[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5556701B2 - Method for separating impurity elements from platinum group solution - Google Patents

Method for separating impurity elements from platinum group solution Download PDF

Info

Publication number
JP5556701B2
JP5556701B2 JP2011034376A JP2011034376A JP5556701B2 JP 5556701 B2 JP5556701 B2 JP 5556701B2 JP 2011034376 A JP2011034376 A JP 2011034376A JP 2011034376 A JP2011034376 A JP 2011034376A JP 5556701 B2 JP5556701 B2 JP 5556701B2
Authority
JP
Japan
Prior art keywords
platinum group
solution
potassium salt
potassium
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011034376A
Other languages
Japanese (ja)
Other versions
JP2012172182A (en
Inventor
秀昌 永井
靖志 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011034376A priority Critical patent/JP5556701B2/en
Publication of JP2012172182A publication Critical patent/JP2012172182A/en
Application granted granted Critical
Publication of JP5556701B2 publication Critical patent/JP5556701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、白金族元素を含有する溶解液から、不純物元素、特にビスマス、スズ、アンチモンを分離して、不純物濃度の低い白金族元素の溶解液を得る方法に関する。   The present invention relates to a method for obtaining a platinum group element solution having a low impurity concentration by separating impurity elements, particularly bismuth, tin, and antimony, from a solution containing a platinum group element.

白金、パラジウム、ロジウム、ルテニウムなどの白金族元素は資源的に希少な元素であり、白金族元素を高品位で含有する天然鉱物での産出は少ない。そのため工業的に生産される白金族元素の原料としては、銅などの非鉄金属製錬からの副産物や使用済み触媒などが大部分を占めている。   Platinum group elements such as platinum, palladium, rhodium, and ruthenium are rare in terms of resources, and are rarely produced in natural minerals containing platinum group elements in high quality. Therefore, as a raw material for platinum group elements produced industrially, by-products and spent catalysts from non-ferrous metal smelting such as copper account for the majority.

このような白金族原料から白金族元素を分離回収する場合、例えば、銅の電解工程において生成したアノードスライムを原料とし、これを塩素ガス若しくは塩化物を用いて浸出して、得られた浸出液から白金族元素を分離回収している。その場合、一般的には金や銀を分離回収した後、溶媒抽出あるいはイオン交換等の方法により白金族元素が分離回収される。   When separating and recovering platinum group elements from such platinum group raw materials, for example, anode slime produced in the copper electrolysis process is used as a raw material, which is leached using chlorine gas or chloride, and obtained from the obtained leachate. Separates and collects platinum group elements. In that case, generally, after separating and collecting gold and silver, platinum group elements are separated and collected by a method such as solvent extraction or ion exchange.

ビスマス、スズ、アンチモン等の不純物を含有する白金族元素の溶解液から白金族元素を分離する方法の一つとして、例えば特許文献1に記載の方法がある。この方法は、溶解液中の白金族元素を吸着したイオン交換樹脂から焙焼−酸浸出法により白金族元素を回収する方法であって、イオン交換樹脂を酸化還元雰囲気下にて500〜1000℃の温度で焙焼し、焙焼物を酸化剤の共存下に塩酸を用いて浸出し、得られた浸出液に塩化カリウムを添加して、例えば白金をヘキサクロロ白金(IV)酸カリウムの沈殿として分離する方法である。   As one method for separating a platinum group element from a platinum group element solution containing impurities such as bismuth, tin, and antimony, there is a method described in Patent Document 1, for example. This method is a method for recovering a platinum group element from an ion exchange resin adsorbed with a platinum group element in a solution by a roasting-acid leaching method, and the ion exchange resin is 500 to 1000 ° C. in an oxidation-reduction atmosphere. Baked at the temperature of, leached the baked product with hydrochloric acid in the presence of an oxidizing agent, and added potassium chloride to the resulting leachate, for example, to separate platinum as a precipitate of potassium hexachloroplatinate (IV) Is the method.

上記特許文献1に記載の方法で得られた白金族濃縮物の沈澱は、アルカリを加えて水酸化物の形態に再度変化させ、その水酸化物に塩酸を加えて溶解し、高濃度の白金族溶解液とする。しかし、得られた白金族溶解液に、不純物、特にビスマス、スズ、アンチモンが含まれる場合、これらの不純物を完全に分離することは難しく、後工程における精製の負荷が増加するなど工程が複雑で多くの手間と時間を要し、コスト上昇を招いていた。更に、白金族元素のロスが増加し、実収率が低くなるという問題もあった。   Precipitation of the platinum group concentrate obtained by the method described in Patent Document 1 described above is performed by adding alkali to change it again to a hydroxide form, adding hydrochloric acid to the hydroxide to dissolve it, and then adding high concentration platinum. A family solution. However, when the obtained platinum group solution contains impurities, especially bismuth, tin, and antimony, it is difficult to completely separate these impurities, and the process is complicated, such as increasing the purification load in the subsequent process. It took a lot of time and effort, and led to an increase in cost. Furthermore, there is a problem that the loss of platinum group elements increases and the actual yield decreases.

白金族元素とビスマスとを比較的効率よく分離する方法としては、例えば特許文献2に記載の方法がある。この方法は、不純物元素を含む白金族元素含有物を浸出する第一の工程、得られた浸出生成液から不純物元素を溶媒抽出する第二の工程、抽出残液からパラジウムを溶媒抽出する第三の工程、抽出残液から陽イオン型不純物元素を溶媒抽出する第四の工程、抽出残液を加水分解して白金を分離する第五の工程、沈澱からルテニウムを浸出分離する第六の工程、及びイリジウムを溶媒抽出し、イリジウムを含む逆抽出生成液とロジウムを含む抽出残液を得る第七の工程を含むものである。   As a method for separating the platinum group element and bismuth relatively efficiently, there is a method described in Patent Document 2, for example. This method includes a first step of leaching a platinum group element-containing material containing an impurity element, a second step of solvent extraction of the impurity element from the obtained leaching product liquid, and a third step of solvent extraction of palladium from the extraction residual liquid. The fourth step of solvent extraction of the cationic impurity element from the extraction residual liquid, the fifth step of hydrolyzing the extraction residual liquid to separate platinum, the sixth step of leaching and separating ruthenium from the precipitate, And a seventh step of solvent extraction of iridium to obtain a back extraction product liquid containing iridium and an extraction residual liquid containing rhodium.

上記特許文献2に記載の方法では、第三の工程で得られる抽出残液から陽イオン型不純物元素を溶媒抽出する有機抽出剤としてビス(2−エチルヘキシル)リン酸(D2EHPA)を用いている。しかし、ビスマス濃度が高い原料を処理する場合、処理期間及び工数が増加することに加え、白金族元素の抽出分離時におけるロスが問題となっていた。   In the method described in Patent Document 2, bis (2-ethylhexyl) phosphoric acid (D2EHPA) is used as an organic extractant for solvent extraction of a cationic impurity element from the extraction residual liquid obtained in the third step. However, when processing a raw material having a high bismuth concentration, in addition to an increase in the processing period and man-hours, there has been a problem of loss during extraction and separation of platinum group elements.

また、白金族元素とスズ、アンチモンとを効率よく分離する方法としては、例えば特許文献3に記載の方法がある。この特許文献3の方法は、(1)スズを含有する白金原料を酸化溶解し、得られた溶解液に塩化アンモニウムを添加してヘキサクロロ白金(IV)酸アンモニウムの結晶を晶析させ、(2)前記結晶を濃度1〜2mol/lの塩酸溶液中に懸濁し、懸濁液を昇温後冷却して、スズを溶解分離して該結晶を精製し、(3)精製された結晶をアルカリ水溶液中に懸濁し、還元剤を添加して白金粉を得ることを特徴とする。   Further, as a method for efficiently separating the platinum group element from tin and antimony, for example, there is a method described in Patent Document 3. According to the method of Patent Document 3, (1) a platinum raw material containing tin is oxidized and dissolved, and ammonium chloride is added to the obtained solution to crystallize ammonium hexachloroplatinate (IV) crystals. ) Suspend the crystals in a hydrochloric acid solution having a concentration of 1 to 2 mol / l, cool the suspension and then cool it to dissolve and separate tin to purify the crystals. (3) Purify the purified crystals with alkali It is suspended in an aqueous solution, and a reducing agent is added to obtain platinum powder.

しかしながら、上記特許文献3に記載の方法は、例えばスズの含有量が多い白金原料に適用した場合、単位時間あたり処理できる原料の量が限られてしまうため、処理時間が増大し且つ工数も増加するという問題があった。   However, when the method described in Patent Document 3 is applied to, for example, a platinum raw material having a high tin content, the amount of raw material that can be processed per unit time is limited, so that the processing time increases and the number of man-hours increases. There was a problem to do.

特開2007−302944号公報JP 2007-302944 A 特開2005−097695号公報JP 2005-097695 A 特開2008−038159号公報JP 2008-038159 A

本発明は、上記した従来の問題点に鑑み、白金族元素を含有する溶解液から、ビスマス、スズ、アンチモンなどの不純物元素を効率的に且つ低コストで分離して、不純物元素濃度の低い白金族元素の溶解液を得る方法を提供することを目的とするものである。   In view of the above-described conventional problems, the present invention efficiently separates impurity elements such as bismuth, tin, and antimony from a solution containing a platinum group element at a low cost, and has a low impurity element concentration. It aims at providing the method of obtaining the solution of a group element.

上記目的を達成するため、本発明が提供する白金族溶解液からの不純物元素の分離方法は、白金族元素と共に不純物元素としてビスマス、スズ、アンチモンを含有する白金族溶解液から不純物元素を分離する方法であって、下記第1〜第5工程を備えることを特徴とする。
(1)上記白金族溶解液に塩化カリウムを添加して白金族元素をカリウム塩として沈澱・析出させ、固液分離して白金族カリウム塩を得る第1工程
(2)得られた白金族カリウム塩に濃度1〜3モル/lの希塩酸を加えて混合洗浄し、固液分離して洗浄後カリウム塩を得る第2工程
(3)得られた洗浄後カリウム塩に水酸化ナトリウム溶液を加えるか又は該洗浄後カリウム塩に純水を加えて懸濁させた懸濁液に水酸化ナトリウムを加え、白金族元素の水酸化物を含むカリウム塩中和澱物を生成させ、固液分離してカリウム塩中和澱物を得る第3工程
(4)得られたカリウム塩中和澱物に水酸化ナトリウムと酸化剤を添加して浸出し、固液分離して浸出残渣を回収する第4工程
(5)回収した浸出残渣に塩酸を添加して溶解し、白金族水酸化物溶解液を得る第5工程
In order to achieve the above object, the method for separating an impurity element from a platinum group solution provided by the present invention separates an impurity element from a platinum group solution containing bismuth, tin, and antimony as impurity elements together with the platinum group element. It is a method, Comprising: The following 1st-5th processes are provided, It is characterized by the above-mentioned.
(1) First step (2) of obtaining platinum group potassium salt by adding potassium chloride to the above platinum group solution to precipitate and deposit platinum group element as potassium salt, and solid-liquid separation to obtain platinum group potassium salt 2nd step to obtain potassium salt after washing by adding dilute hydrochloric acid at a concentration of 1 to 3 mol / l to the salt and separating it into solid and liquid (3) Whether sodium hydroxide solution is added to the obtained potassium salt after washing Or after washing, sodium hydroxide is added to a suspension obtained by adding pure water to a potassium salt and suspended to produce a potassium salt-neutralized starch containing a platinum group hydroxide, followed by solid-liquid separation. Third step for obtaining potassium salt neutralized starch (4) Fourth step for adding potassium hydroxide and oxidizing agent to the obtained potassium salt neutralized starch and leaching, followed by solid-liquid separation to recover the leaching residue (5) Hydrochloric acid is added to the recovered leaching residue and dissolved to form a platinum group hydroxide. A fifth step of obtaining a solution mixture

本発明によれば、白金族元素を含有する溶解液からビスマス、スズ、アンチモンなどの不純物元素を効率的に分離して、不純物元素濃度の低い白金族元素の溶解液を得ることができる。従って、白金族元素の精製工程への不純物の分配を低減することができ、処理日数と工数が削減できるうえ、回収できない白金族元素のロスを低減することができる。   According to the present invention, an impurity element such as bismuth, tin, and antimony can be efficiently separated from a solution containing a platinum group element to obtain a solution of a platinum group element having a low impurity element concentration. Therefore, the distribution of impurities to the platinum group element purification process can be reduced, the number of processing days and man-hours can be reduced, and the loss of platinum group elements that cannot be recovered can be reduced.

実施例1における本発明方法の各工程を示すフローシートである。2 is a flow sheet showing each step of the method of the present invention in Example 1. 比較例1における各工程を示すフローシートである。10 is a flow sheet showing each step in Comparative Example 1.

本発明の白金族元素を含有する溶解液から、ビスマス、スズ、アンチモンなどの不純物元素を分離する方法を工程順に説明する。まず、第1工程では、出発原料の白金族溶解液に塩化カリウムを添加することにより、溶解液中の各白金族元素をカリウム塩として沈澱析出させる。例えば、白金族元素が白金の場合で説明すると、ヘキサクロロ白金(IV)酸をヘキサクロロ白金(IV)酸カリウム(KPtCl)の形態に変化させることで沈殿させる。沈殿析出した白金族カリウム塩は固液分離し、次の第2工程に供給する。 A method for separating impurity elements such as bismuth, tin, and antimony from the solution containing the platinum group element of the present invention will be described in the order of steps. First, in the first step, each platinum group element in the solution is precipitated and precipitated as a potassium salt by adding potassium chloride to the platinum group solution of the starting material. For example, in the case where the platinum group element is platinum, the precipitation is performed by changing hexachloroplatinum (IV) acid into the form of potassium hexachloroplatinum (IV) (K 2 PtCl 6 ). The precipitated platinum group potassium salt is solid-liquid separated and supplied to the next second step.

尚、上記第1工程で用いる白金族溶解液は、白金族元素と共にビスマス、スズ、アンチモンなどの不純物元素を含むものであればよく、特に限定されるものではない。代表的な白金族溶解液の例としては、銅電解工程において生成したアノードスライムを王水で溶解した溶解液、あるいは、アノードスライムを塩素ガス若しくは塩化物を用いて浸出した浸出液などがある。   The platinum group solution used in the first step is not particularly limited as long as it contains an impurity element such as bismuth, tin, and antimony together with the platinum group element. Examples of typical platinum group solution include a solution obtained by dissolving anode slime produced in a copper electrolysis process with aqua regia, or a leach solution obtained by leaching anode slime using chlorine gas or chloride.

次の第2工程では、上記第1工程で得られた白金族カリウム塩に希塩酸を加えて混合洗浄する。この希塩酸での洗浄によって、白金族カリウム塩に付着しているビスマス、スズ、アンチモンなどの不純物元素が、加水分解して沈澱することなく除去され、白金族カリウム塩から希塩酸の洗浄液中に分離される。従って、洗浄後に固液分離することにより、洗浄後の白金族カリウム塩中の不純物元素の量、特にビスマス及びアンチモンの量を大幅に低減させることができる。   In the next second step, dilute hydrochloric acid is added to the platinum group potassium salt obtained in the first step and mixed and washed. By this washing with dilute hydrochloric acid, impurity elements such as bismuth, tin and antimony adhering to the platinum group potassium salt are removed without hydrolysis and precipitation, and separated from the platinum group potassium salt into the dilute hydrochloric acid washing solution. The Therefore, by performing solid-liquid separation after washing, the amount of impurity elements in the platinum group potassium salt after washing, particularly the amount of bismuth and antimony, can be greatly reduced.

この第2工程で白金族カリウム塩の洗浄に使用する希塩酸は、濃度が1〜3モル/lの範囲であることが重要である。希塩酸濃度が1モル/l未満では、水による洗浄と大差なく、ビスマス、スズ、アンチモンの分離が不十分となる。また、白金族元素の一部が溶解してロスとなりやすい。一方、希塩酸濃度が3モル/lを超えると、ビスマス、スズ、アンチモンの分離効果に大きな差がないだけでなく、逆に設備の腐食が生じやすくなり、コストの増加を招くため好ましくない。   It is important that the dilute hydrochloric acid used for washing the platinum group potassium salt in the second step has a concentration in the range of 1 to 3 mol / l. When the concentration of dilute hydrochloric acid is less than 1 mol / l, the separation of bismuth, tin, and antimony becomes insufficient without much difference from washing with water. Moreover, a part of platinum group element melt | dissolves and it is easy to lose. On the other hand, if the concentration of dilute hydrochloric acid exceeds 3 mol / l, not only there is not a great difference in the separation effect of bismuth, tin and antimony, but also the equipment tends to be corroded and the cost is increased.

上記第2工程における洗浄の際には、溶液温度は高い方がカリウム塩の溶解度が向上し、洗浄効果も高くなる。しかし、溶液温度が高すぎると、洗浄後に固液分離する際の温度低下に伴って微細なカリウム塩が生成し、濾布を目詰まりさせて濾過性が悪化する原因となる可能性がある。このため特に加熱は行わず、常温で実施することが好ましい。また、洗浄時間については、長時間である程望ましいが、一般的には20〜30分程度程度で十分な洗浄効果が得られる。   At the time of cleaning in the second step, the higher the solution temperature, the higher the solubility of the potassium salt and the higher the cleaning effect. However, if the solution temperature is too high, a fine potassium salt is generated with a decrease in temperature during solid-liquid separation after washing, which may cause clogging of the filter cloth and deteriorate filterability. For this reason, it is preferable to carry out at normal temperature without particularly heating. The cleaning time is preferably as long as possible, but generally a sufficient cleaning effect can be obtained in about 20 to 30 minutes.

また、上記第2工程において、洗浄液である希塩酸を添加した溶液中の塩化カリウム濃度を120〜150g/lの範囲に調整することが好ましい。溶液中の塩化カリウム濃度が120g/l未満では、白金族元素までもが過剰に溶出してしまうため、白金族元素のロスが生じる原因となる。また、塩化カリウム濃度が150g/lを超えると、コストが増加し、また未反応の結晶が残留して固液分離する際に濾布を詰まらせたり、固体に混入するなど操業に悪影響となるため好ましくない。   Moreover, in the said 2nd process, it is preferable to adjust the potassium chloride density | concentration in the solution which added the diluted hydrochloric acid which is a washing | cleaning liquid to the range of 120-150 g / l. If the potassium chloride concentration in the solution is less than 120 g / l, even the platinum group element is excessively eluted, which causes a loss of the platinum group element. Further, when the potassium chloride concentration exceeds 150 g / l, the cost increases, and unreacted crystals remain and clog the filter cloth when separating into solid and liquid, or adversely affect the operation. Therefore, it is not preferable.

尚、上記のごとく塩化カリウム濃度を高めに調整する方法としては、上記第2工程で希塩酸を加えた溶液に塩化カリウムを添加するか、あるいは上記第1工程でカリウム塩を生成する際に白金族溶解液への塩化カリウムの添加量を制御することで調整することができる。   As described above, as a method for adjusting the potassium chloride concentration to be high, potassium chloride is added to the solution in which dilute hydrochloric acid is added in the second step, or the platinum group is formed when the potassium salt is formed in the first step. It can be adjusted by controlling the amount of potassium chloride added to the solution.

上記第2工程での固液分離により得られた洗浄後の白金族カリウム塩は、次の第3工程において、水酸化ナトリウム溶液を加えるか又は洗浄後カリウム塩に純水を加えて懸濁させた懸濁液に水酸化ナトリウムを加えることにより中和する。この中和反応により、白金族元素が水酸化物として沈殿析出する。得られた白金族元素の水酸化物を含むカリウム塩中和澱物は、固液分離して次の第4工程に供給する。 The washed platinum group potassium salt obtained by solid-liquid separation in the second step is suspended in the next third step by adding a sodium hydroxide solution or adding pure water to the washed potassium salt. The suspension is neutralized by adding sodium hydroxide . By this neutralization reaction, the platinum group element is precipitated as a hydroxide. The obtained potassium salt neutralized starch containing platinum group hydroxide is solid-liquid separated and supplied to the next fourth step.

上記白金族カリウム塩の中和は、例えば水酸化ナトリウム濃度が10〜12%程度の溶液を用い、この溶液を上記洗浄後の白金族カリウム塩に添加し、pHが7〜8の範囲になるように調整する。pHがを越えると、ルテニウムなど白金族元素の一部が溶液に再溶解してロスとなる可能性がある。またpHが未満では、白金族元素の一部が回収できずに溶液に残留しロスとなるなど好ましくない。
Neutralization of the platinum group potassium salt uses, for example, a solution having a sodium hydroxide concentration of about 10 to 12%, and this solution is added to the washed platinum group potassium salt so that the pH is in the range of 7 to 8. Adjust as follows. When the pH exceeds 8 , a part of platinum group elements such as ruthenium may be re-dissolved in the solution and lost. On the other hand, if the pH is less than 7 , a part of the platinum group element cannot be recovered and remains in the solution, resulting in loss.

第4工程では、上記第3工程で得られたカリウム塩中和澱物に水酸化ナトリウムと酸化剤を添加して浸出し、固液分離して主に白金族元素の水酸化物からなる浸出残渣を回収する。この浸出によって、特に上記第2工程で洗浄後の白金族カリウム塩中に比較的多く残留するスズを、浸出液中に効率よく分離することができる。   In the fourth step, the potassium salt neutralized starch obtained in the third step is leached by adding sodium hydroxide and an oxidizing agent, and leaching mainly consisting of hydroxides of platinum group elements by solid-liquid separation. Collect the residue. By this leaching, tin that remains relatively much in the platinum group potassium salt that has been washed in the second step can be efficiently separated into the leaching solution.

上記カリウム塩中和澱物の浸出に用いる水酸化ナトリウムは、取り扱いや添加する際に精度よく制御できるなどの点から、濃度が10〜12%程度の溶液を用いるのが適している。酸化剤としては、塩素ガス、オゾン、亜塩素酸ナトリウムなどを用いることができるが、取り扱いの容易さやコストなどを考えると、亜塩素酸ナトリウムが適している。また、浸出時には、カリウム塩中和澱物に水酸化ナトリウムと酸化剤を加えたスラリーの酸化電位を測定し、具体的には銀塩化銀電極を参照電極とした場合には200mVに達するまで継続することで、スズなど残留する不純物を浸出し、白金族元素の水酸化物からなる浸出残渣を得ることができる。反応温度は高い方ほど浸出が促進されるため好ましく、実用的には60〜80℃とすることが好適である。   As the sodium hydroxide used for leaching the potassium salt neutralized starch, it is suitable to use a solution having a concentration of about 10 to 12% from the viewpoint that it can be accurately controlled when handled and added. As the oxidizing agent, chlorine gas, ozone, sodium chlorite, or the like can be used, but sodium chlorite is suitable in view of ease of handling and cost. At the time of leaching, the oxidation potential of a slurry obtained by adding sodium hydroxide and an oxidizing agent to potassium salt neutralized starch is measured. Specifically, when a silver-silver chloride electrode is used as a reference electrode, it continues until it reaches 200 mV. By doing so, residual impurities such as tin can be leached and a leaching residue made of a platinum group hydroxide can be obtained. The higher the reaction temperature, the more preferable leaching is promoted. Practically, the reaction temperature is preferably 60 to 80 ° C.

上記第4工程で回収した浸出残渣は、第5工程において塩酸を添加して溶解することにより、白金族水酸化物溶解液とする。尚、浸出残渣の溶解に用いる塩酸の濃度と添加量は、白金水酸化物溶解液の処理に用いる条件によって調整することができる。   The leaching residue collected in the fourth step is made into a platinum group hydroxide solution by adding hydrochloric acid and dissolving in the fifth step. In addition, the density | concentration and addition amount of hydrochloric acid used for melt | dissolution of a leaching residue can be adjusted with the conditions used for the process of a platinum hydroxide solution.

上記浸出残渣の溶解に使用する塩酸は12M程度、即ち濃塩酸を用いることが好ましいが、浸出残渣の湿潤状態に応じて適宜調整すれば良い。塩酸の添加量は湿潤状態の浸出残渣1kgに対して2リットル程度の割合とすることが好ましく、開始時に全量を添加し、撹拌しながら室温もしくは60〜90℃に維持することで溶解できる。   The hydrochloric acid used for dissolving the leaching residue is preferably about 12M, that is, concentrated hydrochloric acid, but may be appropriately adjusted according to the wet state of the leaching residue. The amount of hydrochloric acid added is preferably about 2 liters per 1 kg of the wet leaching residue, and can be dissolved by adding the whole amount at the start and maintaining at room temperature or 60 to 90 ° C. with stirring.

上記第1〜第5工程からなる本発明方法により、白金族元素の溶解液からビスマス、スズ、アンチモンなどの不純物元素を効率良く分離して、これら不純物元素濃度の低い白金族水酸化物の溶解液を得ることができる。尚、白金とルテニウムについては、第3工程で分離されるカリウム塩中和濾液や第4工程で分離されるアルカリ浸出液にも一部分配されるが、これらは白金やルテニウムの高品位原料として、それぞれの精製工程に供給して有効に活用することができる。   By the method of the present invention comprising the above first to fifth steps, impurity elements such as bismuth, tin, and antimony are efficiently separated from the platinum group element solution, and the platinum group hydroxide having a low impurity element concentration is dissolved. A liquid can be obtained. In addition, although platinum and ruthenium are partly distributed to the potassium salt neutralized filtrate separated in the third step and the alkaline leachate separated in the fourth step, these are respectively high-grade raw materials for platinum and ruthenium. It can be used effectively by supplying it to the purification process.

[実施例1]
不純物としてBi、Sn、Sbを多く含有する白金族原料を準備し、この白金族原料を図1に示す各工程に従って処理した。即ち、上記白金族原料を王水で溶解し、溶解残渣を濾別して原料溶解液を得た。この原料溶解液に塩化カリウムを添加し、生成した沈殿を固液分離して白金族カリウム塩を得た(第1工程)。
[Example 1]
A platinum group raw material containing a large amount of Bi, Sn, and Sb as impurities was prepared, and this platinum group raw material was processed according to each step shown in FIG. That is, the platinum group raw material was dissolved in aqua regia, and the dissolution residue was filtered to obtain a raw material solution. Potassium chloride was added to this raw material solution, and the produced precipitate was subjected to solid-liquid separation to obtain a platinum group potassium salt (first step).

この白金族カリウム塩を3モル/lの希塩酸にスラリー濃度がWet換算で500g/lとなるように添加し、30分間撹拌して洗浄した。この洗浄の際に、溶液中の塩化カリウム濃度は130g/lであった。希塩酸による洗浄が終了した後、洗浄後カリウム塩と希塩酸洗浄液をヌッチェと5C濾紙を用いて固液分離した(第2工程)。   This platinum group potassium salt was added to 3 mol / l dilute hydrochloric acid so that the slurry concentration became 500 g / l in terms of Wet, and the mixture was stirred and washed for 30 minutes. During this washing, the potassium chloride concentration in the solution was 130 g / l. After washing with dilute hydrochloric acid, the washed potassium salt and dilute hydrochloric acid washing solution were separated into solid and liquid using Nutsche and 5C filter paper (second step).

得られた洗浄後カリウム塩の結晶に純水を加えて懸濁させた。この懸濁液に水酸化ナトリウムを添加してpH7〜8の中性領域に調整し、生成した水酸化物からなるカリウム塩中和澱物とカリウム塩中和濾液を固液分離した(第3工程)。   Pure water was added to and suspended in the potassium salt crystals after washing. Sodium hydroxide was added to this suspension to adjust the pH to a neutral region of 7 to 8, and the produced potassium salt neutralized starch and potassium salt neutralized filtrate were subjected to solid-liquid separation (No. 3). Process).

得られた水酸化物からなるカリウム塩中和澱物に、更に水酸化ナトリウム溶液を添加してpHが11以上となるように調整し、水酸化物が懸濁した状態のスラリーとした。このスラリーを加温して60℃まで昇温した後、酸化剤として亜塩素酸ナトリウム溶液を添加し、酸化還元電位(参照電極:塩化銀電極)が1000mVに達するまで酸化してアルカリ浸出を行った。その後固液分離して、アルカリ浸出液とアルカリ浸出残渣とを得た(第4工程)。   A sodium hydroxide solution was further added to the obtained potassium salt neutralized starch composed of hydroxide to adjust the pH to 11 or more, and a slurry in which the hydroxide was suspended was obtained. After heating this slurry to 60 ° C., a sodium chlorite solution is added as an oxidizing agent, and oxidation is performed until the oxidation-reduction potential (reference electrode: silver chloride electrode) reaches 1000 mV to perform alkali leaching. It was. Thereafter, solid-liquid separation was performed to obtain an alkali leaching solution and an alkali leaching residue (fourth step).

次に、得られたアルカリ浸出残渣に塩酸を加えてpHが1.5〜2の範囲になるように調整し、アルカリ浸出残渣を溶解して水酸化物溶解液を得た(第5工程)。最終的に得られた水酸化物溶解液では、不純物元素であるBi、Sn、Sbの90%以上を分離することができ、その結果不純物品位の低い白金族元素の水酸化物溶解液が得られた。   Next, hydrochloric acid was added to the obtained alkali leaching residue to adjust the pH to be in the range of 1.5 to 2, and the alkali leaching residue was dissolved to obtain a hydroxide solution (fifth step). . In the finally obtained hydroxide solution, 90% or more of impurity elements Bi, Sn, and Sb can be separated, and as a result, a hydroxide solution of a platinum group element having a low impurity quality is obtained. It was.

上記実施例1において、第2工程での希塩酸洗浄液、第3工程でのカリウム塩中和濾液、第4工程でのアルカリ浸出液、及び第5工程での水酸化物溶解液の各液中の白金族元素(Pt、Pd、Rh、Ru)と不純物元素(Bi、Sn、Sb)の濃度(重量%)を、白金族カリウム塩を100重量%として下記表1に示した。   In Example 1 above, platinum in each solution of the dilute hydrochloric acid cleaning solution in the second step, the potassium salt neutralized filtrate in the third step, the alkali leaching solution in the fourth step, and the hydroxide solution in the fifth step The concentrations (wt%) of the group elements (Pt, Pd, Rh, Ru) and the impurity elements (Bi, Sn, Sb) are shown in Table 1 below, with the platinum group potassium salt being 100 wt%.

Figure 0005556701
Figure 0005556701

上記表1の結果から分るように、アルカリ浸出残渣を塩酸溶解して得られた白金族水酸化物溶解液中のBi、Sn、Sbの各濃度は、白金族カリウム塩中の濃度から大幅に低減された。尚、第3工程での白金族カリウム塩中和濾液はPtを比較的多く含むが、後工程の白金精製工程に用いる高品位原料とすることができた。また、第4工程でのアルカリ浸出液中にはRu及びPtが分配しているが、それぞれの精製工程に供給してRu及びPtを更に回収した。   As can be seen from the results in Table 1 above, the concentrations of Bi, Sn, and Sb in the platinum group hydroxide solution obtained by dissolving the alkaline leaching residue with hydrochloric acid are greatly different from those in the platinum group potassium salt. Reduced to In addition, although the platinum group potassium salt neutralized filtrate in the third step contains a relatively large amount of Pt, it could be used as a high-grade raw material used in the platinum purification step in the subsequent step. Further, Ru and Pt are distributed in the alkaline leachate in the fourth step, but Ru and Pt are further recovered by supplying each of the purification steps.

本発明によれば、上記表1に示すように、白金族元素の中でもPdとRhに対する分離効果が著しい。尚、白金族元素の中でPtとRuはカリウム塩中和濾液やアルカリ浸出液にも一部分配するが、これらは上記したようにPt及びRuの各精製工程に高品位原料として供給して有効に活用することができる。   According to the present invention, as shown in Table 1, the effect of separating Pd and Rh among the platinum group elements is remarkable. Of the platinum group elements, Pt and Ru are partly distributed to the potassium salt neutralized filtrate and the alkaline leaching solution. As described above, these are effectively supplied as high-grade raw materials to the Pt and Ru purification processes. Can be used.

[比較例1]
上記実施例1と同じ白金族原料を使用して、図2に示す各工程に従って処理した。即ち、上記白金族原料を王水で溶解し、溶解残渣を濾別して得られた原料溶解液に塩化カリウムを添加し、生成した沈殿を固液分離して白金族カリウム塩を得た。
[Comparative Example 1]
Using the same platinum group raw material as in Example 1, the treatment was performed according to the steps shown in FIG. That is, the platinum group raw material was dissolved in aqua regia, potassium chloride was added to the raw material solution obtained by filtering the dissolution residue, and the resulting precipitate was subjected to solid-liquid separation to obtain a platinum group potassium salt.

この白金族カリウム塩は、希塩酸洗浄することなく、そのまま水酸化ナトリウムを添加してpHが7〜8になるように中和し、生成したカリウム塩中和澱物をカリウム塩中和濾液と固液分離した。次に、得られたカリウム塩中和澱物を、濃度6モル/lの塩酸にスラリー濃度がWet換算で100g/lとなるように添加して溶解し、水酸化物溶解液とした。   This platinum group potassium salt is neutralized so as to have a pH of 7-8 by adding sodium hydroxide as it is without washing with dilute hydrochloric acid, and the resulting potassium salt neutralized starch is solidified with the potassium salt neutralized filtrate. The liquid was separated. Next, the obtained potassium salt neutralized starch was added and dissolved in hydrochloric acid having a concentration of 6 mol / l so that the slurry concentration would be 100 g / l in terms of Wet, to obtain a hydroxide solution.

上記比較例1において、カリウム塩中和濾液及び水酸化物溶解液の各液中の白金族元素(Pt、Pd、Rh、Ru)と不純物元素(Bi、Sn、Sb)の濃度(重量%)を、白金族カリウム塩を100重量%として下記表2に示した。   In the comparative example 1, the concentrations (wt%) of platinum group elements (Pt, Pd, Rh, Ru) and impurity elements (Bi, Sn, Sb) in each of the potassium salt neutralized filtrate and the hydroxide solution. Table 2 below shows platinum group potassium salt as 100% by weight.

Figure 0005556701
Figure 0005556701

上記の結果から分るように、最終的に得られた水酸化物溶解液はBi、Sn及びSbの濃度が高く、これらの不純物元素を白金族元素のBi、Sn、Sbと分離することができなかった。尚、白金族カリウム塩中のPtはカリウム塩中和濾液にも分配し、このカリウム塩中和濾液は白金精製工程に原料として供給することが可能であった。   As can be seen from the above results, the hydroxide solution finally obtained has a high concentration of Bi, Sn, and Sb, and these impurity elements can be separated from the platinum group elements Bi, Sn, and Sb. could not. Pt in the platinum group potassium salt was also distributed to the potassium salt neutralized filtrate, and this potassium salt neutralized filtrate could be supplied as a raw material to the platinum purification step.

Claims (3)

白金族元素と共に不純物元素としてビスマス、スズ、アンチモンを含有する白金族溶解液から不純物元素を分離する方法であって、下記第1〜第5工程を備えることを特徴とする白金族溶解液からの不純物元素の分離方法。
(1)上記白金族溶解液に塩化カリウムを添加して白金族元素をカリウム塩として沈澱・析出させ、固液分離して白金族カリウム塩を得る第1工程
(2)得られた白金族カリウム塩に濃度1〜3モル/lの希塩酸を加えて混合洗浄し、固液分離して洗浄後カリウム塩を得る第2工程
(3)得られた洗浄後カリウム塩に水酸化ナトリウム溶液を加えるか又は該洗浄後カリウム塩に純水を加えて懸濁させた懸濁液に水酸化ナトリウムを加え、白金族元素の水酸化物を含むカリウム塩中和澱物を生成させ、固液分離してカリウム塩中和澱物を得る第3工程
(4)得られたカリウム塩中和澱物に水酸化ナトリウムと酸化剤を添加して浸出し、固液分離して浸出残渣を回収する第4工程
(5)回収した浸出残渣に塩酸を添加して溶解し、白金族水酸化物溶解液を得る第5工程
A method for separating an impurity element from a platinum group solution containing bismuth, tin, and antimony as impurity elements together with a platinum group element, comprising the following first to fifth steps, from the platinum group solution: Separation method of impurity elements.
(1) First step (2) of obtaining platinum group potassium salt by adding potassium chloride to the above platinum group solution to precipitate and deposit platinum group element as potassium salt, and solid-liquid separation to obtain platinum group potassium salt 2nd step to obtain potassium salt after washing by adding dilute hydrochloric acid at a concentration of 1 to 3 mol / l to the salt and separating it into solid and liquid (3) Whether sodium hydroxide solution is added to the obtained potassium salt after washing Or after washing, sodium hydroxide is added to a suspension obtained by adding pure water to a potassium salt and suspended to produce a potassium salt-neutralized starch containing a platinum group hydroxide, followed by solid-liquid separation. Third step for obtaining potassium salt neutralized starch (4) Fourth step for adding potassium hydroxide and oxidizing agent to the obtained potassium salt neutralized starch and leaching, followed by solid-liquid separation to recover the leaching residue (5) Hydrochloric acid is added to the recovered leaching residue and dissolved to form a platinum group hydroxide. A fifth step of obtaining a solution mixture
前記第2工程において、白金族カリウム塩に希塩酸を加えて混合洗浄する際の溶液中の塩化カリウム濃度を120〜150g/lの範囲に調整することを特徴とする、請求項1に記載の白金族溶解液からの不純物元素の分離方法。   2. The platinum according to claim 1, wherein in the second step, the concentration of potassium chloride in the solution at the time of mixing and washing by adding dilute hydrochloric acid to a platinum group potassium salt is adjusted to a range of 120 to 150 g / l. Of separating impurity elements from a group solution. 前記白金族溶解液が、銅電解工程において生成したアノードスライムを、塩素ガス又は塩化物を用いて浸出した浸出液であるか、若しくは王水で溶解した溶解液であることを特徴とする、請求項1又は2に記載の白金族溶解液からの不純物元素の分離方法。   The platinum group solution is a leachate obtained by leaching the anode slime produced in the copper electrolysis process using chlorine gas or chloride, or a solution obtained by dissolving in aqua regia. 3. A method for separating an impurity element from a platinum group solution according to 1 or 2.
JP2011034376A 2011-02-21 2011-02-21 Method for separating impurity elements from platinum group solution Active JP5556701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034376A JP5556701B2 (en) 2011-02-21 2011-02-21 Method for separating impurity elements from platinum group solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034376A JP5556701B2 (en) 2011-02-21 2011-02-21 Method for separating impurity elements from platinum group solution

Publications (2)

Publication Number Publication Date
JP2012172182A JP2012172182A (en) 2012-09-10
JP5556701B2 true JP5556701B2 (en) 2014-07-23

Family

ID=46975377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034376A Active JP5556701B2 (en) 2011-02-21 2011-02-21 Method for separating impurity elements from platinum group solution

Country Status (1)

Country Link
JP (1) JP5556701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400306B2 (en) 2014-05-12 2019-09-03 Summit Mining International Inc. Brine leaching process for recovering valuable metals from oxide materials

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974467B (en) * 2012-10-30 2014-03-05 东北大学 Beneficiation reagent and of separating and recycling precious metal from cooper anode mud using method thereof
JP6442674B2 (en) * 2015-06-30 2018-12-26 住友金属鉱山株式会社 Method for producing platinum group hydrochloric acid solution
JP6780448B2 (en) * 2016-11-02 2020-11-04 住友金属鉱山株式会社 How to recover high-grade rhodium powder
JP7400443B2 (en) * 2019-02-19 2023-12-19 住友金属鉱山株式会社 Mutual separation method of platinum group elements
WO2021045709A1 (en) * 2019-09-05 2021-03-11 T.C. Marmara Üni̇versi̇tesi̇ Platinum recovery method
JP7487499B2 (en) * 2020-03-11 2024-05-21 住友金属鉱山株式会社 Method for separating platinum group elements from each other
CN118190689B (en) * 2024-05-15 2024-08-23 贵研检测科技(云南)有限公司 Method for accurately measuring high-content rhodium in iridium-containing noble metal sample

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733909B2 (en) * 2002-01-07 2006-01-11 住友金属鉱山株式会社 Method for purifying ruthenium
JP3741117B2 (en) * 2003-09-26 2006-02-01 住友金属鉱山株式会社 Mutual separation of platinum group elements
JP4470749B2 (en) * 2004-02-10 2010-06-02 三菱マテリアル株式会社 Rhodium recovery method and metal rhodium production method
JP4715627B2 (en) * 2006-05-11 2011-07-06 住友金属鉱山株式会社 Method for recovering platinum group element from ion exchange resin adsorbed platinum group element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400306B2 (en) 2014-05-12 2019-09-03 Summit Mining International Inc. Brine leaching process for recovering valuable metals from oxide materials

Also Published As

Publication number Publication date
JP2012172182A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5556701B2 (en) Method for separating impurity elements from platinum group solution
JP4323492B2 (en) Method for recovering platinum in waste liquid containing selenium using hydrazine
JP3879126B2 (en) Precious metal smelting method
JP2013508566A (en) Precious metal recovery method
WO2003078670A1 (en) Method for separating platinum group element
JP3087758B1 (en) Method for recovering valuable metals from copper electrolytic slime
JP5825484B2 (en) Method for recovering platinum group metals
JP2001316736A (en) Method for recovering silver
JP4323493B2 (en) Method for recovering platinum in waste liquid containing selenium using copper powder
JP5200588B2 (en) Method for producing high purity silver
JP7487499B2 (en) Method for separating platinum group elements from each other
JP6442674B2 (en) Method for producing platinum group hydrochloric acid solution
JP6264566B2 (en) Method for producing leaching product liquid containing platinum group element
JPH08209259A (en) Method for separating and recovering platinum group from plantinum group-containing iron alloy
JP4158706B2 (en) Processing method and manufacturing method for separating gold from platinum group-containing solution
JP5339068B2 (en) Ruthenium purification and recovery method
JP6475403B2 (en) How to recover tellurium
JP4715598B2 (en) Chloride leaching method of lead electrolysis slime
WO2004050927A1 (en) Method for separating platinum group element
JP5881469B2 (en) Ruthenium recovery method
JP5881502B2 (en) Ruthenium recovery method
JP4269693B2 (en) Process for treating selenium mixture
JP4821486B2 (en) Method for purifying platinum raw materials containing tin
JP7400443B2 (en) Mutual separation method of platinum group elements
JP2011195935A (en) Method for separating and recovering platinum group element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150