JP5559690B2 - Parachlorella new microalgae - Google Patents
Parachlorella new microalgae Download PDFInfo
- Publication number
- JP5559690B2 JP5559690B2 JP2010526774A JP2010526774A JP5559690B2 JP 5559690 B2 JP5559690 B2 JP 5559690B2 JP 2010526774 A JP2010526774 A JP 2010526774A JP 2010526774 A JP2010526774 A JP 2010526774A JP 5559690 B2 JP5559690 B2 JP 5559690B2
- Authority
- JP
- Japan
- Prior art keywords
- microalgae
- medium
- alginic acid
- parachlorella
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241001036353 Parachlorella Species 0.000 title claims description 48
- 235000010443 alginic acid Nutrition 0.000 claims description 59
- 229920000615 alginic acid Polymers 0.000 claims description 59
- 239000002609 medium Substances 0.000 claims description 59
- 239000000783 alginic acid Substances 0.000 claims description 44
- 229960001126 alginic acid Drugs 0.000 claims description 44
- 150000004781 alginic acids Chemical class 0.000 claims description 43
- 241000195649 Chlorella <Chlorellales> Species 0.000 claims description 16
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 15
- 229940072056 alginate Drugs 0.000 claims description 15
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims description 15
- 238000012258 culturing Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 11
- 108020004463 18S ribosomal RNA Proteins 0.000 claims description 10
- GOOXRYWLNNXLFL-UHFFFAOYSA-H azane oxygen(2-) ruthenium(3+) ruthenium(4+) hexachloride Chemical compound N.N.N.N.N.N.N.N.N.N.N.N.N.N.[O--].[O--].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Ru+3].[Ru+3].[Ru+4] GOOXRYWLNNXLFL-UHFFFAOYSA-H 0.000 claims description 10
- 238000010186 staining Methods 0.000 claims description 9
- 229930002868 chlorophyll a Natural products 0.000 claims description 7
- 229930002869 chlorophyll b Natural products 0.000 claims description 7
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 claims description 7
- 239000001963 growth medium Substances 0.000 claims description 6
- 230000007935 neutral effect Effects 0.000 claims description 6
- 230000001850 reproductive effect Effects 0.000 claims description 6
- 210000004027 cell Anatomy 0.000 description 21
- 239000007788 liquid Substances 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229920002472 Starch Polymers 0.000 description 10
- 239000008107 starch Substances 0.000 description 10
- 235000019698 starch Nutrition 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 229930002875 chlorophyll Natural products 0.000 description 8
- 235000019804 chlorophyll Nutrition 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- 241000195493 Cryptophyta Species 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 6
- 210000003763 chloroplast Anatomy 0.000 description 6
- 239000000661 sodium alginate Substances 0.000 description 6
- 235000010413 sodium alginate Nutrition 0.000 description 6
- 229940005550 sodium alginate Drugs 0.000 description 6
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 150000004804 polysaccharides Chemical class 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 240000009108 Chlorella vulgaris Species 0.000 description 3
- 235000007089 Chlorella vulgaris Nutrition 0.000 description 3
- 241000195646 Parachlorella kessleri Species 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 241000195628 Chlorophyta Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000199919 Phaeophyceae Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 238000013081 phylogenetic analysis Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000196319 Chlorophyceae Species 0.000 description 1
- 241001633059 Closteriopsis acicularis Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- -1 alginic acid oligosaccharides Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000005548 dental material Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000022912 endospore formation Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H13/00—Algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
- C12N1/125—Unicellular algae isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/89—Algae ; Processes using algae
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
本発明は、アルギン酸産生能を有する新規微細藻類及びその利用方法等に関する。 The present invention relates to a novel microalgae capable of producing alginic acid, a method for using the same, and the like.
従来、クロレラ属として分類されていた単細胞の藻類は、近年の分子系統学的解析の結果、緑藻綱(Chlorophyceae)とトレボキシア藻綱(Trebouxiophyceae)とにまたがる多系統群であったことが示された(非特許文献1:Friedl,1995及び非特許文献2:Huss et al.,1999)。さらに、Ustinovaら(非特許文献3)は、18S rDNA及び16S rDNAを用いた分子系統学的解析を行うことにより、クロレラ・ケスレリ(Chlorella kessleri)はトレボキシア藻綱の中でも他のクロレラとは別のグループを形成することを示した。そのため、パラクロレラ(Parachlorella)属の設立が提唱され、それに伴ってクロレラ・ケスレリの学名は、パラクロレラ・ケスレリ(Parachlorella kessleri)に変更された。パラクロレラ属に属する藻類としては、他にクロステリオプシス・アキキュラリス(Closteriopsis acicularis)があるが、これは形態学的にはパラクロレラ・ケスレリとは似ていないといわれている。緑藻類全般の分類体系については、非特許文献4(Proeschold and Leliaert)を参照されたい。
アルギン酸は、褐藻類の細胞間及び細胞壁や、一部の紅藻に含まれる粘性多糖類である。アルギン酸又はその塩は、増粘安定剤、ゲル化剤として、食品添加物、医薬品、化粧品、歯科用材料等に広く利用されている。また、アルギン酸は食物繊維の一種であり、近年注目されている。さらに、アルギン酸、特に、アルギン酸オリゴ糖とも呼ばれるアルギン酸分解物(オリゴマー)又は低分子量のアルギン酸は、種々の生理活性を有することが報告されている。
トレボキシア藻綱に属する藻類については、アルギン酸ナトリウムが含有又は代謝されていた例は報告されていない。
Alginic acid is a viscous polysaccharide contained between cells and cell walls of brown algae and some red algae. Alginic acid or a salt thereof is widely used as a thickening stabilizer or gelling agent in food additives, pharmaceuticals, cosmetics, dental materials and the like. Alginic acid is a kind of dietary fiber and has attracted attention in recent years. Furthermore, alginic acid, in particular, alginic acid degradation products (oligomers), also called alginic acid oligosaccharides, or low molecular weight alginic acid have been reported to have various physiological activities.
As for the algae belonging to the treboxya algae class, no examples in which sodium alginate was contained or metabolized have been reported.
本発明は、有用な新規パラクロレラ属微細藻類及びその利用方法を提供することを目的とする。 An object of the present invention is to provide a useful novel Parachlorella microalgae and a method for using the same.
本発明者らは、自然界から単離されたパラクロレラ属微細藻類が、新規であり、アルギン酸産生能、特に比較的低分子量のアルギン酸を産生する能力を有することを見出し、本発明を完成した。すなわち、本発明は、
〔1〕 アルギン酸生産能を有するパラクロレラ属微細藻類、パラクロレラ・バイノス(Parachlorella sp.binos);
〔2〕 以下の特徴を有する、前記〔1〕記載の微細藻類;
形態:単細胞、球形、大きさ約10μm〜約15μm
生殖様式:内生胞子形成四分裂型又は内生胞子形成八分裂型
ルテニウムレッド染色性:陽性;
〔3〕 後述する無機III培地で培養した場合、大きさ約12μm〜約15μmであり、生殖様式が内生胞子形成四分裂型である、前記〔2〕記載の微細藻類;
〔4〕 後述するOgbonna培地で培養した場合、大きさ約10μm〜約12μmである、前記〔2〕記載の微細藻類;
〔5〕 細胞中のクロロフィルa及びクロロフィルbの含量が、約1:1〜約2.5:1である、前記〔1〕〜〔4〕のいずれか1項記載の微細藻類;
〔6〕 配列番号1で表される18S rRNA遺伝子を有する、前記〔1〕〜〔5〕のいずれか1項記載の微細藻類;
〔7〕 受託番号FERM P−21513(FERM BP−10969)を有する、前記〔1〕〜〔6〕のいずれか1項記載の微細藻類;
〔8〕 前記〔1〕〜〔7〕のいずれか1項記載の微細藻類を培養し、培養物又は培地からアルギン酸又はアルギン酸塩を回収することを特徴とする、アルギン酸又はアルギン酸塩の生産方法;
〔9〕 前記培養工程が、中性の培地を用いて行われる、前記〔8〕記載のアルギン酸又はアルギン酸塩の生産方法;
〔10〕 前記培養工程が、中性の培地を用いた後にアルカリ性の培地を用いて前記微細藻類を培養する工程を含む、前記〔9〕記載のアルギン酸又はアルギン酸塩の生産方法;
〔11〕 前記培養工程が、前記微細藻類を開放系で培養する工程を含む、前記〔8〕〜〔10〕のいずれか1項記載のアルギン酸又はアルギン酸塩の生産方法;
〔12〕 前記〔8〕〜〔11〕のいずれか1項記載の方法により生産されたアルギン酸又はアルギン酸塩
を提供する。The present inventors have found that Parachlorella microalgae isolated from nature are novel and have an ability to produce alginic acid, in particular, an alginic acid having a relatively low molecular weight, thereby completing the present invention. That is, the present invention
[1] para genus Chlorella microalgae with alginate-producing ability, para Chlorella Bainosu (. Parachlorella sp binos);
[2] The microalgae according to [1], having the following characteristics;
Form: Single cell, spherical, size of about 10 μm to about 15 μm
Reproductive form: Endospore-forming quadrant or endospore-forming octa-splitting ruthenium red staining: Positive;
[3] The microalgae according to the above [2], which has a size of about 12 μm to about 15 μm when cultured in an inorganic III medium to be described later, and has a reproductive pattern of endospore-forming quadrisection type;
[4] The microalgae according to [2], which has a size of about 10 μm to about 12 μm when cultured in an Ogbonna medium described below;
[5] The microalgae according to any one of [1] to [4] above, wherein the content of chlorophyll a and chlorophyll b in the cell is about 1: 1 to about 2.5: 1;
[6] The microalgae according to any one of [1] to [5], which has an 18S rRNA gene represented by SEQ ID NO: 1.
[7] The microalgae according to any one of [1] to [6], which has a deposit number of FERM P-21513 (FERM BP-10969);
[8] A method for producing alginic acid or alginate, comprising culturing the microalgae according to any one of [1] to [7], and recovering alginic acid or alginate from the culture or culture medium;
[9] The method for producing alginic acid or alginate according to [8], wherein the culturing step is performed using a neutral medium;
[10] The method for producing alginic acid or alginate according to [9], wherein the culturing step includes a step of culturing the microalgae using an alkaline medium after using a neutral medium;
[11] The method for producing alginic acid or alginate according to any one of [8] to [10], wherein the culturing step includes a step of culturing the microalgae in an open system;
[12] Alginic acid or alginate produced by the method according to any one of [8] to [11] is provided.
本発明によれば、新規な有用微細藻類及びその応用が提供される。本発明のパラクロレラ属微細藻類は、一般的な環境下で容易に増殖させることができ、アルギン酸ナトリウムを分泌するので、アルギン酸及びその塩の生産などに利用することができる。
本発明の微細藻類は、クロロフィル含量が多く、特に、水深の深いところまで届く青色光を吸収するクロロフィルbの含量が多い。したがって、本発明の微細藻類は、水深の深い培養容器中で細胞数の多い過密な培養条件下でも、効率よく光合成を行うことができる。
また、本発明の微細藻類は内生胞子形成四分裂型又は内生胞子形成八分裂型の分裂様式を行う。すなわち、分裂後すぐに母細胞壁を脱ぎ捨て、未成熟な娘細胞の細胞壁のみからなる、プロトプラストに近い状態を経て、分裂が終了した後に細胞壁を形成する。したがって、細胞内容物の抽出、さらには遺伝子導入を用いた形質転換、遺伝子組換え又はRNAiを用いた品種改良を行う場合にも好都合である。According to the present invention, a novel useful microalgae and its application are provided. The Parachlorella microalgae of the present invention can be easily grown under a general environment and secretes sodium alginate, so that it can be used for the production of alginic acid and its salts.
The microalgae of the present invention has a high chlorophyll content, particularly a high content of chlorophyll b that absorbs blue light reaching deep water. Therefore, the microalgae of the present invention can efficiently perform photosynthesis even in an overcrowded culture condition with a large number of cells in a deep culture vessel.
In addition, the microalgae of the present invention performs an endospore-forming tetrasplitting type or an endospore-forming eight-splitting division mode. That is, the mother cell wall is removed immediately after division, and the cell wall is formed after division is completed through a state close to a protoplast consisting of only the cell walls of immature daughter cells. Therefore, it is also convenient when extracting cell contents, further performing transformation using gene transfer, gene recombination, or breed improvement using RNAi.
図1−1は、パラクロレラ・ケスレリ株及び本発明の株の顕微鏡写真を示す図である。パネルAはパラクロレラ・ケスレリ、2152株;パネルB〜Eはパラクロレラ・ケスレリ、2153株;パネルF及びGはパラクロレラ・ケスレリ、2154株;パネルHは本発明の株である。パネルD及びHについては蛍光顕微鏡、それ以外は光学顕微鏡を用いた。
図1−2は、パラクロレラ・ケスレリ株及び本発明の株の顕微鏡写真を示す図である。パネルAはパラクロレラ・ケスレリ、2152株;パネルB〜Eはパラクロレラ・ケスレリ、2153株;パネルF及びGはパラクロレラ・ケスレリ、2154株;パネルHは本発明の株である。パネルD及びHについては蛍光顕微鏡、それ以外は光学顕微鏡を用いた。
図1−3は、パラクロレラ・ケスレリ株及び本発明の株の顕微鏡写真を示す図である。パネルAはパラクロレラ・ケスレリ、2152株;パネルB〜Eはパラクロレラ・ケスレリ、2153株;パネルF及びGはパラクロレラ・ケスレリ、2154株;パネルHは本発明の株である。パネルD及びHについては蛍光顕微鏡、それ以外は光学顕微鏡を用いた。
図1−4は、パラクロレラ・ケスレリ株及び本発明の株の顕微鏡写真を示す図である。パネルAはパラクロレラ・ケスレリ、2152株;パネルB〜Eはパラクロレラ・ケスレリ、2153株;パネルF及びGはパラクロレラ・ケスレリ、2154株;パネルHは本発明の株である。パネルD及びHについては蛍光顕微鏡、それ以外は光学顕微鏡を用いた。
図2は、本発明の株の透過型電子顕微鏡写真像(10,000倍)を示す図である。図中、「C」は葉緑体、「N」は核を表す。
図3は、本発明の株の微分干渉顕微鏡像(400倍)を示す図である。丸で囲んだ部分は本発明の株の細胞、点線で囲んだ部分はアルギン酸ナトリウム層及び共生菌を表す。
図4は、本発明の細胞溶解物及びアルギン酸ナトリウム標準品のFT−IR(フーリエ変換赤外分光光度計)測定の結果(スペクトル)を示す図である。
図5は、18S rRNA配列に基づいて作製した、本発明の株及び近縁種を含む分子系統樹を示す図である。左下のスケールは0.01遺伝距離を表す。
図6は、異なるpHの培地で培養された本発明の株によるアルギン酸産生量を示す図である。FIG. 1-1 is a diagram showing micrographs of the Parachlorella querseri strain and the strain of the present invention. Panel A is Parachlorella kueseri, 2152 strains; Panels B-E are Parachlorella kueseri, 2153 strains; Panels F and G are Parachlorella kueseri, 2154 strains; Panel H is a strain of the present invention. For panels D and H, a fluorescence microscope was used, and for other cases, an optical microscope was used.
FIG. 1-2 is a diagram showing micrographs of the Parachlorella kucereri strain and the strain of the present invention. Panel A is Parachlorella kueseri, 2152 strains; Panels B-E are Parachlorella kueseri, 2153 strains; Panels F and G are Parachlorella kueseri, 2154 strains; Panel H is a strain of the present invention. For panels D and H, a fluorescence microscope was used, and for other cases, an optical microscope was used.
1-3 is a figure which shows the microphotograph of the parachlorella kesrel strain and the strain | stump | stock of this invention. Panel A is Parachlorella kueseri, 2152 strains; Panels B-E are Parachlorella kueseri, 2153 strains; Panels F and G are Parachlorella kueseri, 2154 strains; Panel H is a strain of the present invention. For panels D and H, a fluorescence microscope was used, and for other cases, an optical microscope was used.
1-4 is a figure which shows the microphotograph of the parachlorella kesrel strain and the strain | stump | stock of this invention. Panel A is Parachlorella kueseri, 2152 strains; Panels B-E are Parachlorella kueseri, 2153 strains; Panels F and G are Parachlorella kueseri, 2154 strains; Panel H is a strain of the present invention. For panels D and H, a fluorescence microscope was used, and for other cases, an optical microscope was used.
FIG. 2 is a transmission electron micrograph image (10,000 times) of the strain of the present invention. In the figure, “C” represents a chloroplast and “N” represents a nucleus.
FIG. 3 is a diagram showing a differential interference microscopic image (400 times) of the strain of the present invention. The part surrounded by a circle represents the cell of the strain of the present invention, and the part surrounded by a dotted line represents a sodium alginate layer and commensal bacteria.
FIG. 4 is a diagram showing the results (spectrum) of the FT-IR (Fourier transform infrared spectrophotometer) measurement of the cell lysate of the present invention and the standard sodium alginate.
FIG. 5 is a view showing a molecular phylogenetic tree containing the strain of the present invention and related species, which was prepared based on the 18S rRNA sequence. The lower left scale represents 0.01 genetic distance.
FIG. 6 is a diagram showing alginate production by the strains of the present invention cultured in media having different pHs.
1.本発明の微細藻類の単離法
本発明の微細藻類は、野外で採集した淡水サンプルから、継代培養により単離することができる。具体的には、例えば、少量のサンプルを液体培地(2.5g/L KNO3、7.5g/L MgSO4・7H2O、17.5g/L KH2PO4、2.5g/L CaCl2、2.5g/L NaCl、20g/L NH4H2PO4の各溶液10mL及び蒸留水940mLに、1滴の1%FeCl3及び2mLのArnons A5溶液(組成:蒸留水中、2.86g/L H3BO4、1.81g/L MnCl2・4H2O、0.222g/L ZnSO4・7H2O、0.079g/L CuSO4・5H2O、0.015g/L (NH4)5Mo7O24・4H2O)を添加したもの、pH6.5;以下「無機III培地」ということがある)で培養し、この培養液を100μL採取して、上記液体培地に1.5%(W/V)寒天を加えた平板培地(以下「平板培地」という)に塗り広げて同様に培養し、緑色のコロニーを選択する。この操作をコロニーが均一になるまで繰り返した後、LB平板培地(5g ペプトン、2.5g イーストエキストラクト、0.5g NaClを蒸留水1,000mLに溶解し、1.5%(W/V)寒天を加えたもの、pH6.5)で細菌汚染がないことを確認する。
本発明の微細藻類は、淡水又はLB培地等の一般的な培地中で、好気的又は嫌気的のいずれの条件下でも生育可能であるが、上記の液体培地中で、室温〜30℃、明条件、好気(振とう培養)の条件下で特によく増殖・生育する。本発明の微細藻類は、光要求性(最低700Lux、好ましくは約2,000〜約20,000Lux程度、最も好ましくは約3,000〜約8,000Lux)である。
継代培養条件は、約2週間〜約1カ月程度の間隔で継代することが望ましい。
後述する実施例1において記載した単離株は、2008年2月28日付で独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1丁目1番地1 中央第6)に寄託され、受託番号FERM P−21513が付与され、2008年5月23日付でFERM BP−10969として「特許手続上の微生物の寄託の国際的承認に関するブダペスト条約」下の国際寄託に移管され、受託された。
2.本発明の微細藻類の藻類学的性質
A.形態学的特徴
本発明の微細藻類は、単細胞で、球形であり、大きさは約12μm〜約15μm程度である。クロロフィル量が多く、緑色であり、ミトコンドリアを複数有することもある。吸光光度法により測定した場合、総クロロフィル量は、クロレラ(Chlorella vulgaris)の約2倍程度であり、藻類の乾燥重量100gあたり約800〜1,000mgに達する。また、クロレラではクロロフィルaが総クロロフィル量の75〜90%程度を占めるのに対し、本発明の微細藻類では、クロロフィルbの割合が多く、クロロフィルa:クロロフィルbの含量の比は約1:1〜約2.5:1程度(約50%対約50%〜約71%対約29%)である。
細胞の大きさは、培養条件によって変動することがあり、Ogbonna培地(500mg/L KNO3、1800mg/L MgSO4・7H2O、1250mg/L KH2PO4、100mg/L K2HPO4、30mg/L FeSO4・7H2O、40mg/L EDTA、Arnons A5溶液 1mL/L及びグルコース5g/L;pH7.5)で培養した場合、無機III培地で培養した場合よりも小さくなりうる(約10μm〜約12μm)ことが判明した。
B.生殖様式
トレボキシア藻綱には、内生胞子形成型と呼ばれるタイプが多い。本発明の微細藻類の分裂様式は、顕微鏡観察に基づき、内生胞子形成四分裂型であると判断された。
なお、Ogbonna培地で培養した場合、内生胞子形成八分裂型の分裂様式をとることがあることが判明した。
C.生理学的・生化学的性状
微細藻類は、非常に高いCO2固定能力を有し、光合成産物としてデンプンを合成することが知られている。しかし、本発明の微細藻類は、ヨウ素デンプン反応に陰性であることが判明した。
また、本発明の微細藻類は、ルテニウムレッド染色によりいくつかの個体が赤く染色される。したがって、本発明の微細藻類自身がウロン酸を含有する物質を分泌すると考えられる。特に、本発明の微細藻類は、粘性多糖類様物質としてアルギン酸を分泌することができる。生育環境によっては、このアルギン酸によって、微生物がトラップされた、バイオフィルムのような共生微生物群集を作ることがある(図3)。
3.本株の分類学上の位置
18S rRNA配列に基づく分子系統学的研究から、本発明の微細藻類は、パラクロレラ(Parachlorella)属に属し、既知種パラクロレラ・ケスレリ(Parachlorella kessleri)と近縁であることが明らかとなった。本発明の株及び近縁種を含む分子系統樹を図5に示す。
本発明の株の18S rRNA遺伝子の塩基配列を、配列表の配列番号1に示す。
4.本発明の微細藻類を用いたアルギン酸生産法
上記のとおり、本発明の微細藻類は、アルギン酸を産生するので、本発明の微細藻類を培養し、その培養物又は培養液からアルギン酸を回収することにより、アルギン酸を得ることができる。
具体的には、例えば、本発明の微細藻類を上記の液体培地(無機III培地)又はOgbonna培地のようなその他の培地で大量培養し、その培養液からろ過によってアルギン酸を分離・回収することができる。培養は、中性(例えばpH6〜8、好ましくはpH6.5〜7.5)の培養液で行うことが増殖速度の点で有利である。培養中雑菌の混入といった刺激を与えることにより、アルギン酸の分泌が促進される。したがって、例えば、本発明の微細藻類が充分に増殖した培養の最後の段階で、単に開放系で数十分〜数時間程度さらに培養することにより、アルギン酸の分離・回収が容易になる。また、培養液のpHをアルカリ性とすることにより、アルギン酸分泌量が増大し、特に、比較的低分子量の(重合度の低い)アルギン酸が多量に産生されることが判明した。したがって、本発明の微細藻類の培養は、上記のように液体培地(無機III培地)又はOgbonna培地のようなその他の培地を用いて行うことができるが、培養液中に分泌されたアルギン酸の分離・回収前にアルカリ性の培養液で培養することが有利である。培養の最後の段階での開放系での培養及びアルカリ性培養液での培養は、いずれか一方を行なってもよく、両方を行なってもよい。
また、褐藻からのアルギン酸抽出に使用されている方法を、本発明の微細藻類について応用することもできる。この場合、本発明の微細藻類を乾燥・粉砕した後、アルカリ(水酸化ナトリウム、炭酸ナトリウムなど)を加えて、アルギン酸ナトリウム塩(ゲル状)として細胞から溶出させ、ろ過して回収することができる。 1. Method for Isolating Microalgae of the Present Invention The microalgae of the present invention can be isolated from a freshwater sample collected outdoors by subculture. Specifically, for example, a small amount of sample is added to a liquid medium (2.5 g / L KNO 3 , 7.5 g / L MgSO 4 .7H 2 O, 17.5 g / L KH 2 PO 4 , 2.5 g / L CaCl 2 , 2.5 g / L NaCl, 10 g of each solution of 20 g / L NH 4 H 2 PO 4 and 940 mL of distilled water, 1 drop of 1% FeCl 3 and 2 mL of Arnons A5 solution (composition: 2.86 g in distilled water) / L H 3 BO 4 , 1.81 g / L MnCl 2 .4H 2 O, 0.222 g / L ZnSO 4 .7H 2 O, 0.079 g / L CuSO 4 .5H 2 O, 0.015 g / L (NH 4 ) 5Mo 7 O 24 · 4H 2 O) added, pH 6.5; hereinafter referred to as “inorganic III medium”), 100 μL of this culture medium is collected, and 1. 5% W / V) was cultured similarly spread on plate medium plus agar (hereinafter referred to as "plating medium"), to select the green colonies. After this operation was repeated until the colonies became uniform, LB plate medium (5 g peptone, 2.5 g yeast extract, 0.5 g NaCl was dissolved in 1,000 mL of distilled water and 1.5% (W / V). Confirm that there is no bacterial contamination at pH 6.5) with agar added.
The microalgae of the present invention can grow under aerobic or anaerobic conditions in a general medium such as fresh water or LB medium, but in the above liquid medium, room temperature to 30 ° C, It grows and grows particularly well under light conditions and aerobic (shaking culture) conditions. The microalgae of the present invention is photorequiring (minimum 700 Lux, preferably about 2,000 to about 20,000 Lux, most preferably about 3,000 to about 8,000 Lux).
As for the subculture conditions, it is desirable to subculture at intervals of about 2 weeks to about 1 month.
The isolated strain described in Example 1 described later was deposited on February 28, 2008 at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1st, 1st East, 1st Street, Tsukuba City, Ibaraki Prefecture, 6th), It was assigned the accession number FERM P-21513 and transferred to the international deposit under the "Budapest Convention on the International Approval of Deposit of Microorganisms in Patent Procedures" as FERM BP-10969 on May 23, 2008.
2. Algalological properties of the microalgae of the present invention Morphological features The microalgae of the present invention is a single cell, is spherical, and has a size of about 12 μm to about 15 μm. The amount of chlorophyll is high, it is green, and it may have multiple mitochondria. When measured by absorptiometry, the total amount of chlorophyll is about twice that of chlorella ( Chlorella vulgaris ), and reaches about 800 to 1,000 mg per 100 g of dry weight of algae. In chlorella, chlorophyll a accounts for about 75 to 90% of the total amount of chlorophyll, whereas in the microalgae of the present invention, the ratio of chlorophyll b is large, and the ratio of chlorophyll a: chlorophyll b content is about 1: 1. ˜about 2.5: 1 (about 50% vs. about 50% to about 71% vs. about 29%).
The cell size may vary depending on the culture conditions. Ogbonna medium (500 mg / L KNO 3 , 1800 mg / L MgSO 4 .7H 2 O, 1250 mg / L KH 2 PO 4 , 100 mg / L K 2 HPO 4 , When cultured in 30 mg / L FeSO 4 · 7H 2 O, 40 mg / L EDTA, Arnons A5 solution 1 mL / L and glucose 5 g / L; pH 7.5), it can be smaller than when cultured in inorganic III medium (about 10 μm to about 12 μm).
B. Reproductive patterns There are many types of treboxya algae called endospore-forming types. The mode of division of the microalgae of the present invention was determined to be an endospore-forming quartile type based on microscopic observation.
In addition, when it culture | cultivated in Ogbonna culture medium, it became clear that it might take the endospore formation octosis type division | segmentation mode.
C. Physiological and biochemical properties Microalgae have a very high ability to fix CO 2 and are known to synthesize starch as a photosynthetic product. However, the microalgae of the present invention was found to be negative for the iodine starch reaction.
In the microalgae of the present invention, some individuals are stained red by ruthenium red staining. Therefore, it is considered that the microalgae of the present invention itself secretes a substance containing uronic acid. In particular, the microalgae of the present invention can secrete alginic acid as a viscous polysaccharide-like substance. Depending on the growth environment, this alginic acid may create a biofilm-like commensal microbial community in which microorganisms are trapped (FIG. 3).
3. Molecular phylogeny based on the positional 18S rRNA sequence taxonomic of this strain, microalgae of the present invention belongs to the para Chlorella (Parachlorella) genus, and closely known species para Chlorella Kesureri (Parachlorella kessleri) It became clear that there was. FIG. 5 shows a molecular phylogenetic tree containing the strain of the present invention and related species.
The base sequence of the 18S rRNA gene of the strain of the present invention is shown in SEQ ID NO: 1 in the sequence listing.
4). Alginic acid production method using the microalgae of the present invention As described above, since the microalgae of the present invention produces alginic acid, by culturing the microalgae of the present invention and recovering alginic acid from the culture or culture solution Alginic acid can be obtained.
Specifically, for example, the microalgae of the present invention can be cultured in a large amount in the above-mentioned liquid medium (inorganic III medium) or other medium such as Ogbonna medium, and alginic acid can be separated and recovered by filtration from the culture solution. it can. It is advantageous in terms of growth rate that the culture is performed in a neutral (eg, pH 6 to 8, preferably pH 6.5 to 7.5) culture solution. By giving a stimulus such as contamination of various bacteria during the culture, secretion of alginic acid is promoted. Therefore, for example, at the final stage of the culture in which the microalgae of the present invention is sufficiently grown, the culturing is further performed in an open system for several tens of minutes to several hours, so that the alginate can be easily separated and recovered. In addition, it was found that by making the pH of the culture medium alkaline, the amount of alginic acid increased, and in particular, a relatively large amount of alginic acid having a relatively low molecular weight (low polymerization degree) was produced. Therefore, the culture of the microalgae of the present invention can be performed using a liquid medium (inorganic III medium) or other medium such as Ogbonna medium as described above, but the separation of alginic acid secreted into the culture solution is possible. -It is advantageous to culture in an alkaline medium before recovery. Either one or both of the culture in an open system and the culture in an alkaline medium may be performed at the final stage of the culture.
In addition, the method used for extracting alginic acid from brown algae can be applied to the microalgae of the present invention. In this case, after drying and pulverizing the microalgae of the present invention, alkali (sodium hydroxide, sodium carbonate, etc.) can be added to elute it from the cells as sodium alginate (gel) and collected by filtration. .
特に記載しない限り、すべての培地・器具は、121℃(オートクレーブ)又は80%(V/V)エタノールにより滅菌したものを用いた。
1.本株の単離・選抜
岐阜県内の工場排水処理場より採取した水溶液サンプルを用いて、希釈による光照射液体継代培養を行い、微細藻類を単離した。
本実験で用いた「液体培地」(無機III培地)は、以下のようにして調製した。2.5g/L KNO3、7.5g/L MgSO4・7H2O、17.5g/L KH2PO4、2.5g/L CaCl2、2.5g/L NaCl、及び20g/L NH4H2PO4の各水溶液を10mLずつ、940mLの蒸留水に添加し、1%(W/V)FeCl3を1滴及びArnons A5溶液を2mL添加し、pHを6.5に調整した後、121℃、15分間、オートクレーブにかけた。固体培地は、pH調整前に上記液体培地に1.5%(W/V)濃度となるように寒天を加えて作製した(平板培地)。
「LB(液体)培地」は、5g ペプトン、2.5g イーストエキストラクト、0.5g NaClを蒸留水1,000mLに溶解し、pH6.5に調整した後、121℃、15分間、オートクレーブにかけた。固体培地は、pH調整前に上記液体溶液に1.5%(W/V)寒天を加えて作製した(LB固体培地)。
水溶液サンプルを100μL計り取り、液体培地で培養した。培養条件は、室温又は30℃、明条件、スターラーを用いた攪拌、を基本とし、1週間培養した。この培養液を100μL計り取り、平板培地に塗布し、基本的に上記と同じ培養条件下で培養した。
この平板培地上に形成されたコロニーのうち、緑色を呈するコロニーをピックアップし、液体培地に入れ、基本的に上記と同じ培養条件下で培養した。
上記の液体培養及び平板培養のサイクルを、平板培地上に緑色のコロニー以外のものが出現しなくなるまで、繰り返した。
上記サイクルを2回繰り返した後(サイクル2)及び3回繰り返した後(サイクル3)の液体培養及び平板培地の顕微鏡観察の結果、これらのサンプルには緑色の微生物以外の雑菌が数種類確認された。この中には運動性をもつ微生物も含まれていた。
そこで、上記サイクルを3回以上繰り返した後に得たコロニーを、液体培地中で、30℃、明条件で10日間培養した。この培養液(5mL)にイソジン(商品名、ポピヨンヨード 700mg/L溶液)を10μL添加し、よく攪拌した後、30℃、嫌気、明条件下で24時間静置した。この液体培地100μLを5mLの液体培地に加え、14日間、30℃、好気、明条件下で培養した。
次に、この培養液に、0.01%(V/V)次亜塩素酸ナトリウムを添加して3時間静置した後、培養液を平板培地及びLB平板培地に塗布し、30℃、好気、明条件下で10〜12日間培養した。
その結果、雑菌を含まない単一のコロニーを単離することができた。このコロニーは、30℃で3日間の培養により、液体培地にて、好気の条件にて増殖した。
この株(パラクロレラ・バイノス;以下、「バイノス」と略称することがある)は、2008年2月28日付で独立行政法人産業技術総合研究所特許生物寄託センターに寄託され、受託番号FERM P−21513が付与され、2008年5月23日付でFERM BP−10969として「特許手続上の微生物の寄託の国際的承認に関するブダペスト条約」下の国際寄託に移管され、受託された。
2.顕微鏡観察、染色性等
i) ヨウ素デンプン反応
上記で得られた株及びクロレラ(クロレラ工業社製、生クロレラ(Chlorella vulgaris))をサンプルとして、酵素法によりデンプンを定量した。具体的には、サンプルに50%エタノールを用いて低分子等を抽出洗浄し、不溶物を加熱糊化して、グルコアミラーゼ処理した後、ろ過して得たろ液のブドウ糖を、「CIIテストワコー」(商品名)を使用して定量した。この結果から、ブドウ糖(%)×0.9=デンプン(%)としてデンプン量を算出したところ、デンプン量として、本発明の株については0.2%、クロレラについては0.9%の結果を得た。しかし、この方法ではブドウ糖が構成成分であり、かつデンプンと異なる結合の多糖を測定対照とする可能性があることから、確認のため、各サンプル(本発明の株については、色が濃く、そのままでは判定困難であるため、孔径0.45μmのメンブランフィルターでろ過した後の液体を用いた)についてヨウ素デンプン反応を行ったところ、いずれもヨウ素デンプン反応陰性であった。
ii) ルテニウムレッド染色
上記で得られた株を、そのまま又はルテニウムレッド染色した後、顕微鏡(ライカ社製、「LEICA DM1 6000B」)観察した。ルテニウムレッド染色は、微生物サンプルを遠心(3,000rpm、5分)して集め、ルテニウムレッド水溶液(ナカライテスク社製)を加え、室温にて1時間ほど静置した後、蒸留水にて微生物を洗浄することにより行った。
iii) 顕微鏡観察
独立行政法人国立環境研究所微生物系統保存センターに保存されている9種類のパラクロレラ・ケスレリ株のうち、3株(2152、2153及び2154)を入手して同様の観察を行い、本発明の株と比較した。なお、これらのケスレリ株については、遺伝的にどのくらい離れているかなどの情報はない。
顕微鏡観察の結果を図1−1〜1−4に示す。観察の結果、これらの3株すべてが、何らかの粘性多糖類らしきものを分泌していることがわかった。これらの3株のうちで2152株は、外見上、本発明のパラクロレラ・バイノスに最もよく似ているが、バイノスと比較して一回り細胞体が小さく(図1−1、パネルA)、ルテニウムレッド染色陰性であった。2153株は、本発明の株(図1−4、パネルH)と同様ルテニウムレッド染色に陽性であったため、分泌物はアルギン酸のようなウロン酸を含む化合物であると考えられる(図1−1、パネルB〜図1−3、パネルE)。しかし、本発明の株が内生胞子形成四分裂型であるのに対し、2153株は内生胞子形成八分裂型であった。2154株は、細胞体が本発明の株よりも大きい個体も見受けられるが、細胞に含まれる葉緑体が明らかに少ないため、透き通って見えた。葉緑体が少ないことは蛍光顕微鏡を用いた観察からも明らかであった(図1−3、パネルF及び図1−4、パネルG)。また、ルテニウムレッド染色陰性である点でも本発明の株と異なっていた。
これらの特徴をまとめると、以下のとおりである。
本発明の株については、透過型電子顕微鏡(日立製作所製、「HITACHI H−7000」)による観察も行った。電子顕微鏡写真像(10,000倍)を図2に示す。図中、「C」は葉緑体、「N」は核である。視野面積の約70%が葉緑体であり、本発明の株が大量の葉緑体を蓄えていることが示された。なお、細胞の外周を取り囲む色の薄い層は、アルギン酸と考えられる。
v) 本発明の微細藻類を含む微生物群集の観察
開放系で培養した本発明の株を、微分干渉顕微鏡(ライカ社製、「LEICA DM1 6000B」、拡大倍率400倍)で観察した。その結果を図3に示す。本発明の株が分泌した粘性多糖類によって窒素固定細菌を含む少なくとも4種の微生物がトラップされ、バイオフィルムのような共生微生物群集を作り上げていることが判明した。
3.分泌物の同定
上記のようにして液体培地で培養したパラクロレラ・バイノス(2,000mg/L)に対して、Na2CO3を終濃度で2%(W/V)になるように添加し、細胞を溶解させた。この溶解物を3,000rpmで10分遠心して不純物を沈降させ、上澄み液を0.4μmフィルターにて濾過した。フィルターに残った残渣を、1N塩酸及び1N NaOHで洗浄し、FT−IR(フーリエ変換赤外分光光度計)測定に供した。
この分析の結果を図4に示す。アルギン酸ナトリウム標準品についてのスペクトルと比較したところ、本発明のパラクロレラ・バイノスから分泌されている多糖類はアルギン酸であることが強く示唆された。
4.クロロフィル含量の測定
上記のようにして培養したパラクロレラ・バイノス及びクロレラ(クロレラ工業社製、生クロレラ(Chlorella vulgaris))をサンプルとして、日本食品分析センターに依頼して吸光光度法によりクロロフィル量を測定した。
結果を表2に示す。
5.18S rRNA遺伝子の塩基配列解析
鋳型として本発明のパラクロレラ・バイノスから抽出したゲノムDNAを用い、ユニバーサル18S rRNA遺伝子用プライマーを用いて、PCR法により目的遺伝子を増幅した後、アガロースゲル電気泳動を行ってゲルから目的遺伝子を切り出し、TAベクター(Promega社、商品名「P−GemT」)にライゲーションさせた。その後、このプラスミドで大腸菌をトランスフォームさせ、ブルーホワイトセレクションによるスクリーニングの後、アルカリ−SDS法によりプラスミドを抽出した。次いで、株式会社バイオマトリックス研究所に委託し、このプラスミドのsp6及びt7サイトより塩基配列を解析した。
塩基配列データは、NCBIに登録されている近縁種の18S rRNA遺伝子配列とともに、公開されている多重整列プログラム「Clustal W」を用いてアラインメントさせ、系統樹(近隣結合法)を構築した。
結果を図5に示す。この結果、本発明の株は、パラクロレラ・ケスレリと近縁の新種であることが判明した。
また、上記の解析により得られた本発明の株の18S rRNA遺伝子の塩基配列を配列表の配列番号1に示す。
6.異なるpHの培地中でのパラクロレラ・バイノスによるアルギン酸の産生
無機III培地中で25℃、1週間以上培養し、細胞濃度が106個/Lとなったパラクロレラ・バイノスを、3つの容器に分注した。各容器の培養液のpHを、塩酸及び水酸化ナトリウムを用いてpH5、pH7、及びpH10に調整した。これを暗所で25℃で培養し、1、2、3、6、8日目にサンプリングして、アルギン酸産生量の指標として不揮発性有機炭素(non−pergeable organic carbon;NPOC)量を測定した。
NPOC量の測定は、具体的には以下のように行った。各時点で採取したパラクロレラ・バイノスを含む培養液0.5mLを、16,500×gで1分間遠心分離し、細胞を沈降させた。上澄み液を採取し、等量のイソプロパノールを加えた後、16,500×gで10分間遠心分離した。得られたペレットを滅菌蒸留水に溶解したものをサンプルとして使用した。島津製作所製TPOC−vを用いて、酸性化・通気処理による測定法(JIS−K0551、ASTM−D2579にしたがい、各サンプル中のNPOC量を測定した。
結果を図6に示す。図6において、菱形(◆)はpH5、四角(■)はpH7、三角(▲)はpH10を表す。図6から明らかなように、本発明の株は、アルカリ性条件下で培養することにより、酸性又は中性条件下の場合よりも大量のアルギン酸を分泌することが判明した。
7.パラクロレラ・バイノス分泌物の特徴づけ
この実験では、無機III培地にて1週間以上25℃にて培養し、細胞濃度が106個/L以上になったパラクロレラ・バイノスを用いた。このパラクロレラ・バイノスを含む培養液0.5mLを、16,500×gにて1分間遠心し、細胞を沈降させた。この上澄み液に等量のイソプロパノールを加えた後、16,500×gにて10分間遠心した。得られたペレットを滅菌蒸留水に溶解させたものをサンプルとし、限外ろ過膜(アズワン社、商品名「Vivaspin」)を用いて分画した。各画分に含まれるアルギン酸量を、上記6.に記載した方法でNPOCを計測することにより測定した。
その結果、サンプル中のアルギン酸は、すべて分画分子量10万の限外ろ過膜を通過した。一方、分画分子量1万の限外ろ過膜を用いた場合は、一部がトラップされたが、残りは通過した。
したがって、パラクロレラ・バイノス分泌物のアルギン酸は、概ね分子量10万以下であり、大部分は分子量2万以下であって、分子量1万以下のものを含むと考えられる。
8.異なる培地でのパラクロレラ・バイノスの培養
以下の培地を用いて本発明のパラクロレラ・バイノスを培養した。「Ogbonna培地」は、以下のようにして調製した。500mg/L KNO3、1800mg/L MgSO4・7H2O、1250mg/L KH2PO4、100mg/L K2HPO4、30mg/L FeSO4・7H2O、40mg/L EDTAを蒸留水に添加し、Arnons A5溶液を1mL及びグルコース5gを添加し、水酸化ナトリウムを用いてpHを7.5に調整した後、121℃、20分間、オートクレーブにかけた。この培地は、Ogbonna et al.によるJ.of Applied Phycology,Vol.9,No.4,pp.359−366(1997)を参考にして組成した。上述の液体培地の代わりにこの培地を用いたこと以外は上記1.と同じ条件(30℃、好気、明条件)で7日間培養した。
上記2.と同様にして顕微鏡観察を行った。この培地で培養した場合、パラクロレラ・バイノスは、
形態:単細胞、球形、大きさ約10〜12μm
生殖様式:内生胞子形成八分裂型
であった。
この出願は、平成20年8月28日出願の日本特許出願、特願2008−220213に基づくものであり、特願2008−220213の明細書及び特許請求の範囲に記載された内容は、すべてこの出願明細書に包含される。
[配列表]
Unless otherwise stated, all culture media and instruments used were sterilized with 121 ° C. (autoclave) or 80% (V / V) ethanol.
1. Isolation and selection of this strain Using an aqueous solution sample collected from a factory wastewater treatment plant in Gifu Prefecture, light irradiation liquid subculture was performed by dilution to isolate microalgae.
The “liquid medium” (inorganic III medium) used in this experiment was prepared as follows. 2.5 g / L KNO 3 , 7.5 g / L MgSO 4 .7H 2 O, 17.5 g / L KH 2 PO 4 , 2.5 g / L CaCl 2 , 2.5 g / L NaCl, and 20 g / L NH 10 mL of each aqueous solution of 4 H 2 PO 4 was added to 940 mL of distilled water, 1 drop of 1% (W / V) FeCl 3 and 2 mL of Arnons A5 solution were added, and the pH was adjusted to 6.5. And autoclaving at 121 ° C. for 15 minutes. The solid medium was prepared by adding agar to the liquid medium to a concentration of 1.5% (W / V) before adjusting the pH (plate medium).
“LB (liquid) medium” was prepared by dissolving 5 g peptone, 2.5 g yeast extract, 0.5 g NaCl in 1,000 mL of distilled water, adjusting the pH to 6.5, and then autoclaving at 121 ° C. for 15 minutes. . The solid medium was prepared by adding 1.5% (W / V) agar to the liquid solution before adjusting the pH (LB solid medium).
100 μL of the aqueous solution sample was weighed and cultured in a liquid medium. The culture conditions were basically room temperature or 30 ° C., light conditions, stirring with a stirrer, and cultured for 1 week. 100 μL of this culture solution was weighed, applied to a flat plate medium, and cultured basically under the same culture conditions as described above.
Among the colonies formed on the plate medium, colonies showing a green color were picked up, placed in a liquid medium, and cultured under basically the same culture conditions as described above.
The above liquid culture and plate culture cycle was repeated until no other colonies appeared on the plate medium.
As a result of liquid culture after repeating the above cycle twice (cycle 2) and three times (cycle 3) and microscopic observation of the plate medium, several types of bacteria other than green microorganisms were confirmed in these samples. . This included motility microorganisms.
Therefore, colonies obtained after repeating the above cycle three times or more were cultured in a liquid medium at 30 ° C. under bright conditions for 10 days. 10 μL of isodine (trade name, 700 mg / L solution of poppyon iodine) was added to this culture solution (5 mL), stirred well, and then allowed to stand at 30 ° C. under anaerobic and bright conditions for 24 hours. 100 μL of this liquid medium was added to 5 mL of liquid medium and cultured for 14 days at 30 ° C. under aerobic and light conditions.
Next, 0.01% (V / V) sodium hypochlorite was added to the culture solution and allowed to stand for 3 hours, and then the culture solution was applied to a plate medium and an LB plate medium at 30 ° C. Cultivation was carried out for 10 to 12 days under light and bright conditions.
As a result, it was possible to isolate a single colony containing no bacteria. This colony was grown under aerobic conditions in a liquid medium by culturing at 30 ° C. for 3 days.
This strain (Parachlorella binos; hereinafter may be abbreviated as “Binos”) was deposited with the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology on February 28, 2008, and the deposit number FERM P- No. 21513 was granted and transferred and accepted as an FERM BP-10969 on May 23, 2008, under the “Budapest Convention on the International Approval of Deposits of Microorganisms in Patent Procedures”.
2. Microscopic observation, dyeability, etc. i) Iodine starch reaction Starch was quantified by an enzymatic method using the strain obtained above and Chlorella ( Chlorella vulgaris ) manufactured by Chlorella Kogyo Co., Ltd. as a sample. Specifically, 50% ethanol is used to extract and wash low molecules, etc., insoluble matter is heated and gelatinized, treated with glucoamylase, and filtered to obtain the glucose of the filtrate, “CII Test Wako” (Trade name) was used for quantification. From this result, the amount of starch was calculated as glucose (%) × 0.9 = starch (%). As the amount of starch, 0.2% was obtained for the strain of the present invention, and 0.9% was obtained for chlorella. Obtained. However, in this method, since glucose is a constituent component and there is a possibility that a polysaccharide having a binding different from starch may be used as a measurement control, each sample (for the strain of the present invention, the color is dark and remains as it is). In this case, the iodine starch reaction was performed with respect to (using the liquid after filtration through a membrane filter having a pore diameter of 0.45 μm), and all of them were negative for the iodine starch reaction.
ii) Ruthenium red staining The strain obtained above was directly or after ruthenium red staining, and then observed under a microscope ("Leica DM1 6000B", manufactured by Leica). In ruthenium red staining, a microorganism sample is collected by centrifugation (3,000 rpm, 5 minutes), a ruthenium red aqueous solution (manufactured by Nacalai Tesque) is added, and the mixture is allowed to stand at room temperature for about 1 hour. This was done by washing.
iii) Microscopic observation Three strains (2152, 2153, and 2154) of nine types of Parachlorella querserili strains stored in the National Institute for Environmental Studies Microbial System Conservation Center were obtained, and the same observation was performed. Comparison with the strain of the present invention. In addition, there is no information on how far these Kessler strains are genetically separated.
The results of microscopic observation are shown in FIGS. As a result of observation, it was found that all of these three strains secreted some sort of viscous polysaccharide. Of these three strains, the 2152 strain is most similar to the parachlorella binos of the present invention in appearance, but has a smaller cell body than the binos (FIG. 1-1, panel A), Ruthenium red staining was negative. Since the 2153 strain was positive for ruthenium red staining in the same manner as the strain of the present invention (FIG. 1-4, panel H), the secretion was considered to be a compound containing uronic acid such as alginic acid (FIG. 1-1). Panel B to FIGS. 1-3, Panel E). However, the strain of the present invention was endospore-forming quadrilateral, whereas strain 2153 was endospore-forming eight-splitting. The 2154 strain could be seen as an individual having a larger cell body than that of the strain of the present invention, but the cell contained clearly less chloroplasts, so it seemed clear. It was clear from observation using a fluorescence microscope that there were few chloroplasts (FIGS. 1-3, Panel F and FIGS. 1-4, Panel G). It was also different from the strain of the present invention in that it was negative for ruthenium red staining.
These characteristics are summarized as follows.
v) Observation of Microbial Community Containing Microalgae of the Present Invention The strain of the present invention cultured in an open system was observed with a differential interference microscope (Leica, “LEICA DM1 6000B”, magnification 400 ×). The result is shown in FIG. It has been found that at least four types of microorganisms including nitrogen-fixing bacteria are trapped by the viscous polysaccharide secreted by the strain of the present invention, thereby creating a symbiotic microbial community such as a biofilm.
3. Identification of secretions To Parachlorella binos (2,000 mg / L) cultured in a liquid medium as described above, Na 2 CO 3 was added to a final concentration of 2% (W / V). Cells were lysed. The lysate was centrifuged at 3,000 rpm for 10 minutes to precipitate impurities, and the supernatant was filtered through a 0.4 μm filter. The residue remaining on the filter was washed with 1N hydrochloric acid and 1N NaOH, and subjected to FT-IR (Fourier transform infrared spectrophotometer) measurement.
The result of this analysis is shown in FIG. When compared with the spectrum of the standard sodium alginate standard, it was strongly suggested that the polysaccharide secreted from the parachlorella binos of the present invention was alginic acid.
4). Measurement of chlorophyll content Parachlorella binos and chlorella ( Chlorella vulgaris , manufactured by Chlorella Kogyo Co., Ltd.) cultured as described above were used as samples, and the amount of chlorophyll was measured by spectrophotometry at the Japan Food Analysis Center did.
The results are shown in Table 2.
5. Base sequence analysis of 18S rRNA gene Genomic DNA extracted from Parachlorella binos of the present invention was used as a template, and the target gene was amplified by PCR using universal 18S rRNA gene primers, followed by agarose gel electrophoresis The target gene was excised from the gel and ligated to a TA vector (Promega, trade name “P-GemT”). Thereafter, E. coli was transformed with this plasmid, and after screening by blue-white selection, the plasmid was extracted by the alkali-SDS method. Subsequently, it was commissioned to Biomatrix Laboratories Co., Ltd., and the nucleotide sequence was analyzed from the sp6 and t7 sites of this plasmid.
The nucleotide sequence data was aligned with the closely related 18S rRNA gene sequences registered in NCBI using a published multiple alignment program “Clustal W” to construct a phylogenetic tree (neighboring linkage method).
The results are shown in FIG. As a result, it was found that the strain of the present invention is a new species closely related to Parachlorella kueseri.
Further, the base sequence of the 18S rRNA gene of the strain of the present invention obtained by the above analysis is shown in SEQ ID NO: 1 in the sequence listing.
6). Production of alginic acid by parachlorella binos in medium of different pH Incubated in inorganic III medium at 25 ° C. for over 1 week, parachlorella binos with a cell concentration of 10 6 cells / L were placed in three containers. Dispensed. The pH of the culture solution in each container was adjusted to pH 5, pH 7, and pH 10 using hydrochloric acid and sodium hydroxide. This was cultured at 25 ° C. in the dark, and sampled on the first, second, third, sixth, and eighth days, and the amount of nonvolatile organic carbon (NPOC) was measured as an index of alginic acid production. .
Specifically, the amount of NPOC was measured as follows. The culture solution containing Parachlorella binos collected at each time point was centrifuged at 16,500 × g for 1 minute to sediment the cells. The supernatant was collected, and an equal volume of isopropanol was added, followed by centrifugation at 16,500 × g for 10 minutes. A sample obtained by dissolving the obtained pellet in sterilized distilled water was used as a sample. Using TPOC-v manufactured by Shimadzu Corporation, the amount of NPOC in each sample was measured in accordance with a measurement method by acidification and aeration treatment (JIS-K0551, ASTM-D2579).
The results are shown in FIG. In FIG. 6, the diamond (♦) represents pH 5, the square (■) represents pH 7, and the triangle (▲) represents pH 10. As is clear from FIG. 6, it was found that the strain of the present invention secretes a larger amount of alginic acid when cultured under alkaline conditions than when under acidic or neutral conditions.
7). Characterization of Parachlorella binos secretion In this experiment , Parachlorella binos were cultured in an inorganic III medium for 1 week or more at 25 ° C., and the cell concentration was 10 6 cells / L or more. 0.5 mL of this culture solution containing Parachlorella binos was centrifuged at 16,500 × g for 1 minute to precipitate the cells. An equal amount of isopropanol was added to the supernatant, followed by centrifugation at 16,500 × g for 10 minutes. A sample obtained by dissolving the obtained pellet in sterile distilled water was used as a sample, and fractionated using an ultrafiltration membrane (As One, trade name “Vivaspin”). The amount of alginic acid contained in each fraction is determined according to the above 6. The NPOC was measured by the method described in 1.
As a result, all the alginic acid in the sample passed through the ultrafiltration membrane having a fractional molecular weight of 100,000. On the other hand, when an ultrafiltration membrane with a molecular weight cut off of 10,000 was used, a part was trapped but the rest passed.
Therefore, the alginic acid of the secretion of Parachlorella binos has a molecular weight of approximately 100,000 or less, most of which has a molecular weight of 20,000 or less, and is considered to include those having a molecular weight of 10,000 or less.
8). Cultivation of Parachlorella binos in different media Parachlorella binos of the present invention was cultured using the following media. “Ogbonna medium” was prepared as follows. 500 mg / L KNO 3 , 1800 mg / L MgSO 4 .7H 2 O, 1250 mg / L KH 2 PO 4 , 100 mg / L K 2 HPO 4 , 30 mg / L FeSO 4 .7H 2 O, 40 mg / L EDTA in distilled water After adding 1 mL of Arnons A5 solution and 5 g of glucose and adjusting the pH to 7.5 using sodium hydroxide, it was autoclaved at 121 ° C. for 20 minutes. This medium is described in Ogbonna et al. J. of Applied Physology, Vol. 9, no. 4, pp. 359-366 (1997). The above 1. except that this medium was used instead of the liquid medium. The cells were cultured for 7 days under the same conditions (30 ° C., aerobic, bright conditions).
2. Microscopic observation was performed in the same manner as described above. When cultured in this medium, Parachlorella binos
Form: Single cell, spherical, size of about 10-12 μm
Reproductive pattern: Endospore-forming octuploid type.
This application is based on Japanese Patent Application No. 2008-220213 filed on Aug. 28, 2008. All the contents described in the specification and claims of Japanese Patent Application No. 2008-220213 Included in the application specification.
[Sequence Listing]
Claims (11)
形態:単細胞、球形、大きさ10μm〜15μm
生殖様式:内生胞子形成四分裂型又は内生胞子形成八分裂型
ルテニウムレッド染色性:陽性 The microalgae according to claim 1, having the following characteristics.
Form: Single cell, spherical, size 10 μm to 15 μm
Reproductive pattern: Endospore-forming quadrant or endospore-forming octa-splitting ruthenium red staining: Positive
The method for producing alginic acid or alginate according to any one of claims 8 to 10, wherein the culturing step includes a step of culturing the microalgae in an open system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010526774A JP5559690B2 (en) | 2008-08-28 | 2009-08-21 | Parachlorella new microalgae |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008220213 | 2008-08-28 | ||
JP2008220213 | 2008-08-28 | ||
JP2010526774A JP5559690B2 (en) | 2008-08-28 | 2009-08-21 | Parachlorella new microalgae |
PCT/JP2009/065025 WO2010024367A1 (en) | 2008-08-28 | 2009-08-21 | Novel parachlorella micro-alga |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2010024367A1 JPWO2010024367A1 (en) | 2012-01-26 |
JP5559690B2 true JP5559690B2 (en) | 2014-07-23 |
Family
ID=41721530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010526774A Expired - Fee Related JP5559690B2 (en) | 2008-08-28 | 2009-08-21 | Parachlorella new microalgae |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5559690B2 (en) |
WO (1) | WO2010024367A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140242109A1 (en) * | 2011-09-09 | 2014-08-28 | Kaneka Corporation | Method for cultivating alga and method for producing alginic acid-containing composition |
JP6118519B2 (en) * | 2012-07-30 | 2017-04-19 | パナック株式会社 | New polysaccharide |
FR3005062B1 (en) | 2013-04-25 | 2016-03-11 | Commissariat Energie Atomique | NEW RADIORESISTANT ALGAE OF THE GENUS COCCOMYXA |
JP6169423B2 (en) * | 2013-06-28 | 2017-07-26 | 株式会社日本医化器械製作所 | Algae culture lighting device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63233797A (en) * | 1987-03-20 | 1988-09-29 | Nichiden Kagaku Kk | Production of alginic acid at high ratio of guluronic acid |
JPH0499491A (en) * | 1990-08-17 | 1992-03-31 | Japan Steel Works Ltd:The | Production of alginic acid |
-
2009
- 2009-08-21 JP JP2010526774A patent/JP5559690B2/en not_active Expired - Fee Related
- 2009-08-21 WO PCT/JP2009/065025 patent/WO2010024367A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63233797A (en) * | 1987-03-20 | 1988-09-29 | Nichiden Kagaku Kk | Production of alginic acid at high ratio of guluronic acid |
JPH0499491A (en) * | 1990-08-17 | 1992-03-31 | Japan Steel Works Ltd:The | Production of alginic acid |
Also Published As
Publication number | Publication date |
---|---|
WO2010024367A1 (en) | 2010-03-04 |
JPWO2010024367A1 (en) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dao et al. | Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria | |
Berthold et al. | Enhancing algal biomass and lipid production through bacterial co-culture | |
Temraleeva et al. | Modern methods for isolation, purification, and cultivation of soil cyanobacteria | |
CN105132315B (en) | High mountain bacillus altitudinis YLX-5 and its application | |
CN105132317B (en) | Aoxidize microbacterium Microbacterium oxydans YLX-2 and its application | |
Imase et al. | Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model | |
CN105199979B (en) | Bacillus thuringiensis Bacillus thuringiensis YLX-4 and its application | |
CN114107092B (en) | Endophyte Gordonia L191 for degrading phthalate and application thereof | |
JP5559690B2 (en) | Parachlorella new microalgae | |
CN106916765B (en) | A method of heavy metal in waste water zinc is adsorbed using penicillium janthinellum | |
CN105331552B (en) | One plant of efficient denitrification acinetobacter calcoaceticus novel species and its application | |
Dinata et al. | Identification and Characterization of Antagonistic Bacteria from Coffee Plant Litter | |
Chen et al. | A lytic bacterium's potential application in biofuel production through directly lysing the diatom Phaeodactylum tricornutum cell | |
JP2010252700A (en) | New asticcacaulis excentricus strain, method for culturing microalgae by using the same, and method for producing hydrocarbon | |
Giraldo et al. | Influence of the algal microbiome on biofouling during industrial cultivation of Nannochloropsis sp. in closed photobioreactors | |
CN105695355B (en) | A method of it is co-cultured using two-wheeled and flocculence prepares bacterium algae cell | |
KR102201035B1 (en) | Method for isolating and culturing microorganism difficult to culture | |
Bui-Xuan et al. | Green biorefinery: Microalgae-bacteria microbiome on tolerance investigations in plants | |
CN116891809B (en) | Pseudomonas asiatica and microbial agent and application thereof | |
Lababpour et al. | Isolation and submerged culture biomass production of the arid land cyanobacteria Microcoleus spp., an investigation on its utilization for biological soil crust restoration | |
CN115433694B (en) | Application of radiation-resistant methyl bacillus L321 in degradation of phthalate and growth promotion | |
CN111471609A (en) | Pseudomonas with algae-lysing activity and application thereof | |
CN107129955B (en) | Bacillus licheniformis HLS and its balling method and application | |
Fitri et al. | Morphological diversity of culturable cyanobacteria from habitats in Segara Anakan, Central Java, Indonesia | |
CN104357336A (en) | Trichoderma hamatum capable of preparing nano silver by reducing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20111219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111219 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140513 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5559690 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |