[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5563736B2 - Multi-stage gear type processing machine - Google Patents

Multi-stage gear type processing machine Download PDF

Info

Publication number
JP5563736B2
JP5563736B2 JP2007531008A JP2007531008A JP5563736B2 JP 5563736 B2 JP5563736 B2 JP 5563736B2 JP 2007531008 A JP2007531008 A JP 2007531008A JP 2007531008 A JP2007531008 A JP 2007531008A JP 5563736 B2 JP5563736 B2 JP 5563736B2
Authority
JP
Japan
Prior art keywords
gear
axis
gas
stage
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007531008A
Other languages
Japanese (ja)
Other versions
JPWO2007020940A1 (en
Inventor
幸助 内山
Original Assignee
周 延儒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周 延儒 filed Critical 周 延儒
Priority to JP2007531008A priority Critical patent/JP5563736B2/en
Publication of JPWO2007020940A1 publication Critical patent/JPWO2007020940A1/en
Application granted granted Critical
Publication of JP5563736B2 publication Critical patent/JP5563736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0203Solvent extraction of solids with a supercritical fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0223Moving bed of solid material
    • B01D11/0226Moving bed of solid material with the general transport direction of the solids parallel to the rotation axis of the conveyor, e.g. worm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • B01F25/62Pump mixers, i.e. mixing within a pump of the gear type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/585Screws provided with gears interacting with the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

本発明は、物質を例えば炭酸ガスと共に圧縮して臨界状態の流体として、すなわち炭酸ガス超臨界または亜臨界下で、混練、分解、抽出または化学合成等の加工をするための装置に関する。 The present invention relates to an apparatus for compressing a substance together with carbon dioxide gas, for example, as a fluid in a critical state, that is, processing such as kneading, decomposition, extraction or chemical synthesis under supercritical or subcritical carbon dioxide gas.

超臨界炭酸ガスを利用した物質混合、物質抽出、物質分解、化学合成は既に数多く提案され、特に抽出の分野では実用化がなされている。 Numerous substance mixing, substance extraction, substance decomposition and chemical synthesis using supercritical carbon dioxide have already been proposed, and in particular in the field of extraction.

例えば、特許文献1には、液状食品や液状薬品を超臨界流体または亜臨界流体を使用して酵素失活、殺菌、脱臭、抽出処理等をする連続処理方法において、炭酸ガスを作動媒体とする圧縮機の吸入工程または圧縮工程に液状原料を注入して炭酸ガスとともに圧縮させ、二酸化炭素と液状原料とを直接接触させ臨界状態の高圧気液混合流体を形成させる圧縮工程と、臨界状態にある高圧の気液混合流体より高圧炭酸ガスと液状物質を溶かしこんだ高圧炭酸ガスとに分離する液−ガス分離工程と、分離された液状物質を溶かしこんだ高圧炭酸ガスを急速に減圧して臨界解除による低温炭酸ガスの排出と酵素失活処理や低温殺菌処理やフレーバ抽出処理を行なう減圧工程を使用することが提案されている。 For example, in Patent Document 1, carbon dioxide is used as a working medium in a continuous processing method in which liquid food or liquid chemical is subjected to enzyme deactivation, sterilization, deodorization, extraction processing, or the like using a supercritical fluid or subcritical fluid. A compression process in which a liquid raw material is injected into a compressor suction process or a compression process and compressed together with carbon dioxide, and carbon dioxide and the liquid raw material are brought into direct contact to form a critical high-pressure gas-liquid mixed fluid. A liquid-gas separation process that separates high-pressure carbon dioxide gas and high-pressure carbon dioxide gas in which a liquid substance is dissolved from a high-pressure gas-liquid mixed fluid; It has been proposed to use a decompression process for discharging low-temperature carbon dioxide gas upon release, enzyme deactivation treatment, pasteurization treatment, and flavor extraction treatment.

この提案では、原料液体をポンプにより圧縮機に供給し、さらに分離機で超臨界条件を達成するため、多数の装置が必要であり、設備投資が過大となり、経済的に好ましくない。また、作用条件が低温に限定され、適用範囲が狭くなる欠点もある。 In this proposal, since the raw material liquid is supplied to the compressor by a pump and the supercritical condition is achieved by the separator, a large number of devices are required, and the capital investment is excessive, which is not economically preferable. In addition, the operating conditions are limited to low temperatures, and there is a drawback that the application range is narrowed.

また、特許文献2では、回収ポリエステル製品をフレーク状に破枠し、洗浄し、前工程用スクリュー混練押出機において、水分を脱揮乾燥し、改質剤および触媒を添加して改質反応させ、さらに後工程用スクリュー式押出機により超臨界流体を添加しつつ発泡押出しするという回収ポリエステル製品の再資源化方法および装置が提案されている。 In Patent Document 2, the recovered polyester product is broken into flakes, washed, and dehydrated and dried in a screw kneading and extruding machine for the previous process, and a reforming agent and a catalyst are added to cause a reforming reaction. Furthermore, a recycled polyester product recycling method and apparatus in which foam extrusion is performed while adding a supercritical fluid by a post-process screw extruder has been proposed.

この提案ではスクリュー押出機が使用されているが、前工程で改質反応がなされ、後工程で超臨界炭酸ガスが注入されることにより発泡製品が製造されるとするもので、超臨界炭酸ガス中のおける反応は存在しない。また、スクリュー式であるためガス漏れが発生し、低粘度物質にガスを封じ込めた状態で加工することはできない。 In this proposal, a screw extruder is used, but a reforming reaction is performed in the previous process and a supercritical carbon dioxide gas is injected in the subsequent process to produce a foamed product. There is no reaction inside. Moreover, since it is a screw type, gas leakage occurs and processing cannot be performed in a state where gas is contained in a low-viscosity substance.

特許文献3には、歯車ポンプを少なくとも2基連結し、歯車ポンプ内で未溶融塩化ビニル粉を溶融、混合する押出機が提案されている。 Patent Document 3 proposes an extruder that connects at least two gear pumps and melts and mixes unmelted vinyl chloride powder in the gear pump.

この提案では2基以上の歯車ポンプを連結することが混練効果上好ましいとされているが、歯車ポンプ間の回転数が異なる場合の制御方法が記載されていない。同じ容量の歯車ポンプが同速度で連結されている場合には連結された歯車ポンプ間に異常圧力が発生することはなく、運転が可能である。しかし、容量の異なる歯車ポンプが連結され、例えば大容量歯車ポンプの次に小容量歯車ポンプが連結されている場合、歯車ポンプ間に異常高圧力が発生し、大容量歯車ポンプに過大なロードが掛かり、シェアピンが飛び、実際には運転できない。
特開2002−204942号公報 特開2000−264998号公報 特開平11−34045号公報
In this proposal, it is considered preferable to connect two or more gear pumps in view of the kneading effect, but a control method in the case where the rotation speed between the gear pumps is different is not described. When gear pumps of the same capacity are connected at the same speed, abnormal pressure does not occur between the connected gear pumps, and operation is possible. However, when gear pumps with different capacities are connected, for example, when a small capacity gear pump is connected next to a large capacity gear pump, an abnormally high pressure is generated between the gear pumps, and an excessive load is applied to the large capacity gear pump. You can't actually drive.
JP 2002-204942 A JP 2000-264998 A JP 11-34045 A

本発明は、超臨界または亜臨界下ガスを利用して、物質の分解、混合または抽出等の加工を操作性よく実施できる装置を提供することを課題とする。 An object of the present invention is to provide an apparatus capable of performing processing such as decomposition, mixing, or extraction of a substance with good operability using supercritical or subcritical gas.

本発明では、気体が混在する物質を気体圧縮の圧力を制御し、または移送物質の一部を逆流制御する方法を備えた多段歯車部を設置することにより、前記課題を解決した。 In the present invention, the above-mentioned problem has been solved by installing a multi-stage gear unit having a method for controlling the pressure of gas compression of a substance in which gas is mixed, or for controlling a part of the transferred substance in reverse flow.

即ち、本発明の装置は、気体が混在する物質を、連続して混練加工するための加工装置であって、歯車寸法の異なる(すなわち、移送部容量の異なる)歯車式移送部を2段以上設け、連続する2段の歯車式移送部間の移送容量差により気体圧縮の圧力差を制御し、または移送物質の一部を逆流させ、実質移送容量を一定にすることを特徴とする。 That is, the apparatus of the present invention is a processing apparatus for continuously kneading a gas-mixed substance, and has two or more gear-type transfer sections having different gear dimensions (that is, different transfer section capacities). It is characterized in that the pressure difference of gas compression is controlled by the transfer capacity difference between two successive gear-type transfer sections, or a part of the transfer material is made to flow backward to make the actual transfer capacity constant.

以下、一定時間内に歯車式移送部を気体が混在する物質が通過する際の温度および圧力における物質および気体の体積の和を「移送容量」と述べ、歯車式移送部の移送容量能力を「移送部容量」と述べる。前述の移送容量を同一温度および1気圧換算圧力における物質および気体の体積の和を「実質移送容量」と述べる。 Hereinafter, the sum of the volume of the substance and gas at the temperature and pressure when the gas-mixed substance passes through the gear-type transfer unit within a certain time is referred to as “transfer capacity”, and the transfer capacity capacity of the gear-type transfer unit is expressed as “ “Transport capacity”. The above-mentioned transfer capacity is referred to as “substantial transfer capacity” as the sum of the volume of the substance and gas at the same temperature and pressure equivalent to 1 atm.

なお、連続する2段の歯車式移送部には、その間で対をなす歯車が複数個、好ましくは2〜4個設けられているものであり、各歯車式移送部により移送される移送容量は、歯車式移送部の回転数、寸法(モジュール、ピッチ円径、歯車厚さ等)により異なる。移送部容量は近似的に歯車の回転数、モジュール、ピッチ円径および歯車厚さの相乗積に比例するが、実際には実質移送容量が一定になるように、気体を圧縮調節する方法によるか、一部を出口側から入口側に逆流させ調節する方法などを適用するのがよい。かかる歯車式移送部は、例えば、押出スクリューに続いて設けられるのが好ましく、歯車移送部の第一番目の歯車移送部容量が第二番目の歯車移送部容量より小であることにより、その間の圧力を負圧にすることが可能になる。第二番目の歯車より後方に第二番目の歯車より移送部容量が小である歯車を設けることにより昇圧することが可能になるり、所望の効果が得られるのである。 The continuous two-stage gear-type transfer unit is provided with a plurality, preferably 2 to 4, of gears paired between them, and the transfer capacity transferred by each gear-type transfer unit is Depending on the number of rotations and dimensions (module, pitch circle diameter, gear thickness, etc.) of the gear type transfer unit. The capacity of the transfer section is approximately proportional to the product of the number of rotations of the gear, module, pitch circle diameter, and gear thickness, but is it actually determined by the method of compressing and adjusting the gas so that the actual transfer capacity is constant? It is preferable to apply a method of adjusting a part of the flow back from the outlet side to the inlet side. Such a gear-type transfer unit is preferably provided, for example, following the extrusion screw, and since the first gear transfer unit capacity of the gear transfer unit is smaller than the second gear transfer unit capacity, It becomes possible to make the pressure negative. By providing a gear having a smaller transfer section capacity than the second gear behind the second gear, the pressure can be increased or a desired effect can be obtained.

かかる本発明の装置では、低粘度の原料物質をも連続的に加工できるものであり、前記歯車式移送部により、超臨界または亜臨界ガスの高圧条件を発生させることができる。 In the apparatus of the present invention, a low-viscosity raw material can be continuously processed, and a high-pressure condition of supercritical or subcritical gas can be generated by the gear-type transfer unit.

本発明の装置は、押出機または射出成型機であると同時に、超臨界または亜臨界炭酸ガス下、物質の分解、混合または抽出などを連続し、広範囲の作用条件で実施することができる汎用化学装置であり、工程が多岐に渡らないため設備が廉価で経済的に優れている。また、歯車式移送部を垂直に積み重ねることも可能であり、コンパクトな装置で設置面積が小さくて済む。 The apparatus of the present invention is an extruder or an injection molding machine, and at the same time, general-purpose chemistry capable of continuously performing decomposition, mixing or extraction of substances under supercritical or subcritical carbon dioxide gas under a wide range of operating conditions. The equipment is inexpensive and the equipment is inexpensive because the process is not diverse. In addition, the gear-type transfer units can be stacked vertically, and the installation area can be reduced with a compact device.

降圧部のギァポンプ構造の説明図である。It is explanatory drawing of the gear pump structure of a pressure | voltage fall part. 昇圧部のギァポンプ構造の説明図である。It is explanatory drawing of the gear pump structure of a pressure | voltage rise part. 混練部のギァポンプ構造の説明図である。It is explanatory drawing of the gear pump structure of a kneading part. オリフィス部の構造を示す説明図である。It is explanatory drawing which shows the structure of an orifice part. 圧力制御部の構造を示す説明図である。It is explanatory drawing which shows the structure of a pressure control part. 多段歯車式押出機の構造を示すものであり、(I)はその前部を、(II)はその後部を示す。The structure of a multistage gear type extruder is shown, (I) shows the front part and (II) shows the rear part. 多段歯車式発泡射出成形・押出機の構造を示すものである。1 shows the structure of a multi-stage gear type foam injection molding / extruder. 多段歯車式押出機を横に配列した構造を示すもので、(1)は平面断面図、(2)は縦断面図である。The structure which arranged the multistage gear type extruder horizontally is shown, (1) is a plane sectional view, (2) is a longitudinal section. 多段歯車式押出機を円弧状に配列した構造の平面断面図を示すものである。FIG. 2 is a plan sectional view of a structure in which multi-stage gear extruders are arranged in an arc shape.

符号の説明Explanation of symbols

1 シリンダー
2 シャフト
3 シャフト
4 シャフト
5 スクリュー
6 歯車
7 伝導中継歯車
8 ホッパー
9 オリフィス
10 ベント孔
11 ダイス
12 ノズル
13 流動通路
14 戻り通路
15 矢印
16 サーボ・モーター
17 サーボ・アンプ
18 圧力電気信号
19 樹脂圧計
20 圧力計
21 減圧弁
22 逆止弁
23 熔融区間
24 加圧区間
25 超臨界区間
26 オリフィス区間
27 無フライト区間
28 圧力調整区間
29 気体注入区間
30 昇圧区間
31 超臨界区間
32 降圧区間
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Shaft 3 Shaft 4 Shaft 5 Screw 6 Gear 7 Conduction relay gear 8 Hopper 9 Orifice 10 Vent hole 11 Die 12 Nozzle 13 Flow path 14 Return path 15 Arrow 16 Servo motor 17 Servo amplifier 18 Pressure electric signal 19 Resin pressure gauge 20 Pressure gauge 21 Pressure reducing valve 22 Check valve 23 Melting section 24 Pressurizing section 25 Supercritical section 26 Orifice section 27 No-flight section 28 Pressure adjusting section 29 Gas injection section 30 Boosting section 31 Supercritical section 32 Decreasing section

図面に示す一例に従って本発明を説明する。
本発明の装置は、図1および図2および図3に示すような歯車を組み合わせた多段歯車式移送部を使用し、その間を移送する気体が混在する物質を、臨界状態の流体として加工するものである。例えば、図6の2軸横型歯車式押出機は、原料供給部の2軸押出スクリューに続いて、多段歯車式移送部を備えたものであり、電熱ヒーターにより過熱されるシリンダー1の内部に、A軸スクリューおよびB軸スクリューを設け、ホッパー8から供給される樹脂原料を移送しながら溶融させ、熔融区間23の区間で溶融した樹脂を、図1に示されるような次段の歯車に流入する。歯車T1とそれに続く歯車T2は、厚さがT1<T2という関係にあり、図1の歯車では降圧部Xが構成され、ガスが減圧弁21で設定された供給圧で圧縮され歯車厚さの寸法差(T2−T1)に相当する体積移送量の一定量のガスが注入される。歯車T2以降の流動体はガスと樹脂が混在したものとなる。したがって、ガスの注入量は減圧弁21により設定される供給圧が高いほど大きい。このガスは真空ポンプにより吸引されるベント孔10で脱気される。なお、この例では、スクリューが2軸となっているが、1軸であってもよい。
The present invention will be described with reference to an example shown in the drawings.
The apparatus of the present invention uses a multi-stage gear-type transfer unit combining gears as shown in FIGS. 1, 2 and 3, and processes a substance mixed with gas transferred between them as a fluid in a critical state. It is. For example, the biaxial horizontal gear extruder of FIG. 6 includes a multi-stage gear type transfer unit following the biaxial extrusion screw of the raw material supply unit, and is provided inside the cylinder 1 that is superheated by an electric heater. An A-axis screw and a B-axis screw are provided, the resin raw material supplied from the hopper 8 is melted while being transferred, and the molten resin in the section of the melt section 23 flows into the next gear as shown in FIG. . The gear T1 and the subsequent gear T2 have a relationship of T1 <T2. In the gear of FIG. 1, the pressure-lowering portion X is configured, and the gas is compressed by the supply pressure set by the pressure-reducing valve 21 and the gear thickness is reduced. A certain amount of gas of volume transfer amount corresponding to the dimensional difference (T2-T1) is injected. The fluid after the gear T2 is a mixture of gas and resin. Therefore, the gas injection amount is larger as the supply pressure set by the pressure reducing valve 21 is higher. This gas is deaerated in the vent hole 10 sucked by a vacuum pump. In this example, the screw is biaxial, but may be uniaxial.

図1は降圧部Xのギァポンプ構造を示すものであり、図1の(1)は平面図を示す。図1の(2)はOut側軸方向から見た断面図、図1の(3)および(4)はそれぞれ側面図を示す。図示されるように、シリンダー1の内部にA軸シャフト2及びB軸シャフト3が貫通しており、それぞれの軸に互いに噛み合って、厚さの異なる歯車T1及びT2が固定され、2組のギアポンプを構成している。A軸及びB軸のシャフト2、3は、矢印15に示されるような回転方向に駆動され、流動通路13に充満した樹脂は歯車により図示されるIn側からOut側に運搬される。歯車T1及びT2の厚さがT1<T2という条件下では、歯車T1の移送容量より歯車T2の移送容量を多くしようとする傾向に作用する。 FIG. 1 shows a gear pump structure of the step-down portion X, and (1) in FIG. 1 shows a plan view. (2) in FIG. 1 is a cross-sectional view seen from the Out side axial direction, and (3) and (4) in FIG. 1 are side views. As shown in the figure, an A-axis shaft 2 and a B-axis shaft 3 pass through the inside of the cylinder 1, and mesh with each other, and gears T1 and T2 having different thicknesses are fixed, and two sets of gear pumps Is configured. The A-axis and B-axis shafts 2 and 3 are driven in a rotational direction as indicated by an arrow 15, and the resin filled in the flow passage 13 is conveyed from the In side to the Out side illustrated by a gear. Under the condition that the thicknesses of the gears T1 and T2 are T1 <T2, it affects the tendency to increase the transfer capacity of the gear T2 rather than the transfer capacity of the gear T1.

次に、物質が熱可塑性樹脂の熔融物であって気体が炭酸ガスである場合を例に説明する。図1において、樹脂と気体が混在する流体がInから流入する場合、歯車T1の移送容量は樹脂体積と気体が圧力P1により圧縮された体積との和に相当する。歯車T2の移送容量は歯車T1を通過した樹脂体積と気体が圧力P2により圧縮された体積との和に相当する。歯車厚さがT1<T2である条件下で、移送容量は歯車T1より歯車T2による方が大きく、圧力はP1>P2となる。図1の(3)の構造は主として気体注入の目的で多段歯車群の初段に用いる。気体を含有しない樹脂だけの流体がInから流入する場合、P1に無関係にGas注入口から供給される炭酸ガス圧P2に圧縮されたガス体積が歯車厚さ寸法の差分(T2−T1)相当の体積量になる。この場合、Inから流入する流体は樹脂だけである必要はなく、樹脂と気体の混合物であっても歯車T1、歯車T2、P1およびP2のバランスした条件下で炭酸ガスを注入させることが出来る。図1の(4)の構造は主として気体が混在する流動体を超臨界領域から亜臨界領域に降圧する目的で多段歯車群の最後部に用いる。 Next, the case where the substance is a melt of a thermoplastic resin and the gas is carbon dioxide will be described as an example. In FIG. 1, when a fluid in which resin and gas are mixed flows from In, the transfer capacity of the gear T1 corresponds to the sum of the resin volume and the volume in which the gas is compressed by the pressure P1. The transfer capacity of the gear T2 corresponds to the sum of the resin volume that has passed through the gear T1 and the volume in which the gas is compressed by the pressure P2. Under the condition that the gear thickness is T1 <T2, the transfer capacity is larger by the gear T2 than the gear T1, and the pressure is P1> P2. The structure of (3) in FIG. 1 is used for the first stage of the multi-stage gear group mainly for the purpose of gas injection. When fluid containing only resin that does not contain gas flows from In, the gas volume compressed to carbon dioxide pressure P2 supplied from the Gas inlet regardless of P1 corresponds to the difference in gear thickness dimension (T2-T1). Become volume. In this case, it is not necessary for the fluid flowing from In to be a resin alone, and even if it is a mixture of resin and gas, carbon dioxide gas can be injected under the balanced conditions of the gears T1, T2, P1, and P2. The structure of (4) in FIG. 1 is used at the end of the multi-stage gear group mainly for the purpose of reducing the pressure of the fluid mixed with gas from the supercritical region to the subcritical region.

図2は昇圧部Yのギァポンプ構造を示すもので、図2の(1)は平面図、図2の(2)はOut側軸方向から見た断面図を、図2(3)は側面図を示す。Inから流入する流体は、例えば樹脂と気体が混在した充分に圧縮可能な流体である。それぞれの歯車厚さが、T1>T2>T3の条件下においても実質移送容量は各歯車において同じであるから、流動通路13における内部圧力はP1<P2と昇圧し、それぞれP1、P2の圧力により流動体は圧縮されるので移送容量がバランスすることになる。仮に、実質移送容量が不明で、Inから流入する流体の圧力P0が極めて高い場合を想定すると、T1>T2の条件において、必ずしもP0<P1とは限らず、Wは昇圧部とは定義できない。通常、設計する段階では、実質移送容量およびP0が設計値として判明しているので、2段の歯車の組合わせでも昇圧部は構成可能である。前述のような理由で、図2は3段の歯車の組合わせで構成した。図2の構造は主として、次の2つの用途に採用される。 2 shows the gear pump structure of the booster Y. FIG. 2 (1) is a plan view, FIG. 2 (2) is a cross-sectional view seen from the axial direction on the Out side, and FIG. 2 (3) is a side view. Indicates. The fluid flowing from In is, for example, a sufficiently compressible fluid in which resin and gas are mixed. Even if the gear thicknesses are T1> T2> T3, the actual transfer capacity is the same for each gear. Therefore, the internal pressure in the flow passage 13 is increased to P1 <P2, and the pressures of P1 and P2 respectively. Since the fluid is compressed, the transfer capacity is balanced. If it is assumed that the actual transfer capacity is unknown and the pressure P0 of the fluid flowing from In is extremely high, P0 <P1 is not always satisfied under the condition of T1> T2, and W cannot be defined as a boosting unit. Usually, at the stage of designing, since the actual transfer capacity and P0 are known as design values, the boosting unit can be configured even by combining two stages of gears. For the reasons described above, FIG. 2 is composed of a combination of three gears. The structure shown in FIG. 2 is mainly used for the following two applications.

図2の構造の用途1例として、図1の(3)の構造で炭酸ガスを注入した次段に超臨界領域まで昇圧する目的で設置する。この場合、昇圧部の1段目は図1の歯車T2と考えて良い。 As an example of application of the structure of FIG. 2, it is installed for the purpose of raising the pressure to the supercritical region in the next stage in which carbon dioxide gas is injected in the structure of (3) of FIG. In this case, the first stage of the boosting unit may be considered as the gear T2 in FIG.

図2の構造の用途の一例として、デンプンを充分にアルファ化するための配合例(例えば、デンプン58重量%と水42重量%の混合物)がある。その水が、予め炭酸ガスを水に溶解させた炭酸水である場合、例えば図6の装置では、この混合物をホッパー8から供給すると、ホッパー下のスクリュー5はダイラタント流動のデンプンが充分に食い込む2軸パドルスクリューを用い、多段歯車初段に過熱運搬する途中で水は水蒸気になる。炭酸ガスはすでに炭酸水の中に含有しているので、ガス注入は不必要であり、多段歯車の初段から超臨界領域に昇圧する目的で図2の構造が使用される。 An example of the application of the structure of FIG. 2 is a formulation for fully pregelatinizing starch (eg, a mixture of 58% starch and 42% water by weight). When the water is carbonated water in which carbon dioxide gas is previously dissolved in water, for example, in the apparatus of FIG. 6, when this mixture is supplied from the hopper 8, the screw 5 under the hopper sufficiently ingests the starch in the dilatant flow 2. The water turns into steam during the overheating transport to the first stage of the multi-stage gear using the shaft paddle screw. Since carbon dioxide is already contained in carbonated water, gas injection is unnecessary, and the structure shown in FIG. 2 is used for the purpose of increasing the pressure from the first stage of the multi-stage gear to the supercritical region.

図3は混練部Zのギァポンプ構造を示すもので、図3の(1)は平面図、を示す。図3の(2)はOut側軸方向から見た断面図、図3の(3)は側面図を示す。また、図3の(4)はA軸、B軸及びC軸のシャフト2、3、4に取り付けられた歯車と流体の移動関係を図示する。図3の(2)にA軸の歯車の外周に流動通路を示すように、流体の一部はOut側からA軸の歯車の外周を通りC軸の歯車の入口に供給され、C軸の歯車の出口からA軸の歯車の外周を戻り通路14を通りIn側に逆流する。この逆流する量を図3の(4)にFBとして示した。FB量により混練効果が優れ、さらにIn側およびOut側の圧力が安定することを特徴とする。また、図3の(5)に示すようにC軸の歯車と同様の働きをする歯車をD軸に設け4個の歯車を使用することもできる。C軸の歯車で逆流させる量をFBC、D軸の歯車により逆流させる量をFBDと記した。この対をなす歯車部は、昇圧部にも降圧部にも圧力が平衡する部にも使用することができる。混練及び分散効果が極めて優れている。 FIG. 3 shows a gear pump structure of the kneading part Z, and FIG. 3 (1) shows a plan view. 3 (2) is a cross-sectional view seen from the Out-side axial direction, and FIG. 3 (3) is a side view. Further, (4) of FIG. 3 illustrates the movement relationship between the gears attached to the shafts 2, 3, and 4 of the A axis, the B axis, and the C axis and the fluid. As shown in FIG. 3 (2), the flow path is shown on the outer periphery of the A-axis gear. A part of the fluid passes from the Out side through the outer periphery of the A-axis gear and is supplied to the inlet of the C-axis gear. From the exit of the gear, the outer periphery of the A-axis gear returns to the In side through the return passage 14. The amount of this reverse flow is shown as FB in (4) of FIG. The kneading effect is excellent depending on the amount of FB, and the pressure on the In side and Out side is stabilized. In addition, as shown in FIG. 3 (5), a gear having the same function as that of the C-axis gear may be provided on the D-axis to use four gears. The amount of reverse flow with the C-axis gear is indicated as FBC, and the amount of reverse flow with the D-axis gear is indicated as FBD. This pair of gear portions can be used for both the pressure raising portion, the pressure reducing portion, and the portion where the pressure is balanced. The kneading and dispersing effect is extremely excellent.

図4にオリフィス部構造を示す。主として超臨界区間に設置され、流体はInから流入し、オリフィス9の狭い溝を通り流動通路からOutに抜ける。気体が超臨界状態である区間における流体の流動性は高く、この部にオリフィスを設けることにより、混練および分散効果はより一層高くなる。 FIG. 4 shows the orifice structure. Installed mainly in the supercritical section, the fluid flows in from In, passes through the narrow groove of the orifice 9, and exits from the flow path to Out. The fluidity of the fluid in the section where the gas is in the supercritical state is high, and the kneading and dispersing effect is further enhanced by providing an orifice in this section.

図5に圧力制御部構造を示す。主として圧力制御部は研究開発用途の多段歯車式加工装置には便利であるが、生産機では図1に示すA軸およびB軸に固定された歯車による降圧部Xが簡便であり、圧力制御部を必要としない。圧力制御部を設けるのは、例えば炭酸ガスの添加量と圧力などの影響が化学反応の度合い、混練分散の程度などに及ぼす関係を調査する目的、または、生産機の仕様を確定する目的が主となる。スクリューの超臨界区間のオリフィス部後段にスクリュー溝の無い無フライト区間27で流体の通路を遮断し、流動通路13のバイパス通路を設け、サーボ・モーター16によりスクリュー5と別駆動される歯車6を経由し、無フライト区間27の後段に流入する。通常、歯車6は2段の歯車で降圧部Xを構成する。サーボ・モーターの回転数を下げれば樹脂圧計19の取付部の圧力は上昇し、サーボ・モーターの回転数を上げれば樹脂圧計19の取付部の圧力は下降する。サーボ・モーター16はサーボ・アンプ17により駆動され、サーボ・アンプに指令される圧力指令に対し、樹脂圧計19から圧力電気信号18がフィードバックされており、圧力設定値に近づくようにサーボ・モーターの回転数制御がなされ、圧力自動制御を構成している。 FIG. 5 shows the structure of the pressure control unit. Although the pressure control unit is mainly useful for multistage gear type machining devices for research and development, the pressure-lowering unit X using gears fixed to the A-axis and B-axis shown in FIG. Do not need. The purpose of providing a pressure control unit is mainly to investigate the relationship between the amount of carbon dioxide added and the pressure, etc., on the degree of chemical reaction and the degree of kneading dispersion, or to determine the specifications of the production machine. It becomes. A fluid passage is blocked in a non-flight section 27 without a screw groove at the rear stage of the orifice portion of the supercritical section of the screw, a bypass passage of a flow passage 13 is provided, and a gear 6 driven separately from the screw 5 by a servo motor 16 is provided. Via, it flows into the rear stage of the no-flight section 27. Normally, the gear 6 constitutes the step-down portion X with a two-stage gear. If the rotation speed of the servo motor is lowered, the pressure at the mounting portion of the resin pressure gauge 19 increases, and if the rotation speed of the servo motor is increased, the pressure at the mounting portion of the resin pressure gauge 19 decreases. The servo motor 16 is driven by a servo amplifier 17, and a pressure electric signal 18 is fed back from a resin pressure gauge 19 in response to a pressure command commanded to the servo amplifier, so that the servo motor 16 approaches the pressure set value. The number of revolutions is controlled to configure automatic pressure control.

図6に多段歯車式押出機の1例を示す。ホッパー8から樹脂が供給され、ヒーターにより加熱されたシリンダー1の内部に設けられたA軸、B軸の2軸スクリュー5により樹脂は加熱熔融され流動化した樹脂が図1に示すような多段歯車初段に到達する。この例は2軸で構成したが、1軸でも充分に目的は達成される。多段歯車初段の後部には炭酸ガスボンベから炭酸ガスが、減圧弁21により減圧され、逆止弁22を通し、供給されている。供給される炭酸ガスの圧力は圧力計20で確認される。炭酸ガスは、スクリュー5により運ばれてきた樹脂と共に、加圧区間24を経て、超臨界区間25区間に設置されたスクリューにより加圧、混練がなされ、炭酸ガスは超臨界状態になり、次段のオリフィス区間26に到達する。オリフィス区間26を通過した樹脂と気体の混合体は次段の無フライト区間27で通路を遮断されサーボ・モーターによる圧力調整区間28に流入する。圧力調整区間を通過した流動体はベント孔10の設置されたスクリュー部に流入する。この際、炭酸ガスは減圧して超臨界から亜臨界状態になる。樹脂と気体との混合流動体は真空ポンプが接続されているベント孔部で吸引され脱気する。ベント孔から後段は一般の押出機と同様な構造でダイス11に達し、流動体(樹脂)はストランド水槽で冷却され、ストランドカッターで切断するか、ホットカッターや水中カッター等により切断し、ペレット化される。また、場合によっては液状で取り出すことができる。なお、加圧区間24に第一番目から第三番目の歯車を図示したが、第一番目と第二番目の歯車は図1で説明した降圧部Xであり、第二番目と第三番目の歯車は図2で説明した昇圧部Yとは図形が異なるが、第三番目の対をなして逆流部を構成する3個の歯車(図3の混練部Zで説明した)の移送部容量は第二番目の移送部容量より小であり、気体はさらに圧縮され昇圧部Yを構成している。 FIG. 6 shows an example of a multi-stage gear extruder. Resin is supplied from the hopper 8 and heated by a heater, and the resin is heated and melted by the A-axis and B-axis biaxial screws 5 provided in the cylinder 1 to form a fluidized resin as shown in FIG. Reach the first stage. Although this example is configured with two axes, the purpose can be sufficiently achieved even with one axis. Carbon dioxide gas from the carbon dioxide cylinder is decompressed by the decompression valve 21 and supplied through the check valve 22 to the rear of the first stage of the multi-stage gear. The pressure of the supplied carbon dioxide gas is confirmed by a pressure gauge 20. The carbon dioxide gas is pressurized and kneaded by the screw installed in the supercritical section 25 through the pressurizing section 24 together with the resin carried by the screw 5, so that the carbon dioxide gas enters a supercritical state, and the next stage. The orifice section 26 is reached. The mixture of the resin and gas that has passed through the orifice section 26 is blocked in the next non-flight section 27 and flows into the pressure adjustment section 28 by the servo motor. The fluid that has passed through the pressure adjustment section flows into the screw portion in which the vent hole 10 is installed. At this time, the carbon dioxide gas is reduced in pressure from the supercritical state to the subcritical state. The mixed fluid of resin and gas is sucked and degassed through a vent hole to which a vacuum pump is connected. The latter stage from the vent hole reaches the die 11 with the same structure as a general extruder, and the fluid (resin) is cooled in a strand water tank and cut with a strand cutter, or cut with a hot cutter or an underwater cutter, etc. Is done. In some cases, the liquid can be taken out. Although the first to third gears are illustrated in the pressurizing section 24, the first and second gears are the step-down portions X described in FIG. 1, and the second and third gears. The gear is different in figure from the booster Y described in FIG. 2, but the transfer unit capacity of the three gears (described in the kneading part Z in FIG. 3) forming the third pair and constituting the backflow part is The gas volume is smaller than the second transfer section capacity, and the gas is further compressed to constitute the pressure increasing section Y.

図7に多段歯車式発泡射出成形機・押出機の例を示す。ホッパー8から樹脂原料が供給され、ヒーターにより加熱されたシリンダー1の内部に設置されたスクリュー5を通過しながら熔融する。スクリューは単軸でも2軸でも熔融させることが目的であり、何れを採用しても良い。熔融した樹脂は多段歯車部初段に配置される気体注入区間29(図1に示されるような降圧部X)に到達する。この区間で樹脂に気体が混入され、次段に配置された昇圧区間30に移送される。この例では、昇圧と混練を同時に作用させるように、図3の(1)に示したような3枚の歯車を組合わせる方法を採用している。次に流動体は超臨界区間31に移送され、混合気体は樹脂細部に入り込む。この部分に樹脂圧計19を取り付けておくことは超臨界圧力を監視するのに便利である。次に、気体と混合された樹脂は、降圧区間32を通過し、先端のノズル12を経て射出成形機の金型に注入される。ノズルは金型に圧接した際にノズルから吐出できる周知のメカニカル・ノズル構造になっている。
なお、ノズルの代りに丸ダイスまたはTダイを取付け、連続発泡させることも可能である。図示は本発明の装置の一例であって、歯車段数が必ずしも図示された段数に限定されるものではない。
FIG. 7 shows an example of a multi-stage gear type foam injection molding machine / extruder. The resin raw material is supplied from the hopper 8 and melted while passing through the screw 5 installed in the cylinder 1 heated by the heater. The purpose of the screw is to melt either uniaxially or biaxially, and either screw may be adopted. The melted resin reaches the gas injection section 29 (step-down part X as shown in FIG. 1) arranged at the first stage of the multi-stage gear part. In this section, gas is mixed into the resin and transferred to the pressure increasing section 30 disposed in the next stage. In this example, a method of combining three gears as shown in (1) of FIG. 3 is employed so that pressurization and kneading are simultaneously performed. The fluid is then transferred to the supercritical section 31 and the gas mixture enters the resin details. It is convenient to monitor the supercritical pressure by attaching a resin pressure gauge 19 to this portion. Next, the resin mixed with the gas passes through the pressure reducing section 32 and is injected into the mold of the injection molding machine through the nozzle 12 at the tip. The nozzle has a well-known mechanical nozzle structure that can discharge from the nozzle when pressed against the mold.
It is also possible to attach a round die or a T die instead of the nozzle and perform continuous foaming. The illustration is an example of the apparatus of the present invention, and the number of gear stages is not necessarily limited to the illustrated number of stages.

図8に多段歯車を横に配列した多段歯車式押出機の一例を示す。図8の(1)は平面図、(2)は側面図である。歯車厚さはT1<T2>T3>T4としたが、用途目的により適宜、歯車厚さを選び配列することができる。同様に図9に多段歯車を円弧状に配列した多段歯車式押出機の一例を示す。多段歯車を横配列または円弧状配列にする場合の難点は、歯車軸のシールであり、高圧側になるほどシールは破壊され易い。本発明では、伝導中継歯車7を設けることにより、この問題を解決した。横配列または円弧配列において伝導中継歯車を設けることにより、シールの複雑さを解消し、小型にまとまり、研究室向け各種の超臨界コンパウンド、超臨界抽出や超臨界反応試験機用途に最適になった。 FIG. 8 shows an example of a multi-stage gear type extruder in which multi-stage gears are arranged horizontally. 8A is a plan view, and FIG. 8B is a side view. The gear thickness is T1 <T2> T3> T4. However, the gear thickness can be appropriately selected and arranged according to the purpose of use. Similarly, FIG. 9 shows an example of a multi-stage gear extruder in which multi-stage gears are arranged in an arc. The difficulty in arranging the multi-stage gears in a horizontal arrangement or an arc arrangement is the seal of the gear shaft, and the seal is more likely to break as the pressure increases. In the present invention, this problem is solved by providing the conductive relay gear 7. By providing conductive relay gears in a horizontal arrangement or circular arc arrangement, the complexity of the seal has been eliminated, and it has become compact, making it ideal for various supercritical compounds, supercritical extraction and supercritical reaction tester applications for laboratories. .

気体の混在する物質を得るために、例えば、図6の装置では、気体を減圧弁21を経て逆止弁を通して供給するとしているが、樹脂等に混入する気体は、注入する際に必ずしも気体であることは必要ない。注入する際に液体であっても良い。例えば、ホッパー8から樹脂または澱粉などに水を添加し、スクリューにより移送途中で水蒸気が発生して、気体が混在する流動体となっても、またガス注入口から液体を添加し、多段歯車群の内部熱で気化させる方法で、気体が混在する流動体となってもよいのである。すなわち、本発明では、多段歯車群を通過する流動体に気体成分が混在している状態を気体が混在する物質または気体含有物質として扱う。 In order to obtain a substance in which gas is mixed, for example, in the apparatus of FIG. 6, gas is supplied through the check valve 21 through the check valve. However, the gas mixed into the resin or the like is not necessarily gas when injected. There is no need to be. It may be liquid when injecting. For example, even if water is added to the resin or starch from the hopper 8 and water vapor is generated during the transfer by the screw to form a fluid in which gas is mixed, a liquid is added from the gas inlet, and the multi-stage gear group In other words, the gas may be mixed with the gas by the internal heat. That is, in the present invention, a state where a gas component is mixed in a fluid passing through the multi-stage gear group is treated as a substance containing gas or a gas-containing substance.

このような本発明の装置の取り出し口には、ダイスを一般的に用いる。ダイスのダイス孔およびその形状は次の工程により、適宜選択される。例えば次の工程がフィルムまたはシート製作であればダイス孔の形状はスリット形状とし、連続してフィルムやシートの製造を可能とすることができる。また、次の工程が不連続であれば、加工物資を索状に取り出し、カッターにより裁断しぺレットを製造したり、シート状に押し出し、角ペレットを製造したり、ホットカッターまたは水中カッターにより丸ペレットを製造したりすることもできる。場合によっては液状で取り出すこともできる。 A die is generally used for the outlet of the apparatus of the present invention. The die hole and the shape of the die are appropriately selected according to the following steps. For example, if the next step is film or sheet production, the shape of the die hole can be made into a slit shape, and production of the film or sheet can be made continuously. Also, if the next step is discontinuous, the processed material is taken out in the form of a cord and cut with a cutter to produce a pellet, extruded into a sheet to produce a square pellet, or round with a hot cutter or underwater cutter. Pellet can also be manufactured. In some cases, it can be taken out in liquid form.

場合によっては本発明の歯車式加工装置が射出成型機、射出ブロー成型機、インフレーション装置、Tダイなどの混練部品の一部として押出しスクリューに組み込まれることもある。また、本発明の歯車式加工装置はマンドレルとの組み合わせにより、垂直に積み重ねる形で連結することもできる。垂直に積み重ねることにより、加工装置全体の設置面積を一般的なスクリュー押出し混練機より小さくすることができる。 In some cases, the gear type machining apparatus of the present invention may be incorporated into an extrusion screw as a part of a kneading part such as an injection molding machine, an injection blow molding machine, an inflation apparatus, or a T die. Further, the gear type machining apparatus of the present invention can be connected in a vertically stacked manner by combination with a mandrel. By vertically stacking, the installation area of the entire processing apparatus can be made smaller than that of a general screw extrusion kneader.

本発明に使用する歯車式移送部は一般的に使用されている歯車式計量ポンプとは異なり、計量より混合効果を主眼としている。歯車式移送部の歯車形状は歯車の先端Rの大きさによりセン弾力を変化する。歯車の溝の接線と中心線との角度差により、歯車内の物質の流速が変化する。歯車が回転することにより、歯車の溝の中で物質はセン断を受け、混合される。歯車とハウジング表面形状を粗にすることにより、計量性は低下するがこのセン弾力を大きくすることができる。計量が歯車溝の容積と歯車回転数により変化することは一般的な歯車ポンプと同じである。 Unlike the gear type metering pump which is generally used, the gear type transfer unit used in the present invention focuses on the mixing effect rather than the metering. The gear shape of the gear-type transfer unit changes the center elasticity depending on the size of the tip R of the gear. The flow rate of the substance in the gear changes due to the angular difference between the tangent line of the gear groove and the center line. As the gear rotates, the material is cut and mixed in the gear groove. By roughening the gear and housing surface shape, the metering ability is reduced, but the center elasticity can be increased. It is the same as a general gear pump that the metering changes depending on the gear groove volume and the gear rotation speed.

また、歯車式移送部とスクリュー部の駆動を別に設置することも可能である。この場合、歯車式移送部歯車の溝はスクリュー軸に対し直交するように縦型設置することもできる。また、歯車式移送部はモジュールとして組み込まれ、互換性が容易にすることが好ましい。これは前記横型の場合でも同様で、一般的な2軸押出し機で用いられている方法と同じモジュール交換方式である。これは使用する物質により、粘度が異なるため、同じ歯車・クリアランスであっても逆流抵抗が粘度により異なり、所期の圧力選択、また必要なセン断強さ選択が容易となるためである。モジュール・システムは装置のクリーニングに関しても有利である。 It is also possible to install the gear-type transfer unit and the screw unit separately. In this case, the groove of the gear-type transfer unit gear can be vertically installed so as to be orthogonal to the screw shaft. Moreover, it is preferable that the gear-type transfer unit is incorporated as a module to facilitate compatibility. This is the same in the case of the horizontal type, and is the same module replacement method as that used in a general twin-screw extruder. This is because the viscosity varies depending on the substance used, and therefore, even if the gears and clearances are the same, the reverse flow resistance varies depending on the viscosity, and the desired pressure and the required shear strength can be easily selected. The modular system is also advantageous for cleaning the device.

超臨界または亜臨界ガス化学作用は例えば加水分解、アルコリシス、酵素分解などの化学分解、表面処理を行っていない微細粒子の混合、液体とポリマーの混合、相溶化剤を用いない不溶性ポリマー混合などの混合、溶剤抽出、水蒸気抽出などの化学作用が挙げられる。触媒、副原料などは原料供給部から適宜定量的に供給されても良く、低圧ガス供給部、または液注入などにより途中からプランジャーポンプ、歯車ポンプなどにより定量的に供給されても良い。超臨界または亜臨界ガスは炭酸ガス、メタノール、アセトン、窒素ガス、水などの低分子量化合物を使用することがあり、中では臨界条件がマイルドで爆発性のない炭酸ガスが多く用いられる。 Supercritical or subcritical gas chemistry includes, for example, chemical decomposition such as hydrolysis, alcoholysis, enzymatic decomposition, mixing of fine particles without surface treatment, mixing of liquid and polymer, mixing of insoluble polymer without using compatibilizer, etc. Examples include chemical actions such as mixing, solvent extraction, and steam extraction. The catalyst, auxiliary material, and the like may be appropriately quantitatively supplied from the raw material supply unit, or may be quantitatively supplied by a plunger pump, a gear pump, or the like halfway through a low-pressure gas supply unit or liquid injection. As the supercritical or subcritical gas, low molecular weight compounds such as carbon dioxide, methanol, acetone, nitrogen gas, and water may be used, and among them, carbon dioxide, which has mild conditions and is not explosive, is often used.

加水分解例としては、例えばデンプン、ケナフ、バカス、セルロース、蛋白質、脂肪などを原料とし、多糖類、オリゴ糖、単糖類、アミノ酸、アルコールなどに分解する。触媒として糖類には酸、蛋白質にはアルカリまたはアミラーゼ、ぺプチターゼ、リパーゼなどの酵素を使用する。炭酸ガスの超臨界条件は31℃、7MPaであるが触媒として酵素を使用する際には酵素が失活しない温度範囲例えば35から40℃、7MPa以上の条件で作用させることが好ましい。酸またはアルカリを触媒として使用する際には温度を高くするほうが反応効率は上がり、生産性を向上することができ好ましい。 Examples of hydrolysis include, for example, starch, kenaf, bacus, cellulose, protein, fat and the like, which are decomposed into polysaccharides, oligosaccharides, monosaccharides, amino acids, alcohols and the like. As a catalyst, an acid is used as a saccharide, and an alkali or an enzyme such as amylase, peptidase, or lipase is used as a protein. The supercritical condition of carbon dioxide gas is 31 ° C. and 7 MPa. However, when an enzyme is used as a catalyst, it is preferable to operate in a temperature range in which the enzyme is not deactivated, for example, 35 to 40 ° C. and 7 MPa or more. When an acid or alkali is used as a catalyst, it is preferable to increase the temperature because reaction efficiency can be improved and productivity can be improved.

アルコリシス例としては、例えば通称ペットボトルを回収し、粉砕したフレークを本発明の化学作用装置にフレークとメタノールを供給し、ポリエチレンテレフタレートをメタノールによりアルコリシスし、テレフタール酸メチルエステルとして回収することができる。精留し不純物を除去した後、テレフタール酸メチルを再度重合することにより、ポリエチレンテレフタレートを製造することができる。また、メタノールの代わりにエチレンジオールを使用し、ビスヒドロキシエチレンテレフタレートとして回収し、同様にしてポリエチレンテレフタレートを製造することができる。アルコリシスの温度を高くするほうが反応効率は上がり、生産性を向上することができ好ましい。 As an example of alcoholysis, for example, a so-called PET bottle can be collected, and the crushed flakes can be supplied to the chemical action device of the present invention by supplying flakes and methanol, and the polyethylene terephthalate can be alcoholized with methanol and recovered as terephthalic acid methyl ester. After rectification and removal of impurities, polyethylene terephthalate can be produced by polymerizing methyl terephthalate again. Further, ethylene diol can be used in place of methanol and recovered as bishydroxyethylene terephthalate to produce polyethylene terephthalate in the same manner. Increasing the temperature of alcoholysis is preferable because the reaction efficiency increases and productivity can be improved.

抽出例としては、例えばオレンジ皮をそのまま原料として本発明の加工装置に供給し、オレンジ皮からリモネンを抽出することができる。抽出温度をリモネンの沸点近傍まで高くするほうが抽出効率は上がり、生産性を向上することができ好ましい。抽出した粗リモネンは精留し、純度を向上し、使用される。 As an extraction example, for example, orange peel can be directly supplied to the processing apparatus of the present invention, and limonene can be extracted from the orange peel. Increasing the extraction temperature to near the boiling point of limonene is preferable because it increases the extraction efficiency and improves the productivity. The extracted crude limonene is rectified to improve purity and used.

混合例としては、例えば生分解性ポリ乳酸の耐熱性向上のため、無機微粒子を結晶化核剤として本発明の加工装置に供給し、ペレットを製造することができる。本発明の加工装置を使用することにより、無機微粒子結晶化核剤を水分散系で供給し、炭酸ガス亜臨界条件でポリ乳酸を低分子量に加水分解した状態で混合し、次に脱水縮合し、分散が良好であるため透明なポリ乳酸ペレットを製造することができる。 As an example of mixing, for example, in order to improve the heat resistance of biodegradable polylactic acid, pellets can be produced by supplying inorganic fine particles as a crystallization nucleating agent to the processing apparatus of the present invention. By using the processing apparatus of the present invention, an inorganic fine particle crystallization nucleating agent is supplied in an aqueous dispersion, mixed under a carbon dioxide gas subcritical condition in a state of hydrolysis of polylactic acid to a low molecular weight, and then dehydrated and condensed. Since the dispersion is good, transparent polylactic acid pellets can be produced.

発泡例としては、例えば炭酸ガス、窒素ガスなどのガス、ブタン、ペンタン等の揮発物質を減圧部から注入、ジアゾ化合物などの熱化学発泡剤などをホッパーから混合投入するなどにより、押出し発泡、射出発泡などの装置に組み込むことができる。1例として図7に多段歯車式発泡射出成型機・押出機の例を示す。この場合、一般的なプランジャー方式の射出成型機に組み込むことができる。 Examples of foaming include extrusion foaming and injection by injecting gas such as carbon dioxide and nitrogen gas, volatile substances such as butane and pentane from the decompression section, and mixing and feeding thermochemical foaming agents such as diazo compounds from the hopper. It can be incorporated into devices such as foam. As an example, FIG. 7 shows an example of a multi-stage gear type foam injection molding machine / extruder. In this case, it can be incorporated into a general plunger type injection molding machine.

この例では、図6に示される本発明の多段歯車式押出機を使用した。スクリューは水分の多い原料に対応するため、原料供給ホッパーの下部の50mm径、長さ350mm、2軸パドル・スクリューに続いて長さ400mm単軸スクリューを使用した。多段歯車は全3段を使用し、サーボ・モーターにより駆動される多段歯車は全2段を使用した。下記に歯車主要部の寸法を記載する。A軸及びB軸の歯車厚さの寸法(以下、「歯厚」と述べる)のみ記載しC軸の歯厚を記載していない段は降圧部Xまたは昇圧部Yとして説明した構造であり、C軸の歯厚の記載がある段は混練部Zとして示した構造である。次に記載した圧力は記載段の出側圧力で次段記載の入側圧力に相当し、単位は(MPa)である。
全歯車のピッチ円径は46mm、モジュール2を採用した。
第1段 A軸、B軸の歯厚87mm 0.88(測定値)
第2段 A軸、B軸の歯厚92mm 5.29(設計値)
第3段 A軸、B軸の歯厚48mm/C軸の歯車20mm 8.82(設計値)
以下、サーボ・モーター駆動・圧力制御部
第1段 A軸、B軸の歯厚20mm 8.8 (測定値)
第2段 A軸、B軸の歯厚28mm 4.41(設計値)
丸孔ノズル付きダイス、水中カッターおよびドライヤーから構成される装置を使用した。
In this example, the multi-stage gear extruder of the present invention shown in FIG. 6 was used. Since the screw corresponds to the raw material with a lot of moisture, a single screw with a length of 50 mm, a length of 350 mm, a biaxial paddle screw and a length of 400 mm are used at the bottom of the raw material supply hopper. The multi-stage gear used all three stages, and the multi-stage gear driven by the servo motor used all two stages. The dimensions of the gear main part are described below. The stage where only the dimension of the gear thickness of the A-axis and B-axis (hereinafter referred to as “tooth thickness”) is described, and the tooth thickness of the C-axis is not described is the structure described as the step-down part X or the step-up part Y. The stage where the tooth thickness of the C-axis is described is the structure shown as the kneading part Z. The pressure described next corresponds to the inlet side pressure described in the next stage as the outlet side pressure in the indicated stage, and the unit is (MPa).
The pitch circle diameter of all gears was 46 mm, and module 2 was adopted.
1st stage A-axis, B-axis tooth thickness 87mm 0.88 (measured value)
Second stage A-axis, B-axis tooth thickness 92mm 5.29 (design value)
3rd stage A-axis, B-axis tooth thickness 48mm / C-axis gear 20mm 8.82 (design value)
Servo motor drive / pressure control unit 1st stage A-axis, B-axis tooth thickness 20mm 8.8 (measured value)
Second stage A-axis, B-axis tooth thickness 28mm 4.41 (design value)
A device consisting of a die with a round hole nozzle, an underwater cutter and a dryer was used.

以下の運転条件は押出機の軸回転数を80rpm、サーボ・モーターの回転数は120rpmでバランスした。ヒーターによる設定温度を入口ホッパー下のみ160℃、各部の設定温度を230℃に設定し、原料ポリ乳酸と5重量%雲母水分散液原料比1.0雲母重量%をブレンドし、30kg/時間で供給した。ガス注入口から炭酸ガスを減圧弁で0.88MPaに減圧し注入した。サーボ・モーターによる圧力調整部における樹脂圧計の指示圧力は8.8MPaの炭酸ガス超臨界下、圧力調整部歯車に到達する滞留時間は約20秒(算出値)でポリ乳酸を分解し、フラットスクリュー減圧ベント部で水流ポンプ減圧縮重合し、ポリ乳酸の分子量を回復した。得られたペレットは無機物微粒子が含まれているにもかかわらず透明で分散性がナノレベルに達していることが明白であった。 The following operating conditions were balanced at an extruder shaft speed of 80 rpm and a servo motor speed of 120 rpm. The temperature set by the heater is set to 160 ° C only under the inlet hopper, the temperature set to each part is set to 230 ° C, and the raw polylactic acid and 5 wt% mica water dispersion raw material ratio 1.0 blend are mixed at 30 kg / hour. Supplied. Carbon dioxide was reduced in pressure to 0.88 MPa from the gas inlet and injected. The pressure of the resin pressure gauge in the pressure adjustment unit by the servo motor is supercritical at 8.8 MPa, and the residence time to reach the pressure adjustment unit gear is about 20 seconds (calculated value). The water pump reduced compression polymerization at the reduced pressure vent, and the molecular weight of polylactic acid was recovered. It was clear that the obtained pellets were transparent and dispersibility reached the nano level despite containing inorganic fine particles.

この例では、図6に示される多段歯車式押出機で実施例1と同様のものを使用した。 In this example, the same multistage gear extruder as shown in FIG. 6 was used.

以下の運転条件は押出機の軸回転数を80rpm、サーボ・モーターの回転数を120rpmでバランスした。ヒーターによる設定温度を入口ホッパー下のみ160℃、各部の設定温度を190℃に設定し、原料ポリ乳酸89.3重量%とデンプン水分散液(固形分50重量%)10.7重量%をブレンドし、30kg/時間で供給した。ガス注入口から炭酸ガスを減圧弁で0.88MPaに減圧し注入した。サーボ・モーターによる圧力調整部における樹脂圧計の指示圧力は8.8MPaの炭酸ガス超臨界下、圧力調整部歯車に到達する滞留時間は約26秒(算出値)でポリ乳酸を分解し、フラットスクリュー減圧ベント部で水流ポンプ減圧縮重合し、ポリ乳酸の分子量を回復した。得られたペレットはデンプンが含まれているにもかかわらず透明で分散性がナノレベルに達していることが明白であった。 The following operating conditions were balanced at an extruder shaft speed of 80 rpm and a servo motor speed of 120 rpm. The temperature set by the heater is set to 160 ° C only under the inlet hopper, the temperature set for each part is set to 190 ° C, and blended 89.3 wt% of the raw polylactic acid and 10.7 wt% of the starch aqueous dispersion (solid content 50 wt%). And supplied at 30 kg / hour. Carbon dioxide was reduced in pressure to 0.88 MPa from the gas inlet and injected. The indicator pressure of the resin pressure gauge in the pressure adjustment unit by the servo motor is 8.8 MPa carbon dioxide supercritical, and the residence time to reach the pressure adjustment unit gear is about 26 seconds (calculated value). The water pump reduced compression polymerization at the reduced pressure vent, and the molecular weight of polylactic acid was recovered. It was clear that the resulting pellets were clear and dispersible to the nano level despite containing starch.

この例では、図7の多段歯車式発泡射出成型・押出機を、多段歯車の数を10段に変えて使用した。原料供給下部の50mm径、長さ750mm単軸フラットスクリューを使用した。主要部の寸法を記載する。A軸及びB軸の歯厚のみ記載し、C軸の歯厚を記載していない段は降圧部Xまたは昇圧部Yとして説明した構造であり、C軸の歯厚の記載がある段は混練部Zとして示した構造である。次に記載した圧力は記載段の出側圧力で次段記載の入側に相当し、単位は(MPa)である。
全歯車のピッチ円径は46mm、モジュール2を採用した。
第 1段 A軸、B軸の歯厚 12mm 0.74(測定値)
第 2段 A軸、B軸の歯厚 92mm 5.19(設計値)
第 3段 A軸、B軸の歯厚 44mm/C軸の歯厚18mm 9.8 (設計値)
第 4段 A軸、B軸の歯厚 36mm/C軸の歯厚18mm 9.8 (設計値)
第 5段 A軸、B軸の歯厚 18mm 9.8 (設計値)
第 6段 A軸、B軸の歯厚 36mm/C軸の歯厚18mm 9.8 (測定値)
第 7段 A軸、B軸の歯厚 18mm 5.88(設計値)
第 8段 A軸、B軸の歯厚 22mm 2.94(設計値)
第 9段 A軸、B軸の歯厚 32mm 0.2 (設計値)
第10段 A軸、B軸の歯厚312mm
多段歯車群の第10段後部に実効全長1200mmの水冷丸ダイスを取付けた。外側水冷丸ダイスの内径は80mm出口径で、中子水冷丸ダイスは先細りテーパーを採用し、外径は60mm出口径である。
In this example, the multistage gear type foam injection molding / extruder shown in FIG. 7 was used with the number of multistage gears changed to 10 stages. A single screw flat screw having a diameter of 50 mm and a length of 750 mm at the lower part of the raw material supply was used. Describe the dimensions of the main part. Only the tooth thicknesses of the A-axis and B-axis are described, and the stage where the C-axis tooth thickness is not described is the structure described as the pressure-lowering part X or the pressure-boosting part Y, and the stage where the tooth thickness of the C-axis is described is kneaded. This is the structure shown as part Z. The pressure described next corresponds to the inlet side described in the next stage in the outlet side pressure described in the stage, and the unit is (MPa).
The pitch circle diameter of all gears was 46 mm, and module 2 was adopted.
1st stage A-axis, B-axis tooth thickness 12mm 0.74 (measured value)
Second stage A-axis, B-axis tooth thickness 92mm 5.19 (design value)
Third stage A-axis, B-axis tooth thickness 44mm / C-axis tooth thickness 18mm 9.8 (design value)
4th stage A-axis, B-axis tooth thickness 36mm / C-axis tooth thickness 18mm 9.8 (design value)
5th stage A-axis, B-axis tooth thickness 18mm 9.8 (design value)
6th stage A-axis, B-axis tooth thickness 36mm / C-axis tooth thickness 18mm 9.8 (measured value)
7th stage A-axis, B-axis tooth thickness 18mm 5.88 (design value)
8th stage A-axis, B-axis tooth thickness 22mm 2.94 (design value)
9th stage A-axis, B-axis tooth thickness 32mm 0.2 (design value)
10th stage A-axis, B-axis tooth thickness 312mm
A water-cooled round die having an effective total length of 1200 mm was attached to the rear of the tenth stage of the multi-stage gear group. The inner diameter of the outer water-cooled round die is 80 mm outlet diameter, the core water-cooled round die adopts a tapered taper, and the outer diameter is 60 mm outlet diameter.

ヒーター温度を160℃に設定し、軸回転数を80rpm、主原料ポリエチレン99.5重量%とワックス0.5重量%をドライブレンドし、ホッパーから投入した。気体注入口にはコンプレッサーから圧縮空気を減圧弁で0.74(MPa)に減圧し注入した。結果は、外径80mm径、内径60mm径の円筒形状の連続発泡体がえられた。発泡セルは小さく、発泡倍率は約50倍、時間換算吐出量は35kgであった。 The heater temperature was set to 160 ° C., the shaft rotational speed was 80 rpm, 99.5% by weight of the main raw polyethylene and 0.5% by weight of wax were dry blended and charged from the hopper. Compressed air from the compressor was reduced to 0.74 (MPa) by a pressure reducing valve and injected into the gas inlet. As a result, a cylindrical continuous foam having an outer diameter of 80 mm and an inner diameter of 60 mm was obtained. The foam cell was small, the foam ratio was about 50 times, and the time-equivalent discharge amount was 35 kg.

この例では、図7の多段歯車式発泡射出成型・押出機で実施例3と同様の歯車を10段としたものを使用した。ただし、実施例3の装置の丸ダイスを外し、射出成型機用メカニカル・ノズルを取付け使用した。簡便な試作試験のため、金型にはアルミ材を採用し、8箇所に6mm径の材料漏れ用の穴を設け、フックでメカニカル・ノズルに圧接する構造にした。また、メカニカル・ノズルと金型間にドレンを設け、金型流入する方向とドレンから流出する方向との切替えバルブを取付けた。気体注入口には炭酸ガス・ボンベから減圧弁で0.74(MPa)に減圧し接続した。 In this example, the multi-stage gear type foam injection molding / extruder shown in FIG. However, the round die of the apparatus of Example 3 was removed, and a mechanical nozzle for an injection molding machine was attached and used. For a simple prototype test, aluminum was used for the mold, 6 mm diameter holes for material leakage were provided at 8 locations, and the structure was configured to press contact with the mechanical nozzle with hooks. In addition, a drain was provided between the mechanical nozzle and the mold, and a switching valve between the direction of flowing in the mold and the direction of flowing out of the drain was attached. The gas inlet was connected to a carbon dioxide gas cylinder with a pressure reducing valve reduced to 0.74 (MPa).

乾燥した原料ポリ乳酸99重量%とトリメリット酸無水物1重量%をドライブレンドし、ホッパーから35kg/時間で供給し、炭酸ガス注入口から0.74MPaの炭酸ガスを供給し、温度230℃、第6段の後部圧力9.8MPaの超臨界炭酸ガス条件下連続混練りし、切替えバルブでドレン側から金型側に一時的に切替えることにより、発泡ポリ乳酸を常温のトロ箱金型に射出後、金型を水冷却した。発泡ポリ乳酸のトロ箱は約50倍発泡し、微細発泡核を生成し、フラッシュ跡もないトロ箱を成型できた。 Dry blend of 99% by weight of the raw polylactic acid and 1% by weight of trimellitic anhydride is supplied at a rate of 35 kg / hour from the hopper, 0.74 MPa of carbon dioxide gas is supplied from the carbon dioxide gas inlet, and the temperature is 230 ° C. The sixth stage rear kneaded continuously under supercritical carbon dioxide conditions of 9.8MPa, and by switching temporarily from the drain side to the mold side with the switching valve, the foamed polylactic acid is injected into the room temperature tro box mold Thereafter, the mold was water cooled. The Toro box of foamed polylactic acid foamed about 50 times, produced fine foam nuclei, and was able to mold a Toro box without flash marks.

Claims (8)

気体が混在する物質を、上流側から下流側へ移送しながら連続して混練圧縮し、臨界状態または亜臨界状態の気体を含有する流体として、加工するための加工装置であって、移送部容量の異なる歯車式移送部を2段以上設け、連続する2段の歯車式移送部の差により流体に含有される気体を圧縮する圧力を制御し、または移送流体の一部を逆流させ実質移送容量を一定するように構成された上、前記2段以上の歯車式移送部において連続する2段の歯車式移送部の間に気体注入口が設けられ、且つ、該気体注入口の上流側の段の歯車による移送部容量が該気体注入口の下流側の段の歯車による移送部容量より小であることで、前記連続する2段の歯車式移送部の間に、気体を降圧するための降圧部が形成され、前記気体注入口から気体注入が可能に構成されたことを特徴とする多段歯車式加工装置。 The material gas are mixed, as fluid from the upstream side sequentially while transported to the downstream side kneaded compressed, containing a supercritical state or gas subcritical state, a processing device for processing, transport unit Two or more gear-type transfer units with different capacities are provided, and the pressure for compressing the gas contained in the fluid is controlled by the difference between two successive gear-type transfer units, or part of the transfer fluid is backflowed and substantially transferred In addition to being configured to have a constant capacity, a gas injection port is provided between two continuous gear-type transfer units in the two or more gear-type transfer units, and an upstream side of the gas injection port is provided. transfer unit capacity by stage gear at Oh Rukoto at less than the transfer unit capacity due to the gear of the downstream stage of the gas inlet, between the gear transfer unit of two stages wherein consecutive for stepping down the gas a step-down unit of the formation, the gas injected from the gas inlet Multistage gear machining apparatus characterized capable to be configured. 前記連続する移送部容量が異なる2段の歯車式移送部に対をなす複数個の歯車が設けられていることを特徴とする請求項1の多段歯車式加工装置。  The multi-stage gear type machining apparatus according to claim 1, wherein a plurality of gears paired with the two-stage gear type transfer part having different continuous transfer part capacities are provided. 押出スクリューに続いて、前記歯車式移送部が設けられていることを特徴とする請求項1または2の多段歯車式加工装置。  3. The multi-stage gear type machining apparatus according to claim 1, wherein the gear type transfer unit is provided following the extrusion screw. 前記歯車式移送部により超臨界または亜臨界状態を形成するに足る圧力を発生する請求項1からのいずれか1項の多段歯車式加工装置。The multistage gear type machining apparatus according to any one of claims 1 to 3 , wherein the gear type transfer unit generates a pressure sufficient to form a supercritical or subcritical state. ガス発泡成形に用いる請求項1からのいずれか1項の多段歯車式加工装置。The multistage gear type machining apparatus according to any one of claims 1 to 4 , which is used for gas foam molding. 請求項1から4のいずれか1項の多段歯車式加工装置を使用して、混練、分解、抽出または化学合成を行う加工方法。 Using a multi-stage gear machining apparatus of any one of claims 1 to 4, the processing method of performing kneading, decomposition, extraction or chemical synthesis. 互いに平行するA軸、B軸及び前記A軸の隣にあるC軸にそれぞれ取り付けられた歯車Gears respectively attached to the A axis, the B axis, and the C axis adjacent to the A axis, which are parallel to each other を備え、With
前記A軸及び前記B軸の2つの歯車により前記歯車式移送部が構成された上、前記流体The gear-type transfer unit is configured by two gears of the A-axis and the B-axis, and the fluid の一部が前記歯車式移送部の下流側から前記A軸の歯車の外周を通り前記C軸の歯車の入Part of the gear passes through the outer periphery of the A-axis gear from the downstream side of the gear-type transfer section and enters the C-axis gear. 口に供給され、前記C軸の歯車の出口から前記A軸の歯車の外周に戻り前記歯車式移送部The gear-type transfer unit is supplied to the mouth and returns from the outlet of the C-axis gear to the outer periphery of the A-axis gear. の上流側に逆流し、再び前記歯車式移送部に移送されるように構成されたことを特徴とすIt is configured to flow backward to the upstream side of the motor and be transferred again to the gear-type transfer unit. る請求項1から5のいずれか1項の多段歯車式加工装置。The multistage gear type machining apparatus according to any one of claims 1 to 5.
前記A軸、前記B軸及び前記C軸と平行し、且つ前記B軸の隣にあるD軸に取り付けらAttached to the D-axis parallel to the A-axis, B-axis and C-axis and next to the B-axis れた歯車を更に有する上、前記流体の一部が前記歯車式移送部の下流側から前記B軸の歯And a part of the fluid is fed from the downstream side of the gear-type transfer unit to the B-axis teeth. 車の外周を通り前記D軸の歯車の入口に供給されてから、前記D軸の歯車の出口から前記After being supplied to the D-axis gear inlet through the outer periphery of the vehicle, the D-axis gear outlet B軸の歯車の外周に戻り前記歯車式移送部の上流側に逆流し、再び前記歯車式移送部に移Return to the outer periphery of the B-axis gear and back flow upstream of the gear-type transfer unit, and then transfer again to the gear-type transfer unit. 送されるように構成されたことを特徴とする請求項7の多段歯車式加工装置。The multi-stage gear type machining apparatus according to claim 7, wherein the multi-stage gear type machining apparatus is configured to be fed.
JP2007531008A 2005-08-17 2006-08-16 Multi-stage gear type processing machine Expired - Fee Related JP5563736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007531008A JP5563736B2 (en) 2005-08-17 2006-08-16 Multi-stage gear type processing machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005236639 2005-08-17
JP2005236639 2005-08-17
PCT/JP2006/316099 WO2007020940A1 (en) 2005-08-17 2006-08-16 Multistage gear processing equipment
JP2007531008A JP5563736B2 (en) 2005-08-17 2006-08-16 Multi-stage gear type processing machine

Publications (2)

Publication Number Publication Date
JPWO2007020940A1 JPWO2007020940A1 (en) 2009-02-26
JP5563736B2 true JP5563736B2 (en) 2014-07-30

Family

ID=37757599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007531008A Expired - Fee Related JP5563736B2 (en) 2005-08-17 2006-08-16 Multi-stage gear type processing machine

Country Status (3)

Country Link
JP (1) JP5563736B2 (en)
KR (1) KR101352346B1 (en)
WO (1) WO2007020940A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5989946B2 (en) * 2011-10-09 2016-09-07 株式会社プラスチック工学研究所 Method and apparatus for producing stereocomplex polylactic acid molded product
AT520439B1 (en) 2017-12-15 2019-04-15 Engel Austria Gmbh Injection unit for a molding machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836677A (en) * 1981-08-19 1983-03-03 ノードソン・コーポレーション Hot melt adhesive device
JP2002018853A (en) * 2000-04-25 2002-01-22 Hennecke Gmbh Method and apparatus for pressurizing flowable reaction component
JP2003326571A (en) * 2002-05-16 2003-11-19 Meiki Co Ltd Plastication device and method
JP2005022245A (en) * 2003-07-02 2005-01-27 Hitachi Cable Ltd Supercritical treatment apparatus for polymer
WO2005030845A1 (en) * 2003-09-30 2005-04-07 Kosuke Uchiyama Screw type processing device and product using the device
JP2005161596A (en) * 2003-12-01 2005-06-23 Mitsui Chemicals Inc Manufacturing method of thermoplastic resin blend
JP2005532939A (en) * 2002-07-18 2005-11-04 トレクセル・インコーポレーテッド Polymer processing system with screw

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836677A (en) * 1981-08-19 1983-03-03 ノードソン・コーポレーション Hot melt adhesive device
JP2002018853A (en) * 2000-04-25 2002-01-22 Hennecke Gmbh Method and apparatus for pressurizing flowable reaction component
JP2003326571A (en) * 2002-05-16 2003-11-19 Meiki Co Ltd Plastication device and method
JP2005532939A (en) * 2002-07-18 2005-11-04 トレクセル・インコーポレーテッド Polymer processing system with screw
JP2005022245A (en) * 2003-07-02 2005-01-27 Hitachi Cable Ltd Supercritical treatment apparatus for polymer
WO2005030845A1 (en) * 2003-09-30 2005-04-07 Kosuke Uchiyama Screw type processing device and product using the device
JP2005161596A (en) * 2003-12-01 2005-06-23 Mitsui Chemicals Inc Manufacturing method of thermoplastic resin blend

Also Published As

Publication number Publication date
KR20080039955A (en) 2008-05-07
KR101352346B1 (en) 2014-01-15
WO2007020940A1 (en) 2007-02-22
JPWO2007020940A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP3434418B2 (en) High-melting point resin dewatering system with co-rotating twin screw extruder
EP1218164B1 (en) Twin screw extrusion apparatus and production method for the production of polymeric foam
US7322738B2 (en) Conical twin-screw extruder and dehydrator
TWI532582B (en) Kneading and extruding apparatus
EP1998948B1 (en) Method and device for granulating polymer melts containing blowing agent
US7371808B2 (en) Polymer treating method and apparatus
JP5563736B2 (en) Multi-stage gear type processing machine
CN100519637C (en) Method of treating polymer compound and treatment system for the same
CN201077146Y (en) Stepwise screw extrusion machine
TWI329562B (en)
EP1496082A1 (en) Method and apparatus for polymer processing treatment
JP5553370B2 (en) Polyurethane volume reduction treatment equipment
KR101339128B1 (en) Treating method and volume reduction treating apparatus for expanded polyurethane
JP2001179808A (en) Continuous method for molding foamed object and apparatus for the method
JPH03190709A (en) Extrusion molding of thermoplastic resin
JP2000264998A (en) Method and apparatus for recycling recovered polyester product
KR100610289B1 (en) Method and apparatus for polymer processing treatment
US5911929A (en) Method and an apparatus for producing web-shaped plastic foil
JP4517993B2 (en) Polymer compound and drug recovery method and apparatus
JP2007130775A (en) Tandem type reactive extruder and reactive extrusion method
JP5617770B2 (en) Polymer compound processing method and apparatus
JP2009051868A (en) Method and apparatus for treating polymer compound
Nichols et al. Direct extrusion of polymer latex emulsions
JP2011162689A (en) Method of treating polymer compound and apparatus therefor
JP2005161596A (en) Manufacturing method of thermoplastic resin blend

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R150 Certificate of patent or registration of utility model

Ref document number: 5563736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees