[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5568001B2 - Solar cell electrode paste and solar cell using the same - Google Patents

Solar cell electrode paste and solar cell using the same Download PDF

Info

Publication number
JP5568001B2
JP5568001B2 JP2010283470A JP2010283470A JP5568001B2 JP 5568001 B2 JP5568001 B2 JP 5568001B2 JP 2010283470 A JP2010283470 A JP 2010283470A JP 2010283470 A JP2010283470 A JP 2010283470A JP 5568001 B2 JP5568001 B2 JP 5568001B2
Authority
JP
Japan
Prior art keywords
solar cell
particles
cell electrode
electrode paste
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010283470A
Other languages
Japanese (ja)
Other versions
JP2012064916A (en
Inventor
錫 鉉 鄭
廷 ▲てつ▼ 李
珍範 岡本
載 昊 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Publication of JP2012064916A publication Critical patent/JP2012064916A/en
Application granted granted Critical
Publication of JP5568001B2 publication Critical patent/JP5568001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池電極用ペーストおよびこれを利用した太陽電池に関するものである。より具体的には、本発明はナノサイズおよびマイクロサイズの金属酸化物粒子を含み、印刷性および変換効率に優れた太陽電池電極用ペーストおよびこれを利用した太陽電池に関するものである。   The present invention relates to a paste for a solar cell electrode and a solar cell using the paste. More specifically, the present invention relates to a solar cell electrode paste containing nano-sized and micro-sized metal oxide particles and having excellent printability and conversion efficiency, and a solar cell using the paste.

石油や石炭のような化石燃料のエネルギー資源の枯渇により、新たな代替エネルギー源として太陽光を活用する太陽電池が注目されている。太陽電池は、太陽光の光子を電気に変換するpn接合の光電効果を利用して電気エネルギーを発生させるように構成されている。太陽電池は、pn接合が構成される半導体ウエハまたは基板の上・下面にそれぞれ前面電極と後面電極を形成する。半導体ウエハに入射する太陽光によりpn接合の光電効果が誘導される。pn接合の光電効果によって発生した電子は電極を通って外部に流れる電流を提供する。このような太陽電池電極は、電極用ペーストの塗布、パターニングおよび焼成によって、ウエハ表面に形成される。   Due to the depletion of energy resources of fossil fuels such as oil and coal, solar cells that utilize sunlight as a new alternative energy source are attracting attention. The solar cell is configured to generate electric energy by using a photoelectric effect of a pn junction that converts photons of sunlight into electricity. In a solar cell, a front electrode and a rear electrode are formed on the upper and lower surfaces of a semiconductor wafer or substrate on which a pn junction is formed, respectively. The photoelectric effect of the pn junction is induced by sunlight incident on the semiconductor wafer. Electrons generated by the photoelectric effect of the pn junction provide a current that flows to the outside through the electrode. Such a solar cell electrode is formed on the wafer surface by applying an electrode paste, patterning, and baking.

太陽電池の品質を評価する尺度の一つに変換効率(Eff)がある。太陽電池の変換効率は、入射した太陽光エネルギーのうちどれだけ電気エネルギーに変換されたかを表す数値であり、太陽電池の最大出力と太陽電池に入射したエネルギーの比で表示される。このような太陽電池の変換効率を高めるためには電極の特性が重要になるが、太陽光が入射する方向に対面する前面電極用ペーストは、通常、導電性粒子と、ガラスフリット、および液状運送体のビヒクルを含んで構成される。   One of the measures for evaluating the quality of solar cells is conversion efficiency (Eff). The conversion efficiency of the solar cell is a numerical value indicating how much of the incident solar energy is converted into electric energy, and is expressed as a ratio between the maximum output of the solar cell and the energy incident on the solar cell. In order to increase the conversion efficiency of such a solar cell, the characteristics of the electrode are important. However, the paste for the front electrode facing the direction in which sunlight is incident usually has conductive particles, glass frit, and liquid transportation. Consists of a body vehicle.

近年では、前記構成要素を変形したり調節したりして太陽電池の変換効率を高めようとする研究がされている。   In recent years, research has been conducted to improve the conversion efficiency of solar cells by deforming or adjusting the components.

しかし、従来の技術では太陽電池電極用ペーストを前/後面電極を印刷し乾燥した後の焼成時などにAgイオンがシリコンウエハ内部に浸透して電極上Agイオンの分布が悪くなる。結果的に直列抵抗および並列抵抗が大きくなり、これにより太陽電池の変換効率を大きく向上させることができない。   However, in the conventional technology, Ag ions penetrate into the silicon wafer during baking after the solar cell electrode paste is printed and dried on the front / rear electrodes, and the distribution of Ag ions on the electrodes is deteriorated. As a result, the series resistance and the parallel resistance are increased, and the conversion efficiency of the solar cell cannot be greatly improved.

当該事情に鑑み、太陽電池電極用ペーストに7〜100nmの酸化亜鉛の粒子を用いる方法が提起された。   In view of the circumstances, a method of using 7 to 100 nm zinc oxide particles in a solar cell electrode paste has been proposed.

韓国公開特許第10−2006−0034001号公報Korean Published Patent No. 10-2006-0034001

しかしながら、前記方法は太陽電池電極用ペーストの粘度が高くなり、印刷性が不良になってパターン脱落が増え、変換効率が減少するという問題があった。   However, the above-described method has a problem that the viscosity of the paste for solar cell electrodes is increased, printability is poor, pattern dropping increases, and conversion efficiency decreases.

したがって、本発明は太陽電池電極用ペーストの印刷性が改善された変換効率に優れた太陽電池電極用ペーストおよびこれを利用した太陽電池を提供することを目的とする。   Therefore, an object of this invention is to provide the solar cell electrode paste excellent in the conversion efficiency in which the printability of the solar cell electrode paste was improved, and a solar cell using the same.

本発明の一実施態様によれば、(a)導電性粒子、(b)ガラスフリット、(c)有機ビヒクル、および(d)金属酸化物粒子を含む太陽電池電極用ペーストにおいて、前記金属酸化物粒子が平均粒径(D50)15〜50nmのナノサイズと平均粒径(D50)0.1〜2μmのマイクロサイズの粒径分布を有する太陽電池電極用ペーストを提供できる。   According to one embodiment of the present invention, in the paste for solar cell electrode comprising (a) conductive particles, (b) glass frit, (c) organic vehicle, and (d) metal oxide particles, the metal oxide It is possible to provide a paste for a solar cell electrode, in which the particles have a nano-size particle size distribution with an average particle size (D50) of 15 to 50 nm and an average particle size (D50) of 0.1 to 2 μm.

本発明の他の一実施態様によれば、前記太陽電池電極用ペーストから形成された太陽電池電極を提示できる。   According to another embodiment of the present invention, a solar cell electrode formed from the solar cell electrode paste can be presented.

さらに、本発明の他の一実施形態によれば、前記太陽電池電極用ペーストから形成された太陽電池電極を含む太陽電池を提示できる。   Furthermore, according to other embodiment of this invention, the solar cell containing the solar cell electrode formed from the said paste for solar cell electrodes can be shown.

本発明の太陽電池電極形成用ペーストは優れた印刷性および変換効率を有する。   The solar cell electrode paste of the present invention has excellent printability and conversion efficiency.

本発明の一実施例にかかる太陽電池電極用ペーストを利用して製造される太陽電池の構造を簡略して図示した概略図である。It is the schematic which simplified and illustrated the structure of the solar cell manufactured using the paste for solar cell electrodes concerning one Example of this invention.

本発明の太陽電池電極用ペーストは、(a)導電性粒子、(b)ガラスフリット、(c)有機ビヒクル、および(d)金属酸化物粒子を含み、前記金属酸化物粒子はナノサイズとマイクロサイズの粒径分布を有する。   The solar cell electrode paste of the present invention includes (a) conductive particles, (b) glass frit, (c) organic vehicle, and (d) metal oxide particles, and the metal oxide particles are nano-sized and micro-sized. Has a particle size distribution of size.

(a)導電性粒子
本発明で用いられる導電性粒子は、導電性を有する有機物粒子、無機物粒子またはこれらの組み合わせを使用できる。
(A) Conductive particles The conductive particles used in the present invention may be organic particles, inorganic particles, or a combination thereof having conductivity.

前記導電性粒子は好ましくは無機物粒子であり、金属粒子、金属酸化物などを使用できる。前記金属粒子は、具体的には、銀(Ag)、金(Au)、パラジウム(Pd)、白金(Pt)、銅(Cu)、クロム(Cr)、コバルト(Co)、アルミニウム(Al)、スズ(Sn)、鉛(Pb)、亜鉛(Zn)、鉄(Fe)、イリジウム(Ir)、オスミウム(Os)、ロジウム(Rh)、タングステン(W)、モリブデン(Mo)またはニッケル(Ni)などを使用でき、前記金属酸化物は、具体的には、ITO(酸化インジウムスズ)などを使用できるが、必ずしもこれに制限されない。前記金属粒子は、単独または2種以上の合金形態でも適用できる。前記粒子の使用により、太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。   The conductive particles are preferably inorganic particles, and metal particles, metal oxides, and the like can be used. Specifically, the metal particles include silver (Ag), gold (Au), palladium (Pd), platinum (Pt), copper (Cu), chromium (Cr), cobalt (Co), aluminum (Al), Tin (Sn), lead (Pb), zinc (Zn), iron (Fe), iridium (Ir), osmium (Os), rhodium (Rh), tungsten (W), molybdenum (Mo), nickel (Ni), etc. Specifically, ITO (indium tin oxide) or the like can be used as the metal oxide, but is not necessarily limited thereto. The metal particles can be used alone or in the form of two or more kinds of alloys. By using the particles, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.

前記導電性粒子は、単独または2種以上を混合して使用でき、具体的には、銀粒子を含み、銀粒子以外にニッケル、コバルト、鉄、亜鉛または銅粒子をさらに添加できる。前記粒子の使用により太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。   The said electroconductive particle can be used individually or in mixture of 2 or more types, Specifically, a silver particle is included and nickel, cobalt, iron, zinc, or a copper particle can be further added besides a silver particle. By using the particles, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.

前記導電性粒子の形態は、球形、板状、無定形またはこれらの組み合わせであり得る。好ましくは球形であり、充填率、焼結密度および紫外線透過度をより向上させることができる。   The conductive particles may have a spherical shape, a plate shape, an amorphous shape, or a combination thereof. A spherical shape is preferred, and the filling rate, sintered density, and ultraviolet transmittance can be further improved.

前記導電性粒子は、平均粒径(D50)約0.1〜約10μmのものを使用できる。前記範囲内で太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。好ましくは約0.2〜約7μm、より好ましくは約0.5〜約5μm、最も好ましくは約1〜約3μmである。なお、前記平均粒径は、イソプロピルアルコール(IPA)に導電性粒子を超音波によって常温で3分間分散した後、CILAS社(フランス)で製作した1064LDモデルを用いて測定したものである。   The conductive particles having an average particle diameter (D50) of about 0.1 to about 10 μm can be used. Within the above range, the solar cell electrode-forming paste can have excellent printability and conversion efficiency. Preferably it is about 0.2 to about 7 μm, more preferably about 0.5 to about 5 μm, and most preferably about 1 to about 3 μm. The average particle diameter is measured using a 1064LD model manufactured by CILAS (France) after dispersing conductive particles in isopropyl alcohol (IPA) at room temperature for 3 minutes by ultrasonic waves.

前記導電性粒子は、太陽電池電極用ペースト組成物中約60〜約90質量%で含まれ得る。前記範囲内で抵抗の増加により変換効率が低くなることを防ぐことができ、有機ビヒクルの量の相対的な減少により太陽電池電極用ペースト化が困難になることを防ぐことができる。好ましくは約70〜約88質量%、より好ましくは約75〜約82質量%で含まれ得る。   The conductive particles may be included in an amount of about 60 to about 90% by mass in the solar cell electrode paste composition. Within the above range, it is possible to prevent the conversion efficiency from being lowered due to the increase in resistance, and it is possible to prevent the solar cell electrode from becoming difficult due to the relative decrease in the amount of the organic vehicle. Preferably it may be included at about 70 to about 88% by weight, more preferably about 75 to about 82% by weight.

(b)ガラスフリット
前記ガラスフリットは、結晶化ガラスフリットまたは非結晶化ガラスフリットであって、有鉛ガラスフリット、無鉛ガラスフリットまたはこれらの混合物中のいずれも使用できる。前記ガラスフリットは、焼成工程中に導電性粒子と下部基材間の接着力を向上させ、焼結時に軟化して焼成温度をより低くすることができる効果を誘導できる。
(B) Glass frit The glass frit is a crystallized glass frit or a non-crystallized glass frit, and any of a leaded glass frit, a lead-free glass frit, or a mixture thereof can be used. The glass frit improves the adhesive force between the conductive particles and the lower base material during the firing process, and can induce an effect of being softened during sintering and lowering the firing temperature.

無鉛ガラスフリットは、具体的には、酸化亜鉛−酸化ケイ素系(ZnO−SiO)、酸化亜鉛−酸化ホウ素−酸化ケイ素系(ZnO−B−SiO)、酸化亜鉛−酸化ホウ素−酸化ケイ素−酸化アルミニウム系(ZnO−B−SiO−Al)、酸化ビスマス−酸化ケイ素系(Bi−SiO)、酸化ビスマス−酸化ホウ素−酸化ケイ素系(Bi−B−SiO)、酸化ビスマス−酸化ホウ素−酸化ケイ素−酸化アルミニウム系(Bi−B−SiO−Al)、酸化ビスマス−酸化亜鉛−酸化ホウ素−酸化ケイ素系(Bi−ZnO−B−SiO)および酸化ビスマス−酸化亜鉛−酸化ホウ素−酸化ケイ素−酸化アルミニウム系(Bi−ZnO−B−SiO−Al)などからなる群から選択された1以上のガラスフリットを含むことができる。 Specifically, the lead-free glass frit is composed of zinc oxide-silicon oxide (ZnO-SiO 2 ), zinc oxide-boron oxide-silicon oxide (ZnO—B 2 O 3 —SiO 2 ), zinc oxide-boron oxide— Silicon oxide-aluminum oxide (ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 ), bismuth oxide—silicon oxide (Bi 2 O 3 —SiO 2 ), bismuth oxide—boron oxide—silicon oxide (Bi) 2 O 3 -B 2 O 3 -SiO 2), bismuth oxide - boron oxide - silicon oxide - aluminum oxide-based (Bi 2 O 3 -B 2 O 3 -SiO 2 -Al 2 O 3), bismuth oxide - zinc oxide - boron oxide - silicon oxide (Bi 2 O 3 -ZnO-B 2 O 3 -SiO 2) , and bismuth oxide - zinc oxide - boron oxide - silicon oxide - aluminum oxide One or more glass frit selected from the group consisting of a group system (Bi 2 O 3 —ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 ) and the like can be included.

有鉛ガラスフリットは、前記無鉛ガラスフリットの群から選択されるものに酸化鉛を含むものの他、当業者に広く知られるものからなる群から選択された1以上のガラスフリットを含むことができる。   The leaded glass frit may include one or more glass frit selected from the group consisting of those widely known to those skilled in the art, in addition to those containing lead oxide in the group selected from the group of lead-free glass frit.

前記ガラスフリットは、平均粒径(D50)が約0.1〜約5μm、好ましくは約0.5〜約3μmのものを使用できる。前記範囲内でUV波長の深部硬化を妨害せず、電極形成時の現像工程でピンホール不良を誘発しない。前記平均粒径は、イソプロピルアルコール(IPA)にガラスフリットを超音波によって常温で3分間分散した後、CILAS社で製作した1064LDモデルを用いて測定したものである。   The glass frit having an average particle diameter (D50) of about 0.1 to about 5 μm, preferably about 0.5 to about 3 μm can be used. Within this range, the UV wavelength deep-curing is not disturbed, and pinhole defects are not induced in the development process during electrode formation. The average particle size is measured using a 1064LD model manufactured by CILAS after dispersing glass frit in isopropyl alcohol (IPA) at room temperature for 3 minutes by ultrasonic waves.

前記ガラスフリットは、約300〜約600℃、好ましくは400〜550℃の転移点を有することができる。   The glass frit may have a transition point of about 300 to about 600 ° C, preferably 400 to 550 ° C.

本発明で前記ガラスフリットは、太陽電池電極用ペースト組成物中約1〜約10質量%、好ましくは約1〜約7質量%含まれる。前記範囲内で、導電性粒子の焼結性、付着力および抵抗が高くなり変換効率を低下させるのを防ぐことができる。また、焼成後に残っているガラスフリットが過度に分布されて抵抗上昇およびはんだ性を低下させるのを防ぐことができる。   In the present invention, the glass frit is contained in the solar cell electrode paste composition in an amount of about 1 to about 10% by mass, preferably about 1 to about 7% by mass. Within the said range, it can prevent that the sinterability, adhesive force, and resistance of electroconductive particle become high, and fall of conversion efficiency. Further, it is possible to prevent the glass frit remaining after firing from being excessively distributed to increase resistance and decrease solderability.

(c)有機ビヒクル
有機ビヒクルは、太陽電池電極用ペーストに液状特性を付与する有機バインダーを含むことができる。好ましくは有機バインダーおよび溶剤を含んでなる。
(C) Organic vehicle The organic vehicle can include an organic binder that imparts liquid properties to the solar cell electrode paste. Preferably, it comprises an organic binder and a solvent.

また別の具体例では前記有機ビヒクルは有機バインダーを約5〜約40質量%および溶剤を約60〜約95質量%含んでなる。また別の具体例で有機ビヒクル中の有機バインダーは、約5〜約30質量%、溶媒は70〜約95質量%で含むことができる。   In another embodiment, the organic vehicle comprises about 5 to about 40 weight percent organic binder and about 60 to about 95 weight percent solvent. In another embodiment, the organic binder in the organic vehicle may be included in an amount of about 5 to about 30% by mass, and the solvent may be included in an amount of 70 to about 95% by mass.

前記有機バインダーとしては、カルボキシル基などの親水性を有するアクリルモノマーで共重合させたアクリル系高分子、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースまたはヒドロキシエチルヒドロキシプロピルセルロースなどのセルロース系高分子などを1以上含むことができるが、これらに制限されない。これらを用いた場合、太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。   Examples of the organic binder include one or more acrylic polymers copolymerized with a hydrophilic acrylic monomer such as a carboxyl group, and cellulose polymers such as ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, or hydroxyethyl hydroxypropyl cellulose. Can include, but is not limited to. When these are used, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.

前記溶媒は、約120℃以上の沸点を有する有機溶媒を使用できる。具体的な例として、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、脂肪族アルコール、α−テルピネオール、β−テルピネオール、ジヒドロテルピネオール、エチレングリコール、エチレングリコールモノブチルエーテル、ブチルセロソルブアセテート、テキサノールなどを1以上含むことができるが、これらに制限されない。これらを用いた場合、太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。   As the solvent, an organic solvent having a boiling point of about 120 ° C. or more can be used. Specific examples may include one or more of methyl cellosolve, ethyl cellosolve, butyl cellosolve, aliphatic alcohol, α-terpineol, β-terpineol, dihydroterpineol, ethylene glycol, ethylene glycol monobutyl ether, butyl cellosolve acetate, texanol and the like. Not limited to these. When these are used, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.

前記有機ビヒクルは、太陽電池電極用ペースト組成物中約8〜約20質量%、好ましくは約10〜約15質量%含まれ得る。前記範囲内で、分散がスムーズにされなかったり、または太陽電池電極用ペースト製造後に粘度が高くなり過ぎて印刷ができなくなったりすることを防止でき、抵抗が高くなり焼成工程時に発生し得る問題点を遮断できる。   The organic vehicle may be included in the solar cell electrode paste composition in an amount of about 8 to about 20% by mass, preferably about 10 to about 15% by mass. Within the above range, it is possible to prevent the dispersion from being made smooth or to prevent the viscosity from becoming too high after the solar cell electrode paste is manufactured, and the resistance becomes high, which may occur during the firing process. Can be cut off.

(d)金属酸化物粒子
本発明で金属酸化物粒子は、電極の接触抵抗を改善し、結晶化を促進させる役割をする。
(D) Metal oxide particles In the present invention, the metal oxide particles serve to improve the contact resistance of the electrode and promote crystallization.

金属酸化物粒子は、酸化亜鉛(ZnO)、酸化鉛(PbO)、酸化銅(CuO)、酸化ケイ素(SiO)、酸化チタン(TiO)などの金属酸化物を1以上含むことができるが、これらに制限されない。 The metal oxide particles may include one or more metal oxides such as zinc oxide (ZnO), lead oxide (PbO), copper oxide (CuO), silicon oxide (SiO 2 ), and titanium oxide (TiO 2 ). Not limited to these.

本発明で前記金属酸化物粒子は、平均粒径(D50)がナノサイズの粒子と、マイクロサイズの粒子を混合して含むことができる。前記ナノサイズの粒子は、具体的には、平均粒径(D50)が約15〜約50nm、好ましくは約20〜約40nmの平均粒径を有することができる。前記マイクロサイズの粒子は、具体的には、平均粒径(D50)が約0.1〜約2μm、好ましくは約0.1〜約1.5μmの平均粒径を有することができる。前記平均粒径は、イソプロピルアルコール(IPA)に金属酸化物粒子を超音波により常温で3分分散した後、CILAS社で製作した1064LDモデルを用いて測定したものである。前記範囲内で優れた曲線因子(fill factor(FF))と変換効率(Eff)を有することができる。   In the present invention, the metal oxide particles may include a mixture of nano-sized particles having an average particle size (D50) and micro-sized particles. Specifically, the nano-sized particles may have an average particle size (D50) of about 15 to about 50 nm, preferably about 20 to about 40 nm. Specifically, the micro-sized particles may have an average particle size (D50) of about 0.1 to about 2 μm, preferably about 0.1 to about 1.5 μm. The average particle size is measured using a 1064LD model manufactured by CILAS after dispersing metal oxide particles in isopropyl alcohol (IPA) at room temperature for 3 minutes by ultrasonic waves. Within the above range, the fill factor (FF) and the conversion efficiency (Eff) can be excellent.

前記金属酸化物は、前記ナノサイズおよびマイクロサイズの粒子を合わせて太陽電池電極用ペースト組成物中約1〜約10質量%添加でき、好ましくは約1〜約8質量%含まれ得る。前記範囲内で、焼成工程中の焼結性が低下して抵抗および変化効率が不良になることを防ぐことができ、抵抗が高くなり太陽電池電極用ペーストの粘度が上昇して印刷が不良になる可能性を防ぐことができる。   The metal oxide can be added in an amount of about 1 to about 10% by mass, preferably about 1 to about 8% by mass, in the paste composition for solar cell electrodes in combination with the nano-sized and micro-sized particles. Within the above range, it is possible to prevent the sinterability during the firing process from decreasing and the resistance and change efficiency to be poor, and the resistance becomes high and the viscosity of the solar cell electrode paste increases, resulting in poor printing. The possibility of becoming can be prevented.

また、前記ナノサイズの粒子は、金属酸化物粒子中約5〜約50質量%、好ましくは約25〜約50質量%、より好ましくは約25〜40質量%で含まれる。前記範囲内で、金属酸化物粒子の比表面積および体積が大きくなってガラスフリットと反応できる空間が増え所望の効果を発揮できる。   The nano-sized particles are included in the metal oxide particles in an amount of about 5 to about 50 mass%, preferably about 25 to about 50 mass%, more preferably about 25 to 40 mass%. Within the above range, the specific surface area and volume of the metal oxide particles are increased, so that the space capable of reacting with the glass frit is increased and a desired effect can be exhibited.

前記太陽電池電極用ペーストは、流動特性、工程特性および安定性を向上させるために必要に応じて通常の添加剤をさらに含むことができる。前記添加剤は、可塑剤、分散剤、搖変剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤、カップリング剤などがあるが、必ずしもこれに制限されない。また、これらは単独または2種以上混合して使用できる。これらは本発明の技術分野で通常の知識を有する者によく知られており、商業的購入が容易である。   The solar cell electrode paste may further include a normal additive as necessary in order to improve flow characteristics, process characteristics, and stability. Examples of the additive include, but are not necessarily limited to, a plasticizer, a dispersant, a tampering agent, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant, and a coupling agent. Moreover, these can be used individually or in mixture of 2 or more types. These are well known to those having ordinary knowledge in the technical field of the present invention and are easy to purchase commercially.

これらは太陽電池電極用ペースト組成物中約0.1〜約5質量%添加されるが、必要に応じて変更できる。   These are added to the solar cell electrode paste composition in an amount of about 0.1 to about 5% by mass, but can be changed as necessary.

本発明の別の観点は、前記太陽電池電極用ペーストから形成された電極およびこれを含む太陽電池に関するものである。図1は本発明の一具体例による太陽電池の構造を表したものである。   Another aspect of the present invention relates to an electrode formed from the solar cell electrode paste and a solar cell including the electrode. FIG. 1 shows the structure of a solar cell according to an embodiment of the present invention.

図1を参照すると、p層101、およびエミッターとしてのn層102を含むウエハ100または基板上に、前記太陽電池電極用ペーストを印刷し、焼成して後面電極210および前面電極230を形成できる。例えば、太陽電池電極用ペーストをウエハ100の後面に印刷塗布した後、約200〜約400℃の温度で約10〜約60秒程度乾燥して後面電極210のための事前準備段階を行うことができる。また、ウエハ100の前面に太陽電池電極用ペーストを印刷した後、乾燥して前面電極230のための事前準備段階を行うことができる。この後、約400〜約900℃で約30秒〜約50秒程度焼成する焼成過程を行って前面電極230および後面電極210を形成できる。   Referring to FIG. 1, the back electrode 210 and the front electrode 230 can be formed by printing and baking the solar cell electrode paste on a wafer 100 or a substrate including a p layer 101 and an n layer 102 as an emitter. For example, after the solar cell electrode paste is printed and applied to the rear surface of the wafer 100, the preliminary preparation step for the rear electrode 210 is performed by drying at a temperature of about 200 to about 400 ° C. for about 10 to about 60 seconds. it can. In addition, after the solar cell electrode paste is printed on the front surface of the wafer 100, it is dried and a preliminary preparation step for the front electrode 230 can be performed. Thereafter, a front electrode 230 and a rear electrode 210 can be formed by performing a baking process of baking at about 400 to about 900 ° C. for about 30 seconds to about 50 seconds.

以下、本発明の好ましい実施例を通じて本発明の構成および作用をより詳しく説明する。ただし、これは本発明の好ましい例示として提示したものであり、いかなる意味でもこれによって本発明が制限されると解釈してはならない。   Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is provided as a preferred example of the present invention and should not be construed as limiting the present invention in any way.

ここに記載されていない内容は、本技術分野で通常の知識を有する者であれば十分に技術的に類推できるものであるため、その説明は省略する。   The contents not described here can be technically analogized by those who have ordinary knowledge in this technical field, and the description thereof will be omitted.

下記の実施例および比較実施例で用いられた各成分の仕様は次の通り:
(a)導電性粒子:Dowaハイテック社製の平均粒径(D50)が2.0μmの球形のAG−4−8(Ag粒子)を用いた。
(b)ガラスフリット
(b1)平均粒径(D50)が1.0μmで、転移点が451℃の低融点有鉛ガラスフリット((株)パーティクロジー社製,PSL1004C)を用いた。
(b2)平均粒径(D50)が1.7μmで、転移点が371℃の低融点無鉛ガラスフリット(韓国、フェニックスPDE(株)製,CSF−6)を用いた。
(c)有機ビヒクル:エチルセルロース(米国、ダウケミカル社製,STD4)をα−テルピネオール(日本テルペン化学(株)製)に60℃で溶解させたものを用いた。
(d)金属酸化物粒子
(d1)平均粒径(D50)が1.2μmのZnO粒子(関東化学(株)製)を用いた。
(d2)平均粒径(D50)が30nmのZnO粒子(韓国、SB化学(株)製)を用いた。
The specifications of each component used in the following examples and comparative examples are as follows:
(A) Conductive particles: Spherical AG-4-8 (Ag particles) having an average particle diameter (D50) of 2.0 μm manufactured by Dowa Hightech Co., Ltd. was used.
(B) Glass frit (b1) A low melting point leaded glass frit (manufactured by Particology Co., Ltd., PSL1004C) having an average particle diameter (D50) of 1.0 μm and a transition point of 451 ° C. was used.
(B2) A low melting point lead-free glass frit (manufactured by Phoenix PDE Co., Ltd., CSF-6) having an average particle diameter (D50) of 1.7 μm and a transition point of 371 ° C. was used.
(C) Organic vehicle: Ethyl cellulose (US, manufactured by Dow Chemical Company, STD4) dissolved in α-terpineol (manufactured by Nippon Terpene Chemical Co., Ltd.) at 60 ° C. was used.
(D) Metal oxide particles (d1) ZnO particles having an average particle diameter (D50) of 1.2 μm (manufactured by Kanto Chemical Co., Inc.) were used.
(D2) ZnO particles (Korea, SB Chemical Co., Ltd.) having an average particle diameter (D50) of 30 nm were used.

(実施例1〜4)
前記各成分を下記表1に記載されている含量で投入し、分散剤BYK111(ドイツ、ビックケミー(BYK−chemie)社製)を0.3質量部、搖変剤BYK430(BYK−chemie社製)を0.3質量部、消泡剤BYK053(BYK−chemie社製)を0.1質量部投入して混合した後、3ロール混練機で混合分散させて太陽電池電極形成用ペーストを製造した。
(Examples 1-4)
Each of the above components was added in the amount described in Table 1 below, and the dispersant BYK111 (manufactured by BYK-chemie, Germany) was 0.3 parts by mass, and the alteration agent BYK430 (manufactured by BYK-chemie). Was added and mixed with 0.1 mass part of an antifoaming agent BYK053 (manufactured by BYK-chemie), and then mixed and dispersed with a 3-roll kneader to produce a solar cell electrode forming paste.

(比較実施例1)
ナノサイズを有する金属酸化物粒子を使用しないことを除いては、前記実施例1と同様に行った。
(Comparative Example 1)
The same operation as in Example 1 was performed except that metal oxide particles having nanosize were not used.

(比較実施例2)
マイクロサイズを有する金属酸化物粒子を使用しないことを除いては、前記実施例1と同様に行った。
(Comparative Example 2)
The same operation as in Example 1 was performed except that metal oxide particles having a micro size were not used.

前記実施例1〜4および比較例1〜2で製造した太陽電池電極形成用ペーストをシリコンウエハの前面に一定のパターンでスクリーンプリンティングして印刷し、赤外線乾燥炉を使用して乾燥させた。その後、シリコンウエハの後面にアルミニウムペーストを全面印刷し、同様の方法で乾燥した。前記過程で形成されたセルをベルト型焼成炉を使用して400〜900℃で30〜50秒間焼成した。このように製造したセルを用いた太陽電池の曲線因子(FF,%)、変換効率(Eff.,%)を、太陽電池効率測定装備(Pasan社,CT−801)を使用して測定し、下記表2に示した。   The solar cell electrode forming pastes produced in Examples 1 to 4 and Comparative Examples 1 and 2 were screen printed on the front surface of the silicon wafer in a certain pattern, printed, and dried using an infrared drying oven. Thereafter, an aluminum paste was printed on the entire rear surface of the silicon wafer and dried by the same method. The cell formed in the above process was baked at 400 to 900 ° C. for 30 to 50 seconds using a belt type baking furnace. Using the solar cell efficiency measurement equipment (Pasan, CT-801), the fill factor (FF,%) and conversion efficiency (Eff.,%) Of the solar cell using the cell thus manufactured were measured, The results are shown in Table 2 below.

前記結果の通り、有鉛または無鉛ガラスフリットをナノサイズおよびマイクロサイズの酸化亜鉛と混合して太陽電池電極用ペーストの製造に使用する場合、曲線因子および変換効率で優れた結果を示した。   As described above, when leaded or lead-free glass frit was mixed with nano-sized and micro-sized zinc oxide and used for manufacturing a solar cell electrode paste, excellent results were obtained in terms of fill factor and conversion efficiency.

これは、本発明の太陽電池電極用ペーストを前/後面電極に印刷し、乾燥し、焼成する際に、その冷却工程においてガラスフリットがZnO粒子と一緒に結晶化を促進して、シリコンウエハ層(またはエミッター層)で結晶質に変化すると共に銀イオンのシリコンウエハ内部への浸透を防ぎ、Agイオンの分布を良くさせて曲線因子および変換効率の改善を表すと考えられる。   This is because when the solar cell electrode paste of the present invention is printed on the front / rear electrodes, dried and fired, the glass frit promotes crystallization together with the ZnO particles in the cooling step, and the silicon wafer layer (Or the emitter layer) is considered to change to a crystalline state and prevent silver ions from penetrating into the silicon wafer and improve the distribution of Ag ions to represent an improvement in the fill factor and the conversion efficiency.

また、ナノサイズのZnO粒子を金属酸化物中5〜50質量%、好ましくは25〜40質量%混合して使用する場合は、比表面積および体積が大きくなりガラスと反応できる空間が増え優れた効果を表した。一方、これを金属酸化物中50質量%、好ましくは40質量%を超えて混合して使用する場合は、比表面積および体積が大きくなりすぎて太陽電池電極用ペーストの粘度が急上昇し、また印刷性の不良によりパターン脱落が増加して曲線因子および変換効率が非常に不良になる結果を示した。   In addition, when nano-sized ZnO particles are used in a mixture of 5 to 50% by mass, preferably 25 to 40% by mass in the metal oxide, the specific surface area and volume are increased, and the space that can react with the glass is increased. Expressed. On the other hand, when this is mixed and used in a metal oxide in an amount of more than 50% by mass, preferably more than 40% by mass, the specific surface area and volume become too large, and the viscosity of the solar cell electrode paste rapidly increases, and printing The results showed that the pattern loss increased due to the poor quality, and the fill factor and conversion efficiency became very poor.

さらにまた、ナノサイズおよびマイクロサイズの粒子を合わせて太陽電池電極用ペースト組成物中1〜10質量%、好ましくは2.5〜8質量%含む場合は、焼成工程中の焼結性が低下して抵抗および変化効率が不良になることを防ぐことができ、抵抗が高くなり太陽電池電極用ペーストの粘度が上昇して印刷が不良になる可能性を防ぐ結果を示した。一方、1質量%、好ましくは2.5質量%より少ない場合は印刷が不良になる結果を示した。   Furthermore, when 1 to 10% by mass, preferably 2.5 to 8% by mass in the paste composition for solar cell electrodes is combined with nano-sized and micro-sized particles, the sinterability during the firing step is reduced. The results show that the resistance and change efficiency can be prevented from becoming poor, and the resistance is increased and the viscosity of the solar cell electrode paste is increased, thereby preventing the possibility of printing failure. On the other hand, when the content was less than 1% by mass, preferably less than 2.5% by mass, printing was poor.

本発明は、実施例を参考に説明したが、これは例示的なものに過ぎず、当該技術が属する分野で通常の知識を有する者であればこれにより様々な変形および均等な他実施例が可能だという点を理解すると考えられる。   The present invention has been described with reference to the embodiments. However, the embodiments are merely illustrative, and various modifications and equivalent other embodiments can be made by those having ordinary knowledge in the art. It can be understood that this is possible.

Claims (11)

(a)導電性粒子、(b)ガラスフリット、(c)有機ビヒクル、および(d)金属酸化物粒子を含む太陽電池電極用ペーストにおいて、前記金属酸化物粒子が平均粒径(D50)15〜50nmのナノサイズの粒子と平均粒径(D50)0.1〜2μmのマイクロサイズの粒子を混合することにより得られるものである、太陽電池電極用ペースト。 In a paste for solar cell electrode containing (a) conductive particles, (b) glass frit, (c) organic vehicle, and (d) metal oxide particles, the metal oxide particles have an average particle size (D50) of 15 to A solar cell electrode paste obtained by mixing 50 nm nano-sized particles and micro-sized particles having an average particle size (D50) of 0.1 to 2 μm. 前記金属酸化物粒子が、酸化亜鉛、酸化鉛、酸化銅(CuO)、酸化ケイ素および酸化チタンからなる群から1種以上の粒子を含む請求項1に記載の太陽電池電極用ペースト。   The solar cell electrode paste according to claim 1, wherein the metal oxide particles include one or more particles from the group consisting of zinc oxide, lead oxide, copper oxide (CuO), silicon oxide, and titanium oxide. 前記ナノサイズの粒子および前記マイクロサイズの粒子が、酸化亜鉛からなる粒子である請求項1または2に記載の太陽電池電極用ペースト。The solar cell electrode paste according to claim 1 or 2, wherein the nano-sized particles and the micro-sized particles are particles made of zinc oxide. 前記ナノサイズ粒子が、金属酸化物粒子中5〜50質量%で含まれる請求項1〜のいずれか1項に記載の太陽電池電極用ペースト。 The nano-sized particles, according to claim 1 to 3 of any one of the description of the solar cell electrode paste contained in 5 to 50 mass% in the metal oxide particles. 前記導電性粒子が、銀、金、パラジウム、白金、銅、クロム、コバルト、アルミニウム、スズ、鉛、亜鉛、鉄、イリジウム、オスミウム、ロジウム、タングステン、モリブデン、ニッケルおよびITO(酸化インジウムスズ)からなる群から選ばれる1以上を含む請求項1〜のいずれか1項に記載の太陽電池電極用ペースト。 The conductive particles are made of silver, gold, palladium, platinum, copper, chromium, cobalt, aluminum, tin, lead, zinc, iron, iridium, osmium, rhodium, tungsten, molybdenum, nickel, and ITO (indium tin oxide). The paste for solar cell electrodes according to any one of claims 1 to 4 , comprising one or more selected from the group. 前記ガラスフリットが、有鉛ガラスフリット、無鉛ガラスフリットまたはこれらの混合物を含む請求項1〜のいずれか1項に記載の太陽電池電極用ペースト。 The solar cell electrode paste according to any one of claims 1 to 5 , wherein the glass frit includes a leaded glass frit, a lead-free glass frit, or a mixture thereof. 前記有機ビヒクルが、有機バインダーと溶媒を含む請求項1〜のいずれか1項に記載の太陽電池電極用ペースト。 The solar cell electrode paste according to any one of claims 1 to 6 , wherein the organic vehicle includes an organic binder and a solvent. (a)導電性粒子60〜90質量%、(b)ガラスフリット1〜10質量%、(c)有機ビヒクル8〜20質量%、および(d)ナノサイズおよびマイクロサイズの金属酸化物粒子1〜10質量%を合せて100質量%以下となるように含む請求項1〜のいずれか1項に記載の太陽電池電極用ペースト。 (A) conductive particles 60-90% by weight, (b) glass frit 1-10% by weight, (c) organic vehicle 8-20% by weight, and (d) nano-sized and micro-sized metal oxide particles 1- The solar cell electrode paste according to any one of claims 1 to 7 , comprising 10% by mass in total so as to be 100% by mass or less. 可塑剤、分散剤、搖変剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤およびカップリング剤からなる群から選ばれた添加剤の1種以上をさらに含む請求項1〜のいずれか1項に記載の太陽電池電極用ペースト。 The additive further comprises at least one additive selected from the group consisting of a plasticizer, a dispersant, a wrinkle modifier, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant, and a coupling agent. The paste for solar cell electrodes of any one of 1-8 . 請求項1〜のいずれか1項に記載の太陽電池電極用ペーストから形成された太陽電池電極。 Any one solar cell electrode formed from the solar cell electrode paste according to claim 1-9. 請求項10に記載の太陽電池電極を含んで構成する太陽電池。 A solar cell comprising the solar cell electrode according to claim 10 .
JP2010283470A 2010-09-15 2010-12-20 Solar cell electrode paste and solar cell using the same Active JP5568001B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0090672 2010-09-15
KR20100090672 2010-09-15

Publications (2)

Publication Number Publication Date
JP2012064916A JP2012064916A (en) 2012-03-29
JP5568001B2 true JP5568001B2 (en) 2014-08-06

Family

ID=44801920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283470A Active JP5568001B2 (en) 2010-09-15 2010-12-20 Solar cell electrode paste and solar cell using the same

Country Status (4)

Country Link
EP (1) EP2444979B1 (en)
JP (1) JP5568001B2 (en)
KR (1) KR101374359B1 (en)
CN (1) CN102403047B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518709B (en) * 2012-09-13 2016-01-21 達泰科技股份有限公司 Silver paste including fined glass particles and use thereof in production of photovoltaic device
KR101557536B1 (en) * 2012-12-21 2015-10-06 제일모직주식회사 Electrode paste composition and electrode prepared using the same
US9236155B2 (en) 2013-02-04 2016-01-12 E I Du Pont De Nemours And Company Copper paste composition and its use in a method for forming copper conductors on substrates
KR101648242B1 (en) * 2013-03-27 2016-08-12 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR101596548B1 (en) * 2013-03-27 2016-02-22 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR101396444B1 (en) * 2013-05-06 2014-05-22 한화케미칼 주식회사 Method of preparing front electrode of solar cell and solar cell using the same
KR101590228B1 (en) * 2013-07-19 2016-01-29 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same
KR101648253B1 (en) * 2013-09-13 2016-08-12 제일모직주식회사 Composition for forming solar cell and electrode prepared using the same
US9666731B2 (en) * 2013-10-21 2017-05-30 Samsung Sdi Co., Ltd. Composition for solar cell electrodes, electrode fabricated using the same, and solar cell having the electrode
KR20150054352A (en) * 2013-11-12 2015-05-20 엘지전자 주식회사 Glass frit composition, paste composition for solar cell electrode, and solar cell module
CN103559940A (en) * 2013-11-14 2014-02-05 盐城工学院 Copper electronic paste and preparation method and application thereof
CN103714912B (en) * 2013-12-30 2016-04-20 无锡市儒兴科技开发有限公司 The preparation method of a kind of UV environment protection type silicon solar cell back field aluminium paste
KR101693078B1 (en) * 2014-05-15 2017-01-05 제일모직주식회사 Composition for forming solar cell and electrode prepared using the same
KR101721731B1 (en) * 2014-07-11 2017-03-31 삼성에스디아이 주식회사 Paste for forming solar cell electrode and electrode prepared using the same
CN104157327B (en) * 2014-08-05 2017-09-05 上海蓝沛新材料科技股份有限公司 Conductive gold paste of a kind of grout applied to LTCC and preparation method thereof
CN104200865B (en) * 2014-08-05 2017-09-05 上海蓝沛新材料科技股份有限公司 It is a kind of applied to surface conductance gold paste of LTCC and preparation method thereof
KR101598501B1 (en) * 2014-08-25 2016-03-02 한국에너지기술연구원 Methods of manufacturing silver printed transparent electrode and methods of manufacturing solar cell using the same
US10056508B2 (en) 2015-03-27 2018-08-21 Heraeus Deutschland GmbH & Co. KG Electro-conductive pastes comprising a metal compound
EP3275000A1 (en) 2015-03-27 2018-01-31 Heraeus Deutschland GmbH & Co. KG Electro-conductive pastes comprising an oxide additive
GB201520077D0 (en) 2015-11-13 2015-12-30 Johnson Matthey Plc Conductive track or coating
WO2018032351A1 (en) * 2016-08-16 2018-02-22 Zhejiang Kaiying New Materials Co., Ltd. Thick-film paste for front-side metallization in silicon solar cells
CN106935311A (en) * 2017-04-14 2017-07-07 北京市合众创能光电技术有限公司 A kind of photovoltaic conductive ink of sintering temperature and low
KR20220115597A (en) * 2019-12-12 2022-08-17 버트 씬 필름스, 엘엘씨 Paste for photovoltaic cell, photovoltaic cell, and method of making same
CN114203334B (en) * 2021-11-25 2024-09-10 大连海外华昇电子科技有限公司 Back aluminum paste for water-based crystalline silicon solar cell and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064367B (en) * 2003-12-08 2013-01-30 松下电器产业株式会社 Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode
US20060231802A1 (en) * 2005-04-14 2006-10-19 Takuya Konno Electroconductive thick film composition, electrode, and solar cell formed therefrom
US7556748B2 (en) * 2005-04-14 2009-07-07 E. I. Du Pont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein
US7435361B2 (en) * 2005-04-14 2008-10-14 E.I. Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices
US20100096014A1 (en) * 2006-12-25 2010-04-22 Hideyo Iida Conductive paste for solar cell
CN100593861C (en) * 2007-08-22 2010-03-10 中国科学院化学研究所 Dye sensitized nano crystal hull solar cell photoelectric pole and preparation method thereof
WO2009052343A1 (en) * 2007-10-18 2009-04-23 E. I. Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices: flux materials
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell
TW201008889A (en) * 2008-06-06 2010-03-01 Du Pont Glass compositions used in conductors for photovoltaic cells
CN101609850B (en) * 2009-07-14 2010-12-08 中南大学 Lead-free silver conductive paste used for positive electrode of solar battery and preparation technique thereof

Also Published As

Publication number Publication date
CN102403047A (en) 2012-04-04
EP2444979B1 (en) 2013-07-17
KR101374359B1 (en) 2014-03-18
CN102403047B (en) 2015-07-22
EP2444979A1 (en) 2012-04-25
KR20120028789A (en) 2012-03-23
JP2012064916A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5568001B2 (en) Solar cell electrode paste and solar cell using the same
JP6396335B2 (en) Composition for forming solar cell electrode and electrode manufactured using the same
JP6392354B2 (en) Composition for forming solar cell electrode and electrode produced thereby
EP2337036B1 (en) Conductive paste for solar cell electrode and solar cell using the same
US20110227004A1 (en) Paste for solar cell electrode and solar cell using the same
US8815127B2 (en) Paste composition for solar cell electrode, electrode fabricated using the same, and solar cell including the same
US8562872B2 (en) Paste for solar cell electrode and solar cell prepared using the same
JP2016538708A (en) Composition for forming solar cell electrode and electrode produced thereby
US9608137B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
JP2016533019A (en) Composition for forming solar cell electrode and electrode produced thereby
JP6404900B2 (en) Composition for forming solar cell electrode and electrode manufactured using the same
WO2017154612A1 (en) Conductive paste and solar cell
KR20130062193A (en) Electrode paste composition for solar cell, electrode fabricated using the same and solar cell comprising the same
CN109961871B (en) Slurry for forming transparent conductor by silk-screen sintering and application
KR102171405B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
JP2016210962A (en) Electrode forming composition, electrode manufactured using the same, and solar cell
JP6074483B1 (en) Conductive composition
KR102406747B1 (en) Method for forming solar cell electrode and solar cell
JP2018517271A (en) Composition for forming solar cell electrode and electrode manufactured from the composition
KR101693078B1 (en) Composition for forming solar cell and electrode prepared using the same
KR101582374B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR102326611B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20210069788A (en) Selective emitter solar cell electrode, and selective emitter solar cell comprising the same
KR20200015318A (en) Composition for forming electrode for solar cell including aluminum oxide layer, electrode prepared using the same and solar cell comprising electrode prepared using the same
KR20200068499A (en) Composition for forming solar cell electrode and solar cell electrode prepared using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R150 Certificate of patent or registration of utility model

Ref document number: 5568001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250