JP5561601B2 - Steel cutting method - Google Patents
Steel cutting method Download PDFInfo
- Publication number
- JP5561601B2 JP5561601B2 JP2010176395A JP2010176395A JP5561601B2 JP 5561601 B2 JP5561601 B2 JP 5561601B2 JP 2010176395 A JP2010176395 A JP 2010176395A JP 2010176395 A JP2010176395 A JP 2010176395A JP 5561601 B2 JP5561601 B2 JP 5561601B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- steel
- carbide
- work surface
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 96
- 229910000831 Steel Inorganic materials 0.000 title claims description 45
- 239000010959 steel Substances 0.000 title claims description 45
- 238000000034 method Methods 0.000 title claims description 24
- 239000000203 mixture Substances 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 9
- 238000003754 machining Methods 0.000 description 9
- 238000005496 tempering Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000002173 cutting fluid Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 229910001315 Tool steel Inorganic materials 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 238000005461 lubrication Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 238000010191 image analysis Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000005539 carbonized material Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 102200082816 rs34868397 Human genes 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Turning (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
本発明は、金型等の製品に供される鋼の切削加工に最適な、鋼の切削方法に関するものである。 The present invention relates to a steel cutting method that is optimal for steel cutting used in products such as molds.
従来、鋼を切削する各種の切削工具用鋼には、硬質のV炭化物を富化することで強度や耐摩耗性を向上させた、例えば3質量%V系の高速度工具鋼が提案されている(特許文献1、2参照)。そして、鋼の切削は、切削工具の耐久性を確保する上で、冷却および潤滑のための切削液(切削油)を用いた湿式加工が行われているが、近年の環境保全の観点からは、切削液を使用しない乾式加工化が進んでいる。更には、加工時間を短縮するためには、切削速度を上げた高速切削が求められている。 Conventionally, for various cutting tool steels for cutting steel, for example, 3 mass% V-based high-speed tool steel has been proposed, which is improved in strength and wear resistance by enriching hard V carbide. (See Patent Documents 1 and 2). In steel cutting, wet machining using cutting fluid (cutting oil) for cooling and lubrication is performed to ensure the durability of the cutting tool. From the viewpoint of environmental conservation in recent years, The dry processing without using cutting fluid is progressing. Furthermore, in order to shorten the processing time, high-speed cutting with an increased cutting speed is required.
しかし、工具作業面の温度が上昇する高速切削においては、それに切削工具に大きな負荷の掛かる乾式加工を適用すると、切削工具の損耗が著しい。よって、強度や耐摩耗性に優れた特許文献1、2による切削工具であっても、その高速切削の際の切削環境は湿式が一般的であった。そこで、乾式加工による高速切削を行うためには、工具作業面に各種のコーティングを施す手法も提案されているが、この場合でもコーティングの剥離が懸念され、やはり工具寿命の向上には課題があった。 However, in high-speed cutting in which the temperature of the tool work surface rises, if dry machining that places a heavy load on the cutting tool is applied thereto, the wear of the cutting tool is significant. Therefore, even in the cutting tool according to Patent Documents 1 and 2 excellent in strength and wear resistance, the cutting environment at the time of high-speed cutting is generally wet. Therefore, in order to perform high-speed cutting by dry machining, methods for applying various coatings to the tool work surface have been proposed, but even in this case, there is a concern about peeling of the coating, and there is still a problem in improving the tool life. It was.
本発明の目的は、機械的特性に優れた特許文献1や2による切削工具を用いては、その作業面にはコーティング処理を施さなくても乾式加工による高速切削が可能な、鋼の切削方法を提供することである。 An object of the present invention is a steel cutting method that enables high-speed cutting by dry processing without applying a coating process to the work surface of the cutting tool according to Patent Documents 1 and 2 having excellent mechanical characteristics. Is to provide.
本発明者は、特許文献1や2の切削工具において、その作業面にはコーティングを施さないことで、乾式切削中には作業面に分布するV炭化物が低融点の酸化物に変化し、それが被切削鋼の間に溶出する現象を把握した。しかも、その溶出物が上記の切削液と同じ作用効果を発揮して、切削工具の損耗を抑制できることを知見した。そして、以上の酸化および溶出現象を発現するには、該V炭化物の分布状況と切削条件との間に必要な関係があることを見いだし、それを突きとめたことで本発明に到達した。 In the cutting tool of Patent Documents 1 and 2, the present inventor does not coat the work surface, so that the V carbide distributed on the work surface is changed to a low melting point oxide during dry cutting. The phenomenon of leaching between steels to be cut was grasped. Moreover, it has been found that the eluate exhibits the same effect as the above-described cutting fluid and can suppress wear of the cutting tool. And in order to express the above oxidation and elution phenomenon, it discovered that there existed a required relationship between the distribution situation of this V carbide | carbonized_material, and cutting conditions, and came to this invention by identifying it.
すなわち本発明は、作業面は、成分組成が質量%でC:1.0〜1.6%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Cr:3.0〜5.0%、WおよびMoの1種または2種を(2Mo+W):15〜20%、V:2.0〜5.0%、残部がFeおよび不可避的不純物であり、断面組織中のMC型炭化物の長径が平均で0.5〜1.5μmであり、断面組織中に占める長径2.0〜5.0μm未満のMC型炭化物の面積率が1.5%以上かつ、長径5.0μm以上のMC型炭化物の面積率が0〜1.2%未満であり、硬さが63〜70HRCである切削工具によって、被切削鋼を90m/分以上の切削速度で乾式切削することを特徴とする鋼の切削方法である。好ましくは、切削工具の作業面は、断面組織中のMC型炭化物の長径が平均で0.9〜1.2μmであり、あるいはさらに、その成分組成がAl:0.2%以下および/または希土類元素の1種または2種以上を合計:0.2%以下を含むものである。希土類元素はCeが望ましい。あるいはさらに、切削工具の作業面は、Co:10%以下を含む成分組成である。 That is, according to the present invention, the work surface has a component composition of mass%, C: 1.0 to 1.6%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Cr: 3.0 to 5.0%, one or two of W and Mo (2Mo + W): 15 to 20%, V: 2.0 to 5.0%, the balance being Fe and inevitable impurities, cross section The average length of the MC type carbide in the structure is 0.5 to 1.5 μm, the area ratio of the MC type carbide having a long diameter of less than 2.0 to 5.0 μm in the cross-sectional structure is 1.5% or more, and The steel to be cut is dry-cut at a cutting speed of 90 m / min or more with a cutting tool in which the area ratio of MC type carbide having a major axis of 5.0 μm or more is less than 0 to 1.2% and the hardness is 63 to 70 HRC. This is a steel cutting method. Preferably, the working surface of the cutting tool has an average major axis of MC type carbide in the cross-sectional structure of 0.9 to 1.2 μm, or, further, its component composition is Al: 0.2% or less and / or rare earth One type or two or more types of elements are included in total: 0.2% or less. The rare earth element is preferably Ce. Alternatively, the working surface of the cutting tool has a component composition containing Co: 10% or less.
本発明であれば、切削液の使用量を低減できることは勿論、その使用自体をしない乾式加工であっても、高速切削時の切削工具の作業面の摩耗を抑制できる。よって、切削時間の短縮と環境保全の両側面に応え得る有効な技術となる。 According to the present invention, the amount of cutting fluid used can be reduced, and it is possible to suppress wear on the work surface of the cutting tool during high-speed cutting even in dry machining that does not use the cutting fluid itself. Therefore, it is an effective technique that can respond to both sides of shortening the cutting time and environmental conservation.
本発明の特徴は、強度や耐摩耗性に優れた3質量%V系の高速度工具鋼でなる切削工具を用いた上では、その作業面にはコーティングを行わずに、V炭化物を最適な分布状態に制御することで、高速切削であり、かつ乾式環境であるからこその潤滑効果が得られることである。以下、その構成要件毎に説明する。 The feature of the present invention is that, when a cutting tool made of 3 mass% V-based high-speed tool steel having excellent strength and wear resistance is used, V carbide is optimally used without coating the work surface. By controlling to a distributed state, the lubrication effect can be obtained because of high-speed cutting and a dry environment. Hereinafter, each component requirement will be described.
(1)切削工具は、その作業面の成分組成が質量%でC:1.0〜1.6%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Cr:3.0〜5.0%、WおよびMoの1種または2種を(2Mo+W):15〜20%、V:2.0〜5.0%、残部がFeおよび不可避的不純物である。 (1) As for the cutting tool, the component composition of the work surface is mass%, C: 1.0-1.6%, Si: 0.1-1.0%, Mn: 0.1-1.0%, Cr: 3.0 to 5.0%, one or two of W and Mo (2Mo + W): 15 to 20%, V: 2.0 to 5.0%, the balance being Fe and inevitable impurities .
つまり、作業面(刃先)にコーティングを行わない本発明の切削工具は、その作業面が工具素材と同じ成分組成の高速度工具鋼で構成させることができる。
Cは、Cr、W、Mo、Vと結合して炭化物を生成し、焼入れ焼戻し硬さを与え、耐摩耗性、耐熱性、耐焼付性の向上に寄与する。多すぎると靭性が低下し、また巨大な炭化物を生じさせるので、後述のCr、W、Mo、Vとのバランスを考慮した上では、1.0〜1.6質量%(以下、単に%と記す)とする。好ましくは1.1〜1.5%である。
That is, the cutting tool of the present invention in which the work surface (blade edge) is not coated can be made of high-speed tool steel having the same component composition as the work surface.
C combines with Cr, W, Mo, and V to generate carbides, imparts quenching and tempering hardness, and contributes to improvement in wear resistance, heat resistance, and seizure resistance. If the amount is too large, the toughness is reduced and a huge carbide is formed. Therefore, considering the balance with Cr, W, Mo, V described later, 1.0 to 1.6% by mass (hereinafter simply referred to as%) ). Preferably it is 1.1 to 1.5%.
SiおよびMnは、溶製工程における脱酸を目的として各0.1〜1.0%添加する。好ましくは0.2〜0.6%である。 Si and Mn are added in an amount of 0.1 to 1.0% for the purpose of deoxidation in the melting step. Preferably it is 0.2 to 0.6%.
Crは、適切な含有量の設定によって、焼入れ性、耐摩耗性、耐酸化性、高温強度、焼戻し軟化抵抗を向上させる。しかし多すぎると、かえって高温強度、焼戻し軟化抵抗を低下させるので、3.0〜5.0%とする。好ましくは、3.8〜4.5%である。 Cr improves hardenability, abrasion resistance, oxidation resistance, high temperature strength, and temper softening resistance by setting an appropriate content. However, if the amount is too large, the high temperature strength and temper softening resistance are lowered, so the content is made 3.0 to 5.0%. Preferably, it is 3.8 to 4.5%.
WおよびMoは、Cと結合してM6C型の特殊炭化物を形成し、耐摩耗性、耐焼付特性の向上に寄与する。また、焼戻しによる二次硬化作用が大きく、高温強度に寄与する。ただし、多すぎると靭性、熱間加工性を損なう。よって、それらの1種または2種を(2Mo+W)で15〜20%とする。好ましくは、16.5〜19.5%である。 W and Mo combine with C to form a special carbide of M 6 C type and contribute to improvement of wear resistance and seizure resistance. Moreover, the secondary hardening action by tempering is large, which contributes to high temperature strength. However, if too much, toughness and hot workability are impaired. Therefore, those 1 type or 2 types are made into 2-20% by (2Mo + W). Preferably, it is 16.5 to 19.5%.
Vは、Cと結合して硬質のV炭化物を形成し、作業面の耐摩耗性を向上させる。そして本発明の潤滑効果を達成するには、後述の分布形態を満たしたV炭化物を形成する最も重要な元素である。しかし、V炭化物の量が多すぎると熱間加工性が著しく低下する。よって、本発明のVは2.0〜5.0%とする。好ましくは、2.5〜4.6%である。 V combines with C to form hard V carbide and improves the wear resistance of the work surface. And in order to achieve the lubricating effect of this invention, it is the most important element which forms V carbide | carbonized_material which satisfy | filled the below-mentioned distribution form. However, if the amount of V carbide is too large, the hot workability is significantly reduced. Therefore, V of the present invention is set to 2.0 to 5.0%. Preferably, it is 2.5 to 4.6%.
その他、上記の切削工具は、その作業面の成分組成として以下の元素を添加することができる。
Alは、V炭化物の絶対量を増やすと共に、それらを微細に晶出させる効果がある任意の添加元素である。しかし、多量に添加すると、鋼中の酸素と非金属介在物を形成して靱性を劣化させる。よって、添加する場合でも0.2%以下とする。好ましくは0.02%以上であり、さらに好ましくは0.1%以上である。
In addition, the above-mentioned cutting tool can add the following elements as a component composition of the work surface.
Al is an optional additive element that has an effect of increasing the absolute amount of V carbides and crystallizing them finely. However, if added in a large amount, oxygen in the steel and non-metallic inclusions are formed and the toughness is deteriorated. Therefore, even when added, the content is made 0.2% or less. Preferably it is 0.02% or more, More preferably, it is 0.1% or more.
希土類元素は、Alと同様にV炭化物の絶対量を増やしかつ、それらを微細に晶出させる効果を有する任意の添加元素である。そして、これらの効果は、Alとの複合添加により一層大きくなる。しかし多すぎると、鋼中のS(硫黄)や酸素と結合して介在物を形成し、鋳造欠陥の原因となる。よって希土類元素は、添加する場合でも、その1種または2種以上の合計で0.2%以下とする。好ましくは0.02%以上および/または0.05%以下である。そして、希土類元素の中では、取扱い中の酸化が起こり難く、上記効果が得られやすいCeが望ましい。 The rare earth element is an optional additive element that has the effect of increasing the absolute amount of V carbides and finely crystallizing them like Al. These effects are further enhanced by the combined addition with Al. However, when it is too much, it combines with S (sulfur) and oxygen in the steel to form inclusions, which causes casting defects. Therefore, even when rare earth elements are added, the total of one or more of them is 0.2% or less. Preferably they are 0.02% or more and / or 0.05% or less. Among rare earth elements, Ce is preferable because it is difficult to oxidize during handling and the above effects can be easily obtained.
Coは、鋼素材の基地を強化して焼戻し硬さを高めるとともに、耐熱性を向上させる任意の添加元素である。多量に添加すると靭性が低下するため、添加する場合でも10%以下とする。好ましくは4.0%以上である。4.5%以上および/または5.5%以下であることが、より望ましい。 Co is an optional additive element that strengthens the base of the steel material to increase the tempering hardness and improve the heat resistance. When added in a large amount, the toughness decreases, so even when added, the content is made 10% or less. Preferably it is 4.0% or more. It is more desirable that it is 4.5% or more and / or 5.5% or less.
(2)切削工具は、その作業面の断面組織中にあるMC型炭化物の長径が平均で0.5〜1.5μmであり、断面組織中に占める長径2.0〜5.0μm未満のMC型炭化物の面積率が1.5%以上かつ、長径5.0μm以上のMC型炭化物の面積率が0〜1.2%未満である。
本発明の潤滑効果が、そのコーティングを施さない作業面に分布するV炭化物の酸化および溶出挙動によって得られることは上述の通りである。つまり、切削工具の作業面に分布したV炭化物は、切削中の温度上昇によってV酸化物へと変化し、そして溶融することで潤滑剤の役割をする。そして、この場合に重要となるのが、作業面の基地中に存在するV炭化物の分布調整である。
(2) In the cutting tool, the MC type carbide in the cross-sectional structure of the work surface has an average major axis of 0.5 to 1.5 μm, and the MC has a major axis of less than 2.0 to 5.0 μm in the sectional structure. The area ratio of the MC type carbide having the area ratio of the type carbide of 1.5% or more and the major axis of 5.0 μm or more is 0 to less than 1.2%.
As described above, the lubricating effect of the present invention can be obtained by the oxidation and elution behavior of V carbide distributed on the work surface without coating. That is, the V carbide distributed on the working surface of the cutting tool changes to V oxide due to a temperature rise during cutting and melts to act as a lubricant. What is important in this case is the distribution adjustment of V carbides existing in the base of the work surface.
作業面の耐摩耗性を担う基地中のV炭化物は、その粒子径を最適な大きさに調整することで上記の潤滑効果も向上する。V炭化物が小さすぎると、潤滑剤の直接的な役割を担うV酸化物の生成量が少なくなり、十分な潤滑効果が得られ難くなる。しかし一方では、V炭化物が粗大になりすぎると、切削工具を構成する素材自体の靭性を損ねるだけでなく、焼戻し硬さや、そして工具形状に加工するための被研削性の低下をも招き、切削工具として成立できなくなる。そこで、これら素材としての機械的特性を維持した上では、本発明の潤滑効果を最大限に発揮し得るV炭化物の粒径を研究した結果、その両立には最適な狭域があることを見いだした。 The above-mentioned lubrication effect is improved by adjusting the particle size of the V carbide in the base, which is responsible for the wear resistance of the work surface, to an optimum size. If the V carbide is too small, the amount of V oxide that plays the direct role of the lubricant is reduced, making it difficult to obtain a sufficient lubricating effect. However, on the other hand, if the V carbide becomes too coarse, not only the toughness of the material itself that constitutes the cutting tool is impaired, but also the tempering hardness and the grindability for machining into the tool shape are reduced, and cutting is performed. Cannot be established as a tool. Therefore, as a result of studying the particle size of V carbide that can maximize the lubrication effect of the present invention while maintaining the mechanical characteristics as these materials, it has been found that there is an optimum narrow range for both of them. It was.
そして、このV炭化物は、上述した本発明鋼の組織観察においては、主にMoやWで構成されるM6C型等の他の炭化物とは異なるMC型炭化物として区別でき、特定することができる。そこで本発明では、該断面組織中に観察されるMC型炭化物をもって、V炭化物の作用効果に有効な粒径を特定できた。すなわち、断面組織中のMC型炭化物は、その長径の平均で0.5〜1.5μmである。この粒径が0.5μm未満であると、本発明の潤滑効果が不十分である。そして、1.5μmを超えると、切削工具への加工が難しくなる。好ましい長径の平均は0.8μm以上および/または1.3μm以下である。さらに好ましくは0.9μm以上および/または1.2μm以下である。 And in the structure observation of the steel of the present invention described above, this V carbide can be distinguished and specified as MC type carbide different from other carbides such as M 6 C type mainly composed of Mo and W. it can. Therefore, in the present invention, it was possible to specify a particle size effective for the action effect of V carbide with the MC type carbide observed in the cross-sectional structure. That is, the MC type carbide in the cross-sectional structure has an average major axis of 0.5 to 1.5 μm. When the particle size is less than 0.5 μm, the lubricating effect of the present invention is insufficient. And when it exceeds 1.5 micrometers, the process to a cutting tool will become difficult. The average of the major axis is 0.8 μm or more and / or 1.3 μm or less. More preferably, it is 0.9 μm or more and / or 1.2 μm or less.
さらには、MC型炭化物のなかでも、特に本発明の潤滑効果に寄与するのは大型の炭化物である。したがって、本発明の場合、上記ではその全体としてのMC型炭化物の粒径分布を調整した上では、さらに大型のMC型炭化物に限定しては、その分布状況を別けて管理することが重要である。すなわち、断面組織中に占める長径2.0〜5.0μm未満のMC型炭化物の面積率は1.5%以上である。この面積率が1.5%未満であると、本発明の潤滑効果が不十分となる。但し、粗大なMC型炭化物は、切削工具への加工性を劣化するので、断面組織中に占める長径5.0μm以上のMC型炭化物の面積率は1.2%以下に規制する。そして、長径2.0〜5.0μm未満のMC型炭化物についても、その面積率の上限は3.5%以下とすることが望ましい。 Furthermore, among MC type carbides, it is a large carbide that contributes to the lubricating effect of the present invention. Therefore, in the case of the present invention, in the above, after adjusting the particle size distribution of the MC type carbide as a whole, it is important to manage the distribution state separately for a larger MC type carbide. is there. That is, the area ratio of the MC type carbide having a major axis of less than 2.0 to 5.0 μm in the cross-sectional structure is 1.5% or more. When this area ratio is less than 1.5%, the lubricating effect of the present invention is insufficient. However, since the coarse MC-type carbide deteriorates the workability to the cutting tool, the area ratio of the MC-type carbide having a major axis of 5.0 μm or more in the cross-sectional structure is restricted to 1.2% or less. And also about MC type carbide | carbonized_material whose major axis is 2.0-5.0 micrometers, it is desirable that the upper limit of the area ratio shall be 3.5% or less.
(3)切削工具は、その作業面の硬さが63〜70HRCである。
上記の硬さが低すぎると、作業面の摩耗が著しくなる。しかし硬さが高すぎると、靭性が低下して、折損の原因となる。よって、切削工具の作業面の硬さは63〜70HRCとする。
(3) The cutting tool has a work surface hardness of 63 to 70 HRC.
If the hardness is too low, the wear of the work surface becomes significant. However, if the hardness is too high, the toughness is lowered, causing breakage. Therefore, the working surface of the cutting tool has a hardness of 63 to 70 HRC.
(4)被切削鋼を切削するときの切削速度は90m/分以上の高速切削とする。
本発明の潤滑機構に作用するV酸化物は、切削中の作業面の温度上昇によってV炭化物から生成され、そして溶融する。切削速度が遅すぎると、該作業面の温度が十分に上昇せず、V炭化物の酸化が起こり難い。よって、切削速度は90m/分以上とする。好ましくは、150m/分以上である。なお、このときの切削速度とは、作業面(刃先)の速度である。そして、旋削、転削、穴あけ工具等の各切削工具においては、その最外または外周刃部の速度である。
(4) The cutting speed when cutting the steel to be cut is 90 m / min or higher.
V oxides that act on the lubrication mechanism of the present invention are produced from V carbides and melt due to the temperature rise of the work surface during cutting. If the cutting speed is too slow, the temperature of the work surface does not rise sufficiently, and oxidation of V carbide is unlikely to occur. Therefore, the cutting speed is 90 m / min or more. Preferably, it is 150 m / min or more. The cutting speed at this time is the speed of the work surface (blade edge). And in each cutting tool, such as turning, turning, and a drilling tool, it is the speed of the outermost or outer peripheral blade part.
(5)被切削鋼を切削するときの切削環境は、切削液を使用しない乾式加工とする。
上記のV酸化物が生成されるには、その作業面に分布するV炭化物を酸化するための酸素が必要である。そこで本発明においては、その切削中の雰囲気を大気とした乾式加工とすることで、上記の酸素を大気中から供給する。切削液を使用した湿式加工だと、作業面が大気環境から遮断され、十分量の酸素が供給され難い。
(5) The cutting environment when cutting the steel to be cut is dry processing that does not use a cutting fluid.
In order to produce the V oxide, oxygen for oxidizing V carbide distributed on the work surface is required. Therefore, in the present invention, the oxygen is supplied from the air by performing dry processing using the atmosphere during the cutting as air. In the case of wet machining using a cutting fluid, the work surface is cut off from the atmospheric environment and a sufficient amount of oxygen is difficult to be supplied.
以上をもって、本発明のV炭化物の調整による潤滑機構は、従来の湿式加工によるものや、コーティングによるものとは異なり、コーティングを行わない切削工具による乾式加工の組合せ環境下によって発現されるものである。 As described above, the lubrication mechanism by adjusting the V carbide of the present invention is manifested in a combined environment of dry machining with a cutting tool that does not perform coating, unlike conventional wet machining and coating. .
本発明および比較例の切削方法を実施する上では、その切削工具に生じる損耗状態を評価するための試料を、表1に示す成分組成の高速度工具鋼素材を用いて作製した。まず真空溶解炉で成分を調整した10kgの鋼塊を溶製した。そして、表1のNo.2の鋼塊については1210℃で、No.3および6の鋼塊には1220℃で、そしてNo.5の鋼塊には1170℃で均質化熱処理を施した。次に、これらの鋼塊を1150℃で熱間鍛造して25mm厚さ×25mm幅の鋼材とし、870℃で焼きなまし処理後、10mm厚さ×20mm幅×65mm長さの形状に加工した。そして、1190℃からのガス冷却による焼入れ処理を行い、560℃で1時間保持の焼戻し処理を2回行って、後述の摩耗試験用の試料とした。表1には、試料の試験面(作業面)の硬さと、その断面組織中のMC型炭化物の平均長径および、断面組織中に占める長径2.0〜5.0μm未満と5.0μm以上のMC型炭化物の面積率を記す。 In carrying out the cutting methods of the present invention and the comparative example, a sample for evaluating the wear state generated in the cutting tool was prepared using a high-speed tool steel material having the component composition shown in Table 1. First, a 10 kg steel ingot with components adjusted in a vacuum melting furnace was melted. And No. 1 in Table 1 No. 2 steel ingot at 1210 ° C. No. 3 and 6 steel ingots at 1220 ° C. and no. The steel ingot of No. 5 was subjected to homogenization heat treatment at 1170 ° C. Next, these steel ingots were hot forged at 1150 ° C. to obtain steel materials of 25 mm thickness × 25 mm width, annealed at 870 ° C., and then processed into a shape of 10 mm thickness × 20 mm width × 65 mm length. Then, a quenching process by gas cooling from 1190 ° C. was performed, and a tempering process held at 560 ° C. for 1 hour was performed twice to obtain a sample for a wear test described later. Table 1 shows the hardness of the test surface (working surface) of the sample, the average major axis of the MC-type carbide in the cross-sectional structure, and the major axis in the cross-sectional structure of less than 2.0 to 5.0 μm and 5.0 μm or more. The area ratio of MC type carbide is described.
MC型炭化物の平均長径および上記の面積率は、次の要領で測定した。まず、10%ナイタール腐食液によって試験面を腐食した。次に、この腐食面を倍率2000倍の光学顕微鏡で観察し、測定視野5600μm2(70μm×80μm)中に観察される個々のMC型炭化物(図1の白色粒子)の長径を画像解析によって求めた。画像解析では、長径が0.15μm以上のMC型炭化物を、その抽出の対象とした。そして、この作業を7視野繰返して、これら長径の平均値を求めた。MC型炭化物の面積率は、対象となる長径のMC型炭化物について、その個々の面積の合計を、測定総面積39200μm2(5600μm2×7視野)で除した百分率表記のものとした。図1は、No.1の断面組織の光学顕微鏡写真と、そのコントラストを強調した画像解析図である。 The average major axis of the MC type carbide and the area ratio were measured as follows. First, the test surface was corroded with 10% nital etchant. Next, this corroded surface is observed with an optical microscope with a magnification of 2000 times, and the major axis of each MC type carbide (white particles in FIG. 1) observed in the measurement visual field 5600 μm 2 (70 μm × 80 μm) is obtained by image analysis. It was. In the image analysis, MC type carbide having a major axis of 0.15 μm or more was used as an extraction target. Then, this operation was repeated for 7 fields of view, and the average value of these major diameters was obtained. The area ratio of the MC type carbide was expressed as a percentage by dividing the total of individual areas of the target long diameter MC type carbide by the total measurement area of 39200 μm 2 (5600 μm 2 × 7 fields of view). FIG. 1 is an optical micrograph of a cross-sectional structure of 1 and an image analysis diagram in which the contrast is enhanced.
また、摩耗試験用の試料に加えては、靱性および被研削性を評価するための試料も作製した。靱性の評価試料は、上記の焼きなまし処理後の鋼材から加工した5mm直径×65mm長さの鋼片に、同様の焼入れ焼戻しを行った抗折試験片である。被研削性の評価試料は、上記の焼戻し処理後の鋼材から切り出した2mm厚さ×18mm幅×50mm長さの試験片である。 In addition to the sample for wear test, a sample for evaluating toughness and grindability was also produced. The toughness evaluation sample is a bending test piece obtained by performing the same quenching and tempering on a 5 mm diameter × 65 mm length steel piece processed from the steel material after the annealing treatment. The evaluation sample of grindability is a test piece of 2 mm thickness × 18 mm width × 50 mm length cut out from the steel material after the above tempering treatment.
損耗状態の評価については、大越式摩耗試験を実施した。試験条件は、相手材:SCM415、摩擦距離:400m、最終荷重:6.8kg、摩擦速度(切削速度に相当):118m/分および172m/分の、実際の乾式加工に相当するものとした。そして試験後には、試験面に残った摩耗痕の幅を測定して、摩耗量を算出した。 For evaluation of the wear state, an Ogoshi type wear test was conducted. The test conditions were as follows: counterpart material: SCM415, friction distance: 400 m, final load: 6.8 kg, friction speed (corresponding to cutting speed): 118 m / min and 172 m / min, corresponding to actual dry machining. After the test, the width of the wear scar remaining on the test surface was measured to calculate the wear amount.
靱性の評価は、抗折試験を実施した。試験条件は、荷重押込み速度:1mm/分、スパン(試験片の支持間隔):50mmでの3点曲げ試験を行い、試験片破断時の押し込み荷重を測定し、抗折力を算出した。 The toughness was evaluated by a bending test. The test conditions were a three-point bending test at a load indentation speed of 1 mm / min and a span (test piece support interval): 50 mm, the indentation load at the time of the test piece breakage was measured, and the bending strength was calculated.
被研削性の評価には、平面研削盤を用いた。研削条件は、砥石:株式会社ノリタケカンパニー製80KV75、砥石速度:1820m/分、切り込み量:5μm/パス、パス回数:10回で行った。そして研削後には、その砥石で軟質材料(SKD61相当鋼)を研削することで、軟質材料に転写された砥石の損耗量を測定し、研削比(試料の削れ量/砥石の損耗量[体積比])を算出した(すなわち、数値が高いほど被研削性に優れる)。以上の試験結果を表2に纏めて示す。 A surface grinder was used for evaluation of grindability. The grinding conditions were as follows: whetstone: 80KV75 manufactured by Noritake Co., Ltd., whetstone speed: 1820 m / min, cutting depth: 5 μm / pass, and number of passes: 10 times. Then, after grinding, the soft material (SKD61 equivalent steel) is ground with the grindstone, and the wear amount of the grindstone transferred to the soft material is measured. ]) (That is, the higher the numerical value, the better the grindability). The above test results are summarized in Table 2.
表2より、作業面のMC型炭化物が最適に調整された本発明No.1〜4は、その高い摩擦速度の乾式環境下において、長径2.0〜5.0μm未満のMC型炭化物量が少ない比較例No.5より摩耗量が低く抑えられている。長径5.0μm以上の粗大なMC型炭化物量が多い比較例No.6は、摩耗量は低く抑えられているものの、研削比が低く、本発明No.1〜4よりは被研削性に劣る。 Table 2 shows that the MC type carbide on the work surface was optimally adjusted. Nos. 1 to 4 are comparative examples No. 1 having a small amount of MC type carbide having a major axis of less than 2.0 to 5.0 μm in a dry environment with a high friction speed. The amount of wear is kept lower than 5. Comparative Example No. with a large amount of coarse MC type carbide having a major axis of 5.0 μm or more. No. 6 has a low grinding ratio, although the amount of wear is kept low. It is inferior to grindability than 1-4.
また、上記の大越式摩耗試験と同時には、表1に示す高速度工具鋼素材からは、実際の切削状況を評価するための切削工具も作製した。すなわち、上記の焼きなまし処理後の鋼材からは、それをチップ形状に加工した。なお本加工では、鋼材の脱炭層の影響を除外するために、鋼材表面から2mm以上内部が作業面になるようにした。そして、同様の焼入れ焼戻し処理を行って、旋盤用チップに仕上げた。 At the same time as the Ogoshi-type wear test, a cutting tool for evaluating the actual cutting situation was also produced from the high-speed tool steel material shown in Table 1. That is, from the steel material after the annealing treatment, it was processed into a chip shape. In this process, in order to exclude the influence of the decarburized layer of the steel material, the inside of the steel material surface was set to be 2 mm or more from the work surface. Then, the same quenching and tempering treatment was performed to finish a lathe tip.
そして、これら表1のNo.1〜6のチップを用いて、汎用旋盤による切削試験を実施した。切削条件は、被切削鋼をS45C(92.6HRB)とし、切削速度:94m/分、切削距離:236m、切り込み:0.2mm(片側0.1mm)、送り:0.2mm/回転で、切削油を使用しない乾式加工とした。そして切削後には、チップ先端の摩耗部分の最大深さを測定した。結果を表3に示す。 And these table No.1. A cutting test using a general-purpose lathe was performed using 1 to 6 chips. Cutting conditions are as follows: steel to be cut is S45C (92.6HRB), cutting speed: 94 m / min, cutting distance: 236 m, cutting depth: 0.2 mm (one side 0.1 mm), feed: 0.2 mm / rotation, cutting Dry processing without oil was used. After cutting, the maximum depth of the worn part at the tip of the chip was measured. The results are shown in Table 3.
表3の結果より、本発明の切削方法によるNo.1〜4は、比較例であるNo.5に比べて最大摩耗深さが小さく、乾式条件での切削工具の損耗が抑制されている。なお、比較例No.6が被研削性に劣ることは、上記の通りである。 From the results in Table 3, No. 1 according to the cutting method of the present invention was obtained. 1-4 is No. which is a comparative example. The maximum wear depth is smaller than 5, and the wear of the cutting tool under dry conditions is suppressed. Comparative Example No. As described above, 6 is inferior in grindability.
表4に示す成分組成の高速度工具鋼素材を用いて、本発明および比較例の方法に使用する切削工具を作製した。まず真空溶解炉で成分を調整した10kgの鋼塊を溶製した。次に、この鋼塊を1150℃で熱間鍛造して25mm厚さ×25mm幅の鋼材とした。このとき、表4のNo.10の鋼塊は、熱間加工性が悪く、鍛造後に割れが多発して、続く切削工具の製造が不可能であった。 Cutting tools used in the methods of the present invention and comparative examples were prepared using high-speed tool steel materials having the component compositions shown in Table 4. First, a 10 kg steel ingot with components adjusted in a vacuum melting furnace was melted. Next, this steel ingot was hot forged at 1150 ° C. to obtain a steel material of 25 mm thickness × 25 mm width. At this time, no. Steel ingot No. 10 had poor hot workability, and many cracks occurred after forging, making it impossible to produce subsequent cutting tools.
続いて、表4のNo.7〜9の鋼材については、これを870℃で焼きなまし処理した後、チップ形状に加工した。なお本加工では、鋼材の脱炭層の影響を除外するために、鋼材表面から2mm以上内部が作業面になるようにした。そして、1190℃からのガス冷却による焼入れ処理を行い、560℃で1時間保持の焼戻し処理を2回行って、旋盤用チップに仕上げた。表4には、チップの作業面の硬さと、その断面組織中のMC型炭化物の平均長径および、断面組織中に占める長径2.0〜5.0μm未満と5.0μm以上のMC型炭化物の面積率を記す(測定要領は上記に従う)。 Subsequently, No. 4 in Table 4 was obtained. About the steel materials of 7-9, after annealing this at 870 degreeC, it processed into the chip shape. In this process, in order to exclude the influence of the decarburized layer of the steel material, the inside of the steel material surface was set to be 2 mm or more from the work surface. Then, a quenching process was performed by gas cooling from 1190 ° C., and a tempering process held at 560 ° C. for 1 hour was performed twice to finish a lathe chip. Table 4 shows the hardness of the work surface of the chip, the average long diameter of the MC type carbide in the cross-sectional structure, and the MC type carbides having a long diameter of less than 2.0 to 5.0 μm and 5.0 μm or more in the cross-sectional structure. Write the area ratio (measurement procedure follows above).
表4のNo.7〜9のチップを用いて、汎用旋盤による切削試験を実施した。切削条件は、被切削鋼をS45C(92.6HRB)とし、切削速度:94m/分、切削距離:236m、切り込み:0.2mm(片側0.1mm)、送り:0.2mm/回転で、切削油を使用しない乾式加工とした。そして切削後には、チップ先端の摩耗部分の最大深さを測定した。結果を表5に示す。 No. in Table 4 A cutting test using a general-purpose lathe was performed using 7 to 9 chips. Cutting conditions are as follows: steel to be cut is S45C (92.6HRB), cutting speed: 94 m / min, cutting distance: 236 m, cutting depth: 0.2 mm (one side 0.1 mm), feed: 0.2 mm / rotation, cutting Dry processing without oil was used. After cutting, the maximum depth of the worn part at the tip of the chip was measured. The results are shown in Table 5.
表5の結果より、本発明の切削方法によるNo.7、8は、比較例であるNo.9に比べて最大摩耗深さが小さく、乾式条件での切削工具の損耗が抑制されている。これは、比較例であるNo.9が、その工具作業面のV含有量が低く、長径2.0〜5.0μm未満のV炭化物量が少ないためである。 From the results in Table 5, No. 1 according to the cutting method of the present invention was obtained. 7 and 8 are comparative examples. The maximum wear depth is smaller than 9 and wear of the cutting tool under dry conditions is suppressed. This is a comparative example. 9 is because the V content of the tool work surface is low and the amount of V carbide having a major axis of less than 2.0 to 5.0 μm is small.
本発明は、タップやホブによる鋼の切削加工の他には、より切削速度の速いドリルやエンドミルを用いた切削にも適用し得る。 The present invention can be applied to cutting using a drill or an end mill having a higher cutting speed in addition to steel cutting using a tap or a hob.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010176395A JP5561601B2 (en) | 2010-03-25 | 2010-08-05 | Steel cutting method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069859 | 2010-03-25 | ||
JP2010069859 | 2010-03-25 | ||
JP2010176395A JP5561601B2 (en) | 2010-03-25 | 2010-08-05 | Steel cutting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011218544A JP2011218544A (en) | 2011-11-04 |
JP5561601B2 true JP5561601B2 (en) | 2014-07-30 |
Family
ID=45036158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010176395A Active JP5561601B2 (en) | 2010-03-25 | 2010-08-05 | Steel cutting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5561601B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111203548A (en) * | 2020-01-17 | 2020-05-29 | 广西长城机械股份有限公司 | Machining method for applying ceramic blade to manganese-chromium series non-magnetic large part |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3343747B2 (en) * | 1993-12-28 | 2002-11-11 | 大同特殊鋼株式会社 | Powdered high speed steel |
JP3987297B2 (en) * | 2001-03-21 | 2007-10-03 | 株式会社神戸製鋼所 | Powdered high-speed steel and high-speed steel tool with excellent coating properties |
JP3698656B2 (en) * | 2001-06-06 | 2005-09-21 | 株式会社不二越 | Cutting tools |
JP2003313642A (en) * | 2002-04-23 | 2003-11-06 | Nippon Koshuha Steel Co Ltd | Steel for high-speed tool and manufacturing method therefor |
-
2010
- 2010-08-05 JP JP2010176395A patent/JP5561601B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111203548A (en) * | 2020-01-17 | 2020-05-29 | 广西长城机械股份有限公司 | Machining method for applying ceramic blade to manganese-chromium series non-magnetic large part |
Also Published As
Publication number | Publication date |
---|---|
JP2011218544A (en) | 2011-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3918787B2 (en) | Low carbon free cutting steel | |
JP6248026B2 (en) | Bearing steel and bearing parts with excellent rolling fatigue characteristics | |
JP6207408B2 (en) | Stainless steel with excellent machinability, hardness, wear resistance and corrosion resistance | |
Aiso et al. | Influence of Mn and Al additions to carbon steel on material transfer and coating damage mechanism in a sliding contact between steel and TiN coated HSS tool | |
JP6004698B2 (en) | Rolling bearing raceway manufacturing method and rolling bearing manufacturing method | |
JP5092578B2 (en) | Low carbon sulfur free cutting steel | |
TWI510650B (en) | Lead - free steel | |
JP5370073B2 (en) | Alloy steel for machine structural use | |
JP6301145B2 (en) | Sleeve dog gear | |
JP5561601B2 (en) | Steel cutting method | |
JP6728612B2 (en) | Bearing parts | |
JP6292362B1 (en) | Roll outer layer material for hot rolling and composite roll for hot rolling | |
TW201631180A (en) | Steel material for bearings that has excellent rolling fatigue characteristics, and bearing part | |
WO2018212196A1 (en) | Steel and component | |
JP6801541B2 (en) | Mechanical steel and its cutting method | |
JP5323369B2 (en) | Case-hardened steel with excellent machinability and grain coarsening prevention properties | |
JP6801542B2 (en) | Mechanical steel and its cutting method | |
JP3698656B2 (en) | Cutting tools | |
JP5166959B2 (en) | Machine structural steel for oxygen-enriched atmosphere cutting | |
JP2006089823A (en) | Die made of high-speed tool steel | |
JP4322239B2 (en) | Cold tool steel and manufacturing method thereof | |
JP2014189854A (en) | Steel material for bearing excellent in rolling fatigue characteristic and machinability, and bearing parts | |
JP2003313642A (en) | Steel for high-speed tool and manufacturing method therefor | |
JP6137428B2 (en) | Cold tool and manufacturing method thereof | |
JP7175082B2 (en) | Mechanical structural steel and its cutting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140529 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5561601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |