[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5562283B2 - Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same - Google Patents

Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same Download PDF

Info

Publication number
JP5562283B2
JP5562283B2 JP2011085562A JP2011085562A JP5562283B2 JP 5562283 B2 JP5562283 B2 JP 5562283B2 JP 2011085562 A JP2011085562 A JP 2011085562A JP 2011085562 A JP2011085562 A JP 2011085562A JP 5562283 B2 JP5562283 B2 JP 5562283B2
Authority
JP
Japan
Prior art keywords
transparent conductive
transparent
layer
graphene
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011085562A
Other languages
Japanese (ja)
Other versions
JP2012221694A (en
Inventor
創 寺薗
富士男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2011085562A priority Critical patent/JP5562283B2/en
Priority to KR1020137025943A priority patent/KR101878011B1/en
Priority to US14/009,809 priority patent/US9215797B2/en
Priority to PCT/JP2012/059523 priority patent/WO2012137923A1/en
Priority to CN201280016400.0A priority patent/CN103477399B/en
Publication of JP2012221694A publication Critical patent/JP2012221694A/en
Application granted granted Critical
Publication of JP5562283B2 publication Critical patent/JP5562283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、グラフェンを主成分とする透明導電膜を備えた柔軟性のある次元形状の透明導電物と三次元形状の透明導電物およびその製造方法に関するものである。 The present invention relates to a flexible two- dimensional transparent conductor and a three-dimensional transparent conductor provided with a transparent conductive film mainly composed of graphene, and a method for producing the same.

携帯電話などの通信機器、電子情報機器、液晶ディスプレイ、太陽電池などにおいては、透明性および導電性にすぐれた透明導電物が必要とされている。さらに、近年、軽量短小化とともに、デザインの面からの要請で、折り曲げ可能な柔軟性のある二次元形状の透明導電物や三次元形状の透明導電物が望まれている。   In a communication device such as a mobile phone, an electronic information device, a liquid crystal display, a solar cell, and the like, a transparent conductor excellent in transparency and conductivity is required. Further, in recent years, with the reduction in weight and size, a flexible two-dimensional transparent conductor and a three-dimensional transparent conductor that can be bent are desired due to the demands of the design.

透明導電フィルムの透明な導電材料には、主に酸化インジウムスズ(ITO)が使用されている。しかし、三次元形状への直接的なITOのパターンニングは、技術的に困難であり、二次元形状にITOのパターン形成後、三次元形状にするとしても、ITOは脆く、基材の伸び、収縮および曲げ等に対し追随しないので導電性が低下し、透明性と導電性を備えた三次元形状の作製は技術的に困難であった。加えて、ITOはレアアースであるインジウムを含むことから、資源枯渇、安定供給、環境負荷等の面で問題があった。   Indium tin oxide (ITO) is mainly used for the transparent conductive material of the transparent conductive film. However, direct ITO patterning into a three-dimensional shape is technically difficult, and even if a three-dimensional shape is formed after the ITO pattern is formed into a two-dimensional shape, the ITO is brittle, the substrate is stretched, Since it does not follow shrinkage, bending, etc., the conductivity is lowered, and it is technically difficult to produce a three-dimensional shape having transparency and conductivity. In addition, since ITO contains indium which is a rare earth, there are problems in terms of resource depletion, stable supply, environmental load, and the like.

このため、ITO代替材料の検討がなされており、その候補としてカーボンナノチューブ(CNT)、金属ナノワイヤー等が挙げられている。このうち、CNTは、三次元形状を有する透明導電膜に必要である、機械的強度と柔軟性の両方の特徴を有する。しかし、CNTを用いる場合、導電材料として導電性を得るためには、CNTを固定化するバインダー中に、導体となる複数のCNTが互いに点で接触し、三次元のネットワーク構造を形成する必要がある。このネットワーク構造を形成するために、例えば、塗布法では、CNTを溶液に溶解し分散させるために溶剤や分散剤の選択や調整等の多くの工程を要した(特許文献1)。   For this reason, ITO alternative materials are being studied, and carbon nanotubes (CNT), metal nanowires, and the like are listed as candidates. Among these, CNT has characteristics of both mechanical strength and flexibility necessary for a transparent conductive film having a three-dimensional shape. However, in the case of using CNT, in order to obtain conductivity as a conductive material, it is necessary to form a three-dimensional network structure by bringing a plurality of CNTs serving as conductors into contact with each other at points in a binder for fixing CNT. is there. In order to form this network structure, for example, in the coating method, many steps such as selection and adjustment of a solvent and a dispersing agent are required to dissolve and disperse CNT in a solution (Patent Document 1).

他のITO代替材料としては、グラフェン(Graphene)がある。グラフェンは、炭素原子が隣接する3つの炭素原子と結合し、蜂の巣構造を有する2次元物質である。CNTと同様に機械的強度と柔軟性を有するグラフェンをパターンニングする場合には、成膜後マスクしてパターンニングする方法を採用することができる。この方法は、塗布法のような煩雑な工程を経る必要がなく、CNTと大きく異なる。   Another ITO alternative material is Graphene. Graphene is a two-dimensional material having a honeycomb structure in which carbon atoms are bonded to three adjacent carbon atoms. In the case of patterning graphene having mechanical strength and flexibility as in the case of CNT, a method of patterning by masking after film formation can be employed. This method does not need to go through complicated steps like the coating method, and is greatly different from CNT.

グラフェンを成膜する方法には、触媒であるシート状のCuの基板(厚み15μm、25μm)を円柱形の反応器に巻きつけ、1000℃で化学気相成長(CVD)によりCu基板上に成膜した後、ロール・ツー・ロール方式が可能な長尺状の基板と貼り付け、そのCu基板をエッチングにより除去する方法がある(非特許文献1)。しかし、この方法では、多くの工程を要することで、生成したグラフェン膜がしわ、破れ等のダメージを受け、グラフェンの性質が低下する問題があった。そこで、発明者は鋭意検討した結果、グラフェン層がダメージを受ける転写工程を経ることなく、触媒となる金属薄膜層上にグラフェンを生成した転写シートを作製する発明をするに至った。   In the method of forming a graphene film, a sheet-like Cu substrate (thickness 15 μm, 25 μm) as a catalyst is wound around a cylindrical reactor and formed on a Cu substrate by chemical vapor deposition (CVD) at 1000 ° C. After film formation, there is a method in which a roll-to-roll method is applied to a long substrate, and the Cu substrate is removed by etching (Non-Patent Document 1). However, in this method, since many steps are required, the generated graphene film is damaged such as wrinkles and tears, and there is a problem that the properties of graphene are deteriorated. Thus, as a result of intensive studies, the inventors have invented a transfer sheet in which graphene is generated on a metal thin film layer serving as a catalyst without going through a transfer process in which the graphene layer is damaged.

再公表2006−132254号公報Republished 2006-132254 S.Bae et al.,Nature Nanotech.5,574(2010)S. Bae et al. , Nature Nanotech. 5,574 (2010)

本発明は上記問題を解消するためになされ、グラフェンを透明導電材料とする転写シートを用いて、柔軟性を有する次元形状を有する透明導電物と、三次元形状を有する透明導電物とその製造方法の提供にある。 The present invention has been made in order to solve the above problems, and using a transfer sheet having graphene as a transparent conductive material, a transparent conductor having a flexible two- dimensional shape, a transparent conductor having a three-dimensional shape, and the production thereof In providing a method.

上記目的を達成するために、発明者は鋭意検討の結果、グラフェンを主成分とする透明導電物の作成において、金属薄膜上にグラフェンを主成分とする転写シートを用いて、成形同時転写法により透明導電物およびその製造方法を提供できる。   In order to achieve the above object, as a result of intensive investigations, the inventor made a graphene-based transparent conductive material by using a transfer sheet mainly composed of graphene on a metal thin film by a simultaneous molding transfer method. A transparent conductor and a manufacturing method thereof can be provided.

本発明における上記課題の解決手段を以下に示す。   Means for solving the above problems in the present invention will be described below.

本発明の第一態様は、グラフェンを主成分とする1つの透明導電部を備えた透明導電物において、2次元形状の柔軟性のある透明基板と、前記透明基板のいずれかの面に形成された樹脂層と、前記樹脂層上に形成されたグラフェンを主成分とする透明導電層からなる透明導電部とからなり、1つの透明導電膜部を備え柔軟性を有することを特徴とする透明導電膜物である。   A first aspect of the present invention is a transparent conductive material having a single transparent conductive portion mainly composed of graphene, and is formed on a transparent substrate having a two-dimensional shape and on any surface of the transparent substrate. And a transparent conductive portion comprising a transparent conductive layer mainly composed of graphene formed on the resin layer, and having a single transparent conductive film portion and having flexibility. It is a film.

本発明の第二態様は、グラフェンを主成分とする2つの透明導電部を備えた透明導電物において、2次元形状の柔軟性のある第1透明基板と、前記第1透明基板のいずれかの面に形成された第1樹脂層と、前記第1樹脂層上に形成されたグラフェンを主成分とする第1透明導電層とからなる第1透明導電部と、2次元形状の柔軟性のある第2透明基板と、前記第2透明基板のいずれかの面に形成された第2樹脂層と、前記第2樹脂層上に形成されたグラフェンを主成分とする第2透明導電層とからなる第2透明導電部とからなり、前記第1透明導電部と前記第2透明導電部とが電気的に絶縁するように対向して位置し、柔軟性を有する次元形状であることを特徴とする透明導電物である。 According to a second aspect of the present invention, there is provided a transparent conductive material including two transparent conductive portions mainly composed of graphene, and a flexible first transparent substrate having a two-dimensional shape and any one of the first transparent substrates. A first transparent conductive portion comprising a first resin layer formed on the surface and a first transparent conductive layer mainly composed of graphene formed on the first resin layer; and a flexible two-dimensional shape A second transparent substrate; a second resin layer formed on any surface of the second transparent substrate; and a second transparent conductive layer mainly composed of graphene formed on the second resin layer. A second transparent conductive portion, wherein the first transparent conductive portion and the second transparent conductive portion are opposed to each other so as to be electrically insulated, and have a flexible two- dimensional shape. It is a transparent conductor.

本発明の第三態様は、グラフェンを主成分とする1つの透明導電部を備えた透明導電物において、3次元形状の透明基板と、前記透明基板のいずれかの面に形成された樹脂層と、 前記樹脂層上に形成されたグラフェンを主成分とする透明導電層からなる透明導電部とからなり、1つの透明導電部を備えた3次元形状を有することを特徴とする透明導電膜物である。   According to a third aspect of the present invention, there is provided a transparent conductive material including one transparent conductive portion mainly composed of graphene, a three-dimensional transparent substrate, and a resin layer formed on any surface of the transparent substrate. A transparent conductive film comprising a transparent conductive layer comprising a transparent conductive layer mainly composed of graphene formed on the resin layer, and having a three-dimensional shape having one transparent conductive part. is there.

本発明の第四態様は、グラフェンを主成分とする2つの透明導電部を備えた透明導電物において、3次元形状の第1透明基板と、前記第1透明基板のいずれかの面に形成された第1樹脂層と、前記第1樹脂層上に形成されたグラフェンを主成分とする第1透明導電層とからなる第1透明導電部と、3次元形状の第2透明基板と、前記第2透明基板のいずれかの面に形成された第2樹脂層と、前記第2樹脂層上に形成されたグラフェンを主成分とする第2透明導電層とからなる第2透明導電部と、前記第1透明電極部と前記第2透明電極部とが電気的に絶縁するように対向して位置し、2つの透明導電部を備えた三次元形状を有することを特徴とする透明導電物である。   A fourth aspect of the present invention is a transparent conductive material including two transparent conductive parts mainly composed of graphene, and is formed on a surface of a three-dimensional first transparent substrate and the first transparent substrate. A first transparent conductive portion comprising a first resin layer, a first transparent conductive layer mainly composed of graphene formed on the first resin layer, a second transparent substrate having a three-dimensional shape, A second transparent conductive portion comprising a second resin layer formed on any surface of the two transparent substrates, and a second transparent conductive layer mainly composed of graphene formed on the second resin layer; A transparent conductive material characterized in that the first transparent electrode portion and the second transparent electrode portion are positioned so as to be electrically insulated and have a three-dimensional shape including two transparent conductive portions. .

本発明の第五態様は、第1透明導電部と第2透明導電部の間に絶縁層を設けた透明導電物である。   The fifth aspect of the present invention is a transparent conductive material in which an insulating layer is provided between the first transparent conductive portion and the second transparent conductive portion.

本発明の第六態様は、第1透明電極部と第2透明電極部との間に配置され、かつ絶縁性の透明樹脂と前記透明樹脂中に分散含有された複数の導電性の感圧物質からなる圧力導電層を備え、透明導電物の一方面に力が作用すると、作用する力で前記圧力導電層内の感圧物質間で電流が流れることにより、対向する第1透明導電層と第2透明導電層との間で導通が行われることを特徴とする透明導電物である。   According to a sixth aspect of the present invention, there is provided an insulating transparent resin and a plurality of conductive pressure-sensitive substances dispersed and contained in the transparent resin, disposed between the first transparent electrode portion and the second transparent electrode portion. When a force is applied to one surface of the transparent conductive material, a current flows between the pressure-sensitive substances in the pressure conductive layer by the applied force, so that the first transparent conductive layer and the opposing first transparent conductive layer It is a transparent conductive material characterized in that conduction is performed between two transparent conductive layers.

本発明の第七態様は、引き回し回路部を含む透明導電物である。   The seventh aspect of the present invention is a transparent conductor including a routing circuit portion.

本発明の第八態様は、引き回し回路部が透明電極部の周辺に位置することを特徴とする透明導電物である。   According to an eighth aspect of the present invention, there is provided the transparent conductive material characterized in that the routing circuit portion is located around the transparent electrode portion.

本発明の第九態様は、グラフェンを主成分とする透明導電部を備えた転写シートを、射出成形用金型内に設置し、成形樹脂を射出し、前記成形樹脂の固化と同時に成形樹脂品表面の一方面に転写シートを一体化接着させ、離型性を有する基体シートを除去する第1工程と、前記一方面に形成された金属薄膜層を除去する第2工程とを備えた、透明導電物の製造法において、グラフェンを主成分とする1つの透明電極部を備え柔軟性を有することを特徴とする透明導電物の製造方法である。   According to a ninth aspect of the present invention, a transfer sheet having a transparent conductive portion mainly composed of graphene is placed in an injection mold, and a molding resin is injected. Simultaneously with the solidification of the molding resin, a molding resin product is provided. A transparent process comprising a first step of integrally bonding a transfer sheet to one surface of a surface and removing a base sheet having releasability, and a second step of removing a metal thin film layer formed on the one surface In the method for producing a conductive material, a transparent conductive material comprising a single transparent electrode portion mainly composed of graphene and having flexibility.

本発明の第十態様は、グラフェンを主成分とする第1透明導電部を備えた第1転写シートを、射出成形用金型内に設置し、成形樹脂を射出し、前記成形樹脂の固化と同時に成形樹脂表面の第1一方面に前記第1転写シートを一体化接着させ、離型性を有する基体シートを除去する第1工程と、前記第1一方面に形成された第1金属薄膜層を除去する第2工程と、グラフェンを主成分とする第2透明導電部を備えた第2転写シートを、柔軟性のある二次元形状の透明基板の第2一方面に加熱加圧により一体化接着し、離型性を有する基体シートを除去する第3工程と、前記第2一方面に形成された第2金属薄膜層を除去する第4工程と、第1透明導電部と第2透明導電部とが電気的に絶縁するように、前記第1一方面と前記第2一方面とが対向するように接着剤で貼りあわせ、前記第1透明導電部と前記第2導電部との間に、樹脂層または圧力導電層を形成する第5工程とからなる透明導電物の製造方法において、グラフェンを特徴とする2つの透明導電部を備え三次元形状を有することを特徴とする透明導電物の製造方法である。   According to a tenth aspect of the present invention, a first transfer sheet having a first transparent conductive portion mainly composed of graphene is placed in an injection mold, a molding resin is injected, and the molding resin is solidified. At the same time, a first step of integrally bonding the first transfer sheet to the first one surface of the molding resin surface and removing the base sheet having releasability, and a first metal thin film layer formed on the first one surface A second transfer sheet having a second transparent conductive portion mainly composed of graphene and the second one surface of a flexible two-dimensional transparent substrate by heat and pressure. A third step of bonding and removing the base sheet having releasability; a fourth step of removing the second metal thin film layer formed on the second one surface; a first transparent conductive portion and a second transparent conductive layer; The first one surface and the second one surface are opposed so that the portion is electrically insulated In a method for producing a transparent conductive material comprising a fifth step of forming a resin layer or a pressure conductive layer between the first transparent conductive portion and the second conductive portion, and bonding with an adhesive It is a manufacturing method of a transparent conductor characterized by having two transparent conductive parts characterized by having a three-dimensional shape.

本発明の第十一態様は、引き回し回路部が透明電極部の周辺に位置することを特徴とする透明導電物を含む静電容量型タッチ入力デバイスである。   According to an eleventh aspect of the present invention, there is provided a capacitive touch input device including a transparent conductive material, wherein the routing circuit portion is located around the transparent electrode portion.

本発明の第十二態様は、透明導電物を含む抵抗膜型タッチ入力デバイスである。   A twelfth aspect of the present invention is a resistive film type touch input device including a transparent conductor.

本発明で用いる転写シートは、柔軟性と機械的強度を有するグラフェンを主成分とする透明導電膜層に用いているので、柔軟性のある次元形状の被転写体上に形成できるだけでなく、三次元形状の被転写体上に透明導電層を転写できる。これにより当該透明導電物を搭載する携帯電子機器の用途・機能が拡大する効果がある。 Since the transfer sheet used in the present invention is used for a transparent conductive film layer mainly composed of graphene having flexibility and mechanical strength, not only can it be formed on a flexible two- dimensional shape to be transferred, A transparent conductive layer can be transferred onto a three-dimensional transfer object. As a result, there is an effect that the use and function of the portable electronic device mounting the transparent conductive material is expanded.

本発明の透明導電物は、パターン化された透明導電膜層を2次元のシート状の転写シートで作製し、後に被転写物へ一体化して成形同時転写をして金属薄膜層を除去するだけで得られるので、量産性に優れる効果を有する。   The transparent conductive material of the present invention is a method in which a patterned transparent conductive film layer is produced with a two-dimensional sheet-like transfer sheet, and is then integrated into a transfer object and simultaneously formed and removed to remove the metal thin film layer. Therefore, it has the effect of being excellent in mass productivity.

グラフェンを主成分とする透明導電膜層の形成において、転写シート上にパターンニングした金属薄膜層上にCVDによりグラフェンを作成するので、全面成膜後に電子線等の高エネルギー光照射によるパターニングが不要である。さらに、当該転写シートを所望の被転写体へ転写するだけで透明導電膜を含む層を転写できる。よって、グラフェンが必要以上に負荷をかけずに作成することができるため、品質の良い量産性のある透明導電物を提供できる。   In forming a transparent conductive film layer composed mainly of graphene, graphene is created on the metal thin film layer patterned on the transfer sheet by CVD, so patterning by irradiation with high energy light such as an electron beam is not required after film formation It is. Furthermore, the layer containing the transparent conductive film can be transferred simply by transferring the transfer sheet to a desired transfer target. Therefore, since graphene can be produced without applying a load more than necessary, a transparent conductor with good quality and mass productivity can be provided.

図1は、本発明の第九態様で用いる転写シートのうち、本発明の基体シート上に部分的に金属薄膜層を形成した場合の転写シートの断面を示す。FIG. 1 shows a cross section of a transfer sheet used in the ninth embodiment of the present invention when a metal thin film layer is partially formed on the substrate sheet of the present invention. 図2は、本発明の第十形態で用いる転写シートの断面を示す。FIG. 2 shows a cross section of a transfer sheet used in the tenth embodiment of the present invention. 図3は、本発明の第十態様で用いる転写シートの製造方法を工程順に示した断面図である。FIG. 3 is a cross-sectional view showing the transfer sheet manufacturing method used in the tenth aspect of the present invention in the order of steps. 図4は、本発明の第十態様で用いる転写シートの製造方法を工程順に示した断面図である。FIG. 4 is a cross-sectional view showing the transfer sheet manufacturing method used in the tenth aspect of the present invention in the order of steps. 図5は、本発明の第九態様の透明導電物の製造方法を工程順に示した断面図である。FIG. 5: is sectional drawing which showed the manufacturing method of the transparent conductor of the 9th aspect of this invention in process order. 図6は、本発明の第三態様の透明導電物の製造方法を工程順に示した断面図である。FIG. 6: is sectional drawing which showed the manufacturing method of the transparent conductor of the 3rd aspect of this invention in process order. 図7は、本発明の第十態様の透明導電物の製造方法を工程順に示した断面図である。FIG. 7: is sectional drawing which showed the manufacturing method of the transparent conductor of the 10th aspect of this invention in process order.

以下、本発明の実施例に係る転写シート、透明導電物とそれらの製造方法について詳細に説明する。   Hereinafter, a transfer sheet, a transparent conductor, and a manufacturing method thereof according to an embodiment of the present invention will be described in detail.

本発明における転写シート1とは、被転写体10(二次元のみならず三次元も含む)に加圧加熱等により透明導電膜層4を含む層を転写させることのできるシートをいう。本発明の転写シート1は、離型性を有する基体シート7、金属薄膜層3、透明導電膜層4、および接着層5からなる(図1参照)。離型性を有する基体シート7上に所望のパターンに形成あるいは全面に形成された金属薄膜層3があり、その金属薄膜層3に沿って透明導電膜層4があり、その上の最表面に接着層5が設けられている。離型性を有する基体シート7は基体シート2上に離型層6を設ける構造が好ましい(図1参照)。離型層を設ける意義の詳細については後述する。   The transfer sheet 1 in the present invention refers to a sheet on which a layer including the transparent conductive film layer 4 can be transferred to a transfer target 10 (including not only two dimensions but also three dimensions) by pressure heating or the like. The transfer sheet 1 of the present invention comprises a substrate sheet 7 having releasability, a metal thin film layer 3, a transparent conductive film layer 4, and an adhesive layer 5 (see FIG. 1). There is a metal thin film layer 3 formed in a desired pattern or formed on the entire surface on a substrate sheet 7 having releasability, and there is a transparent conductive film layer 4 along the metal thin film layer 3. An adhesive layer 5 is provided. The base sheet 7 having releasability preferably has a structure in which a release layer 6 is provided on the base sheet 2 (see FIG. 1). Details of the significance of providing the release layer will be described later.

本発明の転写シート1は、透明導電部8、10と引き回し回路部9、11に分けることができる(図1、図2参照)。転写シートにおける透明導電部8と引き回し回路部9は転写後に作製される透明導電物において、例えば、タッチパネルにおいては、それぞれディスプレイ表示部分およびディスプレイ表示外の部分に相当する。なお、図1と図2の違いは、引き回し回路の存在する領域にある。つまり、図2では引き回し回路は引き回し回路部11にのみ存在するが、図1では引き回し回路部9だけでなく(図示していないが)透明導電部8にも存在する。   The transfer sheet 1 of the present invention can be divided into transparent conductive portions 8 and 10 and routing circuit portions 9 and 11 (see FIGS. 1 and 2). The transparent conductive portion 8 and the routing circuit portion 9 in the transfer sheet are transparent conductive materials produced after transfer. For example, in a touch panel, they correspond to a display display portion and a portion outside the display display, respectively. The difference between FIG. 1 and FIG. 2 is in the area where the routing circuit exists. That is, in FIG. 2, the routing circuit exists only in the routing circuit unit 11, but in FIG. 1, it exists not only in the routing circuit unit 9 but also in the transparent conductive unit 8 (not shown).

本発明の転写シートは、全面に透明導電膜層4を形成する場合においては、離型性を有する基体シート7上に全面にスパッタリング法等により金属薄膜層3を形成した後、金属薄膜層3上にCVDなどの方法により透明導電膜層4を形成し、接着層5を形成することで得られる。   In the case of forming the transparent conductive film layer 4 on the entire surface of the transfer sheet of the present invention, the metal thin film layer 3 is formed on the entire surface of the substrate sheet 7 having releasability by forming the metal thin film layer 3 by sputtering or the like. It is obtained by forming the transparent conductive film layer 4 on the top by a method such as CVD and forming the adhesive layer 5.

本発明の転写シート1は、部分的に透明導電膜層4を形成する場合は、透明導電膜層4を形成する前に、触媒である金属薄膜層3を離型性を有する基体シート7上にパターニング形成する。この金属薄膜層3をパターンニング形成する方法としては、溶媒可溶性のマスク層剥離法またはレジスト剥離法が挙げられる。前者の溶媒可溶性のマスク層剥離法は、溶媒可溶性のマスク層12を印刷法等で形成しマスクして金属薄膜層3を形成した後、洗浄工程などで不要な金属薄膜層3を除去して金属薄膜層3をパターニングする方法である。すなわち、離型性を有する基体シート7は基体シート2上に離型層6が形成された構造で(図3(a)参照)、離型層6上の透明導電膜層4を必要としない部分にグラビア印刷法等により溶媒可溶性のマスク層12を形成する(図3(b)参照)。溶媒可溶性のマスク層8を含む全面に、スパッタリング法等により金属薄膜層3を形成した後(図3(c)参照)、溶媒による洗浄工程において溶媒可溶性のマスク層12と共に不要な金属薄膜層3を除去することで、パターニングされた所望の金属薄膜層3が得られる(図3(d)参照)洗浄用溶媒としては、水溶液やアルコール類が良く用いられる。   When the transparent conductive film layer 4 is partially formed on the transfer sheet 1 of the present invention, the metal thin film layer 3 as a catalyst is formed on the base sheet 7 having releasability before the transparent conductive film layer 4 is formed. And patterning. Examples of a method for patterning the metal thin film layer 3 include a solvent-soluble mask layer peeling method or a resist peeling method. In the former solvent-soluble mask layer peeling method, the solvent-soluble mask layer 12 is formed by a printing method or the like and masked to form the metal thin film layer 3, and then the unnecessary metal thin film layer 3 is removed by a cleaning process or the like. This is a method of patterning the metal thin film layer 3. That is, the base sheet 7 having releasability has a structure in which a release layer 6 is formed on the base sheet 2 (see FIG. 3A), and does not require the transparent conductive film layer 4 on the release layer 6. A solvent-soluble mask layer 12 is formed on the portion by a gravure printing method or the like (see FIG. 3B). After the metal thin film layer 3 is formed on the entire surface including the solvent-soluble mask layer 8 by a sputtering method or the like (see FIG. 3C), an unnecessary metal thin film layer 3 is formed together with the solvent-soluble mask layer 12 in a solvent cleaning step. As a cleaning solvent, an aqueous solution or an alcohol is often used.

後者のレジスト剥離方法は、離型層6上全面に金属薄膜層3を形成し、金属薄膜層3を形成したい部分にレジスト層13を形成し、酸またはアルカリの水溶液などで金属薄膜層3をエッチング除去した後、溶剤などでレジスト層13を剥離除去し、金属薄膜層3をパターンニングする方法である。離型性を有する基体シート7の離型層6(図4(a)参照)上の全面に、スパッタリング法等により金属薄膜層3を形成する(図4(b)参照)。その上に、透明導電膜層4を形成したい部分に、パターンニングされたレジスト層13を形成する(図4(c)参照)。酸またはアルカリの水溶液などからなるエッチング液に浸し、レジスト層13が形成されていない箇所の金属薄膜層3をエッチング除去する(図4(d)参照)。この後、溶剤などでレジスト層13を剥離除去することで、パターニングされた金属薄膜層3が得られる(図4(e)参照)。溶媒可溶性のマスク層剥離方式はレジスト剥離方式より工程数が少ない利点があり、レジスト剥離方式はレジストのパターンニングにフォトや電子線を用いることが容易であることから、溶媒可溶性のマスク層剥離方式より精細なパターニングが可能となる利点がある。   In the latter resist stripping method, the metal thin film layer 3 is formed on the entire surface of the release layer 6, the resist layer 13 is formed on the portion where the metal thin film layer 3 is to be formed, and the metal thin film layer 3 is formed with an acid or alkali aqueous solution. In this method, after the resist is removed by etching, the resist layer 13 is peeled off with a solvent or the like and the metal thin film layer 3 is patterned. A metal thin film layer 3 is formed on the entire surface of the release layer 6 (see FIG. 4A) of the base sheet 7 having releasability by sputtering or the like (see FIG. 4B). A patterned resist layer 13 is formed on the portion where the transparent conductive film layer 4 is to be formed (see FIG. 4C). The metal thin film layer 3 where the resist layer 13 is not formed is etched away by dipping in an etching solution made of an acid or alkali aqueous solution (see FIG. 4D). Thereafter, the patterned metal thin film layer 3 is obtained by peeling and removing the resist layer 13 with a solvent or the like (see FIG. 4E). The solvent-soluble mask layer peeling method has the advantage of fewer steps than the resist peeling method, and the resist peeling method is easy to use photo or electron beam for resist patterning, so the solvent soluble mask layer peeling method There is an advantage that finer patterning is possible.

溶媒可溶性のマスク層剥離方式またはレジスト剥離方式により得られたパターンニングされた金属薄膜層3上に、CVDによりグラフェンが生成し透明導電膜層4が得られる(図3(e)、図4(f)参照)。なお、金属薄膜層3がない部分には、グラフェンが生成しない。最後に接着層5を形成することで、転写シートが得られる(図3(f)、図4(g)参照)。なお、被転写体10が透明導電膜層4と接着しやすい材質で形成されている場合には、接着層5を省略してもよい。   Graphene is generated by CVD on the patterned metal thin film layer 3 obtained by the solvent-soluble mask layer peeling method or the resist peeling method, and the transparent conductive film layer 4 is obtained (FIG. 3 (e), FIG. 4 ( f)). Note that graphene is not generated in a portion where the metal thin film layer 3 is not provided. Finally, the transfer sheet is obtained by forming the adhesive layer 5 (see FIGS. 3 (f) and 4 (g)). Note that when the transfer target 10 is formed of a material that is easily bonded to the transparent conductive film layer 4, the adhesive layer 5 may be omitted.

本発明の透明導電膜層4が1層形成された透明導電物21は、上記の転写シートを用いて、以下に示す転写および金属薄膜層の除去により行われる。はじめに転写について述べる。被転写体の形状が柔軟性のある二次元形状である場合はロール転写法、アップダウン転写法等、三次元形状の場合はロール転写法、アップダウン転写法に加え、パッド転写法、真空転写法、成形同時転写法がある。ロール転写法では、シリコンゴム製の円柱状の熱ロールを備えた転写機があり、転写シートが被転写体に接して前記ロールで押圧し、剥離性を有する基体シートを除去する。アップダウン転写法には、加熱された平面状のラバーを、転写シートが被転写体に押圧し、剥離性を有する基体シートを除去する。パッド転写法では、被転写体の形状に対応した形状のパッドを用いる。真空転写法では、被転写体の形状に対応した金型に微小な孔を設け、減圧させ過熱した状態で、転写シートを金型の形状に沿うように密着させる。その転写シートのうえに被転写体を接着させ、剥離性を有する基体シートを除去する。転写は、温度70〜280℃、圧力40〜180kg/m2の条件で行われる。これらの転写法の選択においては、転写時に熱と圧力が均一に与えられるようにするため、被転写体の形状により決定される。アップダウン転写ではほぼ平面形状の被転写体に有効であり、ロール転写ではほぼ平面形状または断面が図5(d)となるような単純な形状の被転写体に有効である。複雑な形状の場合には、パッド転写、真空転写が有効となる。   The transparent conductive material 21 in which one layer of the transparent conductive film layer 4 of the present invention is formed is performed by the following transfer and removal of the metal thin film layer using the above transfer sheet. First, transfer is described. If the shape of the transfer object is a flexible two-dimensional shape, roll transfer method, up-down transfer method, etc., if it is three-dimensional shape, in addition to roll transfer method, up-down transfer method, pad transfer method, vacuum transfer method Method and molding simultaneous transfer method. In the roll transfer method, there is a transfer machine provided with a cylindrical heat roll made of silicon rubber. The transfer sheet comes into contact with the transfer target and is pressed by the roll to remove the peelable substrate sheet. In the up-down transfer method, the heated flat rubber is pressed against the transfer material by the transfer sheet, and the base sheet having peelability is removed. In the pad transfer method, a pad having a shape corresponding to the shape of the transfer object is used. In the vacuum transfer method, a minute hole is provided in a mold corresponding to the shape of the transfer object, and the transfer sheet is brought into close contact with the shape of the mold in a state where the hole is decompressed and heated. The transferred material is adhered onto the transfer sheet, and the base sheet having releasability is removed. The transfer is performed under conditions of a temperature of 70 to 280 ° C. and a pressure of 40 to 180 kg / m 2. The selection of these transfer methods is determined by the shape of the transfer object so that heat and pressure are uniformly applied during transfer. Up-down transfer is effective for a transfer object having a substantially planar shape, and roll transfer is effective for a transfer object having a simple planar shape or a cross-section as shown in FIG. In the case of a complicated shape, pad transfer and vacuum transfer are effective.

さらに、立体的形状への転写には、真空成形法が有効である。転写シート14を射出成形用金型の可動型15側にその接着面が固定型16側となるように設置する(図5(a)参照)。可動型15と固定型16の間に設置した加熱板17により転写シートに熱を与え軟化させ、同時に可動型の複数の微細な孔(真空孔18)から空気を排気吸引し可動型と転写シートで形成される空間の圧力を減少させる。これにより当該空間がなくなり軟化した転写シートが可動型に沿い立体的形状となる(図5(b)参照)。ここで、可動型の形状は、所望の透明導電物の一方の形状に対応するものである。得られた立体的形状の転写シートを、上記のいずれかの転写法により、被転写体に転写する。例えば、当該立体的形状の転写シートを被転写体に合わせ(図5(c)参照)、ロール転写機により転写する(図5(d)参照)。   Furthermore, a vacuum forming method is effective for transferring to a three-dimensional shape. The transfer sheet 14 is placed on the movable mold 15 side of the injection mold so that its adhesive surface is on the fixed mold 16 side (see FIG. 5A). The transfer plate 17 placed between the movable mold 15 and the fixed mold 16 heats and softens the transfer sheet. At the same time, air is exhausted and sucked through a plurality of fine holes (vacuum holes 18) of the movable mold to move the movable mold and the transfer sheet. Reduce the pressure in the space formed by. As a result, the transfer sheet softened without the space becomes a three-dimensional shape along the movable mold (see FIG. 5B). Here, the movable shape corresponds to one shape of a desired transparent conductor. The resulting three-dimensional transfer sheet is transferred to a transfer medium by any of the transfer methods described above. For example, the transfer sheet having the three-dimensional shape is aligned with the transfer target (see FIG. 5C) and transferred by a roll transfer machine (see FIG. 5D).

これに対し転写と同時に成形を行う量産性に優れた成形同時転写法による転写がある。ここで、成形同時転写法とは、転写シートを金型で型閉めして挟み込み、溶融した成形樹脂を射出成形すると同時に樹脂成形品に転写シート上の透明導電層等を接着させて成形と同時に前記機能層(透明導電膜層等)を転写し、その表面に機能層を含む成形樹脂品を得る方法をいう。上記方法で得た本発明の(透明導電部8にも引き回し回路がある)転写シート14を、射出成形用の金型(可動型15と固定型16)の間の可動型15側に転写シート14の接着層5が固定型16に向くように設置する(図6(a)参照)。型閉をする(図6(b)参照)。ここで、可動型15と固定型16の型閉めで形成される空間(成形空間部21)の幅、高さ、奥行きと形状が、それぞれ透明導電物の所望の幅、高さ、奥行きと形状に相当する。型閉めした状態で、溶融した成形樹脂22をゲート部23を介して成形空間部21内に注入され固化すると、転写シート14と成形樹脂22が一体接着する(図6(c)参照)。型開きをして転写シート14の剥離性を有する基体シート7を除去すると、透明導電膜層4を含む層24が成形樹脂品(透明導電物)25の表面に形成される。   On the other hand, there is a transfer by a simultaneous molding transfer method which is excellent in mass productivity for performing molding simultaneously with transfer. Here, the simultaneous molding transfer method is a method in which a transfer sheet is closed with a mold and sandwiched, and a molten molding resin is injection-molded, and at the same time, a transparent conductive layer or the like on the transfer sheet is bonded to a resin molded product and simultaneously molded It refers to a method of transferring the functional layer (transparent conductive film layer or the like) and obtaining a molded resin product including the functional layer on the surface thereof. The transfer sheet 14 of the present invention obtained by the above method (the transparent conductive portion 8 also has a routing circuit) is transferred to the movable mold 15 side between the molds for injection molding (movable mold 15 and fixed mold 16). 14 adhesive layers 5 are placed so as to face the fixed mold 16 (see FIG. 6A). The mold is closed (see FIG. 6B). Here, the width, height, depth and shape of the space (molding space portion 21) formed by closing the movable die 15 and the fixed die 16 are the desired width, height, depth and shape of the transparent conductor, respectively. It corresponds to. In a state where the mold is closed, when the molten molding resin 22 is poured into the molding space 21 through the gate portion 23 and solidified, the transfer sheet 14 and the molding resin 22 are integrally bonded (see FIG. 6C). When the base sheet 7 having the peelability of the transfer sheet 14 is removed by opening the mold, the layer 24 including the transparent conductive film layer 4 is formed on the surface of the molded resin product (transparent conductive material) 25.

より複雑な形状に転写する場合は、転写シートの伸びが被転写体の形状に追随できず、その結果、透明導電膜層の歪みや破れ等の問題が生じることになる。この問題に対応するために、前もって真空成形法により、転写シートを成形しておいた後に、成形同時転写法により三次元形状表面に転写する方法が採用される。図5(b)で立体的形状の転写シートが得られた状態で、加熱板17を除去し、型閉めし、成形樹脂22を成形空間部21に注入することにより転写シートと一体化し、型開きして剥離性を有する基体シートを除去することで、透明導電物を得ることができる。   When transferring to a more complicated shape, the extension of the transfer sheet cannot follow the shape of the transferred material, resulting in problems such as distortion and tearing of the transparent conductive film layer. In order to cope with this problem, a method is adopted in which a transfer sheet is formed in advance by a vacuum forming method and then transferred to a three-dimensional shape surface by a simultaneous forming transfer method. In the state where the three-dimensional transfer sheet is obtained in FIG. 5B, the heating plate 17 is removed, the mold is closed, and the molding resin 22 is injected into the molding space 21 to be integrated with the transfer sheet. A transparent conductive material can be obtained by opening and removing the base sheet having peelability.

次に、金属薄膜層の除去について述べる。当該除去は、ウェットエッチングにより行われる。ウェットエッチング法には、エッチング液を霧状に吹き付けるスプレー法、エッチング液につけて引き上げるディップ法等がある。例えば、表面に透明導電膜層を含む層を転写した被転写体を、エッチング液に浸すことで、金属薄膜層を除去できる。そして、透明導電層が1層形成された透明導電物が得られる。   Next, the removal of the metal thin film layer will be described. The removal is performed by wet etching. As the wet etching method, there are a spray method in which an etching solution is sprayed in a mist, a dip method in which the etching solution is applied to the etching solution, and the like. For example, the metal thin film layer can be removed by immersing a transfer object having a surface including a transparent conductive film layer on the surface in an etching solution. And the transparent conductor in which one layer of transparent conductive layers was formed is obtained.

本発明の透明導電層が2層形成された透明導電物は、上記で転写法のいずれかにより、透明導電部10の周辺にのみ引き回し回路がある転写シートを用いて、透明導電層を1層形成した透明導電物を作製する。他方、透明導電部の周辺に引き回し回路がある転写シートを柔軟性のある透明基板(被転写体26)にロール転写等の加圧加熱により一体接着させ(図7(a)参照)、剥離性のある基体シート7を除去し(図7(b)参照)、エッチング液に浸し金属薄膜層3を除去することで、柔軟性のある二次元の透明導電物28(図7(c)参照)が得られる。最後に、上述のロール転写法、アップダウン転写法、パッド転写法、真空転写法等が用いて、三次元の透明導電物の透明導電層と対向するように二次元の透明導電物を接着させることで得られる。図7(d)では、ロール転写法による転写を示している。   The transparent conductive material in which two transparent conductive layers of the present invention are formed is a single layer of the transparent conductive layer using a transfer sheet having a routing circuit only around the transparent conductive portion 10 by any of the transfer methods described above. The formed transparent conductor is produced. On the other hand, a transfer sheet having a routing circuit around the transparent conductive portion is integrally bonded to a flexible transparent substrate (transfer target body 26) by pressure heating such as roll transfer (see FIG. 7A), and peelability is obtained. The base sheet 7 having a certain thickness is removed (see FIG. 7B), and the metal thin film layer 3 is removed by dipping in an etching solution, whereby a flexible two-dimensional transparent conductor 28 (see FIG. 7C). Is obtained. Finally, the above-described roll transfer method, up-down transfer method, pad transfer method, vacuum transfer method, etc. are used to bond the two-dimensional transparent conductor so as to face the transparent conductive layer of the three-dimensional transparent conductor. Can be obtained. FIG. 7D shows transfer by a roll transfer method.

ここで、三次元の透明導電物と二次元の透明導電物の接着において、透明性かつ絶縁性の接着剤を用いれば、静電容量型のタッチパネルに用いることができる。当該接着層を用いることで、接着層に接する層間を保持する以外に、空気層を設けないことによる、ニュートンリングによる外観不良が解消する効果および透明電極間距離を調整するスペーサーの効果がある。他方、透明性かつ圧力導電性の接着剤を用いれば、抵抗膜方式のタッチパネルに用いることができる。透明性かつ圧力導電性の接着剤により透明電極間に圧力導電層を設ければ、上述したスペーサーによる絶縁、層間接着、外観不良の解消という効果が得られる。   Here, in the adhesion of the three-dimensional transparent conductor and the two-dimensional transparent conductor, if a transparent and insulating adhesive is used, it can be used for a capacitive touch panel. By using the adhesive layer, in addition to maintaining the layer in contact with the adhesive layer, there is an effect of eliminating an appearance defect due to Newton's ring by not providing an air layer and an effect of a spacer for adjusting the distance between the transparent electrodes. On the other hand, if a transparent and pressure conductive adhesive is used, it can be used for a resistive film type touch panel. If a pressure conductive layer is provided between transparent electrodes with a transparent and pressure conductive adhesive, the effects of insulating by the spacer, interlayer adhesion, and appearance defects described above can be obtained.

さらに、圧力導電性の接着剤には、タッチパネル機能の信頼性を向上させる以下の機能がある。本発明における圧力導電層とは、複数の透明性の導電性物質が、絶縁性の透明な樹脂に分散しているものをいう。圧力導電層に外部からの圧力がない状態では、導通せず絶縁性を有する。外部からの圧力が加わると、圧力導電層の形状変化により、複数の導電性の物質間の相対的距離が近づくことで、導電性物質が接し若しくはトンネル電流を生じさせることで抵抗値が減少し圧力方向に電流が流れる。タッチパネルにおいては、押し圧方向が透明電極間の方向と一致するため、その間の抵抗値が下がり電流が流れ、位置検出が可能となる。なお、透明電極平面方向は、圧力がかかっていないので、絶縁性を保ったままであり、位置検出において問題とならない。   Further, the pressure conductive adhesive has the following functions for improving the reliability of the touch panel function. The pressure conductive layer in the present invention refers to a layer in which a plurality of transparent conductive substances are dispersed in an insulating transparent resin. In the state where there is no external pressure on the pressure conductive layer, it does not conduct and has insulation. When external pressure is applied, the resistance value decreases due to the contact of the conductive material or generation of a tunnel current due to the relative distance between the conductive materials approaching due to the shape change of the pressure conductive layer. Current flows in the pressure direction. In the touch panel, the pressing direction coincides with the direction between the transparent electrodes, so that the resistance value decreases and current flows, and position detection is possible. In addition, since the pressure is not applied to the transparent electrode plane direction, the insulating property is maintained, and there is no problem in position detection.

[基体シート]
本発明における基体シート2の材質は、透明導電膜層4の形成時において生じる熱と転写時の熱に耐えうる耐熱性を有する材質であれれば、特に制限はない。そのような耐熱性を有する材質の例としては、ポリイミド、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリフェニレンサルフィッド、ポリエチレンナフタレート、ポリアミドイミド、ポリアリレート、高密度ポリオレフィン、ポリカーボネート、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリフッ化ビル、ポリ塩化ビニリデン、液晶ポリマー等の樹脂や、ソーダガラスなどのガラスなどが挙げられる。
[Base sheet]
The material of the base sheet 2 in the present invention is not particularly limited as long as it is a material having heat resistance capable of withstanding the heat generated during the formation of the transparent conductive film layer 4 and the heat during transfer. Examples of such heat-resistant materials include polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene sulfide, polyethylene naphthalate, polyamideimide, polyarylate, high density polyolefin, Examples thereof include resins such as polycarbonate, polyethylene terephthalate, polyvinylidene fluoride, polyvinyl fluoride, polyvinylidene chloride, and liquid crystal polymer, and glass such as soda glass.

[離型層]
離型層とは、被転写物に転写し基体シートを剥離する場合に、基体シートに残る層をいう。離型層があることにより、基体シートの凸凹をなくし、剥離重さ(剥離に必要な力)を調整することができる。本発明における離型層6の材質は、透明導電膜層4の形成時において生じる熱に耐えうる耐熱性と所定の離型性を有し、基体シート表面の凹凸を均して、形成後の表面の算術平均粗さ(Ra)が0.1nm≦Ra≦20nmである平滑性を有する層に形成可能な材質であれば、特に制限はない。なお、該算術平均粗さ(Ra)は、日本工業規格(JIS)B0601−1994に準じた測定機器(株式会社小坂研究所製F3500D)にて測定した数値である。そのような耐熱性を有し平滑性に優れる材質の例としては、熱硬化性アクリル、熱硬化性ポリエステル、熱硬化性ウレタン、アクリル、エポキシ、メラミン、シリコン、フッ素等の樹脂が挙げられる。離型層6の形成方法としては、ロールコート法、グラビア印刷法、スクリーン印刷法、ダイコート法等による塗布などが挙げられる。なお、基体シート2がそれ自体で離型性を有しており、その表面が上記に示した範囲に入る非常に高い平滑性を有するのであれば離型層6は省略してもよい。しかし多くの場合、以下の理由により離型層6を必要とする。
[Release layer]
The release layer refers to a layer remaining on the base sheet when it is transferred to a transfer object and the base sheet is peeled off. By having the release layer, the unevenness of the base sheet can be eliminated and the peeling weight (force required for peeling) can be adjusted. The material of the release layer 6 in the present invention has heat resistance that can withstand the heat generated during the formation of the transparent conductive film layer 4 and a predetermined release property. There is no particular limitation as long as it is a material that can be formed on a smooth layer having an arithmetic average roughness (Ra) of the surface of 0.1 nm ≦ Ra ≦ 20 nm. The arithmetic average roughness (Ra) is a numerical value measured with a measuring instrument (F3500D manufactured by Kosaka Laboratory Ltd.) according to Japanese Industrial Standard (JIS) B0601-1994. Examples of such a material having heat resistance and excellent smoothness include resins such as thermosetting acrylic, thermosetting polyester, thermosetting urethane, acrylic, epoxy, melamine, silicon, and fluorine. Examples of the method for forming the release layer 6 include coating by a roll coating method, a gravure printing method, a screen printing method, a die coating method, and the like. Note that the release layer 6 may be omitted if the base sheet 2 itself has releasability and the surface thereof has very high smoothness that falls within the range shown above. However, in many cases, the release layer 6 is required for the following reasons.

基体シート2は各層を形成するための土台になるわけであるから、取り扱いがしやすいよう一定以上の剛性が必要である。剛性は厚みの3乗に比例するので、材質にも寄るが基体シート2の厚みは少なくとも10μm以上あることが好ましい。しかし、基体シート2の厚みが厚いと、それと相関して基体シート2表面の凹凸の数値も大きくなる。したがって、厚みが厚く取り扱いがしやすい基体シート2ほど、本発明の効果が得にくくなる。しかし、基体シート2上に上記の離型層6を形成すれば、離型層6が基体シート2表面の凹部を埋めるように被覆するので、離型層6を適切な材質でもって、基体シート2表面の粗さ以上でかつできるだけ薄く形成すれば、非常に平滑でかつ取り扱いのしやすい離型性を有する基体シート7となる。   Since the base sheet 2 serves as a base for forming each layer, the base sheet 2 needs to have a certain level of rigidity so as to be easily handled. Since the rigidity is proportional to the cube of the thickness, the thickness of the base sheet 2 is preferably at least 10 μm although it depends on the material. However, if the thickness of the base sheet 2 is thick, the numerical value of the unevenness on the surface of the base sheet 2 increases in correlation with it. Therefore, the base sheet 2 that is thicker and easier to handle is more difficult to obtain the effects of the present invention. However, if the release layer 6 is formed on the base sheet 2, the release layer 6 covers the base sheet 2 so as to fill the recesses on the surface of the base sheet 2. If it is formed to be as thin as possible with a surface roughness of 2 or more, the substrate sheet 7 has releasability that is very smooth and easy to handle.

[金属薄膜層]
本発明の金属薄膜層3は、透明導電層4の主成分であるグラフェンの触媒であり、スパッタリング法、蒸着法、イオンプレーティング法等により前記離型性を有する基体シート7の上に形成される。材質としては、銅、ニッケル、ルテニウム、鉄、コバルト、イリジウム、白金等の金属、これらの合金などが用いられる。本発明の金属薄膜層3の厚みは、0.01〜1μmが好ましい。0.01μmより薄く均一な膜に形成することは技術的に難しく、1μmより厚く形成した場合には離型性を有する基体シート7の平滑性が反映しにくく凹凸の大きい金属薄膜層3となりやすくなり、後の除去にも手間取る問題が発生しやすくなるからである。金属薄膜層3は、従来のグラフェン膜作製で用いられる金属板(厚み15μm、25μm)と比べて遥かに厚みを薄くするので、金属薄膜層3の除去が短時間で簡便にすることができ、かつ、金属薄膜層の下の層の平滑性を反映するため、金属薄膜層の表面が平滑となり、品質の良いグラフェン膜を形成することができる。部分的に金属薄膜層を形成したい場合は、溶媒可溶性のマスク層剥離方式またはレジスト剥離方法により形成するとよい。
[Metal thin film layer]
The metal thin film layer 3 of the present invention is a graphene catalyst which is a main component of the transparent conductive layer 4 and is formed on the substrate sheet 7 having the releasability by sputtering, vapor deposition, ion plating, or the like. The As the material, metals such as copper, nickel, ruthenium, iron, cobalt, iridium, platinum, and alloys thereof are used. As for the thickness of the metal thin film layer 3 of this invention, 0.01-1 micrometer is preferable. It is technically difficult to form a uniform film thinner than 0.01 μm, and when it is thicker than 1 μm, the smoothness of the substrate sheet 7 having releasability is not easily reflected, and the metal thin film layer 3 having large irregularities is likely to be formed. This is because a problem that it takes time for subsequent removal is likely to occur. Since the metal thin film layer 3 is much thinner than the metal plates (thickness 15 μm, 25 μm) used in the conventional graphene film production, the removal of the metal thin film layer 3 can be simplified in a short time, And since the smoothness of the layer under a metal thin film layer is reflected, the surface of a metal thin film layer becomes smooth and it can form a quality graphene film. When it is desired to partially form a metal thin film layer, it may be formed by a solvent-soluble mask layer peeling method or a resist peeling method.

[透明導電膜層]
本発明の透明導電膜層4は、1層又は複数層のグラフェン膜を含む層から構成され、導電性を有する。ここでいう透明とは、可視領域の波長の光線透過率が全体として80パーセント以上であることを指す。透明導電膜層4は、パターンニングされた金属薄膜層3上にのみ化学気相成長法(CVD)などにより形成される。とくに、マイクロ波プラズマCVDは、離型性を有する基体シート7に与えるダメージを減らすことができる点で好ましい。マイクロ波プラズマCVDの原料ガスは炭化水素と希ガスの混合ガス等であり、炭化水素としては、例えば、メタン(CH4)、エタン(C2H6)、プロパン(C3H8)、アセチレン(C2H2)等があり、希ガスとしては、例えば、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)等がある。CVD装置のチャンバーを減圧した状態で、装置内の混合ガスによる全圧が1〜1000Pa、好ましくは10〜400Paとなるようにする。この混合ガスに少量の水素ガスを混ぜても良い。CVD装置のチャンバー内の温度は、25〜400℃、好ましくは300〜400℃である。このように比較的低圧・低温条件でマイクロ波プラズマを用いてグラフェンの成膜を行うことができるので、発生するプラズマのエネルギー密度の分布を制御することができ、透明導電膜層4を形成する離型性を有する基体シート7に与えるダメージを減らすことができる。さらに、離型性を有する基体シート7のグラフェンが成膜される側の反対側は、冷却されるので、これによっても、ダメージを減らすことができる。このように温度が比較的低いため、離型性を有する基体シート7として柔軟性のあるフィルムを用いることができ、透明導電膜層4形成においてロール・ツー・ロール方式を採用することができる。その結果、本発明の転写シート1を作製する工程をすべてロール・ツー・ロール方式とすることができ、転写シート1の生産性が飛躍的に向上する。
[Transparent conductive film layer]
The transparent conductive film layer 4 of the present invention is composed of a layer including one or more graphene films and has conductivity. The term “transparent” as used herein means that the light transmittance of wavelengths in the visible region is 80% or more as a whole. The transparent conductive film layer 4 is formed only on the patterned metal thin film layer 3 by chemical vapor deposition (CVD) or the like. In particular, microwave plasma CVD is preferable in that damage to the base sheet 7 having releasability can be reduced. The source gas for microwave plasma CVD is a mixed gas of hydrocarbon and rare gas, and examples of the hydrocarbon include methane (CH4), ethane (C2H6), propane (C3H8), and acetylene (C2H2). Examples of the rare gas include helium (He), neon (Ne), and argon (Ar). In a state where the chamber of the CVD apparatus is decompressed, the total pressure of the mixed gas in the apparatus is set to 1 to 1000 Pa, preferably 10 to 400 Pa. A small amount of hydrogen gas may be mixed with this mixed gas. The temperature in the chamber of the CVD apparatus is 25 to 400 ° C, preferably 300 to 400 ° C. Since graphene can be formed using microwave plasma under relatively low pressure and low temperature conditions in this way, the energy density distribution of the generated plasma can be controlled, and the transparent conductive film layer 4 is formed. Damage to the base sheet 7 having releasability can be reduced. Furthermore, since the side opposite to the graphene film forming side of the substrate sheet 7 having releasability is cooled, damage can be reduced also by this. Thus, since the temperature is relatively low, a flexible film can be used as the base sheet 7 having releasability, and a roll-to-roll method can be adopted in forming the transparent conductive film layer 4. As a result, all the steps for producing the transfer sheet 1 of the present invention can be a roll-to-roll system, and the productivity of the transfer sheet 1 is dramatically improved.

[溶媒可溶性のマスク層]
本発明の溶媒可溶性のマスク層8の材質としては、ポリビニルアルコール(PVA)や水溶性アクリル樹脂などが挙げられる。そして溶媒としては水溶液やアルコール溶液などが挙げられる。形成方法としては、オフセット印刷、スクリーン印刷、グラビア印刷、インクジェット印刷、凸版印刷等の印刷法が挙げられる。なお、前記溶媒等に可溶なフォトレジスト材料があれば、より好ましい。パターン化をフォトで形成できるため、より精巧な微細パターンで形成できるからである。
[Solvent-soluble mask layer]
Examples of the material of the solvent-soluble mask layer 8 of the present invention include polyvinyl alcohol (PVA) and water-soluble acrylic resin. Examples of the solvent include an aqueous solution and an alcohol solution. Examples of the forming method include printing methods such as offset printing, screen printing, gravure printing, inkjet printing, and relief printing. It is more preferable to use a photoresist material that is soluble in the solvent. This is because the patterning can be formed by photolithography, so that a finer fine pattern can be formed.

[レジスト層]
本発明のレジスト層9の材質としては、アクリル、ビニル系など各種の樹脂で形成可能でありとくに限定はない。但し、微細パターン化のためにはフォトレジストにできる樹脂が好ましく、たとえばノボラック樹脂などが挙げられる。レジスト層9の形成方法は、まずスクリーン印刷、グラビア印刷、インクジェット印刷、凸版印刷等の印刷法により全面形成またはレジストフィルムを加熱と加圧で貼り合せることにより形成する。次に光を照射し照射した部分が反応硬化する露光工程の後、光照射されていない部分を除去する現像工程を経て、レジスト層9をパターン形成する。そして、レジスト層9に覆われていない金属薄膜3層のエッチング後に、露光工程で光照射され反応硬化したレジスト9層を剥離する。なお、前記レジスト層9は、ネガ型(露光されると現像液に対し溶解性が低下し、現像後に露光部分が残る)の場合を示したが、ポジ型(露光されると現像液に対し溶解性が増加し、現像後に露光部分が除去される)でも良い。
[Resist layer]
The material of the resist layer 9 of the present invention can be formed of various resins such as acrylic and vinyl, and is not particularly limited. However, for forming a fine pattern, a resin that can be used as a photoresist is preferable, and examples thereof include novolak resin. The resist layer 9 is formed by first forming the entire surface by a printing method such as screen printing, gravure printing, ink jet printing, letterpress printing or the like, and bonding a resist film by heating and pressing. Next, the resist layer 9 is patterned after an exposure process in which light is irradiated and the exposed part is reactively cured, and then a development process in which the part not irradiated with light is removed. Then, after the etching of the three metal thin films not covered with the resist layer 9, the resist 9 layer which is irradiated with light in the exposure process and which is reactively cured is peeled off. The resist layer 9 is of a negative type (when exposed to a developer, its solubility in the developer is lowered and the exposed part remains after development). The solubility may be increased and the exposed portion may be removed after development).

[接着層]
本発明の接着層5は、アクリル系またはビニル系などで構成され、絶縁性を有する。ここでいう絶縁性とは、例えば、本発明により作製した透明導電体11につき、透明導電体11をタッチパネルにした場合の入力操作において、位置検出の誤作動の原因となる、短絡を発生させない程度以上の絶縁性のことをいう。接着層5は転写シート1と被転写体10とを接着させる役割をする層である。
[Adhesive layer]
The adhesive layer 5 of the present invention is made of acrylic or vinyl and has an insulating property. The insulating property here refers to, for example, a degree that does not cause a short circuit that causes malfunction of position detection in the input operation when the transparent conductor 11 is used as a touch panel for the transparent conductor 11 manufactured according to the present invention. It means the above insulation. The adhesive layer 5 is a layer that serves to adhere the transfer sheet 1 and the transfer target 10.

[被転写体]
被転写体10は、透明で、導電性を有さず、ある程度の硬さを有する限り、特に制限はなく、フィルム形状のものの他、三次元形状の成形品であっても構わない。被転写体10の材質として、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、ポリカーボネート(PC)、ポリ塩化ビニル、アクリル等がある。フィルム形状の被転写体10の厚みは30〜200μmが好ましい。
[Transfer]
The transfer target 10 is not particularly limited as long as it is transparent, does not have electrical conductivity, and has a certain degree of hardness, and may be a molded product having a three-dimensional shape in addition to a film shape. Examples of the material of the transfer target 10 include polyethylene terephthalate (PET), polyethylene, polypropylene, polystyrene, polyester, polycarbonate (PC), polyvinyl chloride, and acrylic. The thickness of the film-shaped transfer target 10 is preferably 30 to 200 μm.

[透明導電体]
本発明における透明導電体11とは、透明で導電性を有するものをいう。前記透明導電体は、本発明の転写シート1により被転写体10に転写し金属薄膜層3を除去することで得られる。
[Transparent conductor]
In the present invention, the transparent conductor 11 is transparent and has conductivity. The transparent conductor is obtained by transferring the transparent conductor to the transfer target 10 using the transfer sheet 1 of the present invention and removing the metal thin film layer 3.

[圧力導電層]
圧力導電層は、樹脂と導電性物質からなる。当該樹脂は、透明性があり絶縁性であれば特に制限はない。例えば、アクリル系若しくはビニル系がある。当該導電性物質は、透明性があり導電性があり、視認性が低ければ特に制限はない。サイズは可視光領域の波長以下であれば、より好ましい。材質は、金、銀、銅、アルミニウム等の金属やその合金、ITO、酸化亜鉛(ZnO2)、等の金属酸化物である。
[Pressure conductive layer]
The pressure conductive layer is made of a resin and a conductive material. The resin is not particularly limited as long as it is transparent and insulating. For example, there are acrylic type and vinyl type. The conductive substance is not particularly limited as long as it has transparency, conductivity, and low visibility. The size is more preferable if it is equal to or smaller than the wavelength in the visible light region. The material is a metal oxide such as gold, silver, copper, aluminum, or an alloy thereof, ITO, zinc oxide (ZnO 2), or the like.

[エッチング液]
エッチング液は、金属薄膜層を除去するためのエッチングに用いられる。当該金属薄膜層は、透明導電膜層の主成分であるグラフェン生成における触媒としての役割があり、具体的には、銅、ニッケル、ルテニウム、鉄、コバルト、イリジウム、白金等である。エッチング液のpHと組成については、基本的には、金属薄膜層に用いられる金属との関係で、電位―pH図(金属―水系)を参考にすると良い。金属が化学反応を起こさず安定して存在する不変態領域と、特定の電位―pH条件で初期に化学反応を起こし当該条件で化学的に不活性な化学種が生成する不動態領域以外の、金属が腐食し金属イオンまたは金属化合物のイオンが安定に存在する腐食領域のpHと電位となるようにエッチング液を選定する。例えば、ニッケルの腐食領域は、−0.4V≦電位≦+0.4VでpH≦6、または+0.4V<電位≦+1.5VでpH≦0となり、銅の腐食領域は、電位≧+0.2Vで、pH≦7またはpH≧11となる。過酸化水素、過マンガン酸カリウム、過硫化アンモニウム等といった酸化剤、または当該酸化剤と硫酸等の酸との組み合わせ等により調整される。さらに、水素の発生が起こらないことがより好ましい。水素の標準電極電位E(vs SHE)である0.00Vより大きな電位であれば、水素は発生しない。この点、銅のEは+0.34Vであり水素のE=0.00V(水素)より大きくなり、腐食領域では水素は発生しない。加えて、酸素が存在しないことがより好ましい。酸素が存在すると、水との反応によりOH−が発生しpH値が増加し、適切なpH範囲に属さなくなる可能性があるからである。その他、エッチング液の浸漬時間、浸漬温度等の条件は、金属薄膜層の厚み、面積により調整する。
[Etching solution]
The etching solution is used for etching for removing the metal thin film layer. The metal thin film layer has a role as a catalyst in generating graphene, which is a main component of the transparent conductive film layer, and specifically, copper, nickel, ruthenium, iron, cobalt, iridium, platinum, and the like. Regarding the pH and composition of the etching solution, basically, a potential-pH diagram (metal-water system) may be referred to in relation to the metal used in the metal thin film layer. Other than the invariant region where the metal exists stably without causing a chemical reaction, and the passive region where a chemical reaction occurs at an initial stage under a specific potential-pH condition and a chemically inert chemical species is generated under the condition, The etching solution is selected so that the pH and potential of the corrosion region where the metal corrodes and the metal ions or metal compound ions exist stably are obtained. For example, the corrosion area of nickel is −0.4V ≦ potential ≦ + 0.4V and pH ≦ 6, or + 0.4V <potential ≦ + 1.5V and pH ≦ 0, and the copper corrosion area is potential ≧ + 0.2V. Thus, pH ≦ 7 or pH ≧ 11. It is adjusted by an oxidizing agent such as hydrogen peroxide, potassium permanganate, and ammonium persulfide, or a combination of the oxidizing agent and an acid such as sulfuric acid. Furthermore, it is more preferable that hydrogen generation does not occur. If the potential is higher than 0.00V which is the standard electrode potential E (vs SHE) of hydrogen, hydrogen is not generated. In this respect, E of copper is +0.34 V, which is larger than E = 0.00 V (hydrogen) of hydrogen, and hydrogen is not generated in the corrosion region. In addition, it is more preferred that no oxygen is present. This is because if oxygen is present, OH- is generated due to the reaction with water and the pH value increases, so that it may not belong to an appropriate pH range. In addition, conditions such as the immersion time of the etching solution and the immersion temperature are adjusted by the thickness and area of the metal thin film layer.

[成形樹脂]
成形樹脂は、高温で溶解状態となる樹脂であれば特に制限はない。ポリエチレン、アクリル系樹脂、ポリスチレン系樹脂、ポリアクリロニトリルスチレン系樹脂、ポリエステル、ポリカーボネート、等を用いることができる。
[Molded resin]
The molding resin is not particularly limited as long as it is a resin that is in a dissolved state at a high temperature. Polyethylene, acrylic resin, polystyrene resin, polyacrylonitrile styrene resin, polyester, polycarbonate, and the like can be used.

実施例1
厚み30μmのポリイミドフィルムからなる基体シート2上にフッ素系樹脂からなる離型層6を形成し(形成後の表面の算術平均粗さ(Ra)=0.1nm)、該離型層6上にポリビニルアルコール樹脂からなる溶媒可溶性のマスク層8をオフセット印刷法で形成し、乾燥後、スパッタリング法により金属薄膜層3(厚み300ÅのCu層)を全面に形成した。その後、水洗により溶媒可溶性のマスク層8とともにその上に形成された箇所の金属薄膜層4を除去することにより、パターニングされた金属薄膜層3を形成した。次いで、上記シートをメタンとアルゴンからなる原料ガス(分圧比メタン:アルゴン=1:1)が充填されたチャンパー内に導入し、マイクロ波プラズマCVDにより380℃、40秒の条件で、グラフェンを主成分とする透明導電膜層4を形成した。透明導電膜層4はパターン化され、その上全面に接着層5を形成し、転写シート1を作製した。
実施例2
実施例1で得られた転写シートによりPETフィルムへ転写し過酸化水素―硫酸系のエッチング液に浸し二次元の透明導電物を作製した。実施例1で得られた別の転写シートを成形同時転写法により、ポリスチレン樹脂を用いてお椀型の外面に透明導電層を含む層を転写し、過酸化水素―硫酸系のエッチング液に浸すことで、金属薄膜層を除去した。透明導電層が互いに対向するように上記得られた二次元の透明導電物を三次元の透明導電物に圧力導電層となる接着剤により貼り付けた。
Example 1
A release layer 6 made of a fluororesin is formed on a base sheet 2 made of a polyimide film having a thickness of 30 μm (arithmetic average roughness (Ra) = 0.1 nm after formation), and the release layer 6 is formed on the release layer 6. A solvent-soluble mask layer 8 made of polyvinyl alcohol resin was formed by an offset printing method, and after drying, a metal thin film layer 3 (Cu layer having a thickness of 300 mm) was formed on the entire surface by a sputtering method. Then, the metal thin film layer 3 patterned by removing the metal thin film layer 4 of the location formed on it with the solvent soluble mask layer 8 by water washing was formed. Next, the sheet is introduced into a chamber filled with a source gas composed of methane and argon (partial pressure ratio methane: argon = 1: 1), and graphene is mainly formed by microwave plasma CVD at 380 ° C. for 40 seconds. A transparent conductive film layer 4 as a component was formed. The transparent conductive film layer 4 was patterned, and an adhesive layer 5 was formed on the entire surface thereof to produce a transfer sheet 1.
Example 2
The transfer sheet obtained in Example 1 was transferred to a PET film and immersed in a hydrogen peroxide-sulfuric acid based etching solution to prepare a two-dimensional transparent conductor. Another transfer sheet obtained in Example 1 is transferred by molding and simultaneously transferring the layer including the transparent conductive layer on the outer surface of the bowl using polystyrene resin, and immersed in a hydrogen peroxide-sulfuric acid based etching solution. The metal thin film layer was removed. The obtained two-dimensional transparent conductor was attached to the three-dimensional transparent conductor with an adhesive serving as a pressure conductive layer so that the transparent conductive layers face each other.

得られた透明導電物でタッチパネルを作製した。良好な動作機能を得ることができた。   A touch panel was produced from the obtained transparent conductor. A good operation function was obtained.

1 転写シート
2 基体シート
3 金属薄膜層
4 透明導電膜層
5 接着層
6 離型層
7 離型性を有する基体シート
8 透明導電部
9 引き回し回路部
10 透明導電部
11 引き回し回路部
12 溶媒可溶性のマスク層
13 レジスト層
14 転写シート
15 可動部
16 固定部
17 加熱板
18 真空孔
19 被転写体
20 ロール転写機
21 成形空間部
22 成形樹脂
23 ゲート部
24 透明導電層を含む層
25 成形樹脂品(透明導電物)
26 被転写体
27 剥離面
28 透明導電物
29 転写ロール
1 Transfer sheet
2 Base sheet
3 Metal thin film layer
4 Transparent conductive layer
5 Adhesive layer
6 Release layer
7 Substrate sheet with releasability
8 Transparent conductive part
9 Routing circuit
10 Transparent conductive part
11 Routing circuit
12 Solvent-soluble mask layer
13 resist layer
14 Transfer sheet
15 Moving parts
16 Fixed part
17 Heating plate
18 Vacuum hole
19 Transferee
20 roll transfer machine
21 Molding space
22 Molding resin
23 Gate
24 Layer including transparent conductive layer
25 Molded resin products (transparent conductor)
26 Transferee
27 Release surface
28 Transparent conductor
29 Transfer roll

Claims (9)

グラフェンを主成分とする1つの透明導電部を備えた透明導電物において、In a transparent conductive material having one transparent conductive part mainly composed of graphene,
前記透明導電部は、The transparent conductive part is
透明基板と、A transparent substrate;
前記透明基板のいずれかの面に形成された樹脂層と、A resin layer formed on any surface of the transparent substrate;
前記樹脂層上に形成されたグラフェンを主成分とする透明導電層と、A transparent conductive layer mainly composed of graphene formed on the resin layer;
を備え、With
前記樹脂層が形成される透明基板の表面が3次元形状を有することを特徴とする透明導電物。A transparent conductive material, wherein a surface of a transparent substrate on which the resin layer is formed has a three-dimensional shape.
グラフェンを主成分とし第1透明導電部と第2透明導電部からなる透明導電部を備えた透明導電物において、In a transparent conductive material comprising a transparent conductive part composed mainly of graphene and comprising a first transparent conductive part and a second transparent conductive part,
前記第1透明導電部は、The first transparent conductive part is
2次元形状の柔軟性のある第1透明基板と、A flexible first transparent substrate having a two-dimensional shape;
前記第1透明基板のいずれかの面に形成された第1樹脂層と、A first resin layer formed on any surface of the first transparent substrate;
前記第1樹脂層上に形成されたグラフェンを主成分とする第1透明導電層とからなる第1透明導電部と、A first transparent conductive portion comprising a first transparent conductive layer mainly composed of graphene formed on the first resin layer;
を備え、With
前記第2透明導電部は、The second transparent conductive part is
2次元形状の柔軟性のある第2透明基板と、A flexible second transparent substrate having a two-dimensional shape;
前記第2透明基板のいずれかの面に形成された第2樹脂層と、A second resin layer formed on any surface of the second transparent substrate;
前記第2樹脂層上に形成されたグラフェンを主成分とする第2透明導電層とからなる第2透明導電部と、A second transparent conductive portion comprising a second transparent conductive layer mainly composed of graphene formed on the second resin layer;
を備え、With
前記第1透明導電部と前記第2透明導電部は電気的に絶縁するように対向して位置し、柔軟性を有する二次元形状であることを特徴とする透明導電物。The first transparent conductive part and the second transparent conductive part are opposed to each other so as to be electrically insulated, and have a flexible two-dimensional shape.
グラフェンを主成分とし第1透明導電部と第2透明導電部からなる透明導電部を備えた透明導電物において、In a transparent conductive material comprising a transparent conductive part composed mainly of graphene and comprising a first transparent conductive part and a second transparent conductive part,
前記第1透明導電部は、The first transparent conductive part is
3次元形状の第1透明基板と、A first transparent substrate having a three-dimensional shape;
前記第1透明基板のいずれかの面に形成された第1樹脂層と、A first resin layer formed on any surface of the first transparent substrate;
前記第1樹脂層上に形成されたグラフェンを主成分とする第1透明導電層と、A first transparent conductive layer mainly composed of graphene formed on the first resin layer;
を備え、With
前記第2透明導電部は、The second transparent conductive part is
3次元形状の第2透明基板と、A second transparent substrate having a three-dimensional shape;
前記第2透明基板のいずれかの面に形成された第2樹脂層と、A second resin layer formed on any surface of the second transparent substrate;
前記第2樹脂層上に形成されたグラフェンを主成分とする第2透明導電層と、A second transparent conductive layer mainly composed of graphene formed on the second resin layer;
を備え、With
前記第1透明導電部と前記第2透明導電部は電気的に絶縁するように対向して位置し、3次元形状を有することを特徴とする透明導電物。The first transparent conductive portion and the second transparent conductive portion are positioned to face each other so as to be electrically insulated, and have a three-dimensional shape.
前記第1透明導電部と前記第2透明導電部の間に絶縁層を設けた請求項2または請求項3のいずれかに記載の透明導電物。The transparent conductor according to claim 2 or 3, wherein an insulating layer is provided between the first transparent conductive portion and the second transparent conductive portion. 前記第1透明導電部と前記第2透明導電部との間に配置される圧力導電層をさらに備え、A pressure conductive layer disposed between the first transparent conductive portion and the second transparent conductive portion;
前記圧力導電層は、The pressure conductive layer is
絶縁性の透明樹脂と前記透明樹脂中に分散含有された複数の導電性の感圧物質とを有し、前記第1透明導電部または前記第2透明導電部の少なくとも一方面に力が作用すると、作用する力で前記感圧物質間で電流が流れることにより、前記第1透明導電層と前記第2透明導電層との間で導通がなされることを特徴とする、請求項2または請求項3のいずれかに記載の透明導電物。When having an insulating transparent resin and a plurality of conductive pressure-sensitive substances dispersed and contained in the transparent resin, a force acts on at least one surface of the first transparent conductive portion or the second transparent conductive portion. The continuity is established between the first transparent conductive layer and the second transparent conductive layer by causing a current to flow between the pressure sensitive substances by an acting force. 4. The transparent conductor according to any one of 3.
引き回し回路部を含む請求項1から請求項5のいずれかに記載の透明導電物。The transparent conductor according to claim 1, comprising a routing circuit part. 引き回し回路部が透明導電部の周辺に位置することを特徴とする請求項6に記載の透明導電物。The transparent conductor according to claim 6, wherein the routing circuit portion is located around the transparent conductive portion. 請求項1から請求項7のいずれかに記載の透明導電物を含む静電容量型タッチ入力デバイス。A capacitive touch input device comprising the transparent conductor according to claim 1. 請求項1から請求項7のいずれかに記載の透明導電物を含む抵抗膜型タッチ入力デバイス。A resistive film type touch input device comprising the transparent conductor according to claim 1.
JP2011085562A 2011-04-07 2011-04-07 Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same Expired - Fee Related JP5562283B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011085562A JP5562283B2 (en) 2011-04-07 2011-04-07 Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same
KR1020137025943A KR101878011B1 (en) 2011-04-07 2012-04-06 Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
US14/009,809 US9215797B2 (en) 2011-04-07 2012-04-06 Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
PCT/JP2012/059523 WO2012137923A1 (en) 2011-04-07 2012-04-06 Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
CN201280016400.0A CN103477399B (en) 2011-04-07 2012-04-06 Possess with Graphene be main constituent the transfer sheet of nesa coating and manufacture method, transparent conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085562A JP5562283B2 (en) 2011-04-07 2011-04-07 Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012221694A JP2012221694A (en) 2012-11-12
JP5562283B2 true JP5562283B2 (en) 2014-07-30

Family

ID=47272999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085562A Expired - Fee Related JP5562283B2 (en) 2011-04-07 2011-04-07 Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same

Country Status (1)

Country Link
JP (1) JP5562283B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083233B2 (en) 2012-12-19 2017-02-22 Jnc株式会社 Transfer film for in-mold molding, method for producing in-mold molded body, and molded body
JP2015015015A (en) * 2013-06-05 2015-01-22 日本写真印刷株式会社 Cover sheet for touch sensor, cover base material for touch sensor, touch sensor, and manufacturing method of cover sheet for touch sensor
JP6612419B1 (en) * 2018-12-07 2019-11-27 株式会社イオックス Vacuum transfer film for electroless plating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384665B1 (en) * 2007-09-13 2014-04-15 성균관대학교산학협력단 Transparent electrode comprising graphene sheet, display and solar cell including the electrode
JP2011032156A (en) * 2009-07-06 2011-02-17 Kaneka Corp Method for manufacturing graphene or thin film graphite
US10167572B2 (en) * 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
US8236118B2 (en) * 2009-08-07 2012-08-07 Guardian Industries Corp. Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same
EP2489520B1 (en) * 2009-10-16 2019-01-09 Graphene Square Inc. Roll-to-roll transfer method of graphene, graphene roll produced by the method, and roll-to-roll transfer equipment for graphene
JP5471351B2 (en) * 2009-11-20 2014-04-16 富士電機株式会社 Film formation method of graphene thin film
JP2012087010A (en) * 2010-10-20 2012-05-10 Kri Inc Method for producing graphene thin film, and transparent conductive material
JP5664119B2 (en) * 2010-10-25 2015-02-04 ソニー株式会社 Transparent conductive film, method for manufacturing transparent conductive film, photoelectric conversion device, and electronic device
JP2012218966A (en) * 2011-04-07 2012-11-12 Panasonic Corp Method for forming graphene film
JP2012218967A (en) * 2011-04-07 2012-11-12 Panasonic Corp Method for forming graphene film

Also Published As

Publication number Publication date
JP2012221694A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
WO2012137923A1 (en) Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
Kim et al. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels
TWI440094B (en) Methods of patterning a conductor on a substrate
Hong et al. Micropatterning of graphene sheets: recent advances in techniques and applications
US9137892B2 (en) Laminated structure, method of manufacturing laminated structure, and electronic apparatus
CN104681126A (en) Transparent Electrode Laminate
CN104662619A (en) Manufacturing method of flexible buried electrode film using thermal lamination transfer
US10634962B2 (en) Manufacturing method of graphene electrode and liquid crystal display panel for reducing difficulty of patterning graphene
US20110005815A1 (en) Conductive plate and touch panel including the same
JP2011065393A (en) Conductive sheet, laminate conductive sheet and conductive pattern sheet, method for manufacturing laminate conducive sheet and method for manufacturing transparent antenna or transparent display or touch input sheet
Cha et al. Low-temperature, dry transfer-printing of a patterned graphene monolayer
KR101682501B1 (en) Transparant electrode containing silver nanowire-patterned layer and graphene layer, and manufacturing method thereof
JP5455963B2 (en) Transfer sheet having transparent conductive film mainly composed of graphene and method for producing the same
CN104936892A (en) Method of manufacturing graphene film and graphene film manufactured thereby
KR100957487B1 (en) Method for fabricating plastic electrode film
JP5562283B2 (en) Transparent conductive material comprising transparent conductive film mainly composed of graphene and method for producing the same
TWI590260B (en) Methods of forming nanoscale conductive films and touch devices including the nanoscale conductive films
Serrano et al. Flexible transparent graphene laminates via direct lamination of graphene onto polyethylene naphthalate substrates
Cai et al. Highly-facile template-based selective electroless metallization of micro-and nanopatterns for plastic electronics and plasmonics
WO2020063272A1 (en) Ultra-thin composite transparent conductive film and preparation method therefor
CN109741881B (en) Graphene flexible electrode and preparation method thereof
Park et al. Direct Fabrication of Flexible Ni Microgrid Transparent Conducting Electrodes via Electroplated Metal Transfer
CN106624371B (en) A kind of method that patterned graphene is formed on target devices
CN209168059U (en) Touch panel and touch sensing winding
JP5541741B2 (en) Transfer sheet having transparent conductive film mainly composed of graphene and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130904

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees