JP5568001B2 - Solar cell electrode paste and solar cell using the same - Google Patents
Solar cell electrode paste and solar cell using the same Download PDFInfo
- Publication number
- JP5568001B2 JP5568001B2 JP2010283470A JP2010283470A JP5568001B2 JP 5568001 B2 JP5568001 B2 JP 5568001B2 JP 2010283470 A JP2010283470 A JP 2010283470A JP 2010283470 A JP2010283470 A JP 2010283470A JP 5568001 B2 JP5568001 B2 JP 5568001B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- particles
- cell electrode
- electrode paste
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002003 electrode paste Substances 0.000 title claims description 34
- 239000002245 particle Substances 0.000 claims description 81
- 239000011521 glass Substances 0.000 claims description 32
- 229910044991 metal oxide Inorganic materials 0.000 claims description 26
- 150000004706 metal oxides Chemical class 0.000 claims description 26
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 17
- 239000002105 nanoparticle Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 239000011787 zinc oxide Substances 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000002518 antifoaming agent Substances 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000011133 lead Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 3
- 239000010948 rhodium Substances 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 239000003963 antioxidant agent Substances 0.000 claims description 2
- 230000003078 antioxidant effect Effects 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000007822 coupling agent Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910000464 lead oxide Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 239000004014 plasticizer Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 239000000326 ultraviolet stabilizing agent Substances 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000003607 modifier Substances 0.000 claims 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 1
- 230000037303 wrinkles Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 21
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 238000010304 firing Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 4
- 229910007472 ZnO—B2O3—SiO2 Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 2
- 229940088601 alpha-terpineol Drugs 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- -1 hydroxyethyl hydroxypropyl Chemical group 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- UODXCYZDMHPIJE-UHFFFAOYSA-N menthanol Chemical compound CC1CCC(C(C)(C)O)CC1 UODXCYZDMHPIJE-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- RUJPNZNXGCHGID-UHFFFAOYSA-N (Z)-beta-Terpineol Natural products CC(=C)C1CCC(C)(O)CC1 RUJPNZNXGCHGID-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- JCLDIQCCVGVPCA-UHFFFAOYSA-N [O-2].[Al+3].[Si+2]=O.[B+]=O.[Bi+]=O Chemical compound [O-2].[Al+3].[Si+2]=O.[B+]=O.[Bi+]=O JCLDIQCCVGVPCA-UHFFFAOYSA-N 0.000 description 1
- KTNHNZKRCLERDG-UHFFFAOYSA-N [O-2].[Al+3].[Si+2]=O.[B+]=O.[O-2].[Zn+2] Chemical compound [O-2].[Al+3].[Si+2]=O.[B+]=O.[O-2].[Zn+2] KTNHNZKRCLERDG-UHFFFAOYSA-N 0.000 description 1
- NBAQDKHMGIHRAK-UHFFFAOYSA-N [O-2].[Al+3].[Si+2]=O.[B+]=O.[O-2].[Zn+2].[Bi+]=O Chemical compound [O-2].[Al+3].[Si+2]=O.[B+]=O.[O-2].[Zn+2].[Bi+]=O NBAQDKHMGIHRAK-UHFFFAOYSA-N 0.000 description 1
- TXDRMFQQROPOKK-UHFFFAOYSA-N [Si+2]=O.[B+]=O.[O-2].[Zn+2] Chemical compound [Si+2]=O.[B+]=O.[O-2].[Zn+2] TXDRMFQQROPOKK-UHFFFAOYSA-N 0.000 description 1
- GKEYURLTVSNCTR-UHFFFAOYSA-N [Si+2]=O.[B+]=O.[O-2].[Zn+2].[Bi+]=O.[O-2].[O-2] Chemical compound [Si+2]=O.[B+]=O.[O-2].[Zn+2].[Bi+]=O.[O-2].[O-2] GKEYURLTVSNCTR-UHFFFAOYSA-N 0.000 description 1
- FSGWARMPKAALIP-UHFFFAOYSA-N [Si]=O.[B]=O.[Bi]=O Chemical compound [Si]=O.[B]=O.[Bi]=O FSGWARMPKAALIP-UHFFFAOYSA-N 0.000 description 1
- ZTGNBIINUWNGMI-UHFFFAOYSA-N [Si]=O.[Bi]=O Chemical compound [Si]=O.[Bi]=O ZTGNBIINUWNGMI-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011242 organic-inorganic particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QJVXKWHHAMZTBY-GCPOEHJPSA-N syringin Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 QJVXKWHHAMZTBY-GCPOEHJPSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- UVFOVMDPEHMBBZ-UHFFFAOYSA-N zinc oxosilicon(2+) oxygen(2-) Chemical compound [Si+2]=O.[O-2].[Zn+2].[O-2] UVFOVMDPEHMBBZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、太陽電池電極用ペーストおよびこれを利用した太陽電池に関するものである。より具体的には、本発明はナノサイズおよびマイクロサイズの金属酸化物粒子を含み、印刷性および変換効率に優れた太陽電池電極用ペーストおよびこれを利用した太陽電池に関するものである。 The present invention relates to a paste for a solar cell electrode and a solar cell using the paste. More specifically, the present invention relates to a solar cell electrode paste containing nano-sized and micro-sized metal oxide particles and having excellent printability and conversion efficiency, and a solar cell using the paste.
石油や石炭のような化石燃料のエネルギー資源の枯渇により、新たな代替エネルギー源として太陽光を活用する太陽電池が注目されている。太陽電池は、太陽光の光子を電気に変換するpn接合の光電効果を利用して電気エネルギーを発生させるように構成されている。太陽電池は、pn接合が構成される半導体ウエハまたは基板の上・下面にそれぞれ前面電極と後面電極を形成する。半導体ウエハに入射する太陽光によりpn接合の光電効果が誘導される。pn接合の光電効果によって発生した電子は電極を通って外部に流れる電流を提供する。このような太陽電池電極は、電極用ペーストの塗布、パターニングおよび焼成によって、ウエハ表面に形成される。 Due to the depletion of energy resources of fossil fuels such as oil and coal, solar cells that utilize sunlight as a new alternative energy source are attracting attention. The solar cell is configured to generate electric energy by using a photoelectric effect of a pn junction that converts photons of sunlight into electricity. In a solar cell, a front electrode and a rear electrode are formed on the upper and lower surfaces of a semiconductor wafer or substrate on which a pn junction is formed, respectively. The photoelectric effect of the pn junction is induced by sunlight incident on the semiconductor wafer. Electrons generated by the photoelectric effect of the pn junction provide a current that flows to the outside through the electrode. Such a solar cell electrode is formed on the wafer surface by applying an electrode paste, patterning, and baking.
太陽電池の品質を評価する尺度の一つに変換効率(Eff)がある。太陽電池の変換効率は、入射した太陽光エネルギーのうちどれだけ電気エネルギーに変換されたかを表す数値であり、太陽電池の最大出力と太陽電池に入射したエネルギーの比で表示される。このような太陽電池の変換効率を高めるためには電極の特性が重要になるが、太陽光が入射する方向に対面する前面電極用ペーストは、通常、導電性粒子と、ガラスフリット、および液状運送体のビヒクルを含んで構成される。 One of the measures for evaluating the quality of solar cells is conversion efficiency (Eff). The conversion efficiency of the solar cell is a numerical value indicating how much of the incident solar energy is converted into electric energy, and is expressed as a ratio between the maximum output of the solar cell and the energy incident on the solar cell. In order to increase the conversion efficiency of such a solar cell, the characteristics of the electrode are important. However, the paste for the front electrode facing the direction in which sunlight is incident usually has conductive particles, glass frit, and liquid transportation. Consists of a body vehicle.
近年では、前記構成要素を変形したり調節したりして太陽電池の変換効率を高めようとする研究がされている。 In recent years, research has been conducted to improve the conversion efficiency of solar cells by deforming or adjusting the components.
しかし、従来の技術では太陽電池電極用ペーストを前/後面電極を印刷し乾燥した後の焼成時などにAgイオンがシリコンウエハ内部に浸透して電極上Agイオンの分布が悪くなる。結果的に直列抵抗および並列抵抗が大きくなり、これにより太陽電池の変換効率を大きく向上させることができない。 However, in the conventional technology, Ag ions penetrate into the silicon wafer during baking after the solar cell electrode paste is printed and dried on the front / rear electrodes, and the distribution of Ag ions on the electrodes is deteriorated. As a result, the series resistance and the parallel resistance are increased, and the conversion efficiency of the solar cell cannot be greatly improved.
当該事情に鑑み、太陽電池電極用ペーストに7〜100nmの酸化亜鉛の粒子を用いる方法が提起された。 In view of the circumstances, a method of using 7 to 100 nm zinc oxide particles in a solar cell electrode paste has been proposed.
しかしながら、前記方法は太陽電池電極用ペーストの粘度が高くなり、印刷性が不良になってパターン脱落が増え、変換効率が減少するという問題があった。 However, the above-described method has a problem that the viscosity of the paste for solar cell electrodes is increased, printability is poor, pattern dropping increases, and conversion efficiency decreases.
したがって、本発明は太陽電池電極用ペーストの印刷性が改善された変換効率に優れた太陽電池電極用ペーストおよびこれを利用した太陽電池を提供することを目的とする。 Therefore, an object of this invention is to provide the solar cell electrode paste excellent in the conversion efficiency in which the printability of the solar cell electrode paste was improved, and a solar cell using the same.
本発明の一実施態様によれば、(a)導電性粒子、(b)ガラスフリット、(c)有機ビヒクル、および(d)金属酸化物粒子を含む太陽電池電極用ペーストにおいて、前記金属酸化物粒子が平均粒径(D50)15〜50nmのナノサイズと平均粒径(D50)0.1〜2μmのマイクロサイズの粒径分布を有する太陽電池電極用ペーストを提供できる。 According to one embodiment of the present invention, in the paste for solar cell electrode comprising (a) conductive particles, (b) glass frit, (c) organic vehicle, and (d) metal oxide particles, the metal oxide It is possible to provide a paste for a solar cell electrode, in which the particles have a nano-size particle size distribution with an average particle size (D50) of 15 to 50 nm and an average particle size (D50) of 0.1 to 2 μm.
本発明の他の一実施態様によれば、前記太陽電池電極用ペーストから形成された太陽電池電極を提示できる。 According to another embodiment of the present invention, a solar cell electrode formed from the solar cell electrode paste can be presented.
さらに、本発明の他の一実施形態によれば、前記太陽電池電極用ペーストから形成された太陽電池電極を含む太陽電池を提示できる。 Furthermore, according to other embodiment of this invention, the solar cell containing the solar cell electrode formed from the said paste for solar cell electrodes can be shown.
本発明の太陽電池電極形成用ペーストは優れた印刷性および変換効率を有する。 The solar cell electrode paste of the present invention has excellent printability and conversion efficiency.
本発明の太陽電池電極用ペーストは、(a)導電性粒子、(b)ガラスフリット、(c)有機ビヒクル、および(d)金属酸化物粒子を含み、前記金属酸化物粒子はナノサイズとマイクロサイズの粒径分布を有する。 The solar cell electrode paste of the present invention includes (a) conductive particles, (b) glass frit, (c) organic vehicle, and (d) metal oxide particles, and the metal oxide particles are nano-sized and micro-sized. Has a particle size distribution of size.
(a)導電性粒子
本発明で用いられる導電性粒子は、導電性を有する有機物粒子、無機物粒子またはこれらの組み合わせを使用できる。
(A) Conductive particles The conductive particles used in the present invention may be organic particles, inorganic particles, or a combination thereof having conductivity.
前記導電性粒子は好ましくは無機物粒子であり、金属粒子、金属酸化物などを使用できる。前記金属粒子は、具体的には、銀(Ag)、金(Au)、パラジウム(Pd)、白金(Pt)、銅(Cu)、クロム(Cr)、コバルト(Co)、アルミニウム(Al)、スズ(Sn)、鉛(Pb)、亜鉛(Zn)、鉄(Fe)、イリジウム(Ir)、オスミウム(Os)、ロジウム(Rh)、タングステン(W)、モリブデン(Mo)またはニッケル(Ni)などを使用でき、前記金属酸化物は、具体的には、ITO(酸化インジウムスズ)などを使用できるが、必ずしもこれに制限されない。前記金属粒子は、単独または2種以上の合金形態でも適用できる。前記粒子の使用により、太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。 The conductive particles are preferably inorganic particles, and metal particles, metal oxides, and the like can be used. Specifically, the metal particles include silver (Ag), gold (Au), palladium (Pd), platinum (Pt), copper (Cu), chromium (Cr), cobalt (Co), aluminum (Al), Tin (Sn), lead (Pb), zinc (Zn), iron (Fe), iridium (Ir), osmium (Os), rhodium (Rh), tungsten (W), molybdenum (Mo), nickel (Ni), etc. Specifically, ITO (indium tin oxide) or the like can be used as the metal oxide, but is not necessarily limited thereto. The metal particles can be used alone or in the form of two or more kinds of alloys. By using the particles, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.
前記導電性粒子は、単独または2種以上を混合して使用でき、具体的には、銀粒子を含み、銀粒子以外にニッケル、コバルト、鉄、亜鉛または銅粒子をさらに添加できる。前記粒子の使用により太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。 The said electroconductive particle can be used individually or in mixture of 2 or more types, Specifically, a silver particle is included and nickel, cobalt, iron, zinc, or a copper particle can be further added besides a silver particle. By using the particles, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.
前記導電性粒子の形態は、球形、板状、無定形またはこれらの組み合わせであり得る。好ましくは球形であり、充填率、焼結密度および紫外線透過度をより向上させることができる。 The conductive particles may have a spherical shape, a plate shape, an amorphous shape, or a combination thereof. A spherical shape is preferred, and the filling rate, sintered density, and ultraviolet transmittance can be further improved.
前記導電性粒子は、平均粒径(D50)約0.1〜約10μmのものを使用できる。前記範囲内で太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。好ましくは約0.2〜約7μm、より好ましくは約0.5〜約5μm、最も好ましくは約1〜約3μmである。なお、前記平均粒径は、イソプロピルアルコール(IPA)に導電性粒子を超音波によって常温で3分間分散した後、CILAS社(フランス)で製作した1064LDモデルを用いて測定したものである。 The conductive particles having an average particle diameter (D50) of about 0.1 to about 10 μm can be used. Within the above range, the solar cell electrode-forming paste can have excellent printability and conversion efficiency. Preferably it is about 0.2 to about 7 μm, more preferably about 0.5 to about 5 μm, and most preferably about 1 to about 3 μm. The average particle diameter is measured using a 1064LD model manufactured by CILAS (France) after dispersing conductive particles in isopropyl alcohol (IPA) at room temperature for 3 minutes by ultrasonic waves.
前記導電性粒子は、太陽電池電極用ペースト組成物中約60〜約90質量%で含まれ得る。前記範囲内で抵抗の増加により変換効率が低くなることを防ぐことができ、有機ビヒクルの量の相対的な減少により太陽電池電極用ペースト化が困難になることを防ぐことができる。好ましくは約70〜約88質量%、より好ましくは約75〜約82質量%で含まれ得る。 The conductive particles may be included in an amount of about 60 to about 90% by mass in the solar cell electrode paste composition. Within the above range, it is possible to prevent the conversion efficiency from being lowered due to the increase in resistance, and it is possible to prevent the solar cell electrode from becoming difficult due to the relative decrease in the amount of the organic vehicle. Preferably it may be included at about 70 to about 88% by weight, more preferably about 75 to about 82% by weight.
(b)ガラスフリット
前記ガラスフリットは、結晶化ガラスフリットまたは非結晶化ガラスフリットであって、有鉛ガラスフリット、無鉛ガラスフリットまたはこれらの混合物中のいずれも使用できる。前記ガラスフリットは、焼成工程中に導電性粒子と下部基材間の接着力を向上させ、焼結時に軟化して焼成温度をより低くすることができる効果を誘導できる。
(B) Glass frit The glass frit is a crystallized glass frit or a non-crystallized glass frit, and any of a leaded glass frit, a lead-free glass frit, or a mixture thereof can be used. The glass frit improves the adhesive force between the conductive particles and the lower base material during the firing process, and can induce an effect of being softened during sintering and lowering the firing temperature.
無鉛ガラスフリットは、具体的には、酸化亜鉛−酸化ケイ素系(ZnO−SiO2)、酸化亜鉛−酸化ホウ素−酸化ケイ素系(ZnO−B2O3−SiO2)、酸化亜鉛−酸化ホウ素−酸化ケイ素−酸化アルミニウム系(ZnO−B2O3−SiO2−Al2O3)、酸化ビスマス−酸化ケイ素系(Bi2O3−SiO2)、酸化ビスマス−酸化ホウ素−酸化ケイ素系(Bi2O3−B2O3−SiO2)、酸化ビスマス−酸化ホウ素−酸化ケイ素−酸化アルミニウム系(Bi2O3−B2O3−SiO2−Al2O3)、酸化ビスマス−酸化亜鉛−酸化ホウ素−酸化ケイ素系(Bi2O3−ZnO−B2O3−SiO2)および酸化ビスマス−酸化亜鉛−酸化ホウ素−酸化ケイ素−酸化アルミニウム系(Bi2O3−ZnO−B2O3−SiO2−Al2O3)などからなる群から選択された1以上のガラスフリットを含むことができる。 Specifically, the lead-free glass frit is composed of zinc oxide-silicon oxide (ZnO-SiO 2 ), zinc oxide-boron oxide-silicon oxide (ZnO—B 2 O 3 —SiO 2 ), zinc oxide-boron oxide— Silicon oxide-aluminum oxide (ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 ), bismuth oxide—silicon oxide (Bi 2 O 3 —SiO 2 ), bismuth oxide—boron oxide—silicon oxide (Bi) 2 O 3 -B 2 O 3 -SiO 2), bismuth oxide - boron oxide - silicon oxide - aluminum oxide-based (Bi 2 O 3 -B 2 O 3 -SiO 2 -Al 2 O 3), bismuth oxide - zinc oxide - boron oxide - silicon oxide (Bi 2 O 3 -ZnO-B 2 O 3 -SiO 2) , and bismuth oxide - zinc oxide - boron oxide - silicon oxide - aluminum oxide One or more glass frit selected from the group consisting of a group system (Bi 2 O 3 —ZnO—B 2 O 3 —SiO 2 —Al 2 O 3 ) and the like can be included.
有鉛ガラスフリットは、前記無鉛ガラスフリットの群から選択されるものに酸化鉛を含むものの他、当業者に広く知られるものからなる群から選択された1以上のガラスフリットを含むことができる。 The leaded glass frit may include one or more glass frit selected from the group consisting of those widely known to those skilled in the art, in addition to those containing lead oxide in the group selected from the group of lead-free glass frit.
前記ガラスフリットは、平均粒径(D50)が約0.1〜約5μm、好ましくは約0.5〜約3μmのものを使用できる。前記範囲内でUV波長の深部硬化を妨害せず、電極形成時の現像工程でピンホール不良を誘発しない。前記平均粒径は、イソプロピルアルコール(IPA)にガラスフリットを超音波によって常温で3分間分散した後、CILAS社で製作した1064LDモデルを用いて測定したものである。 The glass frit having an average particle diameter (D50) of about 0.1 to about 5 μm, preferably about 0.5 to about 3 μm can be used. Within this range, the UV wavelength deep-curing is not disturbed, and pinhole defects are not induced in the development process during electrode formation. The average particle size is measured using a 1064LD model manufactured by CILAS after dispersing glass frit in isopropyl alcohol (IPA) at room temperature for 3 minutes by ultrasonic waves.
前記ガラスフリットは、約300〜約600℃、好ましくは400〜550℃の転移点を有することができる。 The glass frit may have a transition point of about 300 to about 600 ° C, preferably 400 to 550 ° C.
本発明で前記ガラスフリットは、太陽電池電極用ペースト組成物中約1〜約10質量%、好ましくは約1〜約7質量%含まれる。前記範囲内で、導電性粒子の焼結性、付着力および抵抗が高くなり変換効率を低下させるのを防ぐことができる。また、焼成後に残っているガラスフリットが過度に分布されて抵抗上昇およびはんだ性を低下させるのを防ぐことができる。 In the present invention, the glass frit is contained in the solar cell electrode paste composition in an amount of about 1 to about 10% by mass, preferably about 1 to about 7% by mass. Within the said range, it can prevent that the sinterability, adhesive force, and resistance of electroconductive particle become high, and fall of conversion efficiency. Further, it is possible to prevent the glass frit remaining after firing from being excessively distributed to increase resistance and decrease solderability.
(c)有機ビヒクル
有機ビヒクルは、太陽電池電極用ペーストに液状特性を付与する有機バインダーを含むことができる。好ましくは有機バインダーおよび溶剤を含んでなる。
(C) Organic vehicle The organic vehicle can include an organic binder that imparts liquid properties to the solar cell electrode paste. Preferably, it comprises an organic binder and a solvent.
また別の具体例では前記有機ビヒクルは有機バインダーを約5〜約40質量%および溶剤を約60〜約95質量%含んでなる。また別の具体例で有機ビヒクル中の有機バインダーは、約5〜約30質量%、溶媒は70〜約95質量%で含むことができる。 In another embodiment, the organic vehicle comprises about 5 to about 40 weight percent organic binder and about 60 to about 95 weight percent solvent. In another embodiment, the organic binder in the organic vehicle may be included in an amount of about 5 to about 30% by mass, and the solvent may be included in an amount of 70 to about 95% by mass.
前記有機バインダーとしては、カルボキシル基などの親水性を有するアクリルモノマーで共重合させたアクリル系高分子、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースまたはヒドロキシエチルヒドロキシプロピルセルロースなどのセルロース系高分子などを1以上含むことができるが、これらに制限されない。これらを用いた場合、太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。 Examples of the organic binder include one or more acrylic polymers copolymerized with a hydrophilic acrylic monomer such as a carboxyl group, and cellulose polymers such as ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, or hydroxyethyl hydroxypropyl cellulose. Can include, but is not limited to. When these are used, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.
前記溶媒は、約120℃以上の沸点を有する有機溶媒を使用できる。具体的な例として、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、脂肪族アルコール、α−テルピネオール、β−テルピネオール、ジヒドロテルピネオール、エチレングリコール、エチレングリコールモノブチルエーテル、ブチルセロソルブアセテート、テキサノールなどを1以上含むことができるが、これらに制限されない。これらを用いた場合、太陽電池電極形成用ペーストは優れた印刷性および変換効率を有することができる。 As the solvent, an organic solvent having a boiling point of about 120 ° C. or more can be used. Specific examples may include one or more of methyl cellosolve, ethyl cellosolve, butyl cellosolve, aliphatic alcohol, α-terpineol, β-terpineol, dihydroterpineol, ethylene glycol, ethylene glycol monobutyl ether, butyl cellosolve acetate, texanol and the like. Not limited to these. When these are used, the solar cell electrode-forming paste can have excellent printability and conversion efficiency.
前記有機ビヒクルは、太陽電池電極用ペースト組成物中約8〜約20質量%、好ましくは約10〜約15質量%含まれ得る。前記範囲内で、分散がスムーズにされなかったり、または太陽電池電極用ペースト製造後に粘度が高くなり過ぎて印刷ができなくなったりすることを防止でき、抵抗が高くなり焼成工程時に発生し得る問題点を遮断できる。 The organic vehicle may be included in the solar cell electrode paste composition in an amount of about 8 to about 20% by mass, preferably about 10 to about 15% by mass. Within the above range, it is possible to prevent the dispersion from being made smooth or to prevent the viscosity from becoming too high after the solar cell electrode paste is manufactured, and the resistance becomes high, which may occur during the firing process. Can be cut off.
(d)金属酸化物粒子
本発明で金属酸化物粒子は、電極の接触抵抗を改善し、結晶化を促進させる役割をする。
(D) Metal oxide particles In the present invention, the metal oxide particles serve to improve the contact resistance of the electrode and promote crystallization.
金属酸化物粒子は、酸化亜鉛(ZnO)、酸化鉛(PbO)、酸化銅(CuO)、酸化ケイ素(SiO2)、酸化チタン(TiO2)などの金属酸化物を1以上含むことができるが、これらに制限されない。 The metal oxide particles may include one or more metal oxides such as zinc oxide (ZnO), lead oxide (PbO), copper oxide (CuO), silicon oxide (SiO 2 ), and titanium oxide (TiO 2 ). Not limited to these.
本発明で前記金属酸化物粒子は、平均粒径(D50)がナノサイズの粒子と、マイクロサイズの粒子を混合して含むことができる。前記ナノサイズの粒子は、具体的には、平均粒径(D50)が約15〜約50nm、好ましくは約20〜約40nmの平均粒径を有することができる。前記マイクロサイズの粒子は、具体的には、平均粒径(D50)が約0.1〜約2μm、好ましくは約0.1〜約1.5μmの平均粒径を有することができる。前記平均粒径は、イソプロピルアルコール(IPA)に金属酸化物粒子を超音波により常温で3分分散した後、CILAS社で製作した1064LDモデルを用いて測定したものである。前記範囲内で優れた曲線因子(fill factor(FF))と変換効率(Eff)を有することができる。 In the present invention, the metal oxide particles may include a mixture of nano-sized particles having an average particle size (D50) and micro-sized particles. Specifically, the nano-sized particles may have an average particle size (D50) of about 15 to about 50 nm, preferably about 20 to about 40 nm. Specifically, the micro-sized particles may have an average particle size (D50) of about 0.1 to about 2 μm, preferably about 0.1 to about 1.5 μm. The average particle size is measured using a 1064LD model manufactured by CILAS after dispersing metal oxide particles in isopropyl alcohol (IPA) at room temperature for 3 minutes by ultrasonic waves. Within the above range, the fill factor (FF) and the conversion efficiency (Eff) can be excellent.
前記金属酸化物は、前記ナノサイズおよびマイクロサイズの粒子を合わせて太陽電池電極用ペースト組成物中約1〜約10質量%添加でき、好ましくは約1〜約8質量%含まれ得る。前記範囲内で、焼成工程中の焼結性が低下して抵抗および変化効率が不良になることを防ぐことができ、抵抗が高くなり太陽電池電極用ペーストの粘度が上昇して印刷が不良になる可能性を防ぐことができる。 The metal oxide can be added in an amount of about 1 to about 10% by mass, preferably about 1 to about 8% by mass, in the paste composition for solar cell electrodes in combination with the nano-sized and micro-sized particles. Within the above range, it is possible to prevent the sinterability during the firing process from decreasing and the resistance and change efficiency to be poor, and the resistance becomes high and the viscosity of the solar cell electrode paste increases, resulting in poor printing. The possibility of becoming can be prevented.
また、前記ナノサイズの粒子は、金属酸化物粒子中約5〜約50質量%、好ましくは約25〜約50質量%、より好ましくは約25〜40質量%で含まれる。前記範囲内で、金属酸化物粒子の比表面積および体積が大きくなってガラスフリットと反応できる空間が増え所望の効果を発揮できる。 The nano-sized particles are included in the metal oxide particles in an amount of about 5 to about 50 mass%, preferably about 25 to about 50 mass%, more preferably about 25 to 40 mass%. Within the above range, the specific surface area and volume of the metal oxide particles are increased, so that the space capable of reacting with the glass frit is increased and a desired effect can be exhibited.
前記太陽電池電極用ペーストは、流動特性、工程特性および安定性を向上させるために必要に応じて通常の添加剤をさらに含むことができる。前記添加剤は、可塑剤、分散剤、搖変剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤、カップリング剤などがあるが、必ずしもこれに制限されない。また、これらは単独または2種以上混合して使用できる。これらは本発明の技術分野で通常の知識を有する者によく知られており、商業的購入が容易である。 The solar cell electrode paste may further include a normal additive as necessary in order to improve flow characteristics, process characteristics, and stability. Examples of the additive include, but are not necessarily limited to, a plasticizer, a dispersant, a tampering agent, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, an antioxidant, and a coupling agent. Moreover, these can be used individually or in mixture of 2 or more types. These are well known to those having ordinary knowledge in the technical field of the present invention and are easy to purchase commercially.
これらは太陽電池電極用ペースト組成物中約0.1〜約5質量%添加されるが、必要に応じて変更できる。 These are added to the solar cell electrode paste composition in an amount of about 0.1 to about 5% by mass, but can be changed as necessary.
本発明の別の観点は、前記太陽電池電極用ペーストから形成された電極およびこれを含む太陽電池に関するものである。図1は本発明の一具体例による太陽電池の構造を表したものである。 Another aspect of the present invention relates to an electrode formed from the solar cell electrode paste and a solar cell including the electrode. FIG. 1 shows the structure of a solar cell according to an embodiment of the present invention.
図1を参照すると、p層101、およびエミッターとしてのn層102を含むウエハ100または基板上に、前記太陽電池電極用ペーストを印刷し、焼成して後面電極210および前面電極230を形成できる。例えば、太陽電池電極用ペーストをウエハ100の後面に印刷塗布した後、約200〜約400℃の温度で約10〜約60秒程度乾燥して後面電極210のための事前準備段階を行うことができる。また、ウエハ100の前面に太陽電池電極用ペーストを印刷した後、乾燥して前面電極230のための事前準備段階を行うことができる。この後、約400〜約900℃で約30秒〜約50秒程度焼成する焼成過程を行って前面電極230および後面電極210を形成できる。 Referring to FIG. 1, the back electrode 210 and the front electrode 230 can be formed by printing and baking the solar cell electrode paste on a wafer 100 or a substrate including a p layer 101 and an n layer 102 as an emitter. For example, after the solar cell electrode paste is printed and applied to the rear surface of the wafer 100, the preliminary preparation step for the rear electrode 210 is performed by drying at a temperature of about 200 to about 400 ° C. for about 10 to about 60 seconds. it can. In addition, after the solar cell electrode paste is printed on the front surface of the wafer 100, it is dried and a preliminary preparation step for the front electrode 230 can be performed. Thereafter, a front electrode 230 and a rear electrode 210 can be formed by performing a baking process of baking at about 400 to about 900 ° C. for about 30 seconds to about 50 seconds.
以下、本発明の好ましい実施例を通じて本発明の構成および作用をより詳しく説明する。ただし、これは本発明の好ましい例示として提示したものであり、いかなる意味でもこれによって本発明が制限されると解釈してはならない。 Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is provided as a preferred example of the present invention and should not be construed as limiting the present invention in any way.
ここに記載されていない内容は、本技術分野で通常の知識を有する者であれば十分に技術的に類推できるものであるため、その説明は省略する。 The contents not described here can be technically analogized by those who have ordinary knowledge in this technical field, and the description thereof will be omitted.
下記の実施例および比較実施例で用いられた各成分の仕様は次の通り:
(a)導電性粒子:Dowaハイテック社製の平均粒径(D50)が2.0μmの球形のAG−4−8(Ag粒子)を用いた。
(b)ガラスフリット
(b1)平均粒径(D50)が1.0μmで、転移点が451℃の低融点有鉛ガラスフリット((株)パーティクロジー社製,PSL1004C)を用いた。
(b2)平均粒径(D50)が1.7μmで、転移点が371℃の低融点無鉛ガラスフリット(韓国、フェニックスPDE(株)製,CSF−6)を用いた。
(c)有機ビヒクル:エチルセルロース(米国、ダウケミカル社製,STD4)をα−テルピネオール(日本テルペン化学(株)製)に60℃で溶解させたものを用いた。
(d)金属酸化物粒子
(d1)平均粒径(D50)が1.2μmのZnO粒子(関東化学(株)製)を用いた。
(d2)平均粒径(D50)が30nmのZnO粒子(韓国、SB化学(株)製)を用いた。
The specifications of each component used in the following examples and comparative examples are as follows:
(A) Conductive particles: Spherical AG-4-8 (Ag particles) having an average particle diameter (D50) of 2.0 μm manufactured by Dowa Hightech Co., Ltd. was used.
(B) Glass frit (b1) A low melting point leaded glass frit (manufactured by Particology Co., Ltd., PSL1004C) having an average particle diameter (D50) of 1.0 μm and a transition point of 451 ° C. was used.
(B2) A low melting point lead-free glass frit (manufactured by Phoenix PDE Co., Ltd., CSF-6) having an average particle diameter (D50) of 1.7 μm and a transition point of 371 ° C. was used.
(C) Organic vehicle: Ethyl cellulose (US, manufactured by Dow Chemical Company, STD4) dissolved in α-terpineol (manufactured by Nippon Terpene Chemical Co., Ltd.) at 60 ° C. was used.
(D) Metal oxide particles (d1) ZnO particles having an average particle diameter (D50) of 1.2 μm (manufactured by Kanto Chemical Co., Inc.) were used.
(D2) ZnO particles (Korea, SB Chemical Co., Ltd.) having an average particle diameter (D50) of 30 nm were used.
(実施例1〜4)
前記各成分を下記表1に記載されている含量で投入し、分散剤BYK111(ドイツ、ビックケミー(BYK−chemie)社製)を0.3質量部、搖変剤BYK430(BYK−chemie社製)を0.3質量部、消泡剤BYK053(BYK−chemie社製)を0.1質量部投入して混合した後、3ロール混練機で混合分散させて太陽電池電極形成用ペーストを製造した。
(Examples 1-4)
Each of the above components was added in the amount described in Table 1 below, and the dispersant BYK111 (manufactured by BYK-chemie, Germany) was 0.3 parts by mass, and the alteration agent BYK430 (manufactured by BYK-chemie). Was added and mixed with 0.1 mass part of an antifoaming agent BYK053 (manufactured by BYK-chemie), and then mixed and dispersed with a 3-roll kneader to produce a solar cell electrode forming paste.
(比較実施例1)
ナノサイズを有する金属酸化物粒子を使用しないことを除いては、前記実施例1と同様に行った。
(Comparative Example 1)
The same operation as in Example 1 was performed except that metal oxide particles having nanosize were not used.
(比較実施例2)
マイクロサイズを有する金属酸化物粒子を使用しないことを除いては、前記実施例1と同様に行った。
(Comparative Example 2)
The same operation as in Example 1 was performed except that metal oxide particles having a micro size were not used.
前記実施例1〜4および比較例1〜2で製造した太陽電池電極形成用ペーストをシリコンウエハの前面に一定のパターンでスクリーンプリンティングして印刷し、赤外線乾燥炉を使用して乾燥させた。その後、シリコンウエハの後面にアルミニウムペーストを全面印刷し、同様の方法で乾燥した。前記過程で形成されたセルをベルト型焼成炉を使用して400〜900℃で30〜50秒間焼成した。このように製造したセルを用いた太陽電池の曲線因子(FF,%)、変換効率(Eff.,%)を、太陽電池効率測定装備(Pasan社,CT−801)を使用して測定し、下記表2に示した。 The solar cell electrode forming pastes produced in Examples 1 to 4 and Comparative Examples 1 and 2 were screen printed on the front surface of the silicon wafer in a certain pattern, printed, and dried using an infrared drying oven. Thereafter, an aluminum paste was printed on the entire rear surface of the silicon wafer and dried by the same method. The cell formed in the above process was baked at 400 to 900 ° C. for 30 to 50 seconds using a belt type baking furnace. Using the solar cell efficiency measurement equipment (Pasan, CT-801), the fill factor (FF,%) and conversion efficiency (Eff.,%) Of the solar cell using the cell thus manufactured were measured, The results are shown in Table 2 below.
前記結果の通り、有鉛または無鉛ガラスフリットをナノサイズおよびマイクロサイズの酸化亜鉛と混合して太陽電池電極用ペーストの製造に使用する場合、曲線因子および変換効率で優れた結果を示した。 As described above, when leaded or lead-free glass frit was mixed with nano-sized and micro-sized zinc oxide and used for manufacturing a solar cell electrode paste, excellent results were obtained in terms of fill factor and conversion efficiency.
これは、本発明の太陽電池電極用ペーストを前/後面電極に印刷し、乾燥し、焼成する際に、その冷却工程においてガラスフリットがZnO粒子と一緒に結晶化を促進して、シリコンウエハ層(またはエミッター層)で結晶質に変化すると共に銀イオンのシリコンウエハ内部への浸透を防ぎ、Agイオンの分布を良くさせて曲線因子および変換効率の改善を表すと考えられる。 This is because when the solar cell electrode paste of the present invention is printed on the front / rear electrodes, dried and fired, the glass frit promotes crystallization together with the ZnO particles in the cooling step, and the silicon wafer layer (Or the emitter layer) is considered to change to a crystalline state and prevent silver ions from penetrating into the silicon wafer and improve the distribution of Ag ions to represent an improvement in the fill factor and the conversion efficiency.
また、ナノサイズのZnO粒子を金属酸化物中5〜50質量%、好ましくは25〜40質量%混合して使用する場合は、比表面積および体積が大きくなりガラスと反応できる空間が増え優れた効果を表した。一方、これを金属酸化物中50質量%、好ましくは40質量%を超えて混合して使用する場合は、比表面積および体積が大きくなりすぎて太陽電池電極用ペーストの粘度が急上昇し、また印刷性の不良によりパターン脱落が増加して曲線因子および変換効率が非常に不良になる結果を示した。 In addition, when nano-sized ZnO particles are used in a mixture of 5 to 50% by mass, preferably 25 to 40% by mass in the metal oxide, the specific surface area and volume are increased, and the space that can react with the glass is increased. Expressed. On the other hand, when this is mixed and used in a metal oxide in an amount of more than 50% by mass, preferably more than 40% by mass, the specific surface area and volume become too large, and the viscosity of the solar cell electrode paste rapidly increases, and printing The results showed that the pattern loss increased due to the poor quality, and the fill factor and conversion efficiency became very poor.
さらにまた、ナノサイズおよびマイクロサイズの粒子を合わせて太陽電池電極用ペースト組成物中1〜10質量%、好ましくは2.5〜8質量%含む場合は、焼成工程中の焼結性が低下して抵抗および変化効率が不良になることを防ぐことができ、抵抗が高くなり太陽電池電極用ペーストの粘度が上昇して印刷が不良になる可能性を防ぐ結果を示した。一方、1質量%、好ましくは2.5質量%より少ない場合は印刷が不良になる結果を示した。 Furthermore, when 1 to 10% by mass, preferably 2.5 to 8% by mass in the paste composition for solar cell electrodes is combined with nano-sized and micro-sized particles, the sinterability during the firing step is reduced. The results show that the resistance and change efficiency can be prevented from becoming poor, and the resistance is increased and the viscosity of the solar cell electrode paste is increased, thereby preventing the possibility of printing failure. On the other hand, when the content was less than 1% by mass, preferably less than 2.5% by mass, printing was poor.
本発明は、実施例を参考に説明したが、これは例示的なものに過ぎず、当該技術が属する分野で通常の知識を有する者であればこれにより様々な変形および均等な他実施例が可能だという点を理解すると考えられる。 The present invention has been described with reference to the embodiments. However, the embodiments are merely illustrative, and various modifications and equivalent other embodiments can be made by those having ordinary knowledge in the art. It can be understood that this is possible.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0090672 | 2010-09-15 | ||
KR20100090672 | 2010-09-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012064916A JP2012064916A (en) | 2012-03-29 |
JP5568001B2 true JP5568001B2 (en) | 2014-08-06 |
Family
ID=44801920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010283470A Active JP5568001B2 (en) | 2010-09-15 | 2010-12-20 | Solar cell electrode paste and solar cell using the same |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2444979B1 (en) |
JP (1) | JP5568001B2 (en) |
KR (1) | KR101374359B1 (en) |
CN (1) | CN102403047B (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI518709B (en) * | 2012-09-13 | 2016-01-21 | 達泰科技股份有限公司 | Silver paste including fined glass particles and use thereof in production of photovoltaic device |
KR101557536B1 (en) * | 2012-12-21 | 2015-10-06 | 제일모직주식회사 | Electrode paste composition and electrode prepared using the same |
US9236155B2 (en) | 2013-02-04 | 2016-01-12 | E I Du Pont De Nemours And Company | Copper paste composition and its use in a method for forming copper conductors on substrates |
KR101648242B1 (en) * | 2013-03-27 | 2016-08-12 | 제일모직주식회사 | Composition for forming solar cell electrode and electrode prepared using the same |
KR101596548B1 (en) * | 2013-03-27 | 2016-02-22 | 제일모직주식회사 | Composition for forming solar cell electrode and electrode prepared using the same |
KR101396444B1 (en) * | 2013-05-06 | 2014-05-22 | 한화케미칼 주식회사 | Method of preparing front electrode of solar cell and solar cell using the same |
KR101590228B1 (en) * | 2013-07-19 | 2016-01-29 | 제일모직주식회사 | Composition for forming solar cell electrode and electrode prepared using the same |
KR101648253B1 (en) * | 2013-09-13 | 2016-08-12 | 제일모직주식회사 | Composition for forming solar cell and electrode prepared using the same |
US9666731B2 (en) * | 2013-10-21 | 2017-05-30 | Samsung Sdi Co., Ltd. | Composition for solar cell electrodes, electrode fabricated using the same, and solar cell having the electrode |
KR20150054352A (en) * | 2013-11-12 | 2015-05-20 | 엘지전자 주식회사 | Glass frit composition, paste composition for solar cell electrode, and solar cell module |
CN103559940A (en) * | 2013-11-14 | 2014-02-05 | 盐城工学院 | Copper electronic paste and preparation method and application thereof |
CN103714912B (en) * | 2013-12-30 | 2016-04-20 | 无锡市儒兴科技开发有限公司 | The preparation method of a kind of UV environment protection type silicon solar cell back field aluminium paste |
KR101693078B1 (en) * | 2014-05-15 | 2017-01-05 | 제일모직주식회사 | Composition for forming solar cell and electrode prepared using the same |
KR101721731B1 (en) * | 2014-07-11 | 2017-03-31 | 삼성에스디아이 주식회사 | Paste for forming solar cell electrode and electrode prepared using the same |
CN104157327B (en) * | 2014-08-05 | 2017-09-05 | 上海蓝沛新材料科技股份有限公司 | Conductive gold paste of a kind of grout applied to LTCC and preparation method thereof |
CN104200865B (en) * | 2014-08-05 | 2017-09-05 | 上海蓝沛新材料科技股份有限公司 | It is a kind of applied to surface conductance gold paste of LTCC and preparation method thereof |
KR101598501B1 (en) * | 2014-08-25 | 2016-03-02 | 한국에너지기술연구원 | Methods of manufacturing silver printed transparent electrode and methods of manufacturing solar cell using the same |
US10056508B2 (en) | 2015-03-27 | 2018-08-21 | Heraeus Deutschland GmbH & Co. KG | Electro-conductive pastes comprising a metal compound |
EP3275000A1 (en) | 2015-03-27 | 2018-01-31 | Heraeus Deutschland GmbH & Co. KG | Electro-conductive pastes comprising an oxide additive |
GB201520077D0 (en) | 2015-11-13 | 2015-12-30 | Johnson Matthey Plc | Conductive track or coating |
WO2018032351A1 (en) * | 2016-08-16 | 2018-02-22 | Zhejiang Kaiying New Materials Co., Ltd. | Thick-film paste for front-side metallization in silicon solar cells |
CN106935311A (en) * | 2017-04-14 | 2017-07-07 | 北京市合众创能光电技术有限公司 | A kind of photovoltaic conductive ink of sintering temperature and low |
KR20220115597A (en) * | 2019-12-12 | 2022-08-17 | 버트 씬 필름스, 엘엘씨 | Paste for photovoltaic cell, photovoltaic cell, and method of making same |
CN114203334B (en) * | 2021-11-25 | 2024-09-10 | 大连海外华昇电子科技有限公司 | Back aluminum paste for water-based crystalline silicon solar cell and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064367B (en) * | 2003-12-08 | 2013-01-30 | 松下电器产业株式会社 | Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode |
US20060231802A1 (en) * | 2005-04-14 | 2006-10-19 | Takuya Konno | Electroconductive thick film composition, electrode, and solar cell formed therefrom |
US7556748B2 (en) * | 2005-04-14 | 2009-07-07 | E. I. Du Pont De Nemours And Company | Method of manufacture of semiconductor device and conductive compositions used therein |
US7435361B2 (en) * | 2005-04-14 | 2008-10-14 | E.I. Du Pont De Nemours And Company | Conductive compositions and processes for use in the manufacture of semiconductor devices |
US20100096014A1 (en) * | 2006-12-25 | 2010-04-22 | Hideyo Iida | Conductive paste for solar cell |
CN100593861C (en) * | 2007-08-22 | 2010-03-10 | 中国科学院化学研究所 | Dye sensitized nano crystal hull solar cell photoelectric pole and preparation method thereof |
WO2009052343A1 (en) * | 2007-10-18 | 2009-04-23 | E. I. Du Pont De Nemours And Company | Conductive compositions and processes for use in the manufacture of semiconductor devices: flux materials |
JP5522900B2 (en) * | 2008-02-22 | 2014-06-18 | 東京応化工業株式会社 | Electrode forming conductive composition and method for forming solar cell |
TW201008889A (en) * | 2008-06-06 | 2010-03-01 | Du Pont | Glass compositions used in conductors for photovoltaic cells |
CN101609850B (en) * | 2009-07-14 | 2010-12-08 | 中南大学 | Lead-free silver conductive paste used for positive electrode of solar battery and preparation technique thereof |
-
2010
- 2010-12-08 KR KR1020100124954A patent/KR101374359B1/en active IP Right Grant
- 2010-12-15 EP EP10195259.6A patent/EP2444979B1/en active Active
- 2010-12-20 CN CN201010597609.3A patent/CN102403047B/en active Active
- 2010-12-20 JP JP2010283470A patent/JP5568001B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102403047A (en) | 2012-04-04 |
EP2444979B1 (en) | 2013-07-17 |
KR101374359B1 (en) | 2014-03-18 |
CN102403047B (en) | 2015-07-22 |
EP2444979A1 (en) | 2012-04-25 |
KR20120028789A (en) | 2012-03-23 |
JP2012064916A (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5568001B2 (en) | Solar cell electrode paste and solar cell using the same | |
JP6396335B2 (en) | Composition for forming solar cell electrode and electrode manufactured using the same | |
JP6392354B2 (en) | Composition for forming solar cell electrode and electrode produced thereby | |
EP2337036B1 (en) | Conductive paste for solar cell electrode and solar cell using the same | |
US20110227004A1 (en) | Paste for solar cell electrode and solar cell using the same | |
US8815127B2 (en) | Paste composition for solar cell electrode, electrode fabricated using the same, and solar cell including the same | |
US8562872B2 (en) | Paste for solar cell electrode and solar cell prepared using the same | |
JP2016538708A (en) | Composition for forming solar cell electrode and electrode produced thereby | |
US9608137B2 (en) | Composition for solar cell electrodes and electrode fabricated using the same | |
JP2016533019A (en) | Composition for forming solar cell electrode and electrode produced thereby | |
JP6404900B2 (en) | Composition for forming solar cell electrode and electrode manufactured using the same | |
WO2017154612A1 (en) | Conductive paste and solar cell | |
KR20130062193A (en) | Electrode paste composition for solar cell, electrode fabricated using the same and solar cell comprising the same | |
CN109961871B (en) | Slurry for forming transparent conductor by silk-screen sintering and application | |
KR102171405B1 (en) | Composition for forming solar cell electrode and electrode prepared using the same | |
JP2016210962A (en) | Electrode forming composition, electrode manufactured using the same, and solar cell | |
JP6074483B1 (en) | Conductive composition | |
KR102406747B1 (en) | Method for forming solar cell electrode and solar cell | |
JP2018517271A (en) | Composition for forming solar cell electrode and electrode manufactured from the composition | |
KR101693078B1 (en) | Composition for forming solar cell and electrode prepared using the same | |
KR101582374B1 (en) | Composition for forming solar cell electrode and electrode prepared using the same | |
KR102326611B1 (en) | Composition for forming solar cell electrode and electrode prepared using the same | |
KR20210069788A (en) | Selective emitter solar cell electrode, and selective emitter solar cell comprising the same | |
KR20200015318A (en) | Composition for forming electrode for solar cell including aluminum oxide layer, electrode prepared using the same and solar cell comprising electrode prepared using the same | |
KR20200068499A (en) | Composition for forming solar cell electrode and solar cell electrode prepared using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5568001 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |