JP5580764B2 - SiC single crystal manufacturing equipment - Google Patents
SiC single crystal manufacturing equipment Download PDFInfo
- Publication number
- JP5580764B2 JP5580764B2 JP2011046400A JP2011046400A JP5580764B2 JP 5580764 B2 JP5580764 B2 JP 5580764B2 JP 2011046400 A JP2011046400 A JP 2011046400A JP 2011046400 A JP2011046400 A JP 2011046400A JP 5580764 B2 JP5580764 B2 JP 5580764B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- sic single
- crucible
- solution
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、SiC単結晶製造装置に関し、さらに詳しくは成長炉内を均熱化することが可能で種結晶近傍でのSiC多結晶の発生を抑制し得るSiC単結晶製造装置に関する。 The present invention relates to an SiC single crystal manufacturing apparatus, and more particularly to an SiC single crystal manufacturing apparatus that can soak the inside of a growth furnace and suppress generation of SiC polycrystals in the vicinity of a seed crystal.
SiC単結晶は、熱的、化学的に非常に安定であり、機械的強度に優れ、放射線に強く、しかもSi(シリコン)単結晶に比べて高い絶縁破壊電圧、高い熱伝導率などの優れた物性を有し、不純物の添加によってp、n伝導型の電子制御も容易にできるとともに、広い禁制帯幅(4H型の単結晶SiCで約3.3eV、6H型の単結晶SiCで約3.0eV)を有するという特長を備えている。このため、Si単結晶やGaAs(ガリウム砒素)単結晶などの既存の半導体材料では実現できない高温、高周波、耐電圧・耐環境性を実現することが可能であり、次世代の半導体材料として期待が高まっている。 SiC single crystal is very stable thermally and chemically, excellent in mechanical strength, resistant to radiation, and excellent in breakdown voltage and high thermal conductivity compared to Si (silicon) single crystal. It has physical properties and can easily control p- and n-conductivity type electrons by adding impurities, and has a wide forbidden band width (about 3.3 eV for 4H type single crystal SiC and about 3.3 eV for 6H type single crystal SiC). 0 eV). For this reason, it is possible to realize high temperature, high frequency, withstand voltage and environmental resistance that cannot be realized with existing semiconductor materials such as Si single crystal and GaAs (gallium arsenide) single crystal. It is growing.
従来、SiC単結晶の成長法の1つとして溶液法が知られている。この溶液法は、溶媒を入れる坩堝、例えば黒鉛坩堝、溶媒、高周波コイルなどの外部加熱装置、断熱材、昇降可能な基板支持用の炭素棒および炭素棒の先端に取付けた種結晶基板からなる基本的構造を有するSiC単結晶の製造装置を用いて、坩堝中、Si融液又はさらに金属を融解したSi合金融液(溶液ともいう)などのSi含有溶液中にC(炭素)供給源、例えば黒鉛坩堝からCを溶解させて、例えば低温部に設置したSiC種結晶基板上に原料溶液からSiC単結晶を溶液析出によって成長させる方法である。 Conventionally, the solution method is known as one of the growth methods of SiC single crystal. This solution method is basically composed of a crucible containing a solvent, for example, a graphite crucible, a solvent, an external heating device such as a high frequency coil, a heat insulating material, a carbon rod for supporting a substrate that can be raised and lowered, and a seed crystal substrate attached to the tip of the carbon rod. C (carbon) supply source in a Si-containing solution such as a Si melt or a Si compound liquid (also referred to as a solution) obtained by melting a metal in a crucible using an apparatus for producing a SiC single crystal having a mechanical structure, for example, In this method, C is melted from a graphite crucible, and, for example, a SiC single crystal is grown from a raw material solution by precipitation on a SiC seed crystal substrate placed in a low temperature portion.
この溶液法によるSiC単結晶製造装置では、結晶形の良好な単結晶が得られるが、溶液に種結晶近傍の溶液温度が他の部分の溶液温度より低温になるように温度勾配を設けて成長させる方法、又は溶液全体を徐冷して成長させる方法のいずれかのSiC単結晶成長法が用いられるが、いずれも溶液の冷却の際の溶液中の温度分布や濃度分布によって多結晶の生成が避けられないことが知られている。
この多結晶生成の問題は、昇華法によるSiC単結晶の成長法においても存在する。
一方、この多結晶の生成を防止乃至は抑制する必要性は化合物半導体などの半導体単結晶の製造においても解決すべき課題であり、さまざまな検討がされている。
With this solution method SiC single crystal production device, single crystals with good crystal form can be obtained, but the solution is grown with a temperature gradient so that the solution temperature in the vicinity of the seed crystal is lower than the solution temperature of other parts. The SiC single crystal growth method, which is a method of slow cooling the whole solution or a method of growing the whole solution, is used. In either case, the formation of polycrystals is caused by the temperature distribution and concentration distribution in the solution at the time of cooling the solution. It is known that it cannot be avoided.
This problem of polycrystal formation also exists in the growth method of SiC single crystal by the sublimation method.
On the other hand, the necessity to prevent or suppress the formation of polycrystals is a problem to be solved in the production of a semiconductor single crystal such as a compound semiconductor, and various studies have been made.
例えば、特許文献1には、高圧容器内に設けられたヒーターにより加熱して原料および封止剤を溶融させ、溶液表面に種結晶を接触させて回転させながら引き上げることにより単結晶を育成する製造装置において、引き上げた結晶の上方における吸熱能力を高めるために高圧容器の少なくとも天井部分の内面がグラファイト等の輻射率が0.4よりも高い物質により被覆処理されたGaAs等の単結晶製造装置が記載されている。 For example, in Patent Document 1, a single crystal is grown by heating with a heater provided in a high-pressure vessel to melt a raw material and a sealant, and bringing a seed crystal into contact with the solution surface and pulling it up while rotating. In the apparatus, there is provided a single crystal manufacturing apparatus such as GaAs in which at least the inner surface of the ceiling portion of the high-pressure vessel is coated with a material having a radiation rate higher than 0.4, such as graphite, in order to increase the heat absorption capacity above the pulled crystal. Have been described.
また、特許文献2には、高周波加熱でSiC粉末を昇華して種結晶にSiC単結晶を育成するための、るつぼの上部、るつぼの中間部およびるつぼの底部をそれぞれ2200℃以下、2400〜2800℃、SiCの昇華温度以上2400℃以下という異なる温度に設定し得る高周波加熱コイルからの高周波の磁束により誘導された電流でコイルを加熱する製造装置が記載されている。 Patent Document 2 discloses that an upper part of a crucible, an intermediate part of a crucible, and a bottom part of a crucible for sublimating SiC powder by high-frequency heating to grow a SiC single crystal as a seed crystal are 2200 ° C. or lower and 2400-2800, respectively. A manufacturing apparatus is described in which a coil is heated by a current induced by a high-frequency magnetic flux from a high-frequency heating coil that can be set to different temperatures of 0 ° C. and a sublimation temperature of SiC or higher and 2400 ° C.
また、特許文献3には、坩堝と、坩堝全体を加熱する加熱コイルのような加熱手段と、坩堝を構成する蓋体の一部を覆い前記加熱手段により発熱するシールド部材とを備えた単結晶の製造装置が記載されている。そして、具体例として、シールド部材が断熱材の外側の一部に設けられた昇華法による単結晶の製造装置が示されている。 Patent Document 3 discloses a single crystal provided with a crucible, a heating means such as a heating coil for heating the entire crucible, and a shield member that covers a part of a lid constituting the crucible and generates heat by the heating means. A manufacturing apparatus is described. As a specific example, an apparatus for producing a single crystal by a sublimation method in which a shield member is provided on a part of the outside of a heat insulating material is shown.
さらに、特許文献4には、昇華法による炭化珪素単結晶の製造装置が記載され、具体例として反応容器本体の底部に対応する高さ位置に配置された第1誘導加熱コイルと、種結晶に対応する高さ位置に配設された第2誘導加熱コイルと、前記両コイルの間に設けられた干渉防止コイルを備えた炭化珪素単結晶製造装置が示されている。 Furthermore, Patent Document 4 describes an apparatus for producing a silicon carbide single crystal by a sublimation method. As a specific example, a first induction heating coil disposed at a height corresponding to the bottom of the reaction vessel body, and a seed crystal A silicon carbide single crystal manufacturing apparatus including a second induction heating coil disposed at a corresponding height position and an interference preventing coil provided between the two coils is shown.
しかし、これらの公知の単結晶製造装置においては、成長炉内を直接加熱するために高周波加熱コイルが備えられており、これらの技術をSiC単結晶の製造装置、特に溶液法によるSiC単結晶の製造装置に適用したのでは、溶液中の温度が不均一になることが避けられず部分的な過冷による多結晶の生成を防止乃至は抑制することが困難である。
従って、本発明の目的は、成長炉内を均熱化することが可能で種結晶近傍でのSiC多結晶の発生を抑制し得るSiC単結晶の製造装置、特に溶液法によるSiC単結晶製造装置を提供することである。
However, in these known single crystal production apparatuses, a high-frequency heating coil is provided to directly heat the inside of the growth furnace, and these techniques are applied to an SiC single crystal production apparatus, particularly a SiC single crystal produced by a solution method. When applied to a manufacturing apparatus, it is inevitable that the temperature in the solution becomes uneven, and it is difficult to prevent or suppress the formation of polycrystals due to partial supercooling.
Accordingly, an object of the present invention is to provide a SiC single crystal manufacturing apparatus, in particular a SiC single crystal manufacturing apparatus by a solution method, which can soak the inside of the growth furnace and suppress the generation of SiC polycrystals in the vicinity of the seed crystal. Is to provide.
本発明は、成長炉内に、溶液法により1800〜2100℃の溶液温度に加熱された原料溶液からSiC種結晶基板上にSiC単結晶を成長させるための種結晶、該種結晶を支え且つ種結晶から熱を外部に伝達するための支持軸、原料溶液を収容する坩堝および坩堝からの放熱を防ぐための断熱材、および炉外に設けた複数のエネルギーを放出可能なエネルギー放出体から出力されたエネルギーによって発熱して成長炉内を加熱するために断熱材の内側に発熱部材が設けられていて、前記成長炉が坩堝の少なくとも上方に空間を有し、前記発熱部材が前記断熱材の内側における坩堝および空間を包囲する面全体に設けられてなるSiC単結晶製造装置に関する。 The present invention provides a seed crystal for growing a SiC single crystal on a SiC seed crystal substrate from a raw material solution heated to a solution temperature of 1800 to 2100 ° C. by a solution method in a growth furnace, and supports the seed crystal. It is output from the support shaft for transferring heat from the crystal to the outside, the crucible containing the raw material solution , the heat insulating material for preventing heat dissipation from the crucible, and the energy emitter that can release multiple energy provided outside the furnace. A heat generating member is provided inside the heat insulating material to generate heat by the generated energy and heat the inside of the growth furnace, the growth furnace has a space at least above the crucible, and the heat generating member is disposed inside the heat insulating material. The present invention relates to a SiC single crystal production apparatus provided on the entire surface surrounding the crucible and the space .
本発明によれば、成長炉内を均熱化することが可能であり種結晶近傍でのSiC多結晶の発生を抑制し得る、例えば溶液法によるSiC単結晶製造装置を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the inside of a growth furnace can be soaked, and the SiC single crystal manufacturing apparatus by the solution method which can suppress generation | occurrence | production of the SiC polycrystal in the seed crystal vicinity can be obtained.
特に、本発明において、以下の実施態様を挙げることができる。
1)前記成長炉が坩堝の少なくとも上方に空間を有し、前記発熱部材が前記断熱材の内側における坩堝および空間を包囲する面全体に設けられてなる前記SiC単結晶製造装置。
2)前記発熱部材が、黒鉛製である前記SiC単結晶製造装置。
3)前記エネルギー放出体が、高周波コイルである前記SiC単結晶製造装置。
In particular, in the present invention, the following embodiments can be mentioned.
1) The SiC single crystal manufacturing apparatus, wherein the growth furnace has a space at least above the crucible, and the heating member is provided on the entire surface surrounding the crucible and the space inside the heat insulating material.
2) The SiC single crystal manufacturing apparatus, wherein the heat generating member is made of graphite.
3) The SiC single crystal manufacturing apparatus, wherein the energy emitter is a high-frequency coil.
以下、図面を参照して本発明の実施の形態を詳説する。
図1において、本発明の実施態様のSiC単結晶成長装置1は、成長炉2内に溶液法により原料溶液3からSiC種結晶基板上にSiC単結晶を成長させるための種結晶4、該種結晶を支え且つ種結晶から熱を外部に伝達するための支持軸5、原料溶液を収容する坩堝6および坩堝6からの放熱を防ぐための断熱材7、および炉外に設けた複数の異なるエネルギーを放出可能なエネルギー放出体8から出力されたエネルギーによって発熱して成長炉2内を加熱するために断熱材7の内側に発熱部材9が設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1, an SiC single crystal growth apparatus 1 according to an embodiment of the present invention includes a seed crystal 4 for growing an SiC single crystal on a SiC seed crystal substrate from a raw material solution 3 in a growth furnace 2 by a solution method. A support shaft 5 for supporting the crystal and transferring heat from the seed crystal to the outside, a crucible 6 for containing the raw material solution, a heat insulating material 7 for preventing heat dissipation from the crucible 6, and a plurality of different energies provided outside the furnace A heat generating member 9 is provided inside the heat insulating material 7 in order to generate heat by the energy output from the energy emitting body 8 that can release the heat and heat the inside of the growth furnace 2.
本発明の実施態様のSiC単結晶成長装置によれば、エネルギー放出体から出力されたエネルギーを受ける発熱部材による間接的な加熱構造を有することにより、図4に示すようにそれぞれ各位置の温度を熱電対の位置を変えて測定して得られた、溶液がない場合の坩堝内の深さ方向(鉛直方向)の温度差ΔTが1.90℃/cmで溶液面方向(水平方向)の温度差ΔTが1.22℃/cmであり得て、図6に示すように、溶液がある場合の深さ方向(鉛直方向)の温度差が坩堝内の溶液内および溶液上の空間の合計でも10℃程度以内であって、ほとんどなくほぼ均一な温度分布を得ることが可能となる。
これにより、本発明の実施態様の溶液法SiC単結晶製造装置によれば、図8に示すように、種結晶近傍に多結晶が付着していないか極めて少ない。
According to the SiC single crystal growth apparatus of the embodiment of the present invention, by having an indirect heating structure with a heating member that receives the energy output from the energy emitter, the temperature at each position can be set as shown in FIG. The temperature difference ΔT in the depth direction (vertical direction) in the crucible in the absence of the solution obtained by changing the position of the thermocouple is 1.90 ° C./cm, and the temperature in the solution surface direction (horizontal direction) The difference ΔT can be 1.22 ° C./cm, and as shown in FIG. 6, the temperature difference in the depth direction (vertical direction) when the solution is present is the sum of the space in the solution in the crucible and on the solution. It is possible to obtain an almost uniform temperature distribution within about 10 ° C. with almost no.
Thereby, according to the solution method SiC single crystal manufacturing apparatus of the embodiment of the present invention, as shown in FIG.
これに対して、従来のSiC単結晶成長装置10は、図2に示すように成長炉2内に、溶液法により原料溶液3からSiC種結晶基板上にSiC単結晶を成長させるための種結晶4、該種結晶を支え且つ種結晶から熱を外部に伝達するための支持軸5、原料溶液3を収容する坩堝6および坩堝6からの放熱を防ぐための断熱材7、場合により坩堝の一部を覆いエネルギー放出体により発熱するための断熱材7の外側に発熱部材(図示せず)、および炉外に成長炉内を加熱するためのエネルギー放出体8を備えている。 On the other hand, the conventional SiC single crystal growth apparatus 10 has a seed crystal for growing a SiC single crystal on a SiC seed crystal substrate from a raw material solution 3 by a solution method in a growth furnace 2 as shown in FIG. 4. A support shaft 5 for supporting the seed crystal and transferring heat from the seed crystal to the outside, a crucible 6 for containing the raw material solution 3, a heat insulating material 7 for preventing heat radiation from the crucible 6, and optionally a crucible A heat generating member (not shown) is provided outside the heat insulating material 7 for covering the part and generating heat by the energy emitting body, and an energy emitting body 8 for heating the inside of the growth furnace outside the furnace.
このため、従来の溶液法SiC単結晶製造装置によれば、たとえ坩堝の一部を覆いエネルギー放出体により発熱する発熱部材を有していても上面と下面との間で熱逃げが生じ、大きな温度分布(温度勾配)の発生が避けられず、図6に示すように、坩堝内の溶液内および溶液上の空間に深さ方向(鉛直方向)に、例えば約200℃という大きな温度差が生じ得る。また、同様に坩堝内の溶液内炭素(C)濃度分布が発生する。
このため、従来の溶液法製造装置によれば、図9に示すように、種結晶に多結晶が付着する。
For this reason, according to the conventional solution method SiC single crystal manufacturing apparatus, even if the crucible covers a part of the crucible and has a heat generating member that generates heat by the energy emitter, heat escape occurs between the upper surface and the lower surface, Generation of temperature distribution (temperature gradient) is unavoidable, and as shown in FIG. 6, a large temperature difference of about 200 ° C. occurs in the depth direction (vertical direction) in the solution in the crucible and on the solution. obtain. Similarly, a carbon (C) concentration distribution in the solution in the crucible is generated.
For this reason, according to the conventional solution method manufacturing apparatus, as shown in FIG. 9, polycrystals adhere to the seed crystal.
本発明のSiC単結晶成長装置において、前記種結晶は任意のSiC単結晶、例えば4H−SiC、6H−SiCや3C−SiCなどであり得る。
また、本発明の前記実施態様のSiC単結晶成長装置において、坩堝は通常炭素製であって原料溶液に炭素(C)を溶出してSiCの炭素源となり得る。そして、この坩堝は単一の構成材からなるものであってもよいが、図3に示すように中坩堝および外坩堝から構成されてもよい。
In the SiC single crystal growth apparatus of the present invention, the seed crystal may be any SiC single crystal, for example, 4H—SiC, 6H—SiC, 3C—SiC, or the like.
In the SiC single crystal growth apparatus according to the embodiment of the present invention, the crucible is usually made of carbon, and carbon (C) can be eluted into the raw material solution to be a carbon source for SiC. And this crucible may consist of a single component, but as shown in FIG. 3, it may consist of an intermediate crucible and an outer crucible.
また、本発明のSiC単結晶成長装置において、支持軸は耐熱性が必要なことから炭素棒であり得て、種結晶から熱を外部に伝達するために炉外に冷却機構、例えばガス冷却機構あるいは水冷機構が設けられていてもよい。
また、本発明の実施態様のSiC単結晶成長装置において、複数の異なるエネルギーを放出可能なエネルギー放出体としては高周波エネルギーを放出する高周波コイルが挙げられる。また、本発明のSiC単結晶成長装置において、前記発熱部材は例えば黒鉛製であり得て、通常サセプターと呼ばれるものが用いられ得る。
Further, in the SiC single crystal growth apparatus of the present invention, the support shaft may be a carbon rod because heat resistance is required, and a cooling mechanism such as a gas cooling mechanism is provided outside the furnace in order to transfer heat from the seed crystal to the outside. Alternatively, a water cooling mechanism may be provided.
In the SiC single crystal growth apparatus of the embodiment of the present invention, examples of the energy emitter that can emit a plurality of different energies include a high-frequency coil that emits high-frequency energy. In the SiC single crystal growth apparatus of the present invention, the heat generating member can be made of, for example, graphite, and what is usually called a susceptor can be used.
本発明のSiC単結晶成長装置においては、前記の構成部材を必須要件とするものであるが、図1に示すように、前記構成部材に加えて、前記成長炉2が坩堝6の少なくとも上方に空間11を有し、前記発熱部材9が前記断熱材7の内側における坩堝6および空間11を包囲する面全体に設けられ得る。
本発明の実施態様のSiC単結晶成長装置において、前記発熱部材は、一体的であり得て鉛直方向の長さが坩堝の長さの1.5倍以上、特に2倍以上であり得て、炉内の空間全体を均一に加熱し得る。
In the SiC single crystal growth apparatus of the present invention, the above-described constituent members are essential requirements. However, in addition to the constituent members, the growth furnace 2 is placed at least above the crucible 6 as shown in FIG. The heat generating member 9 may be provided on the entire surface surrounding the crucible 6 and the space 11 inside the heat insulating material 7.
In the SiC single crystal growth apparatus according to the embodiment of the present invention, the heat generating member may be integrated, and the vertical length may be 1.5 times or more, particularly 2 times or more of the length of the crucible, The entire space in the furnace can be heated uniformly.
本発明の実施態様のSiC単結晶成長装置において、複数の異なるエネルギーを放出可能なエネルギー放出体は、通常炉外に複数個設けられる。
そして、本発明の実施態様のSiC単結晶製造装置を用いれば、少なくとも2個の高周波コイルのエネルギー出力比率、例えば電流比率を変えることにより、図7に示すように、坩堝内の溶液中の深さ方向の温度分布を狭い範囲で付与することが可能となり、溶液内での対流を起こし易くなり、炭素(C)濃度の均一化が達成し得て、経時的なSiC単結晶成長の変化を抑制し得る。
In the SiC single crystal growth apparatus according to the embodiment of the present invention, a plurality of energy emitters capable of releasing a plurality of different energies are usually provided outside the furnace.
If the SiC single crystal manufacturing apparatus according to the embodiment of the present invention is used, by changing the energy output ratio of at least two high-frequency coils, for example, the current ratio, the depth in the solution in the crucible as shown in FIG. It is possible to provide a temperature distribution in the vertical direction within a narrow range, and it is easy to cause convection in the solution, and it is possible to achieve a uniform carbon (C) concentration, and to change the SiC single crystal growth over time. Can be suppressed.
本発明の実施態様における原料溶液としては、SiとCとを必須成分とする任意の溶液を挙げることができる。例えば、Si含有溶液として、さらにTiおよび/又はCrを含むもの、例えばSi−Ti−C溶液又はNiおよびCrを含むもの、さらに前記Si、Cr、NiおよびC以外の元素であって希土類元素、遷移金属元素およびアルカリ土類金属元素のうちから選ばれるいずれか1種の元素を含むもの、例えば前記の元素がCeであるものが挙げられる。また、半導体材料用に任意のドーパントを含有し得る。
前記の原料溶液の温度は1800〜2100℃、特に1850〜2050℃程度であり得る。
Examples of the raw material solution in the embodiment of the present invention include any solution containing Si and C as essential components. For example, a Si-containing solution further containing Ti and / or Cr, for example, a Si-Ti-C solution or a material containing Ni and Cr, and elements other than the Si, Cr, Ni and C and rare earth elements, Examples include those containing any one element selected from a transition metal element and an alkaline earth metal element, for example, those in which the element is Ce. Moreover, arbitrary dopants can be contained for semiconductor materials.
The temperature of the raw material solution may be about 1800 to 2100 ° C, particularly about 1850 to 2050 ° C.
本発明の実施態様のSiC単結晶製造装置による温度の制御は、高周波コイルから出力されたエネルギーを受けた発熱部材による間接的な加熱構造によって加熱し、例えば放射温度計による溶液面の温度観察および/又は炭素棒内側に設置した熱電対、例えばW−Re(タングステン/レニューム)熱電対を用いて温度測定を行って求められた測定温度に基づいて温度制御装置(図示せず)によって行うことができる。 The temperature control by the SiC single crystal manufacturing apparatus of the embodiment of the present invention is performed by an indirect heating structure with a heating member that receives energy output from a high frequency coil, for example, temperature observation of the solution surface with a radiation thermometer and / Or a temperature control device (not shown) based on the measured temperature obtained by measuring the temperature using a thermocouple installed inside the carbon rod, for example, a W-Re (tungsten / renium) thermocouple. it can.
本発明のSiC単結晶製造装置を用いてSiC単結晶を製造する方法においては、少なくとも2個の高周波コイルの出力比率を変えることを除いて、それ自体公知の製造法、例えば溶液法におけるそれ自体公知の製造法、例えば黒鉛坩堝の形状、加熱方法、加熱時間、雰囲気、昇温速度および冷却速度を適用することができる。
例えば、高周波コイルから出力されたエネルギーを受けた発熱部材による間接的な加熱による加熱時間(原料の仕込みからSiC飽和濃度に達するまでの凡その時間)としては坩堝の大きさにもよるが20分間〜10時間程度(例えば1〜10時間程度)で、雰囲気としては希ガス、例えばHe、Ne、Arなどの不活性ガスやそれらの一部をN2やメタンガスで置き換えたものが挙げられる。
本発明のSiC単結晶製造装置を用いることによって、2000℃程度の高温、例えば1800〜2100℃、特に1850〜2050℃程度の溶液温度で長時間、例えば1時間以上、多結晶の成長を防止乃至は抑制したSiC単結晶を得ることができる。
In the method for producing a SiC single crystal using the SiC single crystal production apparatus of the present invention, except for changing the output ratio of at least two high-frequency coils, the production method known per se, for example, the solution method itself Known production methods such as the shape of the graphite crucible, the heating method, the heating time, the atmosphere, the heating rate and the cooling rate can be applied.
For example, the heating time by the indirect heating by the heat generating member that receives the energy output from the high frequency coil (the approximate time from the preparation of the raw material until the SiC saturation concentration is reached) is 20 minutes although it depends on the size of the crucible. About 10 to 10 hours (for example, about 1 to 10 hours), the atmosphere includes a rare gas, for example, an inert gas such as He, Ne, or Ar, or a part of them replaced with N 2 or methane gas.
By using the SiC single crystal manufacturing apparatus of the present invention, it is possible to prevent the growth of polycrystals at a high temperature of about 2000 ° C., for example, at a solution temperature of about 1800 to 2100 ° C., particularly about 1850 to 2050 ° C. for a long time, for example, 1 hour or more. Can obtain a suppressed SiC single crystal.
以下、本発明の実施例を示す。
以下の各例において、SiC単結晶成長を以下の条件で行った。
溶液温度:1900℃
ガス流量:5L/分
成長時間:1時間
Examples of the present invention will be described below.
In each of the following examples, SiC single crystal growth was performed under the following conditions.
Solution temperature: 1900 ° C
Gas flow rate: 5L / min Growth time: 1 hour
実施例1
SiC単結晶の成長を、図1に示す本発明の実施態様のSiC単結晶製造装置を用いて行った。成長量は340μmであり、種結晶近傍での多結晶付着は観察されなかった。
得られたSiC単結晶成長写真(as−grown)を図8に示す。
Example 1
The growth of the SiC single crystal was performed using the SiC single crystal manufacturing apparatus according to the embodiment of the present invention shown in FIG. The growth amount was 340 μm, and no polycrystalline adhesion was observed in the vicinity of the seed crystal.
The obtained SiC single crystal growth photograph (as-grown) is shown in FIG.
比較例1
SiC単結晶の成長を、図2に示す従来のSiC単結晶製造装置を用いて行った。成長量は340μmであり、種結晶近傍での多結晶付着が観察された。
得られたSiC単結晶成長写真(as−grown)を図9に示す。
Comparative Example 1
The growth of the SiC single crystal was performed using the conventional SiC single crystal manufacturing apparatus shown in FIG. The growth amount was 340 μm, and polycrystal adhesion in the vicinity of the seed crystal was observed.
The obtained SiC single crystal growth photograph (as-grown) is shown in FIG.
本発明のSiC単結晶製造装置によって、成長炉内を均熱化することが可能となり従来不可能であった溶液温度が1800〜2100℃程度の高温で結晶成長を行っても多結晶の発生を防止乃至は抑制することが可能となり、生産性高くSiC単結晶を製造し得る。 With the SiC single crystal manufacturing apparatus of the present invention, the inside of the growth furnace can be soaked, and even if crystal growth is performed at a high solution temperature of about 1800 to 2100 ° C. It becomes possible to prevent or suppress, and a SiC single crystal can be manufactured with high productivity.
1 本発明の実施態様のSiC単結晶製造装置
2 成長炉
3 原料溶液
4 種結晶
5 支持軸
6 坩堝
7 断熱材
8 エネルギー放出体
9 発熱部材
10 従来のSiC単結晶製造装置
11 空間
DESCRIPTION OF SYMBOLS 1 SiC single crystal manufacturing apparatus of embodiment of this invention 2 Growth furnace 3 Raw material solution 4 Seed crystal 5 Support shaft 6 Crucible 7 Heat insulating material 8 Energy emission body 9 Heating member 10 Conventional SiC single crystal manufacturing apparatus 11 Space
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011046400A JP5580764B2 (en) | 2011-03-03 | 2011-03-03 | SiC single crystal manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011046400A JP5580764B2 (en) | 2011-03-03 | 2011-03-03 | SiC single crystal manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012184120A JP2012184120A (en) | 2012-09-27 |
JP5580764B2 true JP5580764B2 (en) | 2014-08-27 |
Family
ID=47014544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011046400A Expired - Fee Related JP5580764B2 (en) | 2011-03-03 | 2011-03-03 | SiC single crystal manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5580764B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014167844A1 (en) | 2013-04-09 | 2014-10-16 | 新日鐵住金株式会社 | METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL |
PL2881498T3 (en) | 2013-12-06 | 2020-06-15 | Shin-Etsu Chemical Co., Ltd. | Method for growing silicon carbide crystal |
JP6178227B2 (en) * | 2013-12-06 | 2017-08-09 | 信越化学工業株式会社 | Crystal growth method of silicon carbide |
JP6180910B2 (en) * | 2013-12-06 | 2017-08-16 | 信越化学工業株式会社 | Crystal growth method of silicon carbide |
JP6177676B2 (en) * | 2013-12-06 | 2017-08-09 | 信越化学工業株式会社 | Crystal growth method of silicon carbide |
JP6181534B2 (en) * | 2013-12-06 | 2017-08-16 | 信越化学工業株式会社 | Crystal growth method of silicon carbide |
JP6533716B2 (en) | 2015-08-06 | 2019-06-19 | 信越化学工業株式会社 | Method of manufacturing SiC single crystal |
US20170327968A1 (en) * | 2016-05-10 | 2017-11-16 | Toyota Jidosha Kabushiki Kaisha | SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME |
JP6558394B2 (en) * | 2017-04-26 | 2019-08-14 | トヨタ自動車株式会社 | Method and apparatus for producing SiC single crystal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002012500A (en) * | 2000-06-21 | 2002-01-15 | Showa Denko Kk | Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal |
JP4100228B2 (en) * | 2002-04-15 | 2008-06-11 | 住友金属工業株式会社 | Silicon carbide single crystal and manufacturing method thereof |
JP4432576B2 (en) * | 2004-03-30 | 2010-03-17 | 株式会社Sumco | Silicon single crystal pulling apparatus and single crystal silicon wafer |
JP4736401B2 (en) * | 2004-11-02 | 2011-07-27 | 住友金属工業株式会社 | Method for producing silicon carbide single crystal |
-
2011
- 2011-03-03 JP JP2011046400A patent/JP5580764B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012184120A (en) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5580764B2 (en) | SiC single crystal manufacturing equipment | |
JP4450074B2 (en) | Method for growing silicon carbide single crystal | |
JP4277926B1 (en) | Growth method of silicon carbide single crystal | |
US20120304916A1 (en) | Method of producing silicon carbide single crystal | |
JP2007197231A (en) | METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL | |
US9702057B2 (en) | Method for producing an n-type SiC single crystal from a Si—C solution comprising a nitride | |
JP4998488B2 (en) | SiC single crystal production equipment by solution method | |
JP6968408B2 (en) | Method for manufacturing silicon carbide single crystal | |
KR101152857B1 (en) | Method for growing silicon carbide single crystal | |
JP4470690B2 (en) | Silicon carbide single crystal, silicon carbide substrate, and method for producing silicon carbide single crystal | |
JP2012193055A (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND APPARATUS USED THEREFOR | |
JP5031651B2 (en) | Method for producing silicon carbide single crystal ingot | |
KR101353679B1 (en) | Apparatus for growing large diameter single crystal and method for growing using the same | |
JP5359796B2 (en) | Method for producing SiC single crystal | |
JP2010189235A (en) | METHOD FOR PRODUCING n-TYPE SiC SINGLE CRYSTAL, n-TYPE SiC SINGLE CRYSTAL PREPARED THEREBY AND USE THEREOF | |
JP5310493B2 (en) | Method for producing single crystal by solution method | |
JP2015040146A (en) | Single crystal production device and single crystal production method using the same | |
JP2015110498A (en) | Silicon carbide crystal growth method | |
JP2015110496A (en) | Silicon carbide crystal growth method | |
JP2015110495A (en) | Silicon carbide crystal growth method | |
JP2017154953A (en) | Silicon carbide single crystal production apparatus | |
JP5823947B2 (en) | Method for producing SiC single crystal | |
JP2015110501A (en) | Silicon carbide crystal growth method | |
KR102475267B1 (en) | Apparatus for growing large diameter single crystal and method for growing using the same | |
WO2016148207A1 (en) | SiC SINGLE CRYSTAL PRODUCTION METHOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140624 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140711 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |