JP5569177B2 - Fine metal hydroxide particles and method for producing the same - Google Patents
Fine metal hydroxide particles and method for producing the same Download PDFInfo
- Publication number
- JP5569177B2 JP5569177B2 JP2010142811A JP2010142811A JP5569177B2 JP 5569177 B2 JP5569177 B2 JP 5569177B2 JP 2010142811 A JP2010142811 A JP 2010142811A JP 2010142811 A JP2010142811 A JP 2010142811A JP 5569177 B2 JP5569177 B2 JP 5569177B2
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- hydroxide particles
- metal hydroxide
- maximum particle
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims description 261
- 150000004692 metal hydroxides Chemical class 0.000 title claims description 79
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910001111 Fine metal Inorganic materials 0.000 title description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 77
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 64
- 239000011734 sodium Substances 0.000 claims description 43
- 229920005989 resin Polymers 0.000 claims description 37
- 239000011347 resin Substances 0.000 claims description 37
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 21
- 229910052708 sodium Inorganic materials 0.000 claims description 21
- 239000000945 filler Substances 0.000 claims description 20
- 239000011342 resin composition Substances 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 239000004744 fabric Substances 0.000 claims description 8
- 239000003822 epoxy resin Substances 0.000 description 16
- 229920000647 polyepoxide Polymers 0.000 description 16
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 12
- 239000003063 flame retardant Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000004580 weight loss Effects 0.000 description 9
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- -1 amine compound Chemical class 0.000 description 6
- 229920003986 novolac Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 239000011362 coarse particle Substances 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 229910001679 gibbsite Inorganic materials 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000000790 scattering method Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000003321 atomic absorption spectrophotometry Methods 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical class C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- LMYQFCDLMRNPLY-UHFFFAOYSA-L hydroxy(oxo)alumane Chemical compound O[Al]=O.O[Al]=O LMYQFCDLMRNPLY-UHFFFAOYSA-L 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- XAEWLETZEZXLHR-UHFFFAOYSA-N zinc;dioxido(dioxo)molybdenum Chemical compound [Zn+2].[O-][Mo]([O-])(=O)=O XAEWLETZEZXLHR-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明は、耐熱性に優れる微細化金属水酸化物粒子、及びその製造方法に関する。 The present invention relates to fine metal hydroxide particles having excellent heat resistance and a method for producing the same.
従来から、電気及び電子機器部品等では、火災に対する安全性確保のため難燃性付与が要求されている。
難燃性付与の方法としては、例えば難燃性樹脂を用いる方法が挙げられ、臭素化エポキシ樹脂等のハロゲン含有樹脂が一般的に用いられている。また、難燃性フィラが用いられる場合も多い。
Conventionally, in electrical and electronic equipment parts, it has been required to impart flame retardancy to ensure safety against fire.
Examples of the method for imparting flame retardancy include a method using a flame retardant resin, and halogen-containing resins such as brominated epoxy resins are generally used. Also, flame retardant fillers are often used.
難燃性フィラとしては、水酸化アルミニウム(ギブサイト型、Al2O3・3H2O)、水酸化マグネシウム等の金属水酸化物粒子があり、特に水酸化アルミニウムは豊富な構造水を含み難燃性に優れる、耐酸性及び耐アルカリ性に優れる、コスト面で有利である、といった理由から使用されている場合が多い。 Examples of flame retardant fillers include metal hydroxide particles such as aluminum hydroxide (gibbsite type, Al 2 O 3 .3H 2 O), magnesium hydroxide, and particularly aluminum hydroxide contains abundant structural water and is flame retardant. In many cases, it is used for reasons such as excellent properties, acid resistance and alkali resistance, and cost advantages.
水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物の難燃特性として、脱水開始温度(水酸化アルミニウム(ギブサイト)は約200℃、水酸化マグネシウムは約340℃)から脱水を開始することが知られている。また、水酸化アルミニウム(ギブサイト)はさらに50℃ほど高い温度付近で一部脱水し、1水和物のベーマイト(Al2O3・H2O)に転移することが知られている。しかし、上記の脱水が金属水酸化物粒子を用いた成型品の歩留りや物性を低下させる場合がある。 As a flame retardant property of metal hydroxides such as aluminum hydroxide and magnesium hydroxide, it is known that dehydration starts from the dehydration start temperature (aluminum hydroxide (gibbsite) is about 200 ° C, magnesium hydroxide is about 340 ° C). It has been. Further, it is known that aluminum hydroxide (gibbsite) is partially dehydrated at a temperature as high as about 50 ° C. and transferred to monohydrate boehmite (Al 2 O 3 .H 2 O). However, the above dehydration may reduce the yield and physical properties of molded products using metal hydroxide particles.
例えば、電子基板上にはんだ付けする際の環境温度は230℃位になるため、水酸化アルミニウムが脱水し、歩留りを低下させる場合等がある。そのため、使用する金属水酸化物粒子には難燃性だけでなく、成型品の耐熱性を低下させないことも求められている。
特許文献1では、BET非表面積が1.0m2/gでかつ含有Na濃度がNa2O換算で0.1重量%以下という特定の水酸化アルミニウムを配合することで、耐熱性と難燃性を兼ね備えた積層板の製造方法を提案している。また、特許文献2では、半導体封止用のエポキシ樹脂の耐熱性の面より、水酸化アルミニウムに含まれるNa2O含有量としては、通常0.3重量%以下、好ましくは0.1重量%以下であることが開示されている。特許文献3には、固定ナトリウム量が少ない水酸化アルミニウムの製造方法が開示されている。
For example, since the environmental temperature at the time of soldering on an electronic substrate is about 230 ° C., aluminum hydroxide may be dehydrated and yield may be reduced. Therefore, the metal hydroxide particles to be used are required not only to have flame resistance but also to not reduce the heat resistance of the molded product.
In Patent Document 1, heat resistance and flame resistance are obtained by blending a specific aluminum hydroxide having a BET non-surface area of 1.0 m 2 / g and a contained Na concentration of 0.1% by weight or less in terms of Na 2 O. The manufacturing method of the laminated board which combines these is proposed. In Patent Document 2, heat-resistant surface of the epoxy resin for encapsulating a semiconductor, the content of Na 2 O contained in the aluminum hydroxide is usually 0.3 wt% or less, preferably 0.1 wt% It is disclosed that: Patent Document 3 discloses a method for producing aluminum hydroxide with a small amount of fixed sodium.
一方、近年の電気及び電子機器部品等の高集積・細密化によって、難燃性フィラを用いる積層板、配線板、半導体装置等の成型品の薄型化要求が高まり、難燃性フィラ中に含まれる粗大粒子が問題となっている。例えば、積層板において、塗工工程でガラス布上に塗布される樹脂層の厚みより大きいフィラが混入すると、プレス成型時にフィラが樹脂層から飛び出し、回路の断線、外観不良等の要因となると共に、レーザー加工性の悪化や絶縁性の低下等が懸念されていた。 On the other hand, due to the recent high integration and densification of electrical and electronic equipment parts, the demand for thinner molded products such as laminates, wiring boards, and semiconductor devices using flame retardant fillers has increased, and they are included in flame retardant fillers. Coarse particles are a problem. For example, if a filler larger than the thickness of the resin layer applied on the glass cloth in the coating process is mixed in the laminate, the filler will pop out of the resin layer during press molding, causing circuit disconnection, poor appearance, etc. There have been concerns about deterioration of laser processability and deterioration of insulation.
そこで、本発明の目的は、耐熱性及び難燃性を保持し、成型品の薄型化に対応可能な粗大粒子を除いた金属水酸化物粒子及びその製造方法を提供することである。 Therefore, an object of the present invention is to provide metal hydroxide particles excluding coarse particles that retain heat resistance and flame retardancy and can cope with thinning of molded products, and a method for producing the same.
本発明は係る状況に鑑みなされたものであり、本発明者らは、積層板樹脂層が含有するフィラについて、フィラ中の粗大粒子が樹脂層から飛び出す問題について鋭意研究した。その結果、本発明者らは、例えば水酸化アルミニウム粒子等の金属水酸化物粒子は微粒化によって耐熱性の低下が認められるものの、特定の要件を満たす金属水酸化物粒子であれば、耐熱性及び難燃性が保持されることを見出し、本発明を完成させた。 This invention is made | formed in view of the situation which concerns, The present inventors earnestly researched about the problem that the coarse particle in a filler jumps out of a resin layer about the filler which a laminated board resin layer contains. As a result, the present inventors, for example, metal hydroxide particles such as aluminum hydroxide particles, although the heat resistance is reduced by atomization, if the metal hydroxide particles satisfy specific requirements, heat resistance And it discovered that a flame retardance was hold | maintained and completed this invention.
本発明によれば、以下の金属水酸化物粒子等が提供される。
1.最大粒径10μm以下であり、表面ナトリウム濃度がNa2O換算で0.0018質量%以下である金属水酸化物粒子。
2.平均粒径が2.5〜3.5μmである1に記載の金属水酸化物粒子。
3.金属水酸化物粒子群を最大粒径が10μm以下の金属水酸化物粒子群と最大粒径10μm超の金属水酸化物粒子群に分級し、
前記最大粒径10μm超の金属水酸化物粒子群を粉砕して、最大粒径を10μm以下とし、前記分級した最大粒径が10μm以下の金属水酸化物粒子群及び前記粉砕した最大粒径が10μm以下の金属水酸化物粒子群を混合して得られる1又は2に記載の金属水酸化物粒子。
4.水酸化アルミニウム粒子である1〜3のいずれかに記載の金属水酸化物粒子。
5.金属水酸化物粒子群を最大粒径が10μm以下の金属水酸化物粒子群と最大粒径10μm超の金属水酸化物粒子粒子群に分級し、
前記最大粒径10μm超の金属水酸化物粒子群を粉砕して、最大粒径を10μm以下とし、
前記分級した最大粒径が10μm以下の金属水酸化物粒子群及び前記粉砕した最大粒径が10μm以下の金属水酸化物粒子群を混合して調製する金属水酸化物粒子の製造方法。
6.1〜4のいずれかに記載の金属水酸化物粒子又は5に記載の製造方法により得られる金属水酸化物粒子を含む樹脂組成物をガラス布に含浸させてなる積層板。
7.樹脂層とガラス布の積層体である積層板であって、
前記樹脂層が充填材を含み、
前記充填材が、最大粒径が前記樹脂層の厚みの90%以下である粒子群、及び最大粒径が前記樹脂層の厚みの90%超である粒子群に分級し、前記最大粒径が樹脂層の厚みの90%超である粒子群を粉砕して最大粒径を樹脂層の厚みの90%以下とし、粉砕して得られた粒子群と前記最大粒径が前記樹脂層の厚みの90%以下である粒子群を混合してなる充填材である積層板。
8.前記充填材が水酸化アルミニウム粒子である7に記載の積層板。
9.前記水酸化アルミニウム粒子の表面ナトリウム濃度がNa2O換算で0.0018質量%以下である8に記載の積層板。
10.前記水酸化アルミニウム粒子の平均粒径が2.5〜3.5μmである8又は9に記載の積層板。
11.前記水酸化アルミニウム粒子の最大粒径が10μm以下である8〜10のいずれかに記載の積層板。
According to the present invention, the following metal hydroxide particles and the like are provided.
1. Metal hydroxide particles having a maximum particle size of 10 μm or less and a surface sodium concentration of 0.0018% by mass or less in terms of Na 2 O.
2. 2. The metal hydroxide particles according to 1, having an average particle size of 2.5 to 3.5 μm.
3. Classifying the metal hydroxide particle group into a metal hydroxide particle group having a maximum particle size of 10 μm or less and a metal hydroxide particle group having a maximum particle size of more than 10 μm;
The metal hydroxide particle group having a maximum particle size of more than 10 μm is pulverized to have a maximum particle size of 10 μm or less, the classified maximum particle size is 10 μm or less, and the pulverized maximum particle size is 3. The metal hydroxide particle according to 1 or 2 obtained by mixing a metal hydroxide particle group of 10 μm or less.
4). The metal hydroxide particles according to any one of 1 to 3, which are aluminum hydroxide particles.
5. Classifying the metal hydroxide particle group into a metal hydroxide particle group having a maximum particle size of 10 μm or less and a metal hydroxide particle particle group having a maximum particle size of more than 10 μm;
The metal hydroxide particles having a maximum particle size of more than 10 μm are pulverized to have a maximum particle size of 10 μm or less,
A method for producing metal hydroxide particles, prepared by mixing the classified metal hydroxide particles having a maximum particle size of 10 μm or less and the pulverized metal hydroxide particles having a maximum particle size of 10 μm or less.
6. A laminated board obtained by impregnating a glass cloth with a resin composition containing the metal hydroxide particles according to any one of 6.1 to 4 or the metal hydroxide particles obtained by the production method according to 5.
7). A laminate that is a laminate of a resin layer and a glass cloth,
The resin layer includes a filler;
The filler is classified into a particle group having a maximum particle size of 90% or less of the thickness of the resin layer, and a particle group having a maximum particle size of more than 90% of the thickness of the resin layer, and the maximum particle size is A particle group that is more than 90% of the thickness of the resin layer is pulverized so that the maximum particle diameter is 90% or less of the thickness of the resin layer, and the particle group obtained by pulverization and the maximum particle diameter is equal to the thickness of the resin layer. A laminated board which is a filler obtained by mixing a particle group of 90% or less.
8). The laminate according to 7, wherein the filler is aluminum hydroxide particles.
9. Laminate according to 8 surface sodium concentration of the aluminum hydroxide particles is not more than 0.0018 wt% in terms of Na 2 O.
10. The laminated board of 8 or 9 whose average particle diameter of the said aluminum hydroxide particle is 2.5-3.5 micrometers.
11. The laminated board in any one of 8-10 whose maximum particle diameter of the said aluminum hydroxide particle is 10 micrometers or less.
本発明によれば、耐熱性及び難燃性を保持し、成型品の薄型化に対応可能な粗大粒子を除いた金属水酸化物粒子が提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the metal hydroxide particle | grains except the coarse particle which hold | maintains heat resistance and a flame retardance and can respond to thickness reduction of a molded article can be provided.
本発明の金属水酸化物粒子は、最大粒径10μm以下であり、表面ナトリウム濃度がNa2O換算で0.0018質量%以下である。
上記金属水酸化物粒子としては、水酸化アルミニウム粒子、水酸化マグネシウム粒子等が挙げられ、難燃性と耐薬品性の観点から、好ましくは水酸化アルミニウム粒子である。
The metal hydroxide particles of the present invention have a maximum particle size of 10 μm or less and a surface sodium concentration of 0.0018% by mass or less in terms of Na 2 O.
Examples of the metal hydroxide particles include aluminum hydroxide particles and magnesium hydroxide particles, and aluminum hydroxide particles are preferable from the viewpoint of flame retardancy and chemical resistance.
金属水酸化物粒子の最大粒径は10μm以下であり、好ましくは9μm以下である。
最大粒径が10μm超である金属水酸化物粒子を樹脂層厚みが10μm程度の薄型の積層板、配線板、半導体装置等の成型品の製造に用いた場合、プレス成型時に金属水酸化物粒子が樹脂層から飛び出し、回路の断線、外観不良等の要因となると共に、レーザー加工性の悪化や絶縁性が低下するおそれがある。
上記最大粒径は、レーザー回折散乱法、超音波減衰法、フロー式撮像方等により測定できるが、本発明の最大粒径は、レーザー回折散乱法にて測定して得られる値である。
The maximum particle size of the metal hydroxide particles is 10 μm or less, preferably 9 μm or less.
When metal hydroxide particles having a maximum particle size of more than 10 μm are used for the manufacture of molded products such as thin laminates, wiring boards, and semiconductor devices with a resin layer thickness of about 10 μm, the metal hydroxide particles are used during press molding. Pops out of the resin layer, causing circuit disconnection, poor appearance, and the like, and may cause deterioration of laser processability and insulation.
The maximum particle size can be measured by a laser diffraction scattering method, an ultrasonic attenuation method, a flow imaging method, or the like. The maximum particle size of the present invention is a value obtained by measurement by a laser diffraction scattering method.
金属水酸化物粒子の最大粒径の下限は特に制限されない。しかし、最大粒径の小さくなることで、当該金属水酸化物粒子を含む樹脂組成物の粘度が増加するので、作業性の観点から、金属水酸化物粒子の最大粒径は例えば5μm以上である。 The lower limit of the maximum particle size of the metal hydroxide particles is not particularly limited. However, since the viscosity of the resin composition containing the metal hydroxide particles is increased by decreasing the maximum particle size, the maximum particle size of the metal hydroxide particles is, for example, 5 μm or more from the viewpoint of workability. .
本発明の金属酸化物粒子の表面ナトリウム濃度は、Na2O換算で0.0018質量%以下であり、好ましくは0.0014質量%以下、より好ましくは0.0012質量%以下である。
例えば水酸化アルミニウムのギブサイト型からベーマイトへの脱水を伴う転移は、アルカリ雰囲気下で起こりやすいため、不純物であるアルカリ分Na2Oを少なくすることで耐熱性を向上させることができる。従って、特に金属酸化物粒子が水酸化アルミニウム粒子である場合に、水酸化アルミニウム粒子の表面ナトリウム濃度をNa2O換算で0.0018質量%以下とすることで、ベーマイト化が抑制され、組成物の耐熱性を向上させることができる。
表面ナトリウム濃度の測定方法は、イオンクロマトグラフ、原子吸光光度法、誘導結合プラズマ発光分光分析等があるが、本発明の表面ナトリウム濃度は、原子吸光光度法(JIS−K010248)にて測定して得られる値をいう。
The surface sodium concentration of the metal oxide particles of the present invention is 0.0018% by mass or less, preferably 0.0014% by mass or less, more preferably 0.0012% by mass or less in terms of Na 2 O.
For example, the transition accompanied by dehydration of aluminum hydroxide from the gibbsite type to boehmite is likely to occur in an alkaline atmosphere. Therefore, the heat resistance can be improved by reducing the content of alkali Na 2 O as an impurity. Therefore, particularly when the metal oxide particles are aluminum hydroxide particles, the surface sodium concentration of the aluminum hydroxide particles is 0.0018% by mass or less in terms of Na 2 O, whereby boehmite formation is suppressed, and the composition The heat resistance of can be improved.
The method for measuring the surface sodium concentration includes ion chromatography, atomic absorption spectrophotometry, inductively coupled plasma emission spectroscopic analysis, etc. The surface sodium concentration of the present invention is measured by atomic absorption photometry (JIS-K010248). The value obtained.
金属水酸化物粒子の平均粒径D50は、好ましくは2.5〜3.5μmであり、より好ましくは2.8〜3.2μmである。
金属水酸化物粒子の平均粒径が2.5μm未満の場合、比表面積が大きくなるため、それに伴い表面ナトリウム濃度が増加し、耐熱性低下の要因となりうる。また樹脂組成物の粘度が高くなり、作業性が低下するおそれがある。一方、平均粒径が3.5μm超の場合、最大粒径を目標とする粒径にすることが困難となるおそれがある。
尚、上記平均粒径は、上記最大粒径と同様の測定方法によって得られる粒径であって、累積頻度50%粒径を指す。
The average particle diameter D50 of the metal hydroxide particles is preferably 2.5 to 3.5 μm, more preferably 2.8 to 3.2 μm.
When the average particle diameter of the metal hydroxide particles is less than 2.5 μm, the specific surface area increases, and accordingly, the surface sodium concentration increases, which may cause a decrease in heat resistance. Moreover, there exists a possibility that the viscosity of a resin composition may become high and workability | operativity may fall. On the other hand, when the average particle size is more than 3.5 μm, it may be difficult to make the maximum particle size a target particle size.
In addition, the said average particle diameter is a particle diameter obtained by the measuring method similar to the said maximum particle diameter, Comprising: A cumulative frequency 50% particle diameter is pointed out.
本発明の金属水酸化物粒子は、下記(1)〜(3)の工程により容易且つ高い歩留りで調製できる。
(1)金属水酸化物粒子群を、最大粒径が10μm以下の金属水酸化物粒子群と最大粒径10μm超の金属水酸化物粒子群に分級する。
(2)最大粒径10μm超の金属水酸化物粒子群を粉砕して、最大粒径を10μm以下とする。
(3)上記工程(1)で分級した最大粒径が10μm以下の金属水酸化物粒子群と、上記工程(2)で粉砕した最大粒径が10μm以下の金属水酸化物粒子群とを混合する。
The metal hydroxide particles of the present invention can be prepared easily and with a high yield by the following steps (1) to (3).
(1) The metal hydroxide particle group is classified into a metal hydroxide particle group having a maximum particle size of 10 μm or less and a metal hydroxide particle group having a maximum particle size exceeding 10 μm.
(2) A metal hydroxide particle group having a maximum particle size of more than 10 μm is pulverized so that the maximum particle size is 10 μm or less.
(3) Mixing the metal hydroxide particle group having a maximum particle size of 10 μm or less classified in the step (1) and the metal hydroxide particle group having a maximum particle size of 10 μm or less pulverized in the step (2) To do.
上記工程(1)において、分級前の金属水酸化物粒子群の表面ナトリウム濃度が、Na2O換算で0.0018質量%以下である金属水酸化物粒子群を用いることにより、分級後に、最大粒径が10μm以下の金属水酸化物粒子群のみを選択することによっても製造可能である。しかしながら、分級のみの場合は歩留りが低いという欠点がある。
また、工程(1)の分級を行わずに、工程(2)の粉砕のみによっても最大粒径が10μm以下の金属水酸化物粒子を高歩留りに得られるが、粉砕のみでは、得られる金属水酸化物粒子の比表面積が大きく増加し、それに伴い表面Na2O分濃度も増加することで耐熱性が低下するおそれがある。
In the step (1), by using a metal hydroxide particle group in which the surface sodium concentration of the metal hydroxide particle group before classification is 0.0018% by mass or less in terms of Na 2 O, the maximum is obtained after classification. It can also be produced by selecting only metal hydroxide particles having a particle size of 10 μm or less. However, in the case of only classification, there is a disadvantage that the yield is low.
Further, metal hydroxide particles having a maximum particle size of 10 μm or less can be obtained with high yield only by pulverization in step (2) without performing classification in step (1). The specific surface area of the oxide particles is greatly increased, and the concentration of the surface Na 2 O component is increased accordingly, which may reduce the heat resistance.
本発明の金属水酸化物粒子の製造方法において、工程(1)の分級前の金属水酸化物粒子群の表面ナトリウム濃度は、Na2O換算で0.0018質量%以下であることが好ましく、0.0014質量%以下であることがより好ましく、0.0012質量%以下であることがさらに好ましい。
異物混入のおそれを少なくでき、且つ分級機と粉砕機の連結に問題が無ければ、手段は特に制限されないが、分級手段としては、気流式分級機、湿式遠心分級機等が挙げられ、粉砕手段としては、気流式粉砕機や機械式粉砕機等が挙げられる。
In the method for producing metal hydroxide particles of the present invention, the surface sodium concentration of the metal hydroxide particle group before classification in the step (1) is preferably 0.0018% by mass or less in terms of Na 2 O, The content is more preferably 0.0014% by mass or less, and further preferably 0.0012% by mass or less.
The means is not particularly limited as long as it can reduce the possibility of contamination and there is no problem with the connection between the classifier and the pulverizer. Examples of the classification means include an airflow classifier and a wet centrifugal classifier. Examples thereof include an airflow pulverizer and a mechanical pulverizer.
本発明の金属水酸化物粒子は、難燃性及び耐熱性を兼ね備えているので、積層板、配線板、半導体装置等の成型品の原料である樹脂組成物が含有する難燃性フィラとして好適に用いることができる。 Since the metal hydroxide particles of the present invention have both flame retardancy and heat resistance, they are suitable as flame retardant fillers contained in resin compositions that are raw materials for molded products such as laminates, wiring boards, and semiconductor devices. Can be used.
金属水酸化物粒子を含む樹脂組成物の樹脂成分としては、エポキシ樹脂、ポリイミド樹脂、トリアジン樹脂、フェノール樹脂等が挙げられ、耐熱性、吸湿性等の特性やコスト等のバランスから、好ましくはエポキシ樹脂である。 Examples of the resin component of the resin composition containing metal hydroxide particles include an epoxy resin, a polyimide resin, a triazine resin, a phenol resin, and the like. From the balance of characteristics such as heat resistance and hygroscopicity and cost, an epoxy resin is preferable. Resin.
上記エポキシ樹脂としては特に制約はなく、積層板に一般的に使用されるものが使用でき、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等が挙げられ、これらの1種又は2種以上を併用して用いることができる。上記エポキシ樹脂中でも耐熱性の観点からは、ビスフェノールF型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂が好ましい。 There is no restriction | limiting in particular as said epoxy resin, What is generally used for a laminated board can be used, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolak type epoxy resin, cresol A novolak type epoxy resin, a bisphenol A novolak type epoxy resin, etc. are mentioned, These 1 type (s) or 2 or more types can be used together. Among the above epoxy resins, bisphenol F type epoxy resin and bisphenol A novolak type epoxy resin are preferable from the viewpoint of heat resistance.
また、上記樹脂組成物は、さらに硬化剤を含んでもよい。
上記硬化剤としては、耐熱性や難燃性に支障のない範囲であれば特に制約はない。例えば、樹脂成分としてエポキシ樹脂に用いる場合の硬化剤としては、アミン化合物、フェノール化合物、酸無水物化合物等が挙げられる。
硬化剤の添加量は特に制限されないが、樹脂成分100質量部に対して、0.1〜150質量部使用することが好ましい。
The resin composition may further contain a curing agent.
The curing agent is not particularly limited as long as it does not affect the heat resistance and flame retardancy. For example, an amine compound, a phenol compound, an acid anhydride compound, etc. are mentioned as a hardening | curing agent when using it for an epoxy resin as a resin component.
Although the addition amount of a hardening | curing agent is not restrict | limited in particular, It is preferable to use 0.1-150 mass parts with respect to 100 mass parts of resin components.
また、樹脂組成物には、必要に応じて、硬化促進剤、オリゴマー、接着剤、UV遮蔽剤、難燃助剤等を含んでもよい。例えば、硬化促進剤としてはイミダゾール等、充填剤の表面剤であるオリゴマー、接着剤としてはエトキシシラン等、UV遮蔽剤としてはピラリゾン等、難燃助剤としてはモリブデン酸亜鉛等が挙げられる。
上記硬化促進剤等は、耐熱性や難燃性に支障のない範囲であれば特に制約はない。
Further, the resin composition may contain a curing accelerator, an oligomer, an adhesive, a UV shielding agent, a flame retardant aid and the like, if necessary. Examples of the curing accelerator include imidazole and the like, oligomers that are filler surface agents, adhesives such as ethoxysilane, UV shielding agents such as pirarizone, and flame retardant aids such as zinc molybdate.
The curing accelerator or the like is not particularly limited as long as it does not interfere with heat resistance and flame retardancy.
本発明の金属水酸化物粒子を用いた樹脂組成物は、耐熱性及び難燃性に優れるため、樹脂層とガラス布の積層体である積層板の樹脂層材料として特に好適に用いることができる。
上記ガラス布は、積層板の一般的に使用されるもので、積層板の厚みに応じたものを選択すればよい。
Since the resin composition using the metal hydroxide particles of the present invention is excellent in heat resistance and flame retardancy, it can be particularly suitably used as a resin layer material of a laminate which is a laminate of a resin layer and a glass cloth. .
The said glass cloth is what is generally used for a laminated board, What is necessary is just to select the thing according to the thickness of the laminated board.
積層板の樹脂層に含まれる充填材(本発明の金属水酸化物粒子)は、最大粒径が樹脂層の厚みの90%以下である粒子、及び最大粒径が樹脂層の厚みの90%超である粒子に分級し、最大粒径が樹脂層の厚みの90%超である粒子を粉砕して最大粒径を樹脂層の厚みの90%以下とし、粉砕して得られた粒子と最大粒径が前記樹脂層の厚みの90%以下である粒子を混合してなる充填材である。
尚、分級及び粉砕の方法は、上述の通りである。
The filler (metal hydroxide particles of the present invention) contained in the resin layer of the laminate is a particle having a maximum particle size of 90% or less of the thickness of the resin layer, and a maximum particle size of 90% of the thickness of the resin layer. Particles with a maximum particle size exceeding 90% of the thickness of the resin layer are pulverized so that the maximum particle size is 90% or less of the thickness of the resin layer. It is a filler formed by mixing particles having a particle size of 90% or less of the thickness of the resin layer.
The classification and pulverization methods are as described above.
また、積層板には、一般に金属箔が用いられるが、本発明の積層板においては、安価であることから銅箔を用いることが好ましい。銅箔としては、積層板の一般的に使用されるもので、積層板の厚みに応じたものを選択すればよい。 In addition, a metal foil is generally used for the laminated plate, but in the laminated plate of the present invention, it is preferable to use a copper foil because it is inexpensive. As copper foil, what is generally used of a laminated board is used, What is necessary is just to select what according to the thickness of the laminated board.
以下、本発明を実施例を用いて具体的に説明する。但し、本発明は以下の実施例及び比較例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples and comparative examples.
実施例1
[水酸化アルミニウム粒子Aの製造]
定量供給装置(日清エンジニアリング(株)製、フィードコンミュ−M−200F型)を用いて、強制渦式分級機(日清エンジニアリング(株)製TC−15)の投入口から原材料である水酸化アルミニウムE(昭和電工(株)製HP−360)を供給し、最大粒径10μm以下の粒子群と最大粒径10μm超の粒子群に分級し、それぞれ別々にサイクロンで回収した。
Example 1
[Production of aluminum hydroxide particles A]
Water, which is a raw material, from the inlet of a forced vortex classifier (TC-15 manufactured by Nisshin Engineering Co., Ltd.) using a quantitative supply device (Nisshin Engineering Co., Ltd., Feed Comm-M-200F type) Aluminum oxide E (HP-360 manufactured by Showa Denko KK) was supplied and classified into a particle group having a maximum particle size of 10 μm or less and a particle group having a maximum particle size of more than 10 μm, and each was separately collected with a cyclone.
分級した最大粒径10μm超の粒子群のみをダブルダンパを経て定量供給装置によって気流式粉砕機(日清エンジニアリング(株)製、SJ−500)に供給し、最大粒径10μm以下に粉砕し、強制渦式分級機により分級して、最大粒径10μm以下の粒子群を調製した。
得られた最大粒径10μm以下の粒子群を、分級のみで得られた上述の最大粒径10μm以下の粒子群と混合し、水酸化アルミニウム粒子Aを得た。
尚、強制渦式分級機TC−15は、粒子に作用する遠心力と空気流のバランスにより粒子を分級するもので、気流式粉砕機SJ−500は高圧に噴射した粒子同士の衝突によって粉砕を行うものである。
Only the classified particle group having a maximum particle size of more than 10 μm is supplied to an air flow type pulverizer (Nisshin Engineering Co., Ltd., SJ-500) through a double damper through a double damper, and pulverized to a maximum particle size of 10 μm or less. The particles were classified by a forced vortex classifier to prepare a particle group having a maximum particle size of 10 μm or less.
The obtained particle group having a maximum particle size of 10 μm or less was mixed with the above-described particle group having a maximum particle size of 10 μm or less obtained only by classification to obtain aluminum hydroxide particles A.
The forced vortex classifier TC-15 classifies particles based on the balance between the centrifugal force acting on the particles and the air flow, and the airflow type pulverizer SJ-500 performs pulverization by collision of particles injected at high pressure. Is what you do.
得られた水酸化アルミニウム粒子A及び出発原料である水酸化アルミニウムEを評価した。
その結果、水酸化アルミニウム粒子Aの最大粒径は9.25μm、平均粒径は2.934μm、表面ナトリウム濃度(Na2O濃度)は0.0011質量%、1%重量減少温度は254.5℃、歩留まりは80.5%であった。
水酸化アルミニウムEの最大粒径は11μm、平均粒径は3.123μm、表面ナトリウム濃度(Na2O濃度)は0.0011質量%、1%重量減少温度は251.7℃であった。
The obtained aluminum hydroxide particles A and the starting material aluminum hydroxide E were evaluated.
As a result, the maximum particle size of the aluminum hydroxide particles A was 9.25 μm, the average particle size was 2.934 μm, the surface sodium concentration (Na 2 O concentration) was 0.0011% by mass, and the 1% weight reduction temperature was 254.5. The yield was 80.5%.
Aluminum hydroxide E had a maximum particle size of 11 μm, an average particle size of 3.123 μm, a surface sodium concentration (Na 2 O concentration) of 0.0011% by mass, and a 1% weight loss temperature of 251.7 ° C.
水酸化アルミニウム粒子の評価方法は以下の通りである。
[最大粒径及び平均粒径]
レーザー回折散乱法(マイクロトラックMT3300EX−II、日機装製)を用いて最大粒径及び平均粒径を測定した。測定サンプルは、水酸化アルミニウム粒子を分散液(分散溶媒:水、分散剤:ヘキサメタリン酸ナトリウム(0.2重量%))に添加し、超音波分散(80W、5分)して調製した。溶媒屈折率は1.333、粒子屈折率は1.57とした。
[Na2O換算の表面ナトリウム濃度(質量%)]
ビーカーに水酸化アルミニウム粒子5gと、約80℃の温湯60mLを加え、80℃で30分間保温した。200mL計量フラスコに溶液と共に沈殿を洗い出し、冷却後標線に合わせ、その上澄み液をJIS−K010248原子吸光光度法にて表面ナトリウム濃度を測定し、Na2O濃度に換算した。
[1%重量減少温度]
TG/DTA(TG/DTA7300高温型、SII製)を用い、1%減量温度を測定し、耐熱性の指標とした。測定サンプルは10mg、測定温度範囲は30〜800℃、昇温速度は10℃/分、サンプリングタイムは1秒とした。
The evaluation method of aluminum hydroxide particles is as follows.
[Maximum particle size and average particle size]
The maximum particle size and the average particle size were measured using a laser diffraction scattering method (Microtrac MT3300EX-II, manufactured by Nikkiso). The measurement sample was prepared by adding aluminum hydroxide particles to a dispersion (dispersion solvent: water, dispersant: sodium hexametaphosphate (0.2 wt%)) and ultrasonically dispersing (80 W, 5 minutes). The solvent refractive index was 1.333 and the particle refractive index was 1.57.
[Na 2 O equivalent surface sodium concentration (mass%)]
5 g of aluminum hydroxide particles and 60 mL of hot water of about 80 ° C. were added to the beaker, and the temperature was kept at 80 ° C. for 30 minutes. The precipitate was washed out together with the solution in a 200 mL measuring flask, adjusted to the marked line after cooling, the surface sodium concentration of the supernatant was measured by JIS-K010248 atomic absorption spectrophotometry, and converted to Na 2 O concentration.
[1% weight loss temperature]
Using TG / DTA (TG / DTA7300 high temperature type, manufactured by SII), the 1% weight loss temperature was measured and used as an index of heat resistance. The measurement sample was 10 mg, the measurement temperature range was 30 to 800 ° C., the temperature rising rate was 10 ° C./min, and the sampling time was 1 second.
実施例2
[水酸化アルミニウム粒子Bの製造]
水酸化アルミニウム粒子Eについて、分級のみを行って、粉砕しなかった他は実施例1と同様にして、最大粒径10μm以下の粒子群である水酸化アルミニウム粒子Bを調製し、評価した。
水酸化アルミニウム粒子Bの最大粒径は9.25μm、平均粒径は2.483μm、表面ナトリウム濃度(Na2O濃度)は0.0016質量%、1%重量減少温度は247.3℃、歩留まりは61.1%であった。
Example 2
[Production of aluminum hydroxide particles B]
The aluminum hydroxide particles E were prepared and evaluated in the same manner as in Example 1 except that only the classification was performed and the pulverization was not performed, and the aluminum hydroxide particles B as a particle group having a maximum particle size of 10 μm or less were prepared.
The aluminum hydroxide particles B have a maximum particle size of 9.25 μm, an average particle size of 2.483 μm, a surface sodium concentration (Na 2 O concentration) of 0.0016% by mass, a 1% weight loss temperature of 247.3 ° C., and a yield. Was 61.1%.
比較例1
[水酸化アルミニウム粒子Cの製造]
分級操作は行わずに、定量供給装置により原材料である水酸化アルミニウム粒子Eを粉砕機(日清エンジニアリング(株)製SJ−500)に供給し、最大粒径10μm以下の粒子となるよう粉砕し、水酸化アルミニウム粒子Cを得た。
水酸化アルミニウム粒子Cの最大粒径は7.78μm、平均粒径は2.264μm、表面ナトリウム濃度(Na2O濃度)は0.0022質量%、1%重量減少温度は242.0℃、歩留まりは78.5%であった。
Comparative Example 1
[Production of aluminum hydroxide particles C]
Without performing classification operation, the aluminum hydroxide particles E, which are raw materials, are supplied to a pulverizer (SJ-500 manufactured by Nissin Engineering Co., Ltd.) with a quantitative supply device, and pulverized to particles having a maximum particle size of 10 μm or less. The aluminum hydroxide particles C were obtained.
The aluminum hydroxide particles C have a maximum particle size of 7.78 μm, an average particle size of 2.264 μm, a surface sodium concentration (Na 2 O concentration) of 0.0022 mass%, a 1% weight loss temperature of 242.0 ° C., and a yield. Was 78.5%.
比較例2
[水酸化アルミニウム粒子Dの製造]
定量供給装置を用いて、原材料である水酸化アルミニウムEを、粉砕機(日清エンジニアリング(株)製、SJ−500)に供給し、最大粒径がほぼ10μm以下となるように粗く粉砕を行って、粉砕した粒子を全て回収した。
回収した粒子を分級機(日清エンジニアリング(株)製TC−15)に投入し、最大粒径10μm以下の粒子群(水酸化アルミニウム粒子D−1)と、最大粒径10μm超の粒子群(水酸化アルミニウム粒子D−2)をそれぞれ回収した。
水酸化アルミニウム粒子D−2を、同様の方法で再度粉砕及び分級し、最大粒径10μm以下の粒子群(水酸化アルミニウム粒子D−3)得た。水酸化アルミニウム粒子D−1と水酸化アルミニウム粒子D−3を混合することで、水酸化アルミニウム粒子Dを得た。
水酸化アルミニウム粒子Dの最大粒径は7.78μm、平均粒径は2.459μm、表面ナトリウム濃度(Na2O濃度)は0.0022質量%、1%重量減少温度は229.7.0℃、歩留まりは91.3%であった。
Comparative Example 2
[Production of aluminum hydroxide particles D]
Using a quantitative supply device, the raw material aluminum hydroxide E is supplied to a pulverizer (Nisshin Engineering Co., Ltd., SJ-500) and coarsely pulverized so that the maximum particle size is about 10 μm or less. All the pulverized particles were collected.
The collected particles are put into a classifier (TC-15 manufactured by Nissin Engineering Co., Ltd.), a particle group having a maximum particle size of 10 μm or less (aluminum hydroxide particle D-1), and a particle group having a maximum particle size of more than 10 μm ( Aluminum hydroxide particles D-2) were recovered respectively.
The aluminum hydroxide particles D-2 were pulverized and classified again by the same method to obtain a particle group (aluminum hydroxide particles D-3) having a maximum particle size of 10 μm or less. Aluminum hydroxide particles D-1 and aluminum hydroxide particles D-3 were mixed to obtain aluminum hydroxide particles D.
The aluminum hydroxide particles D have a maximum particle size of 7.78 μm, an average particle size of 2.459 μm, a surface sodium concentration (Na 2 O concentration) of 0.0022% by mass, and a 1% weight reduction temperature of 227.0 ° C. The yield was 91.3%.
実施例1及び2の水酸化アルミニウム粒子は、比較例1及び2の水酸化アルミニウム粒子と比べて、1%重量減少温度は245℃以上と耐熱性が高いことが分かる。特に本発明の製造方法によって調製した実施例1の水酸化アルミニウム粒子は、1%重量減少温度が原料粒子よりも高く、且つ歩留まりも高かった。 It can be seen that the aluminum hydroxide particles of Examples 1 and 2 have a high heat resistance with a 1% weight loss temperature of 245 ° C. or higher as compared with the aluminum hydroxide particles of Comparative Examples 1 and 2. In particular, the aluminum hydroxide particles of Example 1 prepared by the production method of the present invention had a 1% weight loss temperature higher than that of the raw material particles and a high yield.
実施例3
[積層板の製造]
85重量部の実施例1で得られた水酸化アルミニウム粒子Aに、樹脂成分としてビスフェノールAノボラック型エポキシ樹脂(大日本インキ化学工業株式会社製EPICRON N−865、エポキシ当量205)を65.4重量部、硬化剤としてフェノールノボラック型樹脂(明和化成株式会社製HF−4、水酸基当量:108)を34.6重量部、硬化促進剤として2−エチル−4−メチルイミダゾール(四国化成株式会社製2E4MZ)を0.2重量部、充填剤として球状シリカ(アドマテックス製SO−25H)を30重量部、難燃助剤としてモリブデン酸亜鉛担持タルク(シャーウインウイリアムズ社製 Kemgard 911C)を5重量部、及びメチルエチルケトンを94.4重量部を加えて攪拌・分散し、エポキシ樹脂組成物を調製した。
Example 3
[Manufacture of laminates]
65.4 wt.% Of bisphenol A novolac type epoxy resin (EPICRON N-865, Dainippon Ink & Chemicals, Inc., epoxy equivalent 205) as a resin component was added to 85 parts by weight of the aluminum hydroxide particles A obtained in Example 1. 34.6 parts by weight of phenol novolac resin (HF-4, hydroxyl group equivalent: 108 manufactured by Meiwa Kasei Co., Ltd.) as a curing agent, and 2-ethyl-4-methylimidazole (2E4MZ manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator ) 0.2 part by weight, spherical silica (SO-25H made by Admatex) as a filler, 30 parts by weight, zinc molybdate-carrying talc (Kemgard 911C made by Sherwin Williams) as a flame retardant aid, 5 parts by weight, And 94.4 parts by weight of methyl ethyl ketone are added and stirred and dispersed to obtain an epoxy resin composition. Prepared.
得られた樹脂組成物を、ガラス布(厚さ0.1mm#2116、旭シュエーベル(株)製E−ガラス)に樹脂分が51重量%となるように含浸し、130〜170℃の乾燥装置で6.4分乾燥後させてプリプレグを作製した。
このプリプレグ4枚を重ねて積層体とし、積層方向の両面に厚さ18μmの銅箔を重ねて、圧力3MPa、温度185℃で60分加熱加圧成型を行い、厚さ0.4mmの両面銅張積層板を得た。
The obtained resin composition was impregnated into a glass cloth (thickness 0.1 mm # 2116, E-glass manufactured by Asahi Schavel Co., Ltd.) so that the resin content was 51% by weight, and a drying apparatus at 130 to 170 ° C. And dried for 6.4 minutes to prepare a prepreg.
Four prepregs are stacked to form a laminate, and a copper foil having a thickness of 18 μm is stacked on both sides in the stacking direction. A tension laminate was obtained.
得られた積層板の耐熱性を以下の方法で評価した。結果を表1に示す。
[1%減量温度]
TG−DTA法を用い、積層板の1%重量減少温度を耐熱性として評価した。
TG/DTA(TG/DTA7300高温型、SII製)を用い、1%減量温度を測定し、耐熱性の指標とした。測定サンプルは10mg、測定温度範囲は30〜800℃、昇温速度は10℃/分、サンプリングタイムは1秒とした。また測定サンプルは、エッチング処理により両面の金属箔を全て除いた積層板を使用した。
[はんだ耐熱性試験]
50mm×50mmに断裁した積層板をはんだバス(288℃)に浮かべて銅箔の膨れを目視で確認し、膨れが生じるまでの時間を測定した。最大3600秒とした。
The heat resistance of the obtained laminate was evaluated by the following method. The results are shown in Table 1.
[1% weight loss temperature]
Using the TG-DTA method, the 1% weight reduction temperature of the laminate was evaluated as heat resistance.
Using TG / DTA (TG / DTA7300 high temperature type, manufactured by SII), the 1% weight loss temperature was measured and used as an index of heat resistance. The measurement sample was 10 mg, the measurement temperature range was 30 to 800 ° C., the temperature rising rate was 10 ° C./min, and the sampling time was 1 second. Moreover, the measurement board used the laminated sheet except all the metal foils of both surfaces by the etching process.
[Solder heat resistance test]
The laminated board cut to 50 mm × 50 mm was floated on a solder bath (288 ° C.), the swelling of the copper foil was visually confirmed, and the time until the swelling occurred was measured. The maximum time was 3600 seconds.
実施例4及び比較例3−5
水酸化アルミニウム粒子Aの代わりに表1に示す水酸化アルミニウム粒子を用いた他は実施例3と同様にして積層板を製造し、評価した。結果を表1に示す。
Example 4 and Comparative Example 3-5
A laminated board was produced and evaluated in the same manner as in Example 3 except that the aluminum hydroxide particles shown in Table 1 were used instead of the aluminum hydroxide particles A. The results are shown in Table 1.
本発明の金属水酸化物粒子は、難燃性及び耐熱性を兼ね備えているので、積層板、配線板、半導体装置等の成型品の原料である樹脂組成物に配合される難燃性フィラとして好適に用いることができる。 Since the metal hydroxide particles of the present invention have both flame retardancy and heat resistance, as a flame retardant filler blended in a resin composition that is a raw material for molded products such as laminates, wiring boards, and semiconductor devices. It can be used suitably.
Claims (9)
前記最大粒径10μm超の金属水酸化物粒子群を粉砕して、最大粒径を10μm以下とし、前記分級した最大粒径が10μm以下の金属水酸化物粒子群及び前記粉砕した最大粒径が10μm以下の金属水酸化物粒子群を混合して得られる金属水酸化物粒子であって、
最大粒径10μm以下であり、表面ナトリウム濃度がNa2O換算で0.0018質量%以下である金属水酸化物粒子。 Classifying the metal hydroxide particle group into a metal hydroxide particle group having a maximum particle size of 10 μm or less and a metal hydroxide particle group having a maximum particle size of more than 10 μm;
The metal hydroxide particle group having a maximum particle size of more than 10 μm is pulverized to have a maximum particle size of 10 μm or less, the classified maximum particle size is 10 μm or less, and the pulverized maximum particle size is Metal hydroxide particles obtained by mixing a metal hydroxide particle group of 10 μm or less,
Metal hydroxide particles having a maximum particle size of 10 μm or less and a surface sodium concentration of 0.0018% by mass or less in terms of Na 2 O.
前記最大粒径10μm超の金属水酸化物粒子群を粉砕して、最大粒径を10μm以下とし、
前記分級した最大粒径が10μm以下の金属水酸化物粒子群及び前記粉砕した最大粒径が10μm以下の金属水酸化物粒子群を混合して調製する、最大粒径10μm以下であり、表面ナトリウム濃度がNa 2 O換算で0.0018質量%以下の金属水酸化物粒子の製造方法。 Maximum particle size of the metal hydroxide particles are classified to the following metal hydroxide particles and the maximum particle size 10 [mu] m greater than the metal hydroxide particle element group 10 [mu] m,
The metal hydroxide particles having a maximum particle size of more than 10 μm are pulverized to have a maximum particle size of 10 μm or less,
Prepared by mixing the classified metal hydroxide particles having a maximum particle size of 10 μm or less and the pulverized metal hydroxide particles having a maximum particle size of 10 μm or less, and having a maximum particle size of 10 μm or less, surface sodium concentration method for producing 0.0018 mass% or less of the metal hydroxide particles in terms of Na 2 O.
前記樹脂層が充填材を含み、
前記充填材が、最大粒径が前記樹脂層の厚みの90%以下である水酸化アルミニウム粒子群、及び最大粒径が前記樹脂層の厚みの90%超である水酸化アルミニウム粒子群に分級し、前記最大粒径が樹脂層の厚みの90%超である水酸化アルミニウム粒子群を粉砕して最大粒径を樹脂層の厚みの90%以下とし、粉砕して得られた水酸化アルミニウム粒子群と前記最大粒径が前記樹脂層の厚みの90%以下である水酸化アルミニウム粒子群を混合してなる水酸化アルミニウム粒子であり、
前記水酸化アルミニウム粒子の表面ナトリウム濃度はNa 2 O換算で0.0018質量%以下であり、前記水酸化アルミニウム粒子の最大粒径が10μm以下である積層板。 A laminate that is a laminate of a resin layer and a glass cloth,
The resin layer includes a filler;
The filler is classified into an aluminum hydroxide particle group having a maximum particle size of 90% or less of the thickness of the resin layer, and an aluminum hydroxide particle group having a maximum particle size of more than 90% of the thickness of the resin layer. the maximum particle diameter of the maximum particle size not more than 90% of the thickness of the resin layer was ground over 90% in a aluminum hydroxide particles of the thickness of the resin layer, is aluminum hydroxide particles obtained by grinding And aluminum hydroxide particles obtained by mixing aluminum hydroxide particles having a maximum particle size of 90% or less of the thickness of the resin layer ,
Wherein the surface sodium concentration of the aluminum hydroxide particles is not more than 0.0018 wt% in terms of Na 2 O, laminates maximum particle size of the aluminum hydroxide particles is 10μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010142811A JP5569177B2 (en) | 2010-06-23 | 2010-06-23 | Fine metal hydroxide particles and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010142811A JP5569177B2 (en) | 2010-06-23 | 2010-06-23 | Fine metal hydroxide particles and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012006778A JP2012006778A (en) | 2012-01-12 |
JP5569177B2 true JP5569177B2 (en) | 2014-08-13 |
Family
ID=45537783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010142811A Expired - Fee Related JP5569177B2 (en) | 2010-06-23 | 2010-06-23 | Fine metal hydroxide particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5569177B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020033519A (en) * | 2018-08-31 | 2020-03-05 | 積水化学工業株式会社 | Flame-retardant foam |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62246961A (en) * | 1986-02-21 | 1987-10-28 | Showa Denko Kk | Heat-resistant resin composition |
JPH02199020A (en) * | 1989-01-26 | 1990-08-07 | Showa Denko Kk | Aluminum hydroxide for resin filler and production thereof |
JP3303374B2 (en) * | 1992-12-10 | 2002-07-22 | 住友化学工業株式会社 | Gibbsite type aluminum hydroxide for resin filling |
JP2003080620A (en) * | 2001-09-10 | 2003-03-19 | Shin Kobe Electric Mach Co Ltd | Glass fiber substrate/epoxy resin laminated sheet for backing material of flexible printed wiring board |
JP5277633B2 (en) * | 2005-12-26 | 2013-08-28 | 日本軽金属株式会社 | Method for producing low-soda fine aluminum hydroxide |
CA2653723A1 (en) * | 2006-06-21 | 2008-01-03 | Martinswerk Gmbh | A process for producing aluminum hydroxide particles |
-
2010
- 2010-06-23 JP JP2010142811A patent/JP5569177B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012006778A (en) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9718941B2 (en) | Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board | |
EP2860219B1 (en) | Resin composition, prepreg, metal foil-clad laminate and printed wiring board | |
JP6300020B2 (en) | Resin composition for printed wiring board, prepreg for printed wiring board, laminate, metal-clad laminate, printed wiring board, and magnesium oxide | |
JP2009138201A (en) | Resin composition for printed wiring board, prepreg, laminate, and printed wiring board using the same | |
JP2008050526A (en) | Resin composition, prepreg and laminated board using the same | |
JP2011026419A (en) | Resin composition, prepreg, laminated board, multilayer printed wiring, and semiconductor device | |
US20160369042A1 (en) | Resin composition, prepreg and laminate board | |
JP2010031263A (en) | Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device | |
JP5786494B2 (en) | Slurry composition containing zinc molybdate fine particles | |
JPWO2004102589A1 (en) | Insulating material, film, circuit board, and manufacturing method thereof | |
JP2022017316A (en) | Metal-clad laminate, printed wiring board, and semiconductor package | |
JP2007051267A (en) | Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board | |
CN105252018A (en) | Method for preparing high-compaction bright sheet-shaped silver powder | |
JP6604564B2 (en) | Resin composition for printed wiring board, prepreg, metal-clad laminate, printed wiring board | |
JP5862069B2 (en) | Resin composition for printed wiring board, prepreg, laminated board, and printed wiring board | |
DE60100652T2 (en) | Incombustible resin composition, prepreg, multilayer board, metal covered multilayer board, printed circuit board and multilayer printed circuit board | |
JP6256457B2 (en) | Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards | |
JP5569177B2 (en) | Fine metal hydroxide particles and method for producing the same | |
JP2015229763A (en) | Resin composition, prepreg, metal-clad laminate sheet, printed wiring board | |
JP6070812B2 (en) | Resin composition for printed wiring board, prepreg, laminated board, and printed wiring board | |
JP2013010861A (en) | Resin composition for laminate, prepreg, and laminate | |
JP5712488B2 (en) | Insulating resin film and laminated board and wiring board using the same | |
JP5272294B2 (en) | Method for producing resin varnish and resin varnish | |
JP2018188628A (en) | Thermosetting material | |
JP2012025845A (en) | Method for manufacturing resin composition varnish, prepreg and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140527 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140609 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5569177 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |