surfaces in the z-axis direction, are excluded (step 120), and the z-axis direction By calculating (step 122), it is obtained by the position (x, y, z) to determine (step 130) as.

なお、受光素子は、図14に示す第2実施形態の如く、まばらに配置されていてもよい。   The light receiving elements may be sparsely arranged as in the second embodiment shown in FIG.

本発明手法を受光素子が全表面に配設されたDOI検出器で実施し、計算機シミュレーションと実験の両方で検証した。3.0×3.0×3.0mm3のLGSO結晶(Lu1.8Gd0.2SiO5:Ce、日立化成工業社製)を6×6×6に配列し、各面の図2(d)に示す9ヵ所に受光部を設けた。137Cs線源からの放射線をx、y、zの3方向から一様照射し、得られた計54か所からの受光素子信号を用いて3次元の位置演算を行い、特定の断面における2D位置ヒストグラム上で素子識別能を評価した。受光素子以外は反射材で覆った。配列内のシンチレータ素子間は空気で、反射材には反射率98%の鏡面反射フィルムを用いた。 The method of the present invention was implemented with a DOI detector having light receiving elements disposed on the entire surface, and verified by both computer simulation and experiment. LGSO crystals of 3.0 × 3.0 × 3.0 mm 3 (Lu 1.8 Gd 0.2 SiO 5 : Ce, manufactured by Hitachi Chemical Co., Ltd.) are arranged in 6 × 6 × 6, and FIG. Light receiving portions were provided at the nine positions shown. Radiation from a 137 Cs radiation source is uniformly irradiated from three directions of x, y, and z, and three-dimensional position calculation is performed using the obtained light receiving element signals from a total of 54 locations to obtain 2D on a specific cross section. The element discrimination ability was evaluated on the position histogram. Except for the light receiving element, it was covered with a reflective material. The space between the scintillator elements in the array was air, and a specular reflection film having a reflectance of 98% was used as the reflector.

図15(a)、(b)は、計算機シミュレーションによる結果であり、(a)全受光素子信号を用いて計算した場合(従来)と、(b)x軸方向の位置決めの際には、x軸方向両端におけるyz平面上の受光素子の信号を除外し、y軸方向の位置決めの際には、y軸方向両端におけるxz平面上の受光素子の信号を除外して計算した場合(本発明)の、xy平面についての2D位置ヒストグラムである。選んだ信号を除外することにより、図15(b)に示すように、素子識別能が回復していることがわかる。   FIGS. 15A and 15B show the results of computer simulation. In the case of (a) calculation using all light receiving element signals (conventional) and (b) x-axis direction positioning, x When the signals of the light receiving elements on the yz plane at both ends in the axial direction are excluded, and the signals of the light receiving elements on the xz plane at both ends in the y axis direction are excluded during positioning in the y axis direction (the present invention) 2D is a 2D position histogram for the xy plane. By excluding the selected signal, it can be seen that the element discrimination ability is restored as shown in FIG.

図16(a)、(b)は、それぞれ図15(a)(全信号使用)と図15(b)(信号を選択)の中央と端のシンチレータ素子列の応答のプロファイルであり、どの位置の応答も信号を選択することによりpeak-to-valleyの値が下がりシンチレータ素子の識別能が向上していることが示されている。図16(c)は、図16(a)と(b)に示されている中央の応答のプロファイルを、ピーク位置が互いに合うように縮尺調整したのちに重ねあわせたものである。この図で、信号を選択した場合に応答の重なりが改善していることにより、本発明による位置弁別能の改善効果が定量的に示された。   FIGS. 16A and 16B are response profiles of the scintillator element arrays at the center and end of FIG. 15A (using all signals) and FIG. 15B (selecting signals), respectively. It is also shown that the peak-to-valley value is lowered by selecting a signal, and the discrimination ability of the scintillator element is improved. FIG. 16 (c) is obtained by superposing the central response profiles shown in FIGS. 16 (a) and 16 (b) after adjusting the scale so that the peak positions match each other. In this figure, when the signal is selected, the overlapping of responses is improved, so that the effect of improving the position discrimination ability according to the present invention is quantitatively shown.

実験は半導体受光素子の代わりにPS−PMT12を用い、図17(a)に示すようにシンチレータブロック10の各表面に配置した。受光素子は反射材22によって受光面を制限することで、半導体受光素子をタイル状に配置した場合と等価な状態を実現した。具体的には、9か所の受光部に相当する場所の反射材22に穴をあけ、その穴からのみ光が受光されるようにした。PS−PMT12が大きく、隣のPS−PMTとぶつかるため、図17(b)に示す如く、シンチレータ表面にはライトガイド24を用いて間接的に結合した。得られた結果を図18に示す。ライトガイドの導入により光量の損失はやむを得ないが、2D位置ヒストグラム上で素子識別が可能であるので、比較実験としてはライトガイドの影響は無視してよい。図18(a)が全ての信号で演算した従来法による結果、図18(b)が信号の選択をした本発明法による結果であり、実験によっても本発明による素子識別能の向上が示された。   In the experiment, PS-PMT12 was used in place of the semiconductor light receiving element, and was arranged on each surface of the scintillator block 10 as shown in FIG. By limiting the light receiving surface of the light receiving element by the reflecting material 22, a state equivalent to the case where the semiconductor light receiving elements are arranged in a tile shape is realized. Specifically, holes were made in the reflector 22 at locations corresponding to nine light receiving portions, and light was received only from the holes. Since the PS-PMT 12 is large and collides with the adjacent PS-PMT, as shown in FIG. 17B, the scintillator surface was indirectly coupled using the light guide 24. The obtained result is shown in FIG. Although the loss of light quantity is inevitable due to the introduction of the light guide, the element can be identified on the 2D position histogram, and therefore the influence of the light guide may be ignored as a comparative experiment. FIG. 18 (a) shows the result obtained by the conventional method in which all signals are calculated, and FIG. 18 (b) shows the result obtained by the method of the present invention in which the signal was selected. It was.

なお、前記実施形態では、放射線位置検出器として、受光素子が全表面に配設されたDOI検出器が用いられていたが、放射線位置検出器の種類は、これに限定されず、受光素子が、直交する2面、又は3〜5面に配設されていてもよい。位置決め方向も3軸方向に限定されず、例えばxyの2軸方向であっても良い。   In the above embodiment, the DOI detector in which the light receiving elements are disposed on the entire surface is used as the radiation position detector. However, the type of the radiation position detector is not limited to this, and the light receiving element is not limited to this. , Two orthogonal surfaces, or 3 to 5 surfaces may be provided. The positioning direction is not limited to the triaxial direction, and may be, for example, an xy biaxial direction.

又、シンチレータブロックも、立方体のシンチレータ素子を3次元配列したものに限定されず、直方体のシンチレータ素子を3次元配列したものや、特開2001−28371号公報や特開2009−270971号公報に記載されているように、結晶成長法やレーザ光等を用いて、他の方法で光学的不連続部分が形成されたものであっても良い。直方体も当然完全な直方体である必要はなく、略直方体であればよい。光学的不連続部分による分割数も限定されない。   Also, the scintillator block is not limited to a cubic scintillator element arranged in a three-dimensional array, and is described in a three-dimensional array of rectangular scintillator elements, or in JP-A-2001-28371 and JP-A-2009-270971. As described above, an optical discontinuity may be formed by another method using a crystal growth method, laser light, or the like. Of course, the rectangular parallelepiped need not be a complete rectangular parallelepiped, and may be a substantially rectangular parallelepiped. The number of divisions by the optical discontinuity is not limited.

更に、位置計算も、アンガー計算以外に、最尤推定法等、他の計算手法を用いても良い。   Further, for the position calculation, other calculation methods such as a maximum likelihood estimation method may be used in addition to the anger calculation.

適用対象もPET検出器に限定されず、SPECT検出器やガンマカメラであってもよい。   The application target is not limited to the PET detector, and may be a SPECT detector or a gamma camera.

又、深さ方向の位置検出を行なわないDOI以外の検出器にも同様に適用できる。   Further, it can be similarly applied to detectors other than the DOI that do not detect the position in the depth direction.

本発明に係る放射線位置検出器の位置演算方法は、PET検出器、SPECT検出器、ガンマカメラ等の放射線吸収位置の演算に用いることができる。   The position calculation method of the radiation position detector according to the present invention can be used for calculation of the radiation absorption position of a PET detector, a SPECT detector, a gamma camera or the like.

10…シンチレータブロック
12…PS−PMT
20…位置感応型受光素子
22…反射材
24…ライトガイド
10 ... Scintillator block 12 ... PS-PMT
20 ... Position sensitive light receiving element 22 ... Reflector 24 ... Light guide

Claims (4)

放射線を吸収したときに発光する、少なくとも一つの光学的に不連続な領域を有する外形が略直方体状のシンチレータブロックの隣り合う2面以上に受光素子を光学結合した放射線位置検出器の各受光素子の出力信号を演算して放射線吸収位置を特定する放射線位置検出器の位置演算方法において、
位置を特定したい軸方向の端部に受光素子がある場合は、該軸方向と交差する面上の受光素子の出力信号を除外することを特徴とする放射線位置検出器の位置演算方法。
Each light receiving element of a radiation position detector that emits light when it absorbs radiation and optically couples the light receiving elements to two or more adjacent surfaces of a scintillator block having an approximately rectangular parallelepiped outer shape. In the position calculation method of the radiation position detector for calculating the output signal of and specifying the radiation absorption position,
A position calculation method for a radiation position detector, characterized in that, when a light receiving element is present at an end in an axial direction whose position is to be specified, an output signal of the light receiving element on a surface intersecting the axial direction is excluded.
置演算に際して、互いに直交するx軸方向、y軸方向、z軸方向について、x軸方向の位置決めの際は、x軸方向両端の少なくとも一方におけるyz平面上の受光素子の出力信号を除外し、y軸方向の位置決めの際は、y軸方向両端の少なくとも一方におけるxz平面上の受光素子の出力信号を除外し、z軸方向の位置決めの際は、z軸方向両端の少なくとも一方におけるxy平面上の受光素子の出力信号を除外することを特徴とする請求項1に記載の放射線位置検出器の位置演算方法。 In position calculation, the x-axis direction, y-axis, z-axis directions orthogonal to each other, during the positioning of the x-axis direction, excludes the output signal of the light receiving element on the yz plane in at least one of x-axis direction end When positioning in the y-axis direction, the output signals of the light receiving elements on the xz plane at at least one of both ends in the y-axis direction are excluded, and when positioning in the z-axis direction, the xy plane at at least one of both ends in the z-axis direction is excluded. The position calculation method of the radiation position detector according to claim 1, wherein an output signal of the upper light receiving element is excluded. 放射線を吸収したときに発光する、少なくとも一つの光学的に不連続な領域を有する外形が略直方体状のシンチレータブロックの隣り合う2面以上に受光素子を光学結合した放射線位置検出器の各受光素子の出力信号を演算して放射線吸収位置を特定する放射線位置検出器の位置演算装置において、
位置を特定したい軸方向の端部に受光素子がある場合は、該軸方向と交差する面上の受光素子の出力信号を除外する手段を備えたことを特徴とする放射線位置検出器の位置演算装置。
Each light receiving element of a radiation position detector that emits light when it absorbs radiation and optically couples the light receiving elements to two or more adjacent surfaces of a scintillator block having an approximately rectangular parallelepiped outer shape. In the position calculation device of the radiation position detector that specifies the radiation absorption position by calculating the output signal of
Position calculation of a radiation position detector comprising means for excluding an output signal of a light receiving element on a surface intersecting with the axial direction when there is a light receiving element at an end of the axial direction whose position is to be specified apparatus.
置演算に際して、互いに直交するx軸方向、y軸方向、z軸方向について、x軸方向の位置決めの際は、x軸方向両端の少なくとも一方におけるyz平面上の受光素子の出力信号を除外し、y軸方向の位置決めの際は、y軸方向両端の少なくとも一方におけるxz平面上の受光素子の出力信号を除外し、z軸方向の位置決めの際は、z軸方向両端の少なくとも一方におけるxy平面上の受光素子の出力信号を除外することを特徴とする請求項3に記載の放射線位置検出器の位置演算装置。 In position calculation, the x-axis direction, y-axis, z-axis directions orthogonal to each other, during the positioning of the x-axis direction, excludes the output signal of the light receiving element on the yz plane in at least one of x-axis direction end When positioning in the y-axis direction, the output signals of the light receiving elements on the xz plane at at least one of both ends in the y-axis direction are excluded, and when positioning in the z-axis direction, the xy plane at at least one of both ends in the z-axis direction is excluded. 4. The position calculation device for a radiation position detector according to claim 3, wherein an output signal of the upper light receiving element is excluded.
JP2010012616A 2010-01-22 2010-01-22 Radiation position detector position calculation method and apparatus Expired - Fee Related JP5585094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012616A JP5585094B2 (en) 2010-01-22 2010-01-22 Radiation position detector position calculation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012616A JP5585094B2 (en) 2010-01-22 2010-01-22 Radiation position detector position calculation method and apparatus

Publications (2)

Publication Number Publication Date
JP2011149883A JP2011149883A (en) 2011-08-04
JP5585094B2 true JP5585094B2 (en) 2014-09-10

Family

ID=44536990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012616A Expired - Fee Related JP5585094B2 (en) 2010-01-22 2010-01-22 Radiation position detector position calculation method and apparatus

Country Status (1)

Country Link
JP (1) JP5585094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889650A4 (en) * 2018-12-04 2022-08-10 Shandong Madic Technology Co., Ltd. Pet detector for reducing number of silicon photomultipliers in use and detection method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6145248B2 (en) 2011-12-28 2017-06-07 学校法人早稲田大学 Radiation detector
CN104246536B (en) * 2012-01-31 2016-10-05 Ut-巴特勒有限责任公司 Use the neutron camera of row and column summation
JP6090995B2 (en) * 2013-04-25 2017-03-08 国立大学法人 東京大学 Photon detection device and radiation measurement device
JP2017215194A (en) * 2016-05-31 2017-12-07 東芝メディカルシステムズ株式会社 Detector and radiation diagnosis apparatus
JP6903435B2 (en) 2017-01-11 2021-07-14 キヤノンメディカルシステムズ株式会社 Nuclear medicine diagnostic equipment and calibration method
JP7221623B2 (en) * 2017-09-20 2023-02-14 キヤノンメディカルシステムズ株式会社 Medical diagnostic imaging equipment
CN109521459B (en) * 2018-12-07 2020-08-25 深圳先进技术研究院 Method and system for positioning hit point of ray in scintillation crystal
WO2023015564A1 (en) * 2021-08-13 2023-02-16 Shenzhen Xpectvision Technology Co., Ltd. Determination of photon origination points using radiation detectors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955487B2 (en) * 1994-03-15 1999-10-04 株式会社東芝 Radiation detector and radiation detection method
JP5150219B2 (en) * 2007-11-14 2013-02-20 浜松ホトニクス株式会社 Radiation position detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889650A4 (en) * 2018-12-04 2022-08-10 Shandong Madic Technology Co., Ltd. Pet detector for reducing number of silicon photomultipliers in use and detection method
US11852757B2 (en) 2018-12-04 2023-12-26 Shandong Madic Technology Co., Ltd. Pet detector for reducing number of silicon photomultipliers in use and detection method

Also Published As

Publication number Publication date
JP2011149883A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5585094B2 (en) Radiation position detector position calculation method and apparatus
JP5630756B2 (en) Three-dimensional radiation position detector and detection position specifying method thereof
KR102092035B1 (en) System and method for detecting gamma radiation, such as a gamma camera
US9442199B2 (en) Depth-of-interaction scintillation detectors
US7601963B2 (en) High-resolution depth-of-interaction PET detector
CN102655813A (en) Optical-interface patterning for radiation detector crystals
CN103917898A (en) Modelling of tof-doi detector arrays
JP2004132930A (en) Pulse height alignment radiation position detector
US9304211B2 (en) Scintillation detector with active light guide
CN105425270B (en) PET detector, and PET detector setting method and PET detector detection method
CN113040800B (en) PET detector, PET imaging system and gamma ray positioning method
JP2010169516A (en) Radiation detection apparatus and method for identifying position of extinction of in-coming radiation
JP6448396B2 (en) Radiation detector
US9423510B2 (en) Scintillation detector for improved PET performance
CN106461797B (en) Method for improving energy resolution of a gamma ray scintillation detector, associated system, component and application
WO2024131738A1 (en) Crystal array detector and emission imaging device
McCallum et al. A four-layer attenuation compensated PET detector based on APD arrays without discrete crystal elements
CN219126405U (en) Crystal array detector and emission imaging device
Aguiar et al. A feasibility study on the use of arrays of discrete SiPMs for MR compatible LYSO readout using Monte Carlo simulation
Takacs et al. Design and simulation of continuous scintillator with pixellated photodetector
US11762108B2 (en) Modular pet detector comprising a plurality of modular one-dimensional arrays of monolithic detector sub-modules
LeBlanc et al. A novel PET detector block with three dimensional hit position encoding
Grahe et al. Optical Monte-Carlo simulation to evaluate monolithic PET detector concepts
Játékos et al. Validated simulation for LYSO: Ce scintillator based PET detector modules built on fully digital SiPM arrays
Boghrati et al. Design and Simulation of a Gamma-Ray Camera for PET with a Continuous Scintillation Crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5585094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees