[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5573128B2 - Resistance spot welding method - Google Patents

Resistance spot welding method Download PDF

Info

Publication number
JP5573128B2
JP5573128B2 JP2009271366A JP2009271366A JP5573128B2 JP 5573128 B2 JP5573128 B2 JP 5573128B2 JP 2009271366 A JP2009271366 A JP 2009271366A JP 2009271366 A JP2009271366 A JP 2009271366A JP 5573128 B2 JP5573128 B2 JP 5573128B2
Authority
JP
Japan
Prior art keywords
energization
heat
spot welding
resistance spot
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009271366A
Other languages
Japanese (ja)
Other versions
JP2010149187A (en
Inventor
公一 谷口
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009271366A priority Critical patent/JP5573128B2/en
Publication of JP2010149187A publication Critical patent/JP2010149187A/en
Application granted granted Critical
Publication of JP5573128B2 publication Critical patent/JP5573128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、重ね抵抗溶接法の一種である抵抗スポット溶接方法に係り、特に、引張強度が590MPa以上である高強度鋼板を含む板組を、より短時間で、より高強度の継手を形成する抵抗スポット溶接方法に関する。   The present invention relates to a resistance spot welding method which is a kind of lap resistance welding method, and in particular, a plate assembly including a high strength steel plate having a tensile strength of 590 MPa or more is formed in a shorter time and a higher strength joint. The present invention relates to a resistance spot welding method.

近年、車体の高信頼性と、エミッション削減を目的とした車体重量の軽減を両立して達成するための鋼板の高強度化が進められている。自動車の車体組立てにおいては、抵抗スポット溶接が広く用いられている。   In recent years, steel sheets have been strengthened to achieve both high reliability of the vehicle body and reduction of vehicle body weight for the purpose of reducing emissions. Resistance spot welding is widely used in the assembly of automobile bodies.

抵抗スポット溶接は、図1に示すように、重ね合わせた2枚以上の鋼板(ここでは、下の鋼板1と上の鋼板2の2枚)の板組3を、上下一対の電極チップ(下の電極チップ4と上の電極チップ5)で挟み、加圧、通電することにより溶融させ、必要サイズのナゲット6を形成して、溶接継手を得るものである。   As shown in FIG. 1, resistance spot welding is performed by attaching a plate set 3 of two or more stacked steel plates (here, the lower steel plate 1 and the upper steel plate 2) to a pair of upper and lower electrode tips (lower Are sandwiched between the electrode tip 4 and the upper electrode tip 5), and are melted by pressurization and energization to form a nugget 6 having a necessary size, thereby obtaining a welded joint.

このようにして得られた継手の品質は、ナゲットの径や溶け込みが得られているか、或いはせん断引張強度(継手のせん断方向に引張試験をしたときの強さ)や十字引張強度(継手の剥離方向に引張試験をしたときの強さ)、また疲労強度などで評価されている。その中でも、せん断引張強度や十字引張強度を代表とする静的強度は、継手品質の指標として非常に重要視されている。   The quality of the joint obtained in this way is that the diameter and penetration of the nugget are obtained, or the shear tensile strength (strength when the tensile test is performed in the shear direction of the joint) and the cross tensile strength (joint peeling). Strength when a tensile test is performed in the direction) and fatigue strength. Among them, the static strength represented by shear tensile strength and cross tensile strength is regarded as very important as an index of joint quality.

このうち、スポット溶接部の引張せん断強度は、鋼板の引張強度の増加とともに増加する傾向にある。しかし、十字引張強度は鋼板の引張強度の増加にかかわらずほとんど増加せず、逆に減少する。その原因として、高強度鋼板は、その強度を達成するために下記式などで表される炭素等量Ceqが大きくならざるをえず、加えて溶接は急熱急冷現象であるために、溶接部及び熱影響部において硬度が上昇し、靭性が低下するからだと考えられている。   Among these, the tensile shear strength of the spot welded portion tends to increase as the tensile strength of the steel plate increases. However, the cross tensile strength hardly increases regardless of the increase in the tensile strength of the steel sheet, but decreases. As the cause, the high strength steel sheet has to have a large carbon equivalent Ceq represented by the following formula in order to achieve its strength, and in addition, since welding is a rapid heating and quenching phenomenon, It is also considered that the hardness increases in the heat affected zone and the toughness decreases.

Ceq=C+1/24×Si+1/6×Mn
ただし、C、Si、Mnは、各々鋼中におけるC、Si、Mnの含有量(質量%)である。
Ceq = C + 1/24 × Si + 1/6 × Mn
However, C, Si, and Mn are content (mass%) of C, Si, and Mn in steel, respectively.

高強度鋼板を使用する際に継手強度を確保するためには、溶接法の観点からは、打点数の増加やナゲット径の拡大が考えられる。しかし、打点数の増加はスペースが必要であり、作業時間の増加につながり生産性を悪化させる。また、ナゲット径を拡大するには電極を大きくしたり、溶接金属の飛散(チリ)を防ぐために加圧力を増加しなければならず、装置的な制約も受けるほか、熱影響部が拡大するため母材性状が損なわれる欠点もある。   In order to ensure the joint strength when using a high-strength steel plate, from the viewpoint of the welding method, an increase in the number of hitting points and an increase in the nugget diameter are conceivable. However, an increase in the number of hit points requires a space, which leads to an increase in work time and deteriorates productivity. In order to increase the nugget diameter, the electrode must be enlarged and the applied pressure must be increased to prevent the weld metal from being scattered (chile). There is also a drawback that the properties of the base material are impaired.

そこで、従来と同様、あるいはそれ以下の打点数およびナゲット径で強度を確保するために、ナゲットを形成する本通電の後に通電を行う後熱通電方式に対して様々な試みがなされてきた。この後熱通電には大きく分けて二種類有り、溶接部を一旦冷却し、再加熱するマルテンサイトテンパー方式と、溶接部の冷却途中段階で再通電するオーステンパー方式があるが、オーステンパー方式は溶接材料の恒温変態曲線を知る必要があり、後熱通電処理に長時間かかることもあり、安定して効果を得ることが難しいため薄鋼板ではマルテンサイトテンパー方式が主流である。なお、マルテンサイトテンパー方式の原理は、一度溶接部を凝固、変態させた後に再加熱することにより、ナゲットおよびHAZ部分を軟化させることで、ナゲットの靭性向上や溶接部近傍の応力集中緩和をはかり、継手強度向上を実現していると考えられる。   Therefore, various attempts have been made for the post-heat energization method in which energization is performed after the main energization for forming the nugget in order to ensure the strength with the number of hitting points and the nugget diameter that is the same as or less than the conventional one. After this, there are two types of heat energization. There are a martensite temper method in which the weld is once cooled and reheated, and an austemper method in which the weld is re-energized during the cooling of the weld. It is necessary to know the constant temperature transformation curve of the welding material, and it may take a long time for the post-heat energization treatment, and it is difficult to obtain a stable effect, so the martensite temper method is the mainstream in thin steel sheets. The principle of the martensite temper method is to solidify and transform the weld once and then reheat it to soften the nugget and HAZ, thereby improving the toughness of the nugget and reducing stress concentration near the weld. It is considered that the joint strength has been improved.

その一例として、特許文献1では、テンパー通電における通電時間To・通電電流Ioと本通電における通電時間Tt・通電電流Itを用いて、(It/To)の二乗と(Tt/To)の積が0.25/0.82の範囲に入っている事が望ましいとしている。   As an example, in Patent Document 1, the product of the square of (It / To) and (Tt / To) is calculated using the energization time To and energization current Io in temper energization and the energization time Tt and energization current It in main energization. It is desirable to be in the range of 0.25 / 0.82.

また、非特許文献1では、1.05mmの鋼板に対してテンパー通電を行うことにより静的強度が向上し、後熱通電の為に必要な時間は冷却時間が0.4秒、テンパー通電時間が0.5秒で、計0.9秒であるとしている。   In Non-Patent Document 1, static strength is improved by conducting temper energization on a 1.05 mm steel plate, and the time required for post-heat energization is 0.4 seconds for cooling time and temper energization time. Is 0.5 seconds, for a total of 0.9 seconds.

特許文献2では、引張強度が35kg/mm以上の高張力鋼板において、チリ発生限界電流値以上の本通電に加えて、本通電以下の電流値にてテンパー通電を行うことでせん断強度と疲労強度の向上を達成出来るとしている。 In Patent Document 2, in a high-tensile steel sheet having a tensile strength of 35 kg / mm 2 or more, in addition to the main energization exceeding the limit current value for generating dust, the temper energization is performed at a current value equal to or less than the main energization to obtain shear strength and fatigue. It is said that the strength can be improved.

さらに、特許文献3では、本通電を行った後に、本通電以下の電流値にて通電を行い、通電終了後の保持時間を板厚に合わせて変えることにより、高張力鋼板の十字引張強度を改善することが出来るとしている。   Furthermore, in Patent Document 3, after performing the main energization, the energization is performed at a current value equal to or lower than the main energization, and the holding time after the end of the energization is changed in accordance with the plate thickness, thereby increasing the cross tensile strength of the high-tensile steel plate. It can be improved.

近年では、非特許文献2に見られるように、一定の冷却の後、極短時間通電を行ってテンパー通電と同じ効果を得られるとしたSpike−Temperingという方法も提案されており、それによればテンパー通電に必要な時間は40サイクル(0.8秒)程度とされている。   In recent years, as seen in Non-Patent Document 2, a method called Spike-Tempering has been proposed in which energization is performed for an extremely short time after constant cooling and the same effect as temper energization can be obtained. The time required for energizing the temper is about 40 cycles (0.8 seconds).

また、後熱通電は上記のような継手強度確保のためだけに用いられるものではなく、溶け込みの確保などにも用いられる。特に、薄板と、それよりも厚い2枚の板などの組み合わせにおいては、薄板と厚板の間に溶融部が形成されづらいという問題があり、このような三枚以上重ねた板組に対して、特許文献4では本通電の後に休止と、通電を繰り返すパルセーション通電を行うことで十分なナゲット径が確保出来るとしている。   Further, the post-heat energization is not only used for securing the joint strength as described above, but also used for securing the penetration. In particular, in the combination of a thin plate and two plates thicker than that, there is a problem that it is difficult to form a melted portion between the thin plate and the thick plate. Document 4 states that a sufficient nugget diameter can be secured by performing pulsation energization that repeats energization after energization.

特許文献5では、溶接を第一段の溶接と第二段の溶接の二段階に分け、第二段の溶接を第一段の溶接よりも低電流・高加圧力にすることによって、チリの抑制効果が得られるとしている。   In Patent Document 5, the welding is divided into two stages, that is, the first stage welding and the second stage welding, and the second stage welding is made to have a lower current and higher pressure than the first stage welding. The suppression effect is said to be obtained.

特開昭58−003792号公報JP 58-003792 A 特開昭58−003793号公報JP 58-003793 A 特開2002−103048号公報JP 2002-103048 A 特開2008−093726号公報JP 2008-093726 A 特開2005−262259号公報JP 2005-262259 A

1st International Conference Super−high Strength Steels Proceedings,G.Shiら,Techniques For Improving The Weldability of Trip Steel Using Resistance Spot Welding, 2005年1st International Conference Super-high Strength Steels Proceedings, G. Shi et al., Techniques for Improving The Weldability of Trip Steel Using Resistance Spot Welding, 2005 AISI/DOE Technology Roadmap Program, DE−FC36−97ID13554, B. Girvinら, Development of Appropriate Spot Welding Practice for Advanced High−Strength Steels, 2004年AISI / DOE Technology Roadmap Program, DE-FC36-97ID13554, B.R. Girvin et al., Development of Appropriate Spot Welding Practicing for Advanced High-Strength Steels, 2004

しかしながら、前記特許文献1〜4および非特許文献1に記載されているような通電方法は、本通電以下の電流値で、十分な抵抗発熱が可能な範囲を選ぶために、利用可能な電流範囲は狭く、僅かな通電電流・電流時間の変化で大きく影響を受けざるを得ず、様々な外乱要因の存在する製造の現場(例えば、本通電の50%を超える大きな電流低下が起きる)において実装するにあたっては、安定的な施工を行う上での余裕が小さいという問題点がある。加えて、本通電以下の低電流で有効に発熱させるためには、十分な溶接時間(非特許文献1によれば、少なくとも0.5秒以上)が必要であり、冷却時間と合わせて総溶接時間(最初の通電が開始してから、最後の通電が完了するまでと定義する)の増加要因となる問題もある。   However, the energization methods such as those described in Patent Documents 1 to 4 and Non-Patent Document 1 can be used in order to select a range in which sufficient resistance heat generation is possible at a current value equal to or less than the main energization. Is narrow and must be greatly affected by slight changes in current flow and current time, and can be mounted at production sites where various disturbance factors exist (for example, a large current drop exceeding 50% of the current flow occurs) In doing so, there is a problem that a margin for performing stable construction is small. In addition, a sufficient welding time (at least 0.5 seconds or more according to Non-Patent Document 1) is required to effectively generate heat at a low current below the main energization, and the total welding is combined with the cooling time. There is also a problem that causes an increase in time (defined from the start of the first energization to the completion of the last energization).

また、一般的なマルテンサイトテンパー方式の通電方法は、前記非特許文献1および非特許文献2にて実施あるいは記載されているように、十分な冷却を置いた後に通電することで焼き戻しを行うテンパー通電であり、十分な冷却時間(非特許文献1によれば1.05mmの板厚で少なくとも20サイクル(0.4秒)以上、安定的に効果を得たい場合や板厚を増す場合は20サイクル(0.4秒)より長い時間)が必要であり、総溶接時間が長くなるという問題があった。   In addition, a general martensite temper energization method performs tempering by energizing after sufficient cooling, as implemented or described in Non-Patent Document 1 and Non-Patent Document 2. Temper energization, sufficient cooling time (according to Non-Patent Document 1, if the plate thickness is 1.05 mm and at least 20 cycles (0.4 seconds) or more, if you want to obtain a stable effect or increase the plate thickness 20 cycles (a time longer than 0.4 seconds) is required, and the total welding time is increased.

さらに、特許文献4は三枚以上重ねた板組に対して溶融部を確保する方法であり、すなわち、本通電で形成されたナゲットを後熱通電によって拡大することを目的としている。従来、ナゲット径と継手強度には密接な関係があるという観点から、後熱通電の有無に係わらず、最終的なナゲット径に対して継手強度を整理し、評価してきた。前述したように、特定のナゲット径で強度を向上させることが重要であることに加え、溶融状態から冷却したのではナゲットやHAZを急冷し、継手強度を向上させることは出来ない。   Furthermore, Patent Document 4 is a method for securing a melted portion with respect to a set of three or more sheets, that is, an object of enlarging a nugget formed by main energization by post-heat energization. Conventionally, from the viewpoint that there is a close relationship between the nugget diameter and the joint strength, the joint strength has been arranged and evaluated with respect to the final nugget diameter regardless of the presence or absence of post-heat conduction. As described above, it is important to improve the strength with a specific nugget diameter. In addition, if the nugget or HAZ is cooled from the molten state, the joint strength cannot be improved.

特許文献5も同様に、三枚以上重ねた板組みに対して溶融部を確保する方法であり、チリの発生を抑制することができるとしているが、溶融部形成の中心的役割を担う通電は二段目の高加圧低電流の部分であるため、冷却過程の熱履歴そのものは通電がナゲットを形成する一段のみの条件と変わらず、継手は急冷されるため、継手強度を向上させることはできない.
本発明は、高強度鋼板を含む板組の抵抗スポット溶接において、前記問題を解決し、より短時間の溶接時間でより高い継手強度を達成することの出来る抵抗スポット溶接方法を提供することを目的とする。
Similarly, Patent Document 5 is a method for securing a melted portion with respect to a stack of three or more sheets, and it is said that generation of dust can be suppressed. Because it is the second stage of high pressure and low current, the thermal history of the cooling process itself is not different from the condition of only one stage where the energization forms a nugget, and the joint is rapidly cooled, so improving the joint strength Can not.
An object of the present invention is to provide a resistance spot welding method capable of solving the above-mentioned problems and achieving higher joint strength in a shorter welding time in resistance spot welding of a plate set including a high-strength steel plate. And

本発明者らは、前記課題を解決するために、高張力鋼板を含む板組の抵抗スポット溶接における十字引張強度の向上方法について鋭意検討した。   In order to solve the above-mentioned problems, the present inventors have intensively studied a method for improving the cross tensile strength in resistance spot welding of a plate assembly including a high-tensile steel plate.

従来のマルテンサイトテンパー方式は、継手形成後に組織を焼き戻し、継手強度を向上させるわけであるから、十分な冷却時間を置く必要があった。この冷却時間については、板組や組成により異なるが、安定的に効果を得るには少なくとも20サイクル(0.4秒)より長く、非特許文献2では40サイクル(0.8秒)程度が望ましいとしている。そこで、総溶接時間を短縮するために、従来困難と考えられてきた20サイクル(0.4秒)以下の冷却時間を利用し、継手強度を向上させることが出来ないかを考えた。さらに、後熱通電として本通電以下の低電流を少なくとも10サイクル(0.2秒)以上の比較的長時間付加する方法がとられてきたのに対し、5サイクル(0.1秒)以下の短い時間付加することで継手強度を向上させることが出来ないかを考えた。ここで、上述の通り、抵抗スポット溶接の継手強度の静的強度を代表する引張せん断強度と十字引張強度のうち、引張せん断強度は鋼板の高強度化に合わせて向上する傾向があるため、高強度鋼板の継手強度を考える際は十字引張強度をより重視した。   In the conventional martensite temper method, the structure is tempered after the joint is formed, and the joint strength is improved. Therefore, it is necessary to allow a sufficient cooling time. Although this cooling time varies depending on the plate assembly and composition, in order to obtain a stable effect, it is longer than at least 20 cycles (0.4 seconds), and in Non-Patent Document 2, about 40 cycles (0.8 seconds) is desirable. It is said. Therefore, in order to shorten the total welding time, a cooling time of 20 cycles (0.4 seconds) or less, which has been considered difficult in the past, was used to consider whether the joint strength could be improved. Furthermore, a method of applying a low current below the main energization for a relatively long time of at least 10 cycles (0.2 seconds) or more as post-heat energization has been taken, whereas 5 cycles (0.1 seconds) or less. We considered whether joint strength could be improved by adding for a short time. Here, as described above, out of the tensile shear strength and the cross tensile strength that represent the static strength of the joint strength of resistance spot welding, the tensile shear strength tends to improve as the strength of the steel plate increases. When considering the joint strength of high-strength steel sheets, the cross tensile strength was more important.

そこで、その問題を解決するためにさらに検討を行った。   Therefore, further studies were conducted to solve the problem.

抵抗スポット溶接継手の十字引張強度と破断形態には相関があり、低強度溶接継手は鋼板に平行に破断する剥離破断を生じ、高強度になるにつれてボタン状に片方の鋼板が残ったまま抜けるように破断するプラグ破断へと変化することが知られている。そこで、同じナゲット径においての破断形態の変化を見るために、本通電のみを付加した溶接継手と本通電に加えて十字引張強度が向上するようにテンパー通電を施した溶接継手とを作成し引張試験を行ったところ、本通電のみの継手は剥離破断し、テンパー通電を付加した継手はプラグ破断した。この両者を比較したところ、以下の事が分かった。   There is a correlation between the cross tensile strength and fracture mode of resistance spot welded joints, and low-strength welded joints cause peeling fracture that breaks parallel to the steel sheet, so that one steel sheet remains in the shape of a button as the strength increases. It is known to change to a plug rupture that breaks. Therefore, in order to see the change in fracture mode at the same nugget diameter, we created a welded joint with only main energization and a welded joint with temper energization to improve the cross tensile strength in addition to the main energization. When the test was conducted, the joint with only the main current was peeled and fractured, and the joint with temper current was plugged and fractured. Comparison of the two revealed the following.

すなわち、本通電のみで剥離破断した継手では破面がへき開面で脆性的な破断であり、テンパー通電を付加しプラグ破断した継手では破面が滑らかで延性的な破断であった。そして、図4に示すように、ナゲット6の周囲を取り巻く、加熱により組織が変化し、硬化した部分を熱影響部7とし、その外側の母材よりも軟化した部分を軟化域8とすれば、剥離破断したものでは、熱影響部7にナゲット6内部よりも硬化した部分が見られたのに対して、プラグ破断したものでは、軟化域8に大きな変化は無かったものの、熱影響部7の軟化が見られた。この熱影響部7の軟化はテンパー通電によってマルテンサイト組織の焼き戻しによって起こったものであり、この軟化によってナゲット6外周での塑性変形が許容され、ナゲット6端部での応力集中が緩和されるために、破断形態が剥離破断からプラグ破断に変化したものだと考えられた。   That is, the joint fractured and peeled only by this energization was a fracture surface with a cleaved face and a brittle fracture, and the joint fractured with a plug by applying temper current was a smooth and ductile fracture. Then, as shown in FIG. 4, if the structure surrounding the nugget 6 is changed by heating and the hardened part is the heat-affected zone 7, and the softened part of the outer base material is the softened region 8. In the case of peeling and breaking, a portion hardened from the inside of the nugget 6 was seen in the heat-affected zone 7, whereas in the case of plug-breaking, there was no significant change in the softened region 8, but the heat-affected zone 7 Softening was observed. The softening of the heat-affected zone 7 is caused by tempering of the martensite structure by tempering. The softening allows plastic deformation at the outer periphery of the nugget 6 and alleviates stress concentration at the end of the nugget 6. For this reason, it was considered that the fracture mode was changed from the peeling fracture to the plug fracture.

そこで、発明者らは、後熱通電を行うに際して、上記と同様の効果を得るために、熱影響部7の全く新しい軟化手法を考えることにした。すなわち、図4に示した従来技術のように、ナゲット6及び熱影響部7を一度硬化させてから焼き戻しにより軟化させるという考え方で軟化させるのではなく、図5に示すように、熱影響部7を電極4、5側の熱影響部7aと軟化域8側の熱影響部7bとに分けて、別個に制御することができるのではないかと考えた。軟化域8側の熱影響部7bはナゲット6からの熱移動も有るために冷却速度は比較的遅いのに対して、電極4、5側の熱影響部7aは電極への放熱により冷却速度は速いからである。   Therefore, the inventors decided to consider a completely new softening method for the heat-affected zone 7 in order to obtain the same effect as described above when performing post-heat energization. That is, unlike the prior art shown in FIG. 4, the nugget 6 and the heat-affected zone 7 are not hardened by the concept of hardening once and then softened by tempering, but as shown in FIG. 7 was divided into the heat-affected zone 7a on the electrodes 4 and 5 side and the heat-affected zone 7b on the softened region 8 side, and it was thought that it could be controlled separately. The heat affected zone 7b on the softened region 8 side also has heat transfer from the nugget 6, so the cooling rate is relatively slow, whereas the heat affected zone 7a on the electrodes 4 and 5 side has a cooling rate due to heat dissipation to the electrodes. Because it is fast.

テンパー通電を行わない時に熱影響部7がナゲット6より硬化するのは、抵抗スポット溶接ではナゲット6中央へ集中的な加熱が行われるために、温度が比較的低い電極4、5あるいは軟化域8と面している熱影響部7は、ナゲット6内部よりも冷却速度が速くなっていることが原因と考えられる。   The heat-affected zone 7 is hardened from the nugget 6 when the temper energization is not performed because the resistance spot welding concentrates heating to the center of the nugget 6. The heat-affected zone 7 facing the surface is considered to be caused by a faster cooling rate than the inside of the nugget 6.

そこで、後熱通電において、熱影響部7の特に軟化域8側の熱影響部7bの冷却速度を遅くし、ナゲット6と同程度になるような適度な通電を与えればよいと考えた。一方、電極4、5側の熱影響部7aは温度が十分に下がるまでに要する時間が短く、その時間を待ってから加熱することによりテンパー処理と同じ効果を得られると考えた。   Therefore, in post-heat energization, it was thought that the cooling rate of the heat-affected zone 7b of the heat-affected zone 7, particularly the softened zone 8 side, should be slowed down so as to give an appropriate level of current to the same level as the nugget 6. On the other hand, the heat affected zone 7a on the side of the electrodes 4 and 5 has a short time required for the temperature to be sufficiently lowered, and it is considered that the same effect as the temper treatment can be obtained by heating after waiting for the time.

上記のような冷却時間の後、5サイクル(0.1秒)以下の短時間の後熱通電で十分な効果を発揮させるためには高い電流を負荷する必要がある。しかし、高電流の付加は再溶融再急冷により継手強度の変化が無いか、逆に低下することもありうる。また、鋼板の固有抵抗値は温度が下がるとともに低下するため、冷却時間を延ばした場合、同じ電流値でも十分に発熱が起こらない。一方で、高い電流を負荷した際にチリが発生すれば、溶融部から溶接金属が減少することで十分な継手強度が確保し得ないことも考えられる。このため、チリの発生を抑止しつつも、高い電流を負荷することが必要になる。これを防止するために、本通電の後に加圧力を増加させ、接触面積を増加させることで、チリ発生限界を改善することを発想した。   After the cooling time as described above, it is necessary to load a high current in order to exert a sufficient effect by the post-heat conduction for a short time of 5 cycles (0.1 seconds) or less. However, the addition of a high current may cause no change in joint strength due to remelting and rapid cooling, or may decrease. Further, since the specific resistance value of the steel sheet decreases as the temperature decreases, when the cooling time is extended, heat generation does not occur sufficiently even at the same current value. On the other hand, if dust is generated when a high current is applied, it is considered that sufficient joint strength cannot be ensured due to a decrease in weld metal from the melted portion. For this reason, it is necessary to load a high current while suppressing the generation of dust. In order to prevent this, the idea was to improve the limit of dust generation by increasing the contact pressure after the main energization and increasing the contact area.

これらの検討から、発明者等は溶融部を形成する本通電後、加圧力を増加させた上で、熱通電電流を本通電電流よりも高く、本通電の4倍程度までの電流値で通電すれば、チリが発生しないのはもちろんのこと、冷却時間にある程度の幅があったとしても、十分に発熱効果が得られることを見いだした。   From these studies, the inventors increased the applied pressure after the main energization to form the melted part, and then energized the heat energization current at a current value higher than the main energization current and up to about 4 times the main energization. As a result, it was found that dust generation does not occur, and that even if there is a certain range in cooling time, a sufficient heat generation effect can be obtained.

したがって、本発明は以下の原理により十字引張強度を向上させるものである。すなわち、本通電によるナゲット6の形成の後、後熱通電として、20サイクル(0.4秒)以下の短時間の冷却時間(休止時間)をおいて、5サイクル(0.1秒)以下の短時間に本通電電流値以上の電流値で電流を付加することで、この入熱によりナゲット6および軟化域8側の熱影響部7bの急冷が抑制され硬化が抑制されると同時に、電極4、5側の熱影響部7aはテンパー効果により焼き戻しされ軟化するのである。テンパー通電のように、継手全体に焼き戻し効果などを付与するのではなく、継手の部分部分で効果が異なる。このため、本手法によればナゲット径を拡大することなく継手強度を向上することが出来る。さらに、本通電後に加圧力を向上させることで、チリ発生を抑止することができる。これら特徴は従来技術に無かったものである。   Therefore, the present invention improves the cross tensile strength according to the following principle. That is, after the formation of the nugget 6 by the main energization, as a post-heat energization, a short cooling time (rest time) of 20 cycles (0.4 seconds) or less is used, and 5 cycles (0.1 seconds) or less. By applying a current with a current value equal to or greater than the main energization current value in a short time, the heat input suppresses rapid cooling of the heat affected zone 7b on the nugget 6 and the softened region 8 side, and at the same time suppresses hardening. The heat-affected zone 7a on the 5th side is tempered and softened by the temper effect. Unlike the temper energization, the tempering effect or the like is not given to the entire joint, but the effect is different in the joint portion. For this reason, according to this method, joint strength can be improved without increasing the nugget diameter. Furthermore, generation | occurrence | production of dust can be suppressed by improving a pressurizing force after this electricity supply. These features are not found in the prior art.

上記原理を有効に成立させるためには、以下の点に着目する必要がある。すなわち、電極4、5側の熱影響部7aにおいては、十分に冷却された後に適切に加熱される必要がある。このためには、冷却時間(休止時間)を少なくとも1サイクル(0.02秒)以上で、長くとも20サイクル(0.4秒)以下に設定することで目的は達せられる。その後、後熱通電時における加圧力を本通電時よりも増加させることで、後熱通電における電流値の余裕を増加させるばかりでなく、そのことによってチリを抑制することが出来る。さらに、軟化域8側の熱影響部7bにおいては、後熱通電の通電時間が長すぎると、必要以上に加熱され、再急冷されることになってしまい、逆に硬化させてしまう要因となるし、チリの原因ともなる。したがって、通電時間は長くとも5サイクル(0.1秒)程度である。また、電流値についても、同様の理由から設定されるべきであり、本通電における電流値の3倍程度までの電流値を溶接対象に応じて適切に選択する。   In order to effectively establish the above principle, it is necessary to pay attention to the following points. That is, the heat-affected zone 7a on the electrodes 4 and 5 side needs to be appropriately heated after being sufficiently cooled. For this purpose, the object can be achieved by setting the cooling time (resting time) to at least one cycle (0.02 seconds) or more and at most 20 cycles (0.4 seconds) or less. Thereafter, by increasing the applied pressure during post-heat energization as compared to during main energization, not only the current value margin in post-heat energization is increased, but also dust can be suppressed. Furthermore, in the heat-affected zone 7b on the softened region 8 side, if the energization time of the post-heat energization is too long, it will be heated more than necessary and will be re-cooled rapidly, and conversely will be a factor of hardening. And it also causes dust. Therefore, the energization time is about 5 cycles (0.1 seconds) at the longest. Also, the current value should be set for the same reason, and a current value up to about three times the current value in the main energization is appropriately selected according to the object to be welded.

ただし、元来ナゲットとその周辺部分とは温度差が大きいために、1回の後熱通電工程では上記効果が得られないことがあり、効果を確実にするためには、休止と通電を繰返す必要がある。この回数は、板厚などに合わせて1回以上繰り返す必要がある。ただし、繰り返し回数を過剰に増加させても、継手強度が向上しないばかりか、総溶接時間の増加につながる。このため、通常1回ないし2回、多くても3回までが望ましい。   However, since the temperature difference between the nugget and the surrounding area is large, the above effect may not be obtained in one post-heat energization process. To ensure the effect, the rest and energization are repeated. There is a need. This number of times needs to be repeated one or more times according to the plate thickness and the like. However, even if the number of repetitions is excessively increased, the joint strength is not improved, and the total welding time is increased. For this reason, it is desirable that it is usually once or twice, and at most 3 times.

そして、これらは急冷による硬化が著しく、十字引張強度が大幅に劣化する引張強度590MPa以上の高張力鋼板に適用されることにより、著しい効果を発現する。   These are markedly hardened by rapid cooling, and exhibit a remarkable effect when applied to a high-tensile steel plate having a tensile strength of 590 MPa or more where the cross tensile strength is greatly deteriorated.

このようにして、後熱通電において、上記のような休止時間と通電を交互に1回以上繰り返すことで、チリや電極の溶着なく、継手強度を向上させることに成功したのである。   In this way, in post-heat energization, the above-described rest time and energization were alternately repeated one or more times, thereby succeeding in improving joint strength without fouling or electrode welding.

上記に基づいて、本発明は以下の特徴を有している。   Based on the above, the present invention has the following features.

[1]二枚以上の鋼板を重ね合せた板組を、一対の溶接電極で挟持し、加圧しながら電流を流して溶接する抵抗スポット溶接方法であって、
少なくとも二つの工程からなり、
通電により所定の径のナゲットを形成する本通電工程と、
加圧力を本通電工程より増加させて、1サイクル以上20サイクル以下の休止と、短時間の通電からなる後熱通電工程を有する、
ことを特徴とする抵抗スポット溶接方法。
[1] A resistance spot welding method in which a plate assembly in which two or more steel plates are overlapped is sandwiched between a pair of welding electrodes and a current is applied while welding and welding is performed.
Consists of at least two steps,
A main energization step of forming a nugget of a predetermined diameter by energization;
A post-heat energization process consisting of a pause of 1 cycle or more and 20 cycles or less and a short-time energization by increasing the applied pressure from the main energization process,
The resistance spot welding method characterized by the above-mentioned.

[2]後熱通電工程が、加圧力を本通電工程より増加させて、6サイクル以上20サイクル以下の休止と、短時間の通電からなることを特徴とする前記[1]に記載の抵抗スポット溶接方法。   [2] The resistance spot according to [1], wherein the post-heat energization step includes a pause of 6 cycles or more and 20 cycles or less and a short time energization by increasing the applied pressure from the main energization step. Welding method.

[3]後熱通電工程が、加圧力を本通電工程より増加させて、6サイクル以上10サイクル以下の休止と、短時間の通電からなることを特徴とする前記[1]に記載の抵抗スポット溶接方法。   [3] The resistance spot according to [1], wherein the post-heat energization step includes a pause of 6 cycles or more and 10 cycles or less and a short time energization by increasing the applied pressure from the main energization step. Welding method.

[4]二枚以上の高強度鋼板を重ね合せた板組を抵抗スポット溶接するにあたり、所定の径のナゲットを形成する本通電工程と、その後に、加圧力を本通電工程より増加させて本通電工程より高い電流値にて多段通電を行う後熱通電工程を有し、
本通電工程において、前記ナゲット径d(mm)が、前記板組で最も薄い高強度鋼板の厚さt(mm)を用いて、
3×√t≦d≦6×√t
で表される範囲となるように、通電時間と電流値を設定して通電した後、
後熱通電工程において、加圧力を増加させて、通電時間1〜5サイクル、休止時間1〜10サイクルとして、通電及び休止を1回以上繰り返す多段通電を行う
ことを特徴とする抵抗スポット溶接方法。
[4] In resistance spot welding of a plate assembly in which two or more high-strength steel plates are superposed, a main energizing step for forming a nugget of a predetermined diameter, and then a main force is applied by increasing the applied pressure from the main energizing step. It has a post-heat energization process that performs multi-stage energization at a higher current value than the energization process
In this energization process, the nugget diameter d (mm) is the thickness t (mm) of the thinnest high-strength steel plate in the plate assembly,
3 × √t ≦ d ≦ 6 × √t
After setting the energization time and current value so that it is in the range represented by
In the post-heat energization step, multi-stage energization is performed by repeating energization and deactivation one or more times with energization time of 1 to 5 cycles and deactivation time of 1 to 10 cycles by increasing the applied pressure.

[5]前記後熱通電工程における加圧力Pbが、本通電工程における加圧力Paに対して、
Pa<Pb≦3×Pa
の範囲であることを特徴とする前記[4]に記載の高強度鋼板の重ね抵抗スポット溶接方法。
[5] The applied pressure Pb in the post-heat energizing step is greater than the applied pressure Pa in the main energizing step.
Pa <Pb ≦ 3 × Pa
The lap resistance spot welding method for high-strength steel sheets according to [4] above, wherein

[6]前記後熱通電工程における電流値Ibが、本通電工程における電流値Iaに対して、
Ia<Ib≦3×Ia
の範囲であることを特徴とする前記[4]または[5]に記載の抵抗スポット溶接方法。
[6] The current value Ib in the post-heat energization step is equal to the current value Ia in the main energization step.
Ia <Ib ≦ 3 × Ia
The resistance spot welding method according to [4] or [5] above, wherein

[7]後熱通電工程において、休止と通電を1回以上2回以下の範囲で繰り返すことを特徴とする前記[1]〜[6]のいずれかに記載の抵抗スポット溶接方法。   [7] The resistance spot welding method according to any one of [1] to [6], wherein in the post-heat energization step, the pause and energization are repeated in the range of 1 to 2 times.

[8]二枚以上の鋼板のうち、少なくとも一枚の鋼板の引張強度が、590MPa以上であることを特徴とする前記[1]〜[7]のいずれかに記載の抵抗スポット溶接方法。   [8] The resistance spot welding method according to any one of [1] to [7], wherein the tensile strength of at least one of the two or more steel plates is 590 MPa or more.

[9]二枚以上の鋼板のうち、少なくとも一枚の鋼板の引張強度が、980MPa以上であることを特徴とする前記[1]〜[8]のいずれかに記載の抵抗スポット溶接方法。   [9] The resistance spot welding method according to any one of [1] to [8], wherein the tensile strength of at least one of the two or more steel plates is 980 MPa or more.

本発明によれば、少なくとも一枚以上の高張力鋼板を含む二枚以上の板組に対して、十字引張強度の高い抵抗スポット溶接継手を作成することが出来るとともに、チリの発生を抑制しながら従来のテンパー通電よりも短時間で継手を作成することが出来るため、産業上格段の効果を奏する。   According to the present invention, a resistance spot welded joint having a high cross tensile strength can be created for two or more sheet sets including at least one high-tensile steel sheet, and generation of dust is suppressed. Since it is possible to create a joint in a shorter time than conventional temper energization, there is a remarkable industrial effect.

本発明の一実施形態における板組と電極の配置位置を模式的に示す図である。It is a figure which shows typically the board assembly and the arrangement position of an electrode in one Embodiment of this invention. 本発明の一実施形態における施工手順を模式的に示す図である。It is a figure which shows typically the construction procedure in one Embodiment of this invention. 本発明の実施例で使用した電極チップ形状を示すものである。The electrode tip shape used in the example of the present invention is shown. 抵抗スポット溶接における熱影響部と軟化域を示すものである。It shows the heat affected zone and the softened zone in resistance spot welding. 本発明の原理を示すものである。1 illustrates the principle of the present invention.

本発明の一実施形態を図面に基づいて説明する。   An embodiment of the present invention will be described with reference to the drawings.

本発明の一実施形態に係る抵抗スポット溶接方法は、図1に示したように、重ね合わせた1枚以上の高強度鋼板を含む(ここでは、下の鋼板1と上の鋼板2の2枚のうち、鋼板1が高強度鋼板である)板組3を、上下一対の電極チップ(下の電極チップ4と上の電極チップ5)で挟み、加圧、通電する抵抗スポット溶接により溶接接合し、必要サイズのナゲット6を形成して抵抗スポット溶接継手を得る抵抗スポット溶接方法である。   As shown in FIG. 1, the resistance spot welding method according to an embodiment of the present invention includes one or more high-strength steel plates that are superposed (here, the lower steel plate 1 and the upper steel plate 2). Among them, the steel plate 1 is a high-strength steel plate) and the plate assembly 3 is sandwiched between a pair of upper and lower electrode tips (the lower electrode tip 4 and the upper electrode tip 5) and welded by resistance spot welding to be pressurized and energized. This is a resistance spot welding method in which a nugget 6 having a necessary size is formed to obtain a resistance spot welded joint.

この実施形態において好適に使用可能な溶接装置は、上下一対の電極チップを備え、一対の電極チップで溶接する部分を挟み、加圧、通電でき、溶接中に加圧力、溶接電流をそれぞれ任意に制御可能な加圧力制御装置および溶接電流制御装置を有していれば、加圧機構(エアシリンダやサーボモータ等)、電流制御機構(交流や直流等)、形式(定置式、ロボットガン等)等はとくに限定されない。   A welding device that can be suitably used in this embodiment includes a pair of upper and lower electrode tips, can sandwich and pressurize and energize a portion to be welded, and can arbitrarily apply pressure and welding current during welding. If you have a controllable pressure control device and welding current control device, pressurization mechanism (air cylinder, servo motor, etc.), current control mechanism (AC, DC, etc.), type (stationary, robot gun, etc.) Etc. are not particularly limited.

そして、この実施形態における施工手順を図2に示す。   And the construction procedure in this embodiment is shown in FIG.

まず、加圧力Paの状態で、所定のナゲット径が得られるように本通電工程の通電時間(本通電時間)Taと電流値(本通電電流値)Iaを設定して通電し、ナゲット6を得る。ただし、ナゲット径dを大きくするためには、大電流を流す必要があり、熱影響域の拡大、およびそれに伴う強度の低下が問題となる場合がある。これら問題を回避するためには、ナゲット径dは、板組3で最も薄い高張力鋼板(ここでは、下の鋼板1)の厚さt(mm)を用いて、3×√t以上6×√t以下の範囲がより好ましいと考えられる。   First, the energization time (main energization time) Ta and the current value (main energization current value) Ia of the main energization process are set so as to obtain a predetermined nugget diameter in the state of the applied pressure Pa. obtain. However, in order to increase the nugget diameter d, it is necessary to flow a large current, and the expansion of the heat-affected zone and the accompanying strength reduction may be problematic. In order to avoid these problems, the nugget diameter d is 3 × √t or more and 6 × using the thickness t (mm) of the thinnest high-tensile steel plate (here, the lower steel plate 1). A range of √t or less is considered to be more preferable.

なお、実施工上、ナゲットを形成する通電が多段で制御されていたとしても、ナゲット形成に対して中心的な役割を担う通電を本通電として、このときの電流値をIaとする。   Note that even if the energization for forming the nugget is controlled in multiple stages in practice, the energization that plays a central role in the nugget formation is assumed to be the main energization, and the current value at this time is Ia.

次に、上記ナゲット径を形成した後、加圧力をPbに増加させる。このとき、Pbの設定はPaより高く、Paの3倍以下に設定すれば、十分に効果が得られると考えられる。   Next, after forming the nugget diameter, the applied pressure is increased to Pb. At this time, if the setting of Pb is higher than Pa and set to 3 times or less of Pa, it is considered that a sufficient effect can be obtained.

さらに、二段目以降の通電(後熱通電)として、通電時間Tbが1〜5サイクル、休止時間Thが1〜20サイクルとした通電と休止を1回以上繰り返す多段通電を行う。   Further, as the energization after the second stage (post-heat energization), multi-stage energization is performed in which energization and deactivation with an energization time Tb of 1 to 5 cycles and a deactivation time Th of 1 to 20 cycles are repeated one or more times.

まず、加圧力を増加させるタイミングとしては、加圧力の増加による効果が得られるように、多段通電の第一通電が付加されるまでに完了するのが望ましい。また、高すぎる加圧力は電極の劣化を引き起こす可能性があるため、より好ましくは、Pa<Pb≦2×Paの範囲にとどめるのが望ましい。   First, it is desirable that the timing of increasing the pressurization is completed before the first energization of the multi-stage energization is added so that the effect of the increase of the pressurization can be obtained. Moreover, since an excessively high applied pressure may cause deterioration of the electrode, it is more preferable that the applied pressure be within a range of Pa <Pb ≦ 2 × Pa.

次に、鋼板の固有抵抗は温度が下がるにつれて減少するから、それに合わせて後熱通電工程の休止時間Th、通電時間Tb、後熱通電電流値Ibのバランスを取らなければならない。冷却が進まない前に通電すると、ナゲット6が完全に再溶融してしまったり、あるいは高い温度に上がりすぎたりして、逆に強度を低下させる原因となりうる。しかし、鋼板の厚みにもよるが、20サイクルを超えるまで冷却した場合は十分に変態が進み、その後の通電により本発明の効果が得られないばかりか、溶接時間が増加する原因となる。このため、休止時間Thは6サイクル以上20サイクルまでが望ましい。また、長すぎる通電時間や、高すぎる電流値はチリの原因となるうえ、電極寿命を減少させる。このため、通電時間Tbは5サイクルまで、後熱通電電流値Ibは本通電電流値Iaの4倍までとし、組み合わせによって適切に選択される。   Next, since the specific resistance of the steel sheet decreases as the temperature decreases, the rest time Th, the energization time Tb, and the post-heat conduction current value Ib of the post-heat conduction process must be balanced accordingly. If the current is applied before the cooling proceeds, the nugget 6 may be completely remelted or excessively raised to a high temperature, which may cause a decrease in strength. However, depending on the thickness of the steel sheet, when it is cooled to more than 20 cycles, the transformation proceeds sufficiently, and not only the effect of the present invention is not obtained by the subsequent energization, but it also causes an increase in welding time. For this reason, it is desirable that the pause time Th is 6 cycles or more and 20 cycles. Also, an energization time that is too long or a current value that is too high causes dust and reduces the life of the electrode. Therefore, the energization time Tb is up to 5 cycles, the post-heat energization current value Ib is up to 4 times the main energization current value Ia, and is appropriately selected depending on the combination.

継手強度向上のためには、上記後熱通電工程を、板厚などに合わせて1回以上繰り返す必要がある。ただし、繰り返し回数を過剰に増加させても、継手強度が向上しないばかりか、総溶接時間の増加につながる。このため、繰返し回数は1回ないし2回、多くても3回までが望ましく、実施工を考えた場合、1回ないし2回が最も好適である。   In order to improve the joint strength, it is necessary to repeat the post-heat energization step one or more times according to the plate thickness and the like. However, even if the number of repetitions is excessively increased, the joint strength is not improved, and the total welding time is increased. For this reason, the number of repetitions is preferably 1 to 2 times, and at most 3 times. In consideration of implementation, 1 to 2 times is most preferable.

さらに、様々な外乱要因がある実施工において、効果を安定的に得るためには、後熱通電電流値IbはIa<Ib≦3×Iaの範囲に収まるようにするのが、最も好適である。この範囲の後熱通電電流値を採用する場合には、繰り返し回数1回であれば通電時間Tbを2〜4サイクル、休止時間Thを6〜20サイクル、繰り返し回数2回であれば通電時間Tbを2〜4サイクル、休止時間Thを6〜10サイクルに設定するのが望ましい。   Furthermore, in an implementation where there are various disturbance factors, it is most preferable that the post-heat conduction current value Ib be within the range of Ia <Ib ≦ 3 × Ia in order to stably obtain the effect. . When the post-heat energization current value in this range is adopted, the energization time Tb is 2 to 4 cycles if the number of repetitions is 1, and the downtime Th is 6 to 20 cycles, and the energization time Tb if the number of repetitions is 2 times. Is preferably set to 2 to 4 cycles, and the rest time Th is set to 6 to 10 cycles.

なお、施工面での安定性やチリの発生限界から鑑みて、長すぎない通電時間、短すぎない休止時間、高すぎない通電電流を選択すべきであるから、通電時間Tbは2〜4サイクル、休止時間Thは6〜10サイクル、後熱通電電流値IbはIa<Ib≦3×Iaの範囲に収まるようにするのが、最も好適であると考えられる。   In view of stability in construction and generation limit of dust, the energization time Tb should be 2 to 4 cycles since the energization time not too long, the downtime not too short, and the energization current not too high should be selected. It is considered most preferable that the rest time Th is 6 to 10 cycles and the post-heat conduction current value Ib is within the range of Ia <Ib ≦ 3 × Ia.

ただし、温度や湿度などの施工雰囲気、また母材温度による影響で冷却が遅くなることが考えられる。この際、冷却時間が20サイクルを超えていたとしても、本通電電流Iaよりも高い電流値の電流Ibを2回以上付加し、ナゲット全体を溶融させずに後熱通電を行ったものであれば、本発明の範囲であるといえる。   However, it is conceivable that the cooling will be delayed due to the influence of the construction atmosphere such as temperature and humidity and the base material temperature. At this time, even if the cooling time exceeds 20 cycles, the current Ib having a current value higher than the main energizing current Ia is applied twice or more, and the post-heat energization is performed without melting the whole nugget. It can be said that it is within the scope of the present invention.

また、引張強度590MPa未満の鋼板では、通常の溶接で十分な継手強度が達成されるという観点から、引張強度が590MPa以上の高強度力鋼板に対して使用するのが好ましく、特に引張強度980MPa以上の高強度力鋼板で著しい効果を得ることが出来る。   Further, in the case of a steel sheet having a tensile strength of less than 590 MPa, it is preferable to use it for a high-strength steel plate having a tensile strength of 590 MPa or more from the viewpoint that sufficient joint strength can be achieved by ordinary welding, and in particular, a tensile strength of 980 MPa or more. A remarkable effect can be obtained with the high strength steel plate.

さらに、前述した本発明の原理から、本発明の効果を達成するためには、後熱通電工程を2回繰り返した場合、休止時間Th・後熱通電電流値Ib・後熱通電時間Tbが2回とも同じでなくとも良い。例えば、1回目の休止時間では十分に冷却が進まないが、2回目の休止時間では冷却が進みすぎるということであれば、1回目の休止時間Th1を2回目の休止時間Th2よりも長くすることも考えられる。同様に、1回目の電流値を小さくしたり、通電時間を短くしたりしてもよく、これらの理由から、後熱通電工程の休止時間Th・電流値Ib・通電時間Tbを個別に変更することは、本発明の意図を離れるものではない。   Further, in order to achieve the effect of the present invention based on the principle of the present invention described above, when the post-heat energization process is repeated twice, the rest time Th, the post-heat energization current value Ib, and the post-heat energization time Tb are 2 It doesn't have to be the same. For example, if the cooling does not proceed sufficiently during the first downtime, but the cooling proceeds too much during the second downtime, the first downtime Th1 should be longer than the second downtime Th2. Is also possible. Similarly, the current value for the first time may be reduced or the energization time may be shortened. For these reasons, the rest time Th, the current value Ib, and the energization time Tb of the post-heat energization process are individually changed. This does not depart from the intent of the present invention.

本発明の実施例1として、前述の図1に示したように、2枚の鋼板(下の鋼板1、上の鋼板2)を重ねた板組3について、Cガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて抵抗スポット溶接を行い、抵抗スポット溶接継手を作製した。なお、使用した一対の電極チップ(下の電極チップ4、上の電極チップ5)は、ともに図3に示すように、先端の曲率半径R40、先端径6mmを有するアルミナ分散銅のDR型電極とした。   As Example 1 of the present invention, as shown in FIG. 1 above, a servo motor attached to a C gun is added to a plate set 3 in which two steel plates (lower steel plate 1 and upper steel plate 2) are stacked. Resistance spot welding was performed by using a pressure single-phase alternating current (50 Hz) resistance welder to produce a resistance spot welded joint. As shown in FIG. 3, the pair of electrode tips used (lower electrode tip 4 and upper electrode tip 5) are composed of an alumina-dispersed copper DR type electrode having a tip radius of curvature R40 and a tip diameter of 6 mm. did.

試験片として、鋼板1、2ともに、1.6mmで同じ鋼種の鋼板を用い、引張強度980MPa級二相鋼、1180MPa級二相鋼、引張強度1470MPa級フルマルテンサイト鋼の裸鋼板を使用した。JIS Z3137に基づき溶接および引張試験を行った。なお、本実施例1では、本通電条件を加圧力Paを3.5kN、本通電時間Taを14サイクルで一定とした。その他のスクイズ時間あるいはスロープ時間については設定しなかった。   As the test pieces, steel plates 1 and 2 were both 1.6 mm thick and the same steel type, and a bare steel plate of tensile strength 980 MPa class duplex steel, 1180 MPa class duplex steel, and tensile strength 1470 MPa class full martensite steel was used. Welding and tensile tests were performed based on JIS Z3137. In the first embodiment, the main energization conditions were such that the applied pressure Pa was 3.5 kN and the main energization time Ta was constant at 14 cycles. No other squeeze time or slope time was set.

そして、本発明例として、上記の本発明の一実施形態に基づいて抵抗スポット溶接を行った。その際、本通電終了後の後熱通電として、加圧力Pbを本通電の加圧力Paよりも増加させて、休止時間Thを置いた後、通電時間Tbの間に通電電流Ibを通電するセットを3回行った。通電終了後ガンが開き加圧力が0になるまでの保持時間は1サイクルに設定した。   And as an example of this invention, resistance spot welding was performed based on one Embodiment of said this invention. At that time, as a post-heat energization after the end of the main energization, a set in which the energization current Ib is energized during the energization time Tb after the pressurization pressure Pb is increased from the main energization pressure Pa and the rest time Th is set. Was performed three times. The holding time until the gun was opened after the end of energization and the pressure became zero was set to one cycle.

一方、比較例(1)として、本通電のみで後熱通電を行わない抵抗スポット溶接、比較例(2)および(3)として加圧力を変えないで後熱通電を行ったものを行った。なお、比較例(3)は、比較例(2)よりも後熱通電の電流値Ibを高く設定した。   On the other hand, as Comparative Example (1), resistance spot welding in which only post-energization was not performed and post-heat energization was performed, and in Comparative Examples (2) and (3), post-heat energization was performed without changing the applied pressure. In Comparative Example (3), the post-heating current value Ib was set higher than in Comparative Example (2).

表1に、本発明例および各比較例の溶接条件と溶接結果を示す。継手強度の観点から、十字引張強度を比較例(2)と比較し、上回った場合を○、下回った場合を×とした。さらに、チリの有無を評価した。なお、ナゲット径については、条件No.6〜10では約4mm(約3.2√t)、それ以外では約5mm(約4√t)と観察された。本発明例および、比較例(1)および(2)では、チリの発生は観察されなかった。なお、通電終了後の保持時間の計測値は約9サイクルであった。   Table 1 shows welding conditions and welding results of the inventive examples and the comparative examples. From the viewpoint of joint strength, the cross tensile strength was compared with Comparative Example (2). Furthermore, the presence or absence of dust was evaluated. For the nugget diameter, condition no. It was observed to be about 4 mm (about 3.2√t) in 6 to 10, and about 5 mm (about 4√t) in other cases. In the inventive examples and comparative examples (1) and (2), generation of dust was not observed. In addition, the measured value of the holding time after the end of energization was about 9 cycles.

本発明例においては、比較例(1)および(2)に比べて、十字引張強度の向上が認められた。さらに、本発明例では、比較例(3)でチリが発生した後熱電流値Ibよりも高い電流値でチリが発生しない条件が得られた。   In the examples of the present invention, an improvement in the cross tensile strength was recognized as compared with Comparative Examples (1) and (2). Furthermore, in the example of the present invention, after the generation of dust in Comparative Example (3), a condition was obtained in which dust does not occur at a current value higher than the thermal current value Ib.

Figure 0005573128
Figure 0005573128

本発明の実施例2として、前述の図1に示したように、2枚の鋼板(下の鋼板1、上の鋼板2)を重ねた板組3について、Cガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて抵抗スポット溶接を行い、抵抗スポット溶接継手を作製した。なお、使用した一対の電極チップ(下の電極チップ4、上の電極チップ5)は、ともに図3に示すように、先端の曲率半径R40、先端径6mmを有するアルミナ分散銅のDR型電極とした。   As Example 2 of the present invention, as shown in FIG. 1 above, a servomotor attached to a C gun is added to a plate set 3 in which two steel plates (lower steel plate 1 and upper steel plate 2) are stacked. Resistance spot welding was performed by using a pressure single-phase alternating current (50 Hz) resistance welder to produce a resistance spot welded joint. As shown in FIG. 3, the pair of electrode tips used (lower electrode tip 4 and upper electrode tip 5) are composed of an alumina-dispersed copper DR type electrode having a tip radius of curvature R40 and a tip diameter of 6 mm. did.

試験片として、鋼板1、2ともに、1.6mmで同じ鋼種の鋼板を用い、1180MPa級二相鋼の裸鋼板を使用した。JIS Z3137に基づき溶接および引張試験を行った。なお、本実施例2では、本通電条件を加圧力Paを3kN、本通電電流Iaを5kA、本通電時間Taを20サイクルで一定とした。さらに、後熱通電時間Ibを3サイクルで固定とした。その他のスクイズ時間あるいはスロープ時間については設定しなかった。   As test pieces, steel plates 1 and 2 were both 1.6 mm thick and the same steel type was used, and 1180 MPa grade duplex steel was used. Welding and tensile tests were performed based on JIS Z3137. In the second embodiment, the main energization conditions are set such that the applied pressure Pa is 3 kN, the main energization current Ia is 5 kA, and the main energization time Ta is constant for 20 cycles. Further, the post-heat energization time Ib was fixed at 3 cycles. No other squeeze time or slope time was set.

そして、本発明例として、上記の本発明の一実施形態に基づいて抵抗スポット溶接を行った。その際、本通電終了後の後熱通電として、加圧力Pbを本通電の加圧力Paよりも増加させて、休止時間Thを置いた後、通電時間Tbの間に通電電流Ibを通電するセットを1回ないし2回行った。通電終了後ガンが開き加圧力が0になるまでの保持時間は1サイクルに設定した。   And as an example of this invention, resistance spot welding was performed based on one Embodiment of said this invention. At that time, as a post-heat energization after the end of the main energization, a set in which the energization current Ib is energized during the energization time Tb after the pressurization pressure Pb is increased from the main energization pressure Pa and the rest time Th is set. Was performed once or twice. The holding time until the gun was opened after the end of energization and the pressure became zero was set to one cycle.

一方、比較例として、本通電の後、加圧力を変えないで後熱通電を行ったものを行った。   On the other hand, as a comparative example, after the main energization, post-heat energization was performed without changing the applied pressure.

表2に、本発明例および各比較例の溶接条件と溶接結果を示す。継手強度の観点から、十字引張強度を比較例と比較し、上回った場合を○、下回った場合を×とした。さらに、チリの有無を評価した。なお、ナゲット径については、約4.5mmであった。通電終了後の保持時間の計測値は約9サイクルであった。   Table 2 shows welding conditions and welding results of the inventive examples and the comparative examples. From the viewpoint of joint strength, the cross tensile strength was compared with that of the comparative example. Furthermore, the presence or absence of dust was evaluated. The nugget diameter was about 4.5 mm. The measured value of the holding time after the end of energization was about 9 cycles.

本発明例においては、比較例に比べて、十字引張強度の向上が認められた。さらに、本発明例では、同じ後熱通電電流Ibでも、より高い電流値でチリが発生しない条件が得られた。   In the example of the present invention, an improvement in the cross tensile strength was recognized as compared with the comparative example. Furthermore, in the example of the present invention, even under the same post-heat conduction current Ib, a condition that dust does not occur at a higher current value was obtained.

Figure 0005573128
Figure 0005573128

1 下の鋼板
2 上の鋼板
3 板組
4 下の電極チップ
5 上の電極チップ
6 ナゲット
7 熱影響部
7a 電極側の熱影響部
7b 軟化域側の熱影響部
8 軟化域
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Lower steel plate 3 Board set 4 Lower electrode tip 5 Upper electrode tip 6 Nugget 7 Heat affected zone 7a Heat affected zone on electrode side 7b Heat affected zone on softened zone 8 Softened zone

Claims (9)

少なくとも1枚以上の高強度鋼板を含む二枚以上の鋼板を重ね合せた板組を、一対の溶接電極で挟持し、加圧しながら電流を流して溶接する抵抗スポット溶接方法であって、
少なくとも二つの工程からなり、
通電により所定の径のナゲットを形成する本通電工程と、
加圧力を本通電工程より増加させて、1サイクル以上20サイクル以下の休止と、本通電工程より高い電流値での短時間の通電からなる、軟化域側の熱影響部の急冷が抑制される後熱通電工程を有する、
ことを特徴とする単相交流の抵抗溶接機を用いた抵抗スポット溶接方法。
It is a resistance spot welding method in which a set of two or more steel plates including at least one high-strength steel plate is overlapped, sandwiched between a pair of welding electrodes, and welded by applying a current while applying pressure,
Consists of at least two steps,
A main energization step of forming a nugget of a predetermined diameter by energization;
The applied pressure is increased from the main energization process, and rapid cooling of the heat affected zone on the softening region side is suppressed, which includes a pause of 1 cycle or more and 20 cycles or less and a short time energization at a higher current value than the main energization process. Having a post-heat energization step,
A resistance spot welding method using a single-phase alternating current resistance welding machine .
軟化域側の熱影響部の急冷が抑制される後熱通電工程が、加圧力を本通電工程より増加させて、6サイクル以上20サイクル以下の休止と、本通電工程より高い電流値での短時間の通電からなることを特徴とする請求項1に記載の抵抗スポット溶接方法。   The post-heat energization process in which rapid cooling of the heat-affected zone on the softened region side is suppressed increases the applied pressure from the main energization process, pauses for 6 cycles or more and 20 cycles or less, and a shorter current value than the main energization process. The resistance spot welding method according to claim 1, wherein the resistance spot welding method comprises time energization. 軟化域側の熱影響部の急冷が抑制される後熱通電工程が、加圧力を本通電工程より増加させて、6サイクル以上10サイクル以下の休止と、本通電工程より高い電流値での短時間の通電からなることを特徴とする請求項1に記載の抵抗スポット溶接方法。   The post-heat energization process in which rapid cooling of the heat-affected zone on the softened region side is suppressed increases the applied pressure from the main energization process, pauses for 6 cycles or more and 10 cycles or less, and a shorter current value than the main energization process. The resistance spot welding method according to claim 1, wherein the resistance spot welding method comprises time energization. 二枚以上の高強度鋼板を重ね合せた板組を抵抗スポット溶接するにあたり、所定の径のナゲットを形成する本通電工程と、その後に、加圧力を本通電工程より増加させて本通電工程より高い電流値にて多段通電を行う、軟化域側の熱影響部の急冷が抑制される後熱通電工程を有し、
本通電工程において、前記ナゲット径d(mm)が、前記板組で最も薄い高強度鋼板の厚さt(mm)を用いて、
3×√t≦d≦6×√t
で表される範囲となるように、通電時間と電流値を設定して通電した後、
後熱通電工程において、加圧力を増加させて、通電時間1〜5サイクル、休止時間1〜10サイクルとして、通電及び休止を1回以上繰り返す多段通電を行う
ことを特徴とする単相交流の抵抗溶接機を用いた抵抗スポット溶接方法。
In resistance spot welding of a set of two or more high-strength steel plates, a main energization process for forming a nugget with a predetermined diameter, and then a pressure increase from the main energization process to increase the applied pressure from the main energization process. Multi-stage energization at a high current value, having a post-heat energization process that suppresses rapid cooling of the heat affected zone on the softened region side,
In this energization process, the nugget diameter d (mm) is the thickness t (mm) of the thinnest high-strength steel plate in the plate assembly,
3 × √t ≦ d ≦ 6 × √t
After setting the energization time and current value so that it is in the range represented by
In the post-heat energization step, a single-phase AC resistance characterized by performing multi-stage energization that repeats energization and deactivation one or more times with energization time of 1 to 5 cycles and deactivation time of 1 to 10 cycles by increasing the applied pressure Resistance spot welding method using a welding machine .
前記後熱通電工程における加圧力Pbが、本通電工程における加圧力Paに対して、
Pa<Pb≦3×Pa
の範囲であることを特徴とする請求項4に記載の抵抗スポット溶接方法。
The applied pressure Pb in the post-heat energizing step is relative to the applied pressure Pa in the main energizing step.
Pa <Pb ≦ 3 × Pa
5. The resistance spot welding method according to claim 4, wherein the resistance spot welding method is within the range.
前記後熱通電工程における電流値Ibが、本通電工程における電流値Iaに対して、
Ia<Ib≦4×Ia
の範囲であることを特徴とする請求項4または5に記載の抵抗スポット溶接方法。
The current value Ib in the post-heat energization step is compared with the current value Ia in the main energization step.
Ia <Ib ≦ 4 × Ia
The resistance spot welding method according to claim 4, wherein the resistance spot welding method is within a range of the above.
後熱通電工程において、休止と通電を1回以上2回以下の範囲で繰り返すことを特徴とする請求項1〜6のいずれかに記載の抵抗スポット溶接方法。   The resistance spot welding method according to any one of claims 1 to 6, wherein in the post-heat energization step, the pause and energization are repeated in the range of 1 to 2 times. 二枚以上の鋼板のうち、少なくとも一枚の鋼板の引張強度が、590MPa以上であることを特徴とする請求項1〜7のいずれかに記載の抵抗スポット溶接方法。   The resistance spot welding method according to any one of claims 1 to 7, wherein the tensile strength of at least one of the two or more steel plates is 590 MPa or more. 二枚以上の鋼板のうち、少なくとも一枚の鋼板の引張強度が、980MPa以上であることを特徴とする請求項1〜8のいずれかに記載の抵抗スポット溶接方法。   The resistance spot welding method according to any one of claims 1 to 8, wherein a tensile strength of at least one of the two or more steel plates is 980 MPa or more.
JP2009271366A 2008-11-28 2009-11-30 Resistance spot welding method Active JP5573128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271366A JP5573128B2 (en) 2008-11-28 2009-11-30 Resistance spot welding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008304195 2008-11-28
JP2008304195 2008-11-28
JP2009271366A JP5573128B2 (en) 2008-11-28 2009-11-30 Resistance spot welding method

Publications (2)

Publication Number Publication Date
JP2010149187A JP2010149187A (en) 2010-07-08
JP5573128B2 true JP5573128B2 (en) 2014-08-20

Family

ID=42568862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271366A Active JP5573128B2 (en) 2008-11-28 2009-11-30 Resistance spot welding method

Country Status (1)

Country Link
JP (1) JP5573128B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043236B2 (en) 2009-08-31 2012-10-10 新日本製鐵株式会社 Spot welding joint and spot welding method
JP5333560B2 (en) * 2011-10-18 2013-11-06 Jfeスチール株式会社 Resistance spot welding method and resistance spot welding joint of high strength steel plate
JP5267640B2 (en) 2011-11-25 2013-08-21 Jfeスチール株式会社 Evaluation method for resistance spot welded joints
CN102581459B (en) * 2012-03-07 2014-06-25 上海交通大学 Electric resistance welding method for variable-thickness ultra-high strength hot formed steel plate and low-carbon steel plate
ES2768603T3 (en) 2012-08-08 2020-06-23 Nippon Steel Corp Method to weld a lap part, method to make a lap weld member, lap weld member and automotive component
KR101744427B1 (en) 2012-09-24 2017-06-07 신닛테츠스미킨 카부시키카이샤 Spot welding method for high-strength steel sheet excellent in joint strength
JP5510582B2 (en) * 2013-03-21 2014-06-04 Jfeスチール株式会社 Resistance spot welding method
JP6769467B2 (en) * 2017-10-16 2020-10-14 Jfeスチール株式会社 Resistance spot welding method and manufacturing method of resistance spot welding member

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3132117B2 (en) * 1992-01-30 2001-02-05 アイシン精機株式会社 Disc assembly with annular member and welding method thereof
JP3320515B2 (en) * 1993-09-01 2002-09-03 本田技研工業株式会社 Post-treatment method for spot welding
JP2000210776A (en) * 1999-01-20 2000-08-02 Aisin Seiki Co Ltd Method for joining iron based sintered members
JP3648092B2 (en) * 1999-05-24 2005-05-18 オリジン電気株式会社 Capacitor type resistance welding method and apparatus
JP2002103054A (en) * 2000-09-29 2002-04-09 Nippon Steel Corp Method for spot welding of high strength steel plate
JP3794300B2 (en) * 2001-08-30 2006-07-05 トヨタ車体株式会社 Spot welding method
JP3849539B2 (en) * 2002-02-19 2006-11-22 Jfeスチール株式会社 Spot welding method for high-tensile galvanized steel sheet
JP3922263B2 (en) * 2004-03-17 2007-05-30 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
JP4543823B2 (en) * 2004-08-23 2010-09-15 Jfeスチール株式会社 Resistance spot welding method
JP4873137B2 (en) * 2006-05-31 2012-02-08 奥地建産株式会社 Resistance welding method

Also Published As

Publication number Publication date
JP2010149187A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5714537B2 (en) Resistance spot welding method for high strength steel sheet
JP5333560B2 (en) Resistance spot welding method and resistance spot welding joint of high strength steel plate
JP5573128B2 (en) Resistance spot welding method
RU2633409C2 (en) Method of resistance spot welding
JP6558443B2 (en) Resistance spot welding method
JP5640410B2 (en) Method of manufacturing resistance spot welded joint
JP5713147B2 (en) Overlap welding member, automotive part, overlapping portion welding method, and overlap welding member manufacturing method
JP5267640B2 (en) Evaluation method for resistance spot welded joints
JP5210552B2 (en) High strength spot welded joint
JP5942392B2 (en) Resistance spot welding method for high strength steel sheet
JP6313921B2 (en) Resistance spot welding method
JPWO2017010071A1 (en) Resistance spot welding method
JP6879345B2 (en) Resistance spot welding method, resistance spot welding joint manufacturing method
JP5206448B2 (en) Resistance spot welding method for high strength thin steel sheet
KR20190089192A (en) Resistance spot welding method
JP5640409B2 (en) Method of manufacturing resistance spot welded joint
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP5891741B2 (en) Resistance spot welding method for high strength steel sheet
WO2019156073A1 (en) Method for resistance spot welding, and method for producing resistance-spot-welded joint
WO2020036198A1 (en) Resistance spot-welded member and manufacturing method therefor
JP5907122B2 (en) Resistance spot welding method
JP5626391B2 (en) Resistance spot welded joint
KR20180011320A (en) Resistance spot welding method
JP5510582B2 (en) Resistance spot welding method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250