[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5552293B2 - Foamed electric wire and transmission cable having the same - Google Patents

Foamed electric wire and transmission cable having the same Download PDF

Info

Publication number
JP5552293B2
JP5552293B2 JP2009244135A JP2009244135A JP5552293B2 JP 5552293 B2 JP5552293 B2 JP 5552293B2 JP 2009244135 A JP2009244135 A JP 2009244135A JP 2009244135 A JP2009244135 A JP 2009244135A JP 5552293 B2 JP5552293 B2 JP 5552293B2
Authority
JP
Japan
Prior art keywords
foamed
electric wire
examples
mass
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009244135A
Other languages
Japanese (ja)
Other versions
JP2011090920A5 (en
JP2011090920A (en
Inventor
亮 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009244135A priority Critical patent/JP5552293B2/en
Priority to PCT/JP2010/067846 priority patent/WO2011048973A1/en
Publication of JP2011090920A publication Critical patent/JP2011090920A/en
Publication of JP2011090920A5 publication Critical patent/JP2011090920A5/ja
Application granted granted Critical
Publication of JP5552293B2 publication Critical patent/JP5552293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/142Insulating conductors or cables by extrusion of cellular material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/06Rods, e.g. connecting rods, rails, stakes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、発泡電線及びこれを有する伝送ケーブルに関する。   The present invention relates to a foamed electric wire and a transmission cable having the same.

USB3.0ケーブル、HDMIケーブル、インフィニバンドケーブル、マイクロUSBケーブルなどの高速伝送ケーブルなどに使用される発泡電線の発泡絶縁層には、細径で耐熱性が高く、微細発泡成形が可能であることが求められる。   The foam insulation layer of foamed electric wires used for USB 3.0 cables, HDMI cables, Infiniband cables, micro USB cables, etc., has a small diameter, high heat resistance, and can be finely foamed. Is required.

このような発泡絶縁層として、従来、破断時の溶融張力が5.0g(49mN)以上であり、かつ190℃、2.16kgにおけるメルトマスフローレートが1.0g/10min以上のエチレン−プロピレン共重合体に、アゾジカルボンアミドなどの化学発泡剤と、シリカなどの充填剤とを添加したものを用いることにより、高発泡度の発泡絶縁層を安定して確実に形成することが提案されている(下記特許文献1)。   As such a foamed insulating layer, an ethylene-propylene copolymer having a melt tension at break of 5.0 g (49 mN) or more and a melt mass flow rate at 190 ° C. of 2.16 kg of 1.0 g / 10 min or more is conventionally used. It has been proposed to stably and reliably form a foamed insulating layer having a high foaming degree by using a compound obtained by adding a chemical foaming agent such as azodicarbonamide and a filler such as silica to the coalescence ( Patent Document 1) below.

特開2006−236978号公報JP 2006-236978 A

ところで、伝送ケーブルの細径化に伴って、発泡絶縁層における発泡セルについてさらなる微細化が求められるようになっている。   By the way, with the reduction of the diameter of the transmission cable, further miniaturization of the foamed cell in the foamed insulating layer is required.

しかし、上記特許文献1に記載の発泡絶縁層では、発泡セルが粗大化する場合があり、十分に微細な発泡セルを得ることができない場合があった。   However, in the foamed insulating layer described in Patent Document 1, foamed cells may be coarsened, and sufficiently fine foamed cells may not be obtained.

またベース樹脂及び化学発泡剤を混練する際にシリカが含まれていることにより、押出物の押出量が時間とともに低下するため、発泡電線の製造効率が低下する。その結果、発泡電線の価格が高くなる。   Moreover, since silica is contained when kneading the base resin and the chemical foaming agent, the extrusion amount of the extrudate decreases with time, so that the production efficiency of the foamed electric wire decreases. As a result, the price of the foamed electric wire is increased.

本発明は、上記事情に鑑みてなされたものであり、十分微細な発泡セルを得ることができ、且つ低価格化が可能な発泡電線及びこれを有する伝送ケーブルを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a foamed electric wire capable of obtaining a sufficiently fine foamed cell and capable of reducing the price, and a transmission cable having the foamed electric wire.

本発明者は上記課題を解決するため、ベース樹脂の持つ破断時における溶融張力に着目して種々の実験を行った。このとき、本発明者は、破断時における溶融張力を特許文献1に記載された溶融張力よりも低くすると、減衰量が大きくなるものと考えていた。しかし、本発明者の研究により、プロピレン系樹脂を含むベース樹脂に対して化学発泡剤のみならず、所定量のシリカをも添加することによって発泡セルの十分な微細化が可能となり、それにより減衰量も抑制されることが明らかとなった。また上記所定量のシリカの添加は、押出機のスクリューへのベース樹脂のこびり付きを抑制でき、ベース樹脂と化学発泡剤等との混練を円滑に行うことができると考えた。そして、本発明者はさらに鋭意研究を重ねた結果、下記発明により上記課題を解決し得ることを見出した。   In order to solve the above-mentioned problems, the present inventor conducted various experiments paying attention to the melt tension at the time of fracture of the base resin. At this time, the inventor considered that when the melt tension at the time of fracture was lower than the melt tension described in Patent Document 1, the amount of attenuation increased. However, according to the inventor's research, by adding not only a chemical foaming agent but also a predetermined amount of silica to a base resin containing a propylene-based resin, the foamed cell can be sufficiently miniaturized, and thereby attenuated. It became clear that the amount was also suppressed. Further, it was considered that the addition of the predetermined amount of silica can suppress the sticking of the base resin to the screw of the extruder and can smoothly knead the base resin with the chemical foaming agent. As a result of further earnest studies, the present inventor has found that the above-described problems can be solved by the following invention.

即ち本発明は、導体と、前記導体を被覆する発泡絶縁層とを備える発泡電線であって、前記発泡絶縁層が、プロピレン系樹脂を含み、破断時における溶融張力が20〜55mNで且つ引取速度が50m/分以上200m/分以下であるベース樹脂と、化学発泡剤と、シリカ粒子と、銅害防止剤とを含む樹脂組成物を溶融混練することにより得られ、前記化学発泡剤がアゾジカルボンアミドであり、前記シリカ粒子が前記ベース樹脂100質量部に対して0.03〜1質量部の割合で配合され、前記銅害防止剤が前記ベース樹脂100質量部に対して0.25〜1質量部の割合で配合されていることを特徴とする発泡電線である。
That is, the present invention is a foamed electric wire comprising a conductor and a foamed insulating layer covering the conductor, wherein the foamed insulating layer contains a propylene-based resin, has a melt tension at break of 20 to 55 mN, and a take-off speed. Is obtained by melt-kneading a resin composition containing a base resin having a viscosity of 50 m / min or more and 200 m / min or less , a chemical foaming agent, silica particles, and a copper damage inhibitor, and the chemical foaming agent is azodicarboxylic It is an amide, the silica particles are blended at a ratio of 0.03 to 1 part by mass with respect to 100 parts by mass of the base resin, and the copper damage inhibitor is 0.25 to 1 with respect to 100 parts by mass of the base resin. It is a foamed electric wire characterized by being mix | blended in the ratio of the mass part .

この発泡電線によれば、ベース樹脂及び化学発泡剤を含む樹脂組成物中にシリカが含まれていることで、十分微細な発泡セルを得ることができる。また押出物の押出量が時間とともに低下することを十分に抑制することもできる。このため、発泡電線の製造効率が向上する。その結果、発泡電線の低価格化も可能となる。また本発明の発泡電線によれば、銅害防止剤の添加量が上記範囲内であると、熱老化による劣化がより十分に抑制され、発泡電線の寿命をより長くすることができる。
According to this foamed electric wire, a sufficiently fine foam cell can be obtained by including silica in the resin composition containing the base resin and the chemical foaming agent. Moreover, it can fully suppress that the extrusion amount of an extrudate falls with time. For this reason, the manufacturing efficiency of a foamed electric wire improves. As a result, the price of the foamed electric wire can be reduced. Moreover, according to the foamed electric wire of this invention, the deterioration by heat aging is fully suppressed as the addition amount of a copper harm prevention agent exists in the said range, and the lifetime of a foamed electric wire can be lengthened more.

また本発明は、上記発泡電線を有する伝送ケーブルである。この伝送ケーブルによれば、十分微細な発泡セルを得ることができ、且つ低価格化が可能となるので、減衰量の抑制された伝送ケーブルを得ることができると共に伝送ケーブルの低価格化も可能となる。   Moreover, this invention is a transmission cable which has the said foamed electric wire. According to this transmission cable, a sufficiently fine foam cell can be obtained and the price can be reduced, so that a transmission cable with reduced attenuation can be obtained and the price of the transmission cable can be reduced. It becomes.

なお、本発明において、「破断時における溶融張力」とは、キャピラリーレオメータ(キャピログラフ 1D、東洋精機製作所株式会社製)を用いて測定した溶融張力であり、詳細には内径1.0mm、長さ10mmのフラットキャピラリーにベース樹脂を充填し、ピストンスピード5mm/分、バレル内径9.55mm、引取加速度400m/min、バレル、キャピラリー及びバレル直後の恒温槽それぞれの温度を200℃の条件に設定してからバレルにベース樹脂を充填して5分予熱後に上記ピストンスピードでピストン押出を開始し、上記引取加速度で加速して引き取り、破断したときの張力を測定し、これを10回行って得られた張力の測定値の平均値を言うものとする。 In the present invention, “melt tension at break” is a melt tension measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and specifically, an inner diameter of 1.0 mm and a length of 10 mm. The base capillary is filled with a base resin, the piston speed is 5 mm / min, the barrel inner diameter is 9.55 mm, the take-up acceleration is 400 m / min 2 , and the temperature of the barrel, capillary and the thermostat immediately after the barrel is set to 200 ° C. It was obtained by filling the barrel with the base resin, starting the piston extrusion at the above piston speed after 5 minutes preheating, accelerating at the above take-up acceleration, taking out, measuring the tension when it was broken, and performing this 10 times. The average value of the measured values of tension shall be said.

本発明によれば、十分微細な発泡セルを得ることができ、且つ低価格化が可能な発泡電線及びこれを有する伝送ケーブルが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the foamed electric wire which can obtain a sufficiently fine foam cell and can be reduced in price, and a transmission cable which has this are provided.

本発明の伝送ケーブルの一実施形態を示す部分側面図である。It is a partial side view which shows one Embodiment of the transmission cable of this invention. 図1のII−II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 本発明の伝送ケーブルの他の実施形態を示す端面図である。It is an end view which shows other embodiment of the transmission cable of this invention.

以下、本発明の実施形態について図1及び図2を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2.

図1は、本発明に係る伝送ケーブルの一実施形態を示す部分側面図であり、発泡電線を伝送ケーブルとしての同軸ケーブルに適用した例を示すものである。図2は、図1のII−II線に沿った断面図である。図1に示すように、伝送ケーブル10は同軸ケーブルを示しており、発泡電線5と、発泡電線5を包囲する外部導体3と、外部導体3を被覆するシース4とを備えている。そして、発泡電線5は、内部導体1と、内部導体1を被覆する発泡絶縁層2とを有している。   FIG. 1 is a partial side view showing an embodiment of a transmission cable according to the present invention, and shows an example in which a foamed electric wire is applied to a coaxial cable as a transmission cable. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. As shown in FIG. 1, the transmission cable 10 is a coaxial cable, and includes a foamed electric wire 5, an outer conductor 3 that surrounds the foamed electric wire 5, and a sheath 4 that covers the outer conductor 3. The foamed electric wire 5 includes an inner conductor 1 and a foamed insulating layer 2 that covers the inner conductor 1.

ここで、発泡絶縁層2は、プロピレン系樹脂を含み、破断時における溶融張力が20mN〜55mNで且つ引取速度が50m/分以上であるベース樹脂と、化学発泡剤と、シリカ粒子とを含む樹脂組成物を溶融混練することによって得られる。ここで、化学発泡剤としては、アゾジカルボンアミドが用いられ、シリカ粒子は、ベース樹脂100質量部に対して0.03質量部〜1質量部の割合で添加される。   Here, the foamed insulating layer 2 contains a propylene-based resin, a resin containing a base resin having a melt tension at break of 20 mN to 55 mN and a take-up speed of 50 m / min, a chemical foaming agent, and silica particles. It is obtained by melt-kneading the composition. Here, azodicarbonamide is used as the chemical foaming agent, and the silica particles are added at a ratio of 0.03 parts by mass to 1 part by mass with respect to 100 parts by mass of the base resin.

このような構成を有する発泡電線5によれば、ベース樹脂及び化学発泡剤を含む樹脂組成物中にシリカが含まれていることで、十分微細な発泡セルを得ることができ、且つ発泡電線の低価格化も可能となる。よって、この発泡電線5を有する伝送ケーブル10によれば、減衰量の抑制された伝送ケーブル10を得ることができると共に伝送ケーブル10の低価格化も可能となる。   According to the foamed electric wire 5 having such a configuration, a sufficiently fine foam cell can be obtained by including silica in the resin composition containing the base resin and the chemical foaming agent, and Lower prices are also possible. Therefore, according to the transmission cable 10 having the foamed electric wire 5, it is possible to obtain the transmission cable 10 in which the attenuation amount is suppressed and to reduce the price of the transmission cable 10.

次に、伝送ケーブル10の製造方法について説明する。   Next, a method for manufacturing the transmission cable 10 will be described.

まず発泡電線5の製造方法について説明する。   First, a method for manufacturing the foamed electric wire 5 will be described.

<内部導体>
はじめに内部導体1を準備する。内部導体1としては、例えば銅線、銅合金線、アルミニウム線等の金属線が挙げられる。また、上記金属線の表面にスズや銀等のめっきを施したものを内部導体1として用いることもできる。また内部導体1としては、単線または撚線を用いることができる。
<Inner conductor>
First, the inner conductor 1 is prepared. Examples of the internal conductor 1 include metal wires such as copper wires, copper alloy wires, and aluminum wires. In addition, a material obtained by plating the surface of the metal wire with tin, silver or the like can be used as the internal conductor 1. The inner conductor 1 can be a single wire or a stranded wire.

<発泡絶縁層>
次に、内部導体1上に発泡絶縁層2を形成する。
<Foam insulation layer>
Next, the foamed insulating layer 2 is formed on the inner conductor 1.

発泡絶縁層2を形成するためには、ベース樹脂と、化学発泡剤と、シリカ粒子とを準備する。   In order to form the foamed insulating layer 2, a base resin, a chemical foaming agent, and silica particles are prepared.

(ベース樹脂)
ここで、まずベース樹脂について説明する。
(Base resin)
Here, the base resin will be described first.

プロピレン系樹脂とは、プロピレンに由来する構成単位を含む樹脂を言う。従って、このようなプロピレン系樹脂には、プロピレンの単独重合により得られるホモポリプロピレン、プロピレン以外のオレフィンとプロピレンとの共重合体、これらの2種以上の混合物が含まれる。プロピレン以外のオレフィンとしては、例えばエチレン、1−ブテン、2−ブテン、1−ヘキセン、2−ヘキセンなどが挙げられる。中でも、エチレン、1−ブテン、1−ヘキセンなどのα−オレフィンが、発泡セルのより十分な微細化を実現し、より優れた耐熱性を得る観点から好ましく用いられ、より好ましくはエチレンが用いられる。   Propylene-type resin means resin containing the structural unit derived from propylene. Therefore, such propylene-based resins include homopolypropylene obtained by homopolymerization of propylene, copolymers of olefins other than propylene and propylene, and mixtures of two or more thereof. Examples of olefins other than propylene include ethylene, 1-butene, 2-butene, 1-hexene and 2-hexene. Among these, α-olefins such as ethylene, 1-butene, and 1-hexene are preferably used from the viewpoint of realizing more sufficient refinement of the foamed cell and obtaining better heat resistance, and more preferably ethylene. .

プロピレン系樹脂が、プロピレン以外のオレフィンとプロピレンとの共重合体である場合、この共重合体は、ブロック共重合体のほかランダム共重合体を含むが、共重合体はブロック共重合体を含むことが好ましい。共重合体がブロック共重合体を含むと、ブロック共重合体を含まない場合に比べて、発泡セルをより十分に微細化でき、より優れた耐熱性を得ることができる。   When the propylene-based resin is a copolymer of olefin other than propylene and propylene, the copolymer includes a random copolymer in addition to the block copolymer, but the copolymer includes a block copolymer. It is preferable. When the copolymer contains a block copolymer, the foamed cells can be more sufficiently miniaturized and better heat resistance can be obtained as compared with the case where the block copolymer is not contained.

ここで、共重合体は、ブロック共重合体のみで構成されてもよく、ブロック共重合体とランダム共重合体との混合物で構成されてもよいが、ブロック共重合体のみで構成されることが好ましい。この場合、共重合体がブロック共重合体とランダム共重合体との混合物で構成される場合と比較して、発泡セルをより十分に微細化できる。   Here, the copolymer may be composed only of a block copolymer, or may be composed of a mixture of a block copolymer and a random copolymer, but only composed of a block copolymer. Is preferred. In this case, compared with the case where a copolymer is comprised with the mixture of a block copolymer and a random copolymer, a foamed cell can be refined more fully.

プロピレン系樹脂は、150℃以上の融点を有することが好ましい。ここで、融点が150℃未満であると、発泡電線5の耐熱性が顕著に低下する。またプロピレン系樹脂の融点は、160℃以上であることがより好ましい。但し、プロピレン系樹脂の融点は、170℃以下であることが耐熱性と、耐低温脆化や耐屈曲性とのバランスを良好に保てるという理由から好ましい。   The propylene-based resin preferably has a melting point of 150 ° C. or higher. Here, when the melting point is less than 150 ° C., the heat resistance of the foamed electric wire 5 is significantly reduced. The melting point of the propylene-based resin is more preferably 160 ° C. or higher. However, the melting point of the propylene-based resin is preferably 170 ° C. or less because the balance between the heat resistance and the low temperature embrittlement resistance and the bending resistance can be kept good.

ベース樹脂の破断時における溶融張力は20〜55mNである。溶融張力が上記範囲を外れると、発泡セルが粗大化する。   The melt tension at break of the base resin is 20 to 55 mN. When the melt tension is out of the above range, the foam cell becomes coarse.

またベース樹脂の破断時における引取速度は50m/分以上であり、好ましくは80m/分以上であり、より好ましくは100m/分以上である。引取速度が50m/分未満では、発泡セルが粗大化し、十分微細な発泡セルを安定的に得ることができない。但し、破断時における引取速度は、200m/分以下であることが微細な発泡セルを安定的に得ることができるという理由から好ましく、150m/分以下であることがより好ましい。   The take-up speed at the time of breaking the base resin is 50 m / min or more, preferably 80 m / min or more, and more preferably 100 m / min or more. When the take-up speed is less than 50 m / min, the foam cells are coarsened, and sufficiently fine foam cells cannot be stably obtained. However, the take-up speed at the time of breaking is preferably 200 m / min or less for the reason that fine foam cells can be stably obtained, and more preferably 150 m / min or less.

(化学発泡剤)
次に化学発泡剤について説明する。
(Chemical foaming agent)
Next, the chemical foaming agent will be described.

化学発泡剤としては、熱分解してN2、NH3、CO2等のガスを発生するアゾジカルボンアミド(以下、「ADCA」と呼ぶ)が用いられる。ADCAは、熱分解温度がプロピレン系樹脂の融点より十分高く、かつプロピレン系樹脂の分解温度より低いため、温度プロファイルの自由度が高く、発泡の制御がしやすい。またADCAを用いると、ADCA以外の化学発泡剤を用いる場合に比べて、十分微細な発泡セルを安定して得ることができると共に、発泡絶縁層2の外径変動を抑制することもできる。 As the chemical foaming agent, azodicarbonamide (hereinafter referred to as “ADCA”) that generates a gas such as N 2 , NH 3 , and CO 2 by thermal decomposition is used. ADCA has a thermal decomposition temperature sufficiently higher than the melting point of the propylene-based resin and lower than the decomposition temperature of the propylene-based resin. Therefore, the degree of freedom of the temperature profile is high and the foaming is easily controlled. Further, when ADCA is used, sufficiently fine foam cells can be stably obtained as compared with the case of using a chemical foaming agent other than ADCA, and fluctuations in the outer diameter of the foamed insulating layer 2 can also be suppressed.

化学発泡剤は、ベース樹脂100質量部に対して好ましくは0.3〜1質量部添加し、より好ましくは0.5〜0.7質量部添加する。化学発泡剤の添加量が上記範囲内にあると、十分微細な発泡セルをより安定して得ることができる。   The chemical foaming agent is preferably added in an amount of 0.3 to 1 part by mass, more preferably 0.5 to 0.7 part by mass, with respect to 100 parts by mass of the base resin. When the addition amount of the chemical foaming agent is within the above range, sufficiently fine foam cells can be obtained more stably.

(シリカ粒子)
シリカ粒子は、樹脂組成物を長時間にわたって連続的に溶融混練しても、その吐出量の低下を十分に抑制することができ、発泡電線5の製造効率を向上させることができるものである。ここで、シリカ粒子の添加量は、ベース樹脂100質量部に対して0.03〜1質量部である。シリカ粒子の添加量が上記範囲内にあると、押出機からの吐出量の低下を十分に抑制できるため、発泡電線5の製造効率が向上し、発泡電線5の低価格化が可能となる。またシリカの持つ吸湿性に起因する減衰量の増加を十分に抑制することもできる。
(Silica particles)
Even if the resin composition is continuously melt-kneaded for a long time, the silica particles can sufficiently suppress the decrease in the discharge amount, and the production efficiency of the foamed electric wire 5 can be improved. Here, the addition amount of the silica particles is 0.03 to 1 part by mass with respect to 100 parts by mass of the base resin. When the addition amount of the silica particles is within the above range, a decrease in the discharge amount from the extruder can be sufficiently suppressed, so that the production efficiency of the foamed electric wire 5 is improved and the price of the foamed electric wire 5 can be reduced. In addition, an increase in attenuation due to the hygroscopic property of silica can be sufficiently suppressed.

(銅害防止剤)
ベース樹脂には、銅害防止剤が添加されることが好ましい。銅害防止剤とは、内部導体1との接触によるプロピレン系樹脂の劣化を防止するためのものであり、銅害防止剤としては、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、2’,3−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド又はデカメチレンジカルボン酸ジサリチロイルヒドラジドが用いられる。これらは単独で又は2種以上を混合して用いることができる。中でも、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、2’,3−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]プロピオノヒドラジドが、より微細な発泡セルを得ることができるという理由から好ましい。
(Copper damage prevention agent)
It is preferable that a copper damage inhibitor is added to the base resin. The copper damage prevention agent is for preventing deterioration of the propylene-based resin due to contact with the inner conductor 1, and the copper damage prevention agent is 3- (N-salicyloyl) amino-1,2,4- Triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide or decamethylenedicarboxylic acid disalicyloyl hydrazide is used. These can be used alone or in admixture of two or more. Among these, 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide is used. This is preferable because finer foam cells can be obtained.

なお、銅害防止剤は、シリカ粒子とともに使用されると、発泡セルの粗大化を促進するものと考えられていた。しかし、シリカ粒子が上記特定の銅害防止剤、即ち3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、2’,3−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド又はデカメチレンジカルボン酸ジサリチロイルヒドラジドと組み合わされると、発泡セルの粗大化が抑制され、シリカ粒子が上記特定の銅害防止剤以外の銅害防止剤と組み合わされると、発泡セルの粗大化が促進される傾向があることが本発明者の研究により明らかとなったものである。   In addition, when the copper damage inhibitor was used with the silica particle, it was thought that it promoted the coarsening of a foam cell. However, the silica particles are the above-mentioned specific copper damage inhibitor, namely 3- (N-salicyloyl) amino-1,2,4-triazole, 2 ′, 3-bis [3- (3,5-di-tert-butyl). When combined with -4-hydroxyphenyl) propionyl] propionohydrazide or decamethylenedicarboxylic acid disalicyloyl hydrazide, coarsening of the foamed cells is suppressed, and the silica particles prevent copper damage other than the specific copper damage inhibitor. It has been clarified by the inventor's research that, when combined with an agent, the foamed cells tend to be coarsened.

銅害防止剤は、ベース樹脂100質量部に対して好ましくは0.01〜1質量部添加し、好ましくは0.1〜1質量部添加し、より好ましくは0.25〜0.5質量部添加する。銅害防止剤の添加量が上記範囲内であると、熱老化による劣化がより十分に抑制され、発泡電線5の寿命をより長くすることができる。   The copper damage inhibitor is preferably added in an amount of 0.01 to 1 part by weight, preferably 0.1 to 1 part by weight, more preferably 0.25 to 0.5 part by weight, based on 100 parts by weight of the base resin. Added. When the addition amount of the copper damage inhibitor is within the above range, deterioration due to heat aging is more sufficiently suppressed, and the life of the foamed electric wire 5 can be extended.

上記ベース樹脂と化学発泡剤とシリカ粒子とを押出機に投入し押出機中の樹脂組成物を溶融混練する場合には、まず化学発泡剤をベース樹脂中に均一に分散させた後、化学発泡剤をその熱分解温度以上の温度に加熱して熱分解させ、分解ガスを発生させる。そして、分解ガスを含有した樹脂を押し出しながら発泡させて、この押出物で内部導体1を被覆する。こうして内部導体1上に発泡絶縁層2が得られる。   When the above base resin, chemical foaming agent and silica particles are put into an extruder and the resin composition in the extruder is melt-kneaded, the chemical foaming agent is first uniformly dispersed in the base resin, and then chemical foaming is performed. The agent is heated to a temperature equal to or higher than its thermal decomposition temperature and thermally decomposed to generate decomposition gas. Then, the resin containing the decomposition gas is foamed while being extruded, and the inner conductor 1 is covered with the extrudate. Thus, the foamed insulating layer 2 is obtained on the inner conductor 1.

上記発泡電線5においては、発泡絶縁層2中のベース樹脂の破断時における溶融張力が30mN以上であると、発泡セルのより十分な微細化が可能になるという理由から好ましく、45mN以上であることがより好ましい。但し、樹脂の破断時における溶融張力が大きすぎると、ベース樹脂の押出時において発泡度が低くなりやすい傾向にあるため、溶融張力は55mN以下であることが好ましく、50mN以下であることがより好ましく、48mN以下であることがさらに好ましい。   In the foamed electric wire 5, the melt tension at the time of rupture of the base resin in the foamed insulating layer 2 is preferably 30 mN or more, because the foamed cells can be more sufficiently miniaturized, and is preferably 45 mN or more. Is more preferable. However, if the melt tension at the time of rupture of the resin is too large, the degree of foaming tends to be low at the time of extruding the base resin. Therefore, the melt tension is preferably 55 mN or less, more preferably 50 mN or less. 48 mN or less is more preferable.

破断時におけるベース樹脂の溶融張力は、例えば押出機のダイス出口における温度を調整することで調整することができる。   The melt tension of the base resin at the time of breaking can be adjusted, for example, by adjusting the temperature at the die outlet of the extruder.

発泡絶縁層2の外径は、発泡電線10が高周波ケーブルに使用される場合には、1.5mm未満であることが好ましく、1.0mm以下であることがより好ましい。   When the foamed electric wire 10 is used for a high frequency cable, the outer diameter of the foamed insulating layer 2 is preferably less than 1.5 mm, and more preferably 1.0 mm or less.

(酸化防止剤)
なお、上記ベース樹脂には、酸化防止剤を添加することが好ましい。この場合、熱老化特性等がより向上し、高温環境下でもより長期間にわたって発泡電線5を継続使用することができる。上記ベース樹脂100質量部に対する酸化防止剤の添加量は、例えば0.05〜1質量部である。
(Antioxidant)
In addition, it is preferable to add antioxidant to the said base resin. In this case, heat aging characteristics and the like are further improved, and the foamed electric wire 5 can be continuously used over a longer period even in a high temperature environment. The addition amount of the antioxidant with respect to 100 parts by mass of the base resin is, for example, 0.05 to 1 part by mass.

酸化防止剤としては、例えば2,6−ジ−第三−ブチルフェノール、2,6−ジ−第三−ブチル−4−エチルフェノール、2,6−ジ−第三−ブチルー4−メチルフェノール、2,6−ジ−第三−ブチルーα−ジメチルアミノ−p−クレゾール、2,4,6−トリ−第三−ブチルフェノール、o−第三−ブチルフェノール等のモノフェノール系、2,2’−メチレン−ビス−(4−メチル−6−第三−ブチルフェノール)、2,2’−メチレン−ビス−(4−エチル−6−第三−ブチルフェノール)、4,4’−メチレン−ビス−(2,6−ジ−第三−ブチルフェノール)、4,4’−ブチリデン−ビス−(4−メチル−6−第三−ブチルフェノール)、アルキル化ビスフェノール、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−第三―ブチル−4−ヒドロキシベンジル)ベンゼン等のポリフェノール系、テトラキス−[メチレン−3−(3’,5’−ジ−第三−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−
ジ−第三―ブチルフェニル)プロピオネート、1,1,3−トリス(2−メチルー4−ヒドロキシ−5−第三−ブチルフェニル)ブタン、3,9−ビス[2−{3−(3−第三ブチルー4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]−ウンデカン等のヒンダードフェノール系、4,4’−チオビス−(6−第三−ブチル−3-メチルフェノール)、4,4’−チオビス−(6−第三−ブチル−o−クレゾール)、ビス(3,5−ジ−第三−ブチル−4−ヒドロキシベンジル)スルフィド、ジアルキル・フェノール・スルフィド等のチオビスフェノール系、ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト等のりん系トリス(ノニルフェニル)、ジラウリル・チオジプロピオネート、ジステアリル・チオジプロピオネート、ジステアリル−β,β−チオジブチレート、ラウリル・ステアリル・チオジプロピオネート、ジミリスチル−3,3’− チオジプロピオネート、ジトリデシル−3,3’− チオジプロピオネート、含硫黄エステル系化合物、アミル−チオグリコレート、1,1’− チオビス−(2−ナフトール)、2−メルカプトベンズイミダゾール、ヒドラジン誘導体等が挙げられる。これらは単独で又は2種以上を併用して使用することができる。
Examples of the antioxidant include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2 , 6-di-tert-butyl-α-dimethylamino-p-cresol, 2,4,6-tri-tert-butylphenol, o-tert-butylphenol and other monophenols, 2,2′-methylene- Bis- (4-methyl-6-tert-butylphenol), 2,2'-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4'-methylene-bis- (2,6 -Di-tert-butylphenol), 4,4'-butylidene-bis- (4-methyl-6-tert-butylphenol), alkylated bisphenol, 1,3,5-trimethyl-2,4,6-tris (3,5-di-second -Polyphenols such as butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate] methane, n-octadecyl-3 -(4'-hydroxy-3 ', 5'-
Di-tert-butylphenyl) propionate, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 3,9-bis [2- {3- (3-tert Hindered phenols such as tributyl-4-hydroxy-5-methylphenyl) propionyloxy} -1, dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] -undecane, 4,4 ′ -Thiobis- (6-tert-butyl-3-methylphenol), 4,4'-thiobis- (6-tert-butyl-o-cresol), bis (3,5-di-tert-butyl- 4-hydroxybenzyl) sulfides, thiobisphenols such as dialkyl / phenol / sulfide, phosphites, phosphorous tris such as tris (2,4-di-tert-butylphenyl) phosphite Nonylphenyl), dilauryl thiodipropionate, distearyl thiodipropionate, distearyl-β, β-thiodibutyrate, lauryl stearyl thiodipropionate, dimyristyl-3,3′-thiodipropionate , Ditridecyl-3,3′-thiodipropionate, sulfur-containing ester compounds, amyl-thioglycolate, 1,1′-thiobis- (2-naphthol), 2-mercaptobenzimidazole, hydrazine derivatives, and the like. . These can be used alone or in combination of two or more.

発泡電線5においては、発泡絶縁層2が30〜60%の発泡度を有することが好ましい。この場合、伝送ケーブル10のつぶれ(変形)を抑制でき、高周波帯域で使用される伝送ケーブル用の発泡電線として、発泡絶縁層2にプロピレン系樹脂を使用しても発泡セルが粗大化するのを抑制でき、微細且つ均一な発泡セルを有する発泡状態の発泡絶縁層2を得ることができる。また発泡電線5を使用した伝送ケーブル10は、外径変動が小さく、発泡絶縁層2を薄くしても潰れの問題が少なく、減衰量の劣化等のバラツキが十分に抑制される。   In the foamed electric wire 5, it is preferable that the foam insulation layer 2 has a foaming degree of 30 to 60%. In this case, crushing (deformation) of the transmission cable 10 can be suppressed, and even if a propylene-based resin is used for the foam insulating layer 2 as a foamed electric wire for a transmission cable used in a high frequency band, the foamed cell becomes coarse. It is possible to obtain a foamed insulating layer 2 in a foamed state having fine and uniform foamed cells. Moreover, the transmission cable 10 using the foamed electric wire 5 has a small outer diameter variation, and even if the foamed insulating layer 2 is thin, there is little problem of crushing, and variations such as deterioration of attenuation are sufficiently suppressed.

また発泡絶縁層2と内部導体1との間に、未発泡樹脂からなる薄層、いわゆる内層を介在させることが好ましい。これにより発泡絶縁層2と内部導体1との密着性を向上させることができる。特に未発泡樹脂がポリエチレンからなる場合、さらに発泡絶縁層2と内部導体1との密着性を向上させることができる。また上記内層は、内部導体1中の銅による発泡絶縁層2の劣化(脆化)を防止することもできる。なお、薄層の厚さは例えば0.01〜0.1mmとすればよい。   Moreover, it is preferable to interpose a thin layer made of unfoamed resin, a so-called inner layer, between the foamed insulating layer 2 and the inner conductor 1. Thereby, the adhesiveness of the foam insulation layer 2 and the internal conductor 1 can be improved. In particular, when the unfoamed resin is made of polyethylene, the adhesion between the foamed insulating layer 2 and the internal conductor 1 can be further improved. The inner layer can also prevent deterioration (embrittlement) of the foamed insulating layer 2 due to copper in the inner conductor 1. The thickness of the thin layer may be 0.01 to 0.1 mm, for example.

さらに発泡絶縁層2と外部導体3との間に、未発泡樹脂からなる薄層、いわゆる外層を介在させることが好ましい。これにより発泡絶縁層2と外部導体3との密着性を向上させることができる。特に未発泡樹脂がポリエチレンからなる場合、さらに発泡絶縁層2と内部導体1との密着性を向上させることができる。加えて、外層が発泡絶縁層2と外部導体3との間に介在することによって外径変動が小さくなり、スキューやVSWRが向上し、また、耐つぶれ性が向上し、発泡電線5の外径を小さくこともできる。なお、薄層の厚さは例えば0.02〜0.05mmとすればよい。   Furthermore, it is preferable to interpose a thin layer made of unfoamed resin, a so-called outer layer, between the foamed insulating layer 2 and the outer conductor 3. Thereby, the adhesiveness of the foam insulation layer 2 and the external conductor 3 can be improved. In particular, when the unfoamed resin is made of polyethylene, the adhesion between the foamed insulating layer 2 and the internal conductor 1 can be further improved. In addition, since the outer layer is interposed between the foamed insulating layer 2 and the outer conductor 3, the outer diameter fluctuation is reduced, the skew and VSWR are improved, the crush resistance is improved, and the outer diameter of the foamed electric wire 5 is improved. Can also be reduced. In addition, what is necessary is just to let the thickness of a thin layer be 0.02-0.05 mm, for example.

<外部導体>
次に、上記のようにして得られた発泡電線5を包囲するように外部導体3を形成する。外部導体3としては、従来より使用されている公知のものを使用することができる。例えば外部導体3は、導線や、導電シートを樹脂シートの間に挟んで構成したテープなどを絶縁層2の外周に沿って巻くことなどによって形成することができる。また、外部導体3は、コルゲート加工、即ち波形成形した金属管で構成することもできる。この場合には、発泡電線5の屈曲性を向上させることができる。
<External conductor>
Next, the outer conductor 3 is formed so as to surround the foamed electric wire 5 obtained as described above. As the external conductor 3, a known one that has been conventionally used can be used. For example, the external conductor 3 can be formed by winding a conductive wire or a tape formed by sandwiching a conductive sheet between resin sheets along the outer periphery of the insulating layer 2. Further, the outer conductor 3 can be constituted by a corrugated metal tube, that is, a corrugated metal tube. In this case, the flexibility of the foamed electric wire 5 can be improved.

<シース>
最後にシース4を形成する。シース4は、外部導体3を物理的又は化学的な損傷から保護するものであり、シース4を構成する材料としては、例えばフッ素樹脂、ポリエチレン、ポリ塩化ビニル等の樹脂が挙げられるが、環境性等の観点からポリエチレン樹脂等のハロゲンフリー材料が好ましく用いられる。
<Sheath>
Finally, the sheath 4 is formed. The sheath 4 protects the outer conductor 3 from physical or chemical damage. Examples of the material constituting the sheath 4 include resins such as fluororesin, polyethylene, and polyvinyl chloride. From the viewpoint of the above, a halogen-free material such as polyethylene resin is preferably used.

以上のようにして伝送ケーブル10が得られる。   The transmission cable 10 is obtained as described above.

図3は、上記発泡電線5を有するTwinaxタイプの伝送ケーブルを示す断面図である。図3に示すように、Twinaxタイプの伝送ケーブル20は、2本の発泡電線5と、ドレンワイヤ6と、ラミネートテープ7と、2本の電力線8と、アルミテープ層及び編粗層からなる積層体層9と、シース4とを備えている。ここで、2本の発泡電線5は互いに平行に配置されており、これらは信号線として使用される。またラミネートテープ7は発泡電線5及びドレインワイヤ6を巻回しており、シース4は積層体層9を包囲するように積層体層9上に形成されている。ラミネートテープ7は例えばアルミニウム箔とポリエチレンテレフタレートフィルムとの積層体で構成され、シース4は、例えばリケンテクノス社製のANA9897N等のオレフィン系ノンハロ材などで構成される。なお、発泡電線5及び発泡絶縁層2は上記実施形態と同様のものである。   FIG. 3 is a cross-sectional view showing a Twinax type transmission cable having the foamed electric wire 5. As shown in FIG. 3, the Twinax type transmission cable 20 is a laminate comprising two foamed electric wires 5, a drain wire 6, a laminate tape 7, two power lines 8, an aluminum tape layer, and a knitted coarse layer. A layer 9 and a sheath 4 are provided. Here, the two foamed electric wires 5 are arranged in parallel to each other, and these are used as signal lines. The laminate tape 7 is wound around the foamed electric wire 5 and the drain wire 6, and the sheath 4 is formed on the laminate layer 9 so as to surround the laminate layer 9. The laminate tape 7 is composed of a laminate of, for example, an aluminum foil and a polyethylene terephthalate film, and the sheath 4 is composed of, for example, an olefin-based non-halo material such as ANA 9897N manufactured by Riken Technos. The foamed electric wire 5 and the foamed insulating layer 2 are the same as those in the above embodiment.

本発明は上記実施形態に限定されるものではない。例えば上記実施形態では、発泡電線5が、伝送ケーブルとしての同軸ケーブルやTwinaxタイプの伝送ケーブルに適用された例が示されているが、発泡電線5は、USB3.0ケーブル、HDMIケーブル、インフィニバンドケーブル、マイクロUSBケーブルなどの高速伝送ケーブルなどにも適用可能である。   The present invention is not limited to the above embodiment. For example, in the above embodiment, an example in which the foamed electric wire 5 is applied to a coaxial cable or a Twinax type transmission cable as a transmission cable is shown. The foamed electric wire 5 is a USB 3.0 cable, an HDMI cable, Infiniband. It can also be applied to high-speed transmission cables such as cables and micro USB cables.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

参考例1)
まずベース樹脂として、エチレン−プロピレンブロック共重合体であるFB3312(商品名、日本ポリプロ株式会社製。以下、「EP1」と呼ぶ)を用意した。
( Reference Example 1)
First, FB3312 (trade name, manufactured by Nippon Polypro Co., Ltd., hereinafter referred to as “EP1”), which is an ethylene-propylene block copolymer, was prepared as a base resin.

そして、押出機(製品名:ラボプラストミルD2020、スクリュー径(D):φ20mm、有効スクリュー長(L):400mm、東洋精機製作所社製)にEP1、シリカ、表1に示す化学発泡剤を投入し、溶融混練して押出成形を行った。このとき、100質量部のEP1に対してシリカ及び化学発泡剤を、表1に示す配合量で添加した。このとき、押出機の温度を200〜220℃に設定することにより、ベース樹脂を溶融させながらADCAを熱分解させるようにした。   And EP1, silica, and the chemical foaming agent shown in Table 1 are put into an extruder (product name: Labo Plast Mill D2020, screw diameter (D): φ20 mm, effective screw length (L): 400 mm, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Then, it was melt-kneaded and extruded. At this time, silica and a chemical foaming agent were added in amounts shown in Table 1 with respect to 100 parts by mass of EP1. At this time, by setting the temperature of the extruder to 200 to 220 ° C., ADCA was thermally decomposed while melting the base resin.

そして、押出機から押出物をチューブ状に押し出し、このチューブ状の押出物で、直径0.127mmの銅線を7本撚りした撚線導体を被覆した。こうして、撚線導体と、撚線導体を被覆する発泡絶縁層とからなる発泡電線を作製した。このとき、押出物は、発泡絶縁層の外径が0.92mm、厚さ0.3mmとなるように押し出した。   And the extrudate was extruded from the extruder in the shape of a tube, and the twisted wire conductor which twisted seven copper wires with a diameter of 0.127 mm was covered with this tube-shaped extrudate. Thus, a foamed electric wire composed of a stranded wire conductor and a foamed insulating layer covering the stranded wire conductor was produced. At this time, the extrudate was extruded so that the outer diameter of the foamed insulating layer was 0.92 mm and the thickness was 0.3 mm.

こうして得られた発泡電線を2本平行に配列させ、これらをドレインワイヤとともに、アルミニウム層とポリエチレンテレフタレート層との積層体からなる厚さ22μmのラミネートテープで巻回した。次に、これを、外径0.8mmの2本の電力線とともに、厚さ25μmのアルミニウムテープ層で巻回した後、編組層で覆い、さらにオレフィン系ノンハロ材ANA9897N(商品名、リケンテクノス社製)からなるシースで被覆した。こうしてTwinaxタイプの伝送ケーブルを作製した。   Two foamed electric wires thus obtained were arranged in parallel, and these were wound together with a drain wire and a laminate tape having a thickness of 22 μm made of a laminate of an aluminum layer and a polyethylene terephthalate layer. Next, this was wound with an aluminum tape layer having a thickness of 25 μm together with two power lines having an outer diameter of 0.8 mm, and then covered with a braided layer, and further olefin-based non-halo material ANA9897N (trade name, manufactured by Riken Technos) Covered with a sheath consisting of In this way, a Twinax type transmission cable was produced.

参考例2〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6)
ベース樹脂の種類、銅害防止剤の種類及びその配合量、シリカ配合量、化学発泡剤の種類及びその配合量、ベース樹脂の破断時における溶融張力及び引取速度、伝送ケーブルのインピーダンス、発泡絶縁層の外径、並びに、発泡絶縁層における発泡度を表1,3,5に示す通りとしたこと以外は参考例1と同様にしてTwinaxタイプの伝送ケーブルを作製した。
( Reference Examples 2 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6)
Type of base resin, type and amount of copper damage preventive agent, silica content, type of chemical foaming agent and amount thereof, melt tension and take-off speed when base resin breaks, transmission cable impedance, foam insulation layer A twinax type transmission cable was prepared in the same manner as in Reference Example 1 except that the outer diameter of each and the foaming degree in the foamed insulating layer were as shown in Tables 1, 3 and 5.

なお、表1,3,5に示されているベース樹脂、銅害防止剤、化学発泡剤及びシリカとしては具体的には以下のものを用いた。
(1)ベース樹脂
(1-1)EP1
FB3312:日本ポリプロ社製エチレン・プロピレン共重合体
(1-2)EP2
FB5100:日本ポリプロ社製エチレン・プロピレン共重合体
(1-3)EP3
FB3312(40質量部)とJ703W(60質量部)の混合物
J703W:三井化学社製エチレン・プロピレン共重合体
(1-4)EP4
FB3312(30質量部)とB101WAT(60質量部)の混合物
B101WAT:三井化学社製エチレン・プロピレン共重合体
(1-5)EP5
FB3312(45質量部)とJ703W(55質量部)の混合物
(1-6)EP6
FB3312(40質量部)とB101WAT(60質量部)の混合物
(1-7)EP8
FB3312(70質量部)とB101WAT(30質量部)の混合物
(1-8)PP1
J105G(70質量部)とVP103(30質量部)の混合物
J105G,VP103:三井化学社製ホモポリプロピレン
(1-9)PP2
J105G(80質量部)とVP103(20質量部)の混合物
(1-10)PP3
J105G(40質量部)とVP103(60質量部)の混合物
(1-11)[EP+PE]
FB3312(80質量部)とウルトゼックス4020L(20質量部)の混合物
ウルトゼックス4020L:プライムポリマー社製ポリエチレン
(1-12)PE1
Hizex5305E:プライムポリマー社製高密度ポリエチレン
(2)銅害防止剤
(2-1)CDA1
アデカスタブCDA−1(アデカ社製銅害防止剤、3−(N−サリチロイル)アミノ
−1,2,4−トリアゾール)
(2-2)CDA6
アデカスタブCDA−6(アデカ社製銅害防止剤、デカメチレンジカルボン酸ジサリ
チロイルヒドラジド)
(2-3)MD1024
イルガノックスMD1024(チバスペシャルティケミカル社製銅害防止剤、2’,
3−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピ
オニル]プロピオノヒドラジド)
(3)化学発泡剤
(3-1)ADCA
アゾジカルボンアミド
(3-2)重曹
FE−507(永和化成工業社製発泡剤セルボンシリーズ)
(4)シリカ
カープレックス#80(シオノギ製薬社製シリカ)
In addition, the following were specifically used as the base resin, copper damage inhibitor, chemical foaming agent, and silica shown in Tables 1, 3, and 5.
(1) Base resin (1-1) EP1
FB3312: Nippon Polypro Co., Ltd. ethylene / propylene copolymer (1-2) EP2
FB5100: Nippon Polypro Co., Ltd. ethylene / propylene copolymer (1-3) EP3
Mixture of FB3312 (40 parts by mass) and J703W (60 parts by mass) J703W: Mitsui Chemicals ethylene / propylene copolymer (1-4) EP4
Mixture of FB3312 (30 parts by mass) and B101WAT (60 parts by mass) B101WAT: Ethylene / propylene copolymer (1-5) EP5 manufactured by Mitsui Chemicals, Inc.
Mixture of FB3312 (45 parts by mass) and J703W (55 parts by mass) (1-6) EP6
Mixture of FB3312 (40 parts by mass) and B101WAT (60 parts by mass) (1-7) EP8
FB3312 (70 parts by mass) and B101WAT (30 parts by mass) mixture (1-8) PP1
Mixture of J105G (70 parts by mass) and VP103 (30 parts by mass) J105G, VP103: Homopolypropylene (1-9) PP2 manufactured by Mitsui Chemicals, Inc.
A mixture of J105G (80 parts by mass) and VP103 (20 parts by mass) (1-10) PP3
Mixture of J105G (40 parts by mass) and VP103 (60 parts by mass) (1-11) [EP + PE]
Mixture of FB3312 (80 parts by mass) and Ultozex 4020L (20 parts by mass) Ultozex 4020L: Polyethylene (1-12) PE1 manufactured by Prime Polymer
Hizex 5305E: High-density polyethylene (2) Copper damage inhibitor (2-1) CDA1 manufactured by Prime Polymer Co., Ltd.
ADK STAB CDA-1 (Adeka Co., Ltd. copper damage inhibitor, 3- (N-salicyloyl) amino-1,2,4-triazole)
(2-2) CDA6
ADEKA STAB CDA-6 (Adeka Co., Ltd. copper damage inhibitor, decamethylenedicarboxylic acid disali tyrosyl hydrazide)
(2-3) MD1024
Irganox MD1024 (Ciba Specialty Chemicals copper damage inhibitor, 2 ',
3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide)
(3) Chemical foaming agent (3-1) ADCA
Azodicarbonamide (3-2) baking soda FE-507 (Ewa Kasei Kogyo Co., Ltd. foaming agent Cellbon series)
(4) Silica Carplex # 80 (Shionogi Pharmaceutical Silica)

[特性評価]
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた発泡電線について、以下の特性を評価した。
[Characteristic evaluation]
The following characteristics were evaluated for the foamed electric wires obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6.

(1)破断時における溶融張力及び引取速度
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた発泡電線について以下のようにして破断時における溶融張力を測定した。
(1) Melt tension and take-off speed at break
Regarding the foamed electric wires obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6, the melt tension at break was measured as follows.

即ち、キャピラリーレオメータ(キャピログラフ 1D、東洋精機製作所株式会社製)を用いて溶融張力を測定した。詳細には内径1.0mm、長さ10mmのフラットキャピラリーにベース樹脂を充填し、ピストンスピード5mm/分、バレル内径9.55mm、引取加速度400m/min、バレル、キャピラリー及びバレル直後の恒温槽それぞれの温度を200℃の条件に設定してからバレルにベース樹脂を充填して5分予熱後に上記ピストンスピードでピストン押出を開始し、上記引取加速度で加速して引き取り、破断したときの張力及び引取速度を測定し、この測定を10回行って得られた張力及び引取速度の測定値の平均値を算出した。結果を表1,3,5に示す。 That is, the melt tension was measured using a capillary rheometer (Capillograph 1D, manufactured by Toyo Seiki Seisakusho Co., Ltd.). Internal diameter 1.0mm in particular, the base resin was filled in flat capillary length 10 mm, the piston speed 5 mm / min, a barrel inner diameter 9.55 mm, pulling acceleration 400 meters / min 2, a barrel, a thermostat respectively immediately after the capillaries and barrel After setting the temperature of 200 ° C to 200 ° C, the base resin is filled into the barrel, and after 5 minutes preheating, piston extrusion is started at the above piston speed, and accelerated by the above take-up acceleration and taken up. The speed was measured, and the average value of the measured values of tension and take-up speed obtained by performing this measurement 10 times was calculated. The results are shown in Tables 1, 3, and 5.

(2)発泡度
発泡度は下記式:

Figure 0005552293
に基づいて算出した。結果を表1,3,5に示す。ここで、「発泡前の樹脂」とは、押出機に投入する前のベース樹脂のことを言う。 (2) Degree of foaming The degree of foaming is the following formula:
Figure 0005552293
Calculated based on The results are shown in Tables 1, 3, and 5. Here, “resin before foaming” refers to a base resin before being charged into an extruder.

(3)平均発泡セル径及び標準偏差
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた発泡電線から発泡絶縁層の一部を切り取り、その発泡絶縁層の断面を、走査型電子顕微鏡を用いて観察し、無作為に選択した100個の発泡セルのそれぞれについてセル径を下記式:

Figure 0005552293
に基づいて測定した。そして、100個の発泡セルのセル径の平均値を「平均発泡セル径」として算出するとともに、発泡セルのセル径の標準偏差を算出した。結果を表2,4,6に示す。なお、表2,4,6において、平均発泡セル径が50μm未満で、標準偏差が25μm未満の発泡絶縁層を有する発泡電線を合格とし、それ以外の発泡絶縁層を有する発泡電線を不合格とした。
(3) Average foam cell diameter and standard deviation
A part of the foam insulation layer was cut out from the foamed electric wires obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6, and the foam insulation layers The cross section was observed using a scanning electron microscope, and the cell diameter for each of 100 randomly selected foam cells was expressed by the following formula:
Figure 0005552293
Measured based on And while calculating the average value of the cell diameter of 100 foam cells as "average foam cell diameter", the standard deviation of the cell diameter of the foam cell was computed. The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, a foamed electric wire having a foamed insulating layer having an average foamed cell diameter of less than 50 μm and a standard deviation of less than 25 μm is regarded as acceptable, and a foamed wire having other foamed insulating layers is regarded as rejected. did.

(4)外径変動幅
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた長さ500mの発泡電線について、外径の最大値及び最小値を、外径測定器(キーエンス社製高速高精度デジタル測定器LS−7000シリーズ)を用いて測定し、下記式:

Figure 0005552293
により外径変動幅を算出した。結果を表2,4,6に示す。
(4) Outer diameter fluctuation range
About the 500 m long foamed electric wires obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40 and Comparative Examples 1 to 6, the maximum value and the minimum value of the outer diameter are set. , Measured using an outer diameter measuring instrument (high-speed high-precision digital measuring instrument LS-7000 series manufactured by Keyence Corporation), and the following formula:
Figure 0005552293
Was used to calculate the outer diameter fluctuation range. The results are shown in Tables 2, 4 and 6.

(5)スキュー
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた伝送ケーブルを切断し、2mの伝送ケーブルを10本用意した。そして、これら10本の伝送ケーブルについて、TDR TDS8000(商品名、日本テクトロニクス株式会社製)を用いてスキューを測定し、その平均値を算出した。結果を表2,4,6に示す。
(5) Skew
The transmission cables obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40 and Comparative Examples 1 to 6 were cut, and 10 2 m transmission cables were prepared. And about these 10 transmission cables, the skew was measured using TDR TDS8000 (brand name, Nippon Tektronix Co., Ltd. product), and the average value was computed. The results are shown in Tables 2, 4 and 6.

(6)減衰量
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた伝送ケーブルについて、ネットワークアナライザー(8722ES アジレントテクノロジー社製)を用いて、周波数が1.25GHzの場合及び2.5GHzの場合のそれぞれについて減衰量を測定した。次に、これらの伝送ケーブルを、85℃、90%RHの雰囲気中で1000時間放置した後、放置前と同様にして減衰量を測定した。そして、放置前の減衰量に対する放置後の減衰量の比を下記式:

Figure 0005552293
に基づいて算出した。結果を表2,4,6に示す。
(6) Attenuation amount
About the transmission cables obtained in Reference Examples 1-15, Examples 13-15, Examples 18-20, Examples 22-40 and Comparative Examples 1-6, using a network analyzer (manufactured by 8722ES Agilent Technologies), The attenuation was measured for each of cases where the frequency was 1.25 GHz and 2.5 GHz. Next, after leaving these transmission cables in an atmosphere of 85 ° C. and 90% RH for 1000 hours, the attenuation was measured in the same manner as before. Then, the ratio of the attenuation amount after being left to the attenuation amount before being left is expressed by the following formula:
Figure 0005552293
Calculated based on The results are shown in Tables 2, 4 and 6.

(7)側圧変形率
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた発泡絶縁層を長さ3cmに裁断して試験片を作製した。そして、直径8.5mm、長さ5.0mmの円柱ジグの上に、試験片を置いて30分間予熱した後、この試験片に試験機を用いて荷重をかけ、30分後の外径を測定した。そして、下記式:

Figure 0005552293
に基づいて、側圧変形率を算出した。結果を表2,4,6に示す。なお、発泡絶縁層の外径の測定は、20℃及び120℃のそれぞれの温度下で行い、荷重は20℃のときは2kg、120℃のときは1kgとした。また試験機としては、東洋精機製作所株式会社製の「三個掛加熱変形試験機型番W−3」の加熱変形試験機を用いた。
(7) Side pressure deformation rate
The foamed insulating layers obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6 were cut into a length of 3 cm to prepare test pieces. Then, after placing a test piece on a cylindrical jig having a diameter of 8.5 mm and a length of 5.0 mm and preheating for 30 minutes, a load was applied to the test piece using a testing machine, and the outer diameter after 30 minutes was determined. It was measured. And the following formula:
Figure 0005552293
Based on the above, the lateral pressure deformation rate was calculated. The results are shown in Tables 2, 4 and 6. The outer diameter of the foamed insulating layer was measured at 20 ° C. and 120 ° C., and the load was 2 kg at 20 ° C. and 1 kg at 120 ° C. As a testing machine, a heating deformation testing machine of “three-piece heating deformation testing machine model number W-3” manufactured by Toyo Seiki Seisakusho Co., Ltd. was used.

(8)熱老化劣化
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた発泡電線を恒温槽に投入しておき、1ヶ月毎に取り出した。そして、常温状態で直径3mmのマンドレルに巻き付け、割れが生じるかどうかを調べた。結果を表2,4,6に示す。なお、熱老化劣化は、2.5年以上であれば合格とした。
(8) Heat aging degradation
The foamed electric wires obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6 were put into a thermostat and taken out every month. . Then, it was wound around a mandrel having a diameter of 3 mm at room temperature to examine whether or not a crack would occur. The results are shown in Tables 2, 4 and 6. In addition, if heat aging deterioration was 2.5 years or more, it was set as the pass.

(9)屈曲特性
屈曲特性は、参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた伝送ケーブルに対して屈曲試験を行うことにより評価した。屈曲試験は、ベンディング試験機を用いて繰り返し屈曲させ、破損するまでの回数を調べることにより行った。具体的には、ベンディング試験機で、伝送ケーブルの一端に200gの錘をつけ、この錘をつけた伝送ケーブルの一端から800mmの箇所を支点として伝送ケーブルを垂直に吊るし、伝送ケーブルの他端を、上記支点を中心に半円弧を描くように往復運動させることにより、支点を中心に左右に90度ずつ屈曲させて屈曲試験を行った。結果を表2,4,6に示す。なお、表2,4,6中、A〜C及び×はそれぞれ以下の基準に基づくものである。

A・・・屈曲回数が10000回以上で破損した場合
B・・・屈曲回数が5000回以上10000回未満で破損した場合
C・・・屈曲回数が5000回未満で破損した場合
(9) Bending characteristics Bending characteristics were tested for the transmission cables obtained in Reference Examples 1-15, Examples 13-15, Examples 18-20, Examples 22-40 and Comparative Examples 1-6. Evaluated by doing. The bending test was carried out by repeatedly bending using a bending tester and examining the number of times until breakage. Specifically, with a bending tester, a 200 g weight is attached to one end of the transmission cable, the transmission cable is hung vertically from one end of the transmission cable with the weight as a fulcrum, and the other end of the transmission cable is A bending test was conducted by reciprocating the fulcrum around the fulcrum so as to draw a semicircular arc, and bending it 90 degrees left and right around the fulcrum. The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, A to C and x are based on the following criteria, respectively.

A: When damaged when the number of bending is 10,000 times or more B: When damaged when the number of bending times is 5000 or more and less than 10,000 C C: When damaged when the number of bending times is less than 5000

(10)内部導体に対する発泡絶縁層の密着性
参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた発泡電線における内部導体に対する発泡絶縁層の密着性は以下の試験の結果によって評価した。即ちまず参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6で得られた発泡電線を長さ10cmに切断し、真ん中に5cm残るように内部導体の両端を口出しした。そして、東洋精機製作所株式会社製のストログラフを用いて、内部導体の一端を片方のチャックで固定し、発泡絶縁層をもう片方のチャックで固定し、引取スピード100mm/分で引っ張った。そして、発泡絶縁層が動き始めたときの力を測定した。結果を表2,4,6に示す。なお、表2,4,6において、A,B及び×はそれぞれ以下の基準に基づくものである。

A・・・発泡絶縁層が動き始めたときの力が1.5kg重以上
B・・・発泡絶縁層が動き始めたときの力が0.5kg重以上1.5kg重未満
×・・・発泡絶縁層が動き始めたときの力が0.5kg重未満
(10) Adhesion of foam insulation layer to internal conductor
The adhesion of the foamed insulating layer to the internal conductor in the foamed wires obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40 and Comparative Examples 1 to 6 was as follows. The result was evaluated. That is, first, the foamed electric wires obtained in Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6 were cut to a length of 10 cm so that 5 cm remained in the middle. Both ends of the inner conductor were opened. Then, using a strograph made by Toyo Seiki Seisakusho Co., Ltd., one end of the inner conductor was fixed with one chuck, the foamed insulating layer was fixed with the other chuck, and pulled at a take-up speed of 100 mm / min. And the force when a foaming insulating layer began to move was measured. The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, A, B, and x are based on the following criteria, respectively.

A: The force when the foam insulation layer starts to move is 1.5 kg or more. B ... The force when the foam insulation layer starts to move is 0.5 kg or more and less than 1.5 kg. The force when the insulation layer starts to move is less than 0.5kg weight

(11)吐出量減少率
樹脂組成物を押出機(製品名:ラボプラストミルD2020、スクリュー径(D):φ20mm、有効スクリュー長(L):400mm、東洋精機製作所社製)に投入して連続して押出成形を続け、押出機への投入後の10時間経過後の押出物の吐出量(以下、「初期吐出量」と呼ぶ)と、そこからさらに1時間経過後の押出物の吐出量とから、押出物の吐出量の減少率を下記式:

Figure 0005552293
に基づいて算出した。結果を表2,4,6に示す。なお、表2,4,6において、A〜C及び×はそれぞれ以下の基準に基づくものであり、「×」は不合格とし、「A〜C」は合格とした。

A・・・減少率が0.2%未満
B・・・減少率が0.2%以上0.5%未満
C・・・減少率が0.5%以上1.0%未満
×・・・減少率が1.0%以上

Figure 0005552293
Figure 0005552293
Figure 0005552293
Figure 0005552293
Figure 0005552293
Figure 0005552293
(11) Discharge rate reduction rate The resin composition was continuously fed into an extruder (product name: Laboplast mill D2020, screw diameter (D): φ20 mm, effective screw length (L): 400 mm, manufactured by Toyo Seiki Seisakusho). Then, the extrusion molding is continued, and the discharge amount of the extrudate after 10 hours has elapsed after being charged into the extruder (hereinafter referred to as “initial discharge amount”), and the discharge amount of the extrudate after another one hour has passed. From the following formula, the rate of decrease in the discharge amount of the extrudate is:
Figure 0005552293
Calculated based on The results are shown in Tables 2, 4 and 6. In Tables 2, 4, and 6, A to C and x are based on the following criteria, respectively, “x” is rejected, and “A to C” is passed.

A ... Reduction rate is less than 0.2% B ... Reduction rate is 0.2% or more and less than 0.5% C ... Reduction rate is 0.5% or more and less than 1.0% x ... Reduction rate is 1.0% or more

Figure 0005552293
Figure 0005552293
Figure 0005552293
Figure 0005552293
Figure 0005552293
Figure 0005552293

表1〜6に示す結果より、吐出量の減少率については参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40及び比較例1〜6のいずれも「A」又は「B」であり、合格基準に達していた。また参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40の発泡電線は、平均発泡セル径が50μm未満で、標準偏差が25μm未満の発泡絶縁層を有しており、いずれも合格基準に達していたが、比較例1〜6の発泡電線は、平均セル径が50μm又は60μmで、標準偏差が25μm又は40μmの発泡絶縁層を有しており、平均発泡セル径及び標準偏差のいずれも合格基準に達していなかった。
From the results shown in Tables 1 to 6, for the rate of decrease in the discharge amount, all of Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, Examples 22 to 40, and Comparative Examples 1 to 6 are “A”. "Or" B ", and the acceptance criteria were reached. Moreover, the foamed electric wires of Reference Examples 1 to 15, Examples 13 to 15, Examples 18 to 20, and Examples 22 to 40 have a foamed insulating layer having an average foamed cell diameter of less than 50 μm and a standard deviation of less than 25 μm. The foamed electric wires of Comparative Examples 1 to 6 have a foam insulation layer having an average cell diameter of 50 μm or 60 μm and a standard deviation of 25 μm or 40 μm, and the average foaming. Neither the cell diameter nor the standard deviation reached the acceptance criteria.

よって、本発明の発泡電線によれば、十分微細な発泡セルを得ることができることが確認された。なお、参考例1〜15、実施例13〜15、実施例18〜20、実施例22〜40のいずれも「A」又は「B」であり、合格基準に達していた。このことから、本発明によれば、製造効率が向上するものと考えられる。このため、製造効率の向上による低価格化も可能になると考えられる。 Therefore, according to the foamed electric wire of this invention, it was confirmed that a sufficiently fine foam cell can be obtained. In addition, all of Reference Examples 1-15, Examples 13-15, Examples 18-20, and Examples 22-40 were "A" or "B", and have reached the pass standard. Therefore, according to the present invention, it is considered that the production efficiency is improved. For this reason, it is considered possible to reduce the price by improving the production efficiency.

1…内部導体(導体)、2…発泡絶縁層、5…発泡電線、10,20…伝送ケーブル。
DESCRIPTION OF SYMBOLS 1 ... Internal conductor (conductor), 2 ... Foam insulation layer, 5 ... Foam electric wire, 10, 20 ... Transmission cable.

Claims (6)

導体と、
前記導体を被覆する発泡絶縁層とを備える発泡電線であって、
前記発泡絶縁層が、
プロピレン系樹脂を含み、破断時における溶融張力が20〜55mNで且つ引取速度が50m/分以上200m/分以下であるベース樹脂と、
化学発泡剤と、
シリカ粒子と、
銅害防止剤とを含む樹脂組成物を溶融混練することにより得られ、
前記化学発泡剤がアゾジカルボンアミドであり、
前記シリカ粒子が前記ベース樹脂100質量部に対して0.03〜1質量部の割合で配合され、
前記銅害防止剤が前記ベース樹脂100質量部に対して0.25〜1質量部の割合で配合されていること、
を特徴とする発泡電線。
Conductors,
A foamed electric wire comprising a foamed insulating layer covering the conductor,
The foam insulation layer is
A base resin containing a propylene-based resin, having a melt tension at break of 20 to 55 mN and a take-up speed of 50 m / min to 200 m / min;
Chemical foaming agents,
Silica particles;
Obtained by melt-kneading a resin composition containing a copper damage inhibitor,
The chemical blowing agent is azodicarbonamide;
The silica particles are blended at a ratio of 0.03 to 1 part by mass with respect to 100 parts by mass of the base resin,
The copper damage inhibitor is blended at a ratio of 0.25 to 1 part by mass with respect to 100 parts by mass of the base resin,
Foamed wire characterized by
前記ベース樹脂の破断時における溶融張力が20〜38mNである請求項1に記載の発泡電線。 The foamed electric wire according to claim 1, wherein the base resin has a melt tension of 20 to 38 mN at break. 前記発泡絶縁層が、30〜60%の発泡度を有する請求項1又は2に記載の発泡電線。   The foamed electric wire according to claim 1 or 2, wherein the foamed insulating layer has a foaming degree of 30 to 60%. 前記発泡絶縁層と前記導体との間に未発泡樹脂からなる内層が設けられている請求項1〜3のいずれか一項に記載の発泡電線。   The foamed electric wire according to any one of claims 1 to 3, wherein an inner layer made of an unfoamed resin is provided between the foamed insulating layer and the conductor. 前記発泡絶縁層の外径が1.5mm未満である請求項1〜4のいずれか一項に記載の発泡電線。   The foamed electric wire according to any one of claims 1 to 4, wherein an outer diameter of the foamed insulating layer is less than 1.5 mm. 請求項1〜5のいずれか一項に記載の発泡電線を有する伝送ケーブル。   The transmission cable which has a foamed electric wire as described in any one of Claims 1-5.
JP2009244135A 2009-10-23 2009-10-23 Foamed electric wire and transmission cable having the same Expired - Fee Related JP5552293B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009244135A JP5552293B2 (en) 2009-10-23 2009-10-23 Foamed electric wire and transmission cable having the same
PCT/JP2010/067846 WO2011048973A1 (en) 2009-10-23 2010-10-12 Foamed electric wire and transmission cable comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244135A JP5552293B2 (en) 2009-10-23 2009-10-23 Foamed electric wire and transmission cable having the same

Publications (3)

Publication Number Publication Date
JP2011090920A JP2011090920A (en) 2011-05-06
JP2011090920A5 JP2011090920A5 (en) 2012-08-23
JP5552293B2 true JP5552293B2 (en) 2014-07-16

Family

ID=43900200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244135A Expired - Fee Related JP5552293B2 (en) 2009-10-23 2009-10-23 Foamed electric wire and transmission cable having the same

Country Status (2)

Country Link
JP (1) JP5552293B2 (en)
WO (1) WO2011048973A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768784B2 (en) 2011-10-05 2015-08-26 株式会社デンソー Integrated valve
JP2013214499A (en) * 2012-03-07 2013-10-17 Hitachi Cable Ltd Differential transmission cable and manufacturing method therefor
JP6056041B1 (en) * 2015-08-20 2017-01-11 株式会社潤工社 Cable core and transmission cable
WO2019082437A1 (en) * 2017-10-25 2019-05-02 住友電気工業株式会社 Twinax cable and multi-core cable
CN112289499B (en) * 2020-10-22 2022-04-15 安徽瑞之星电缆集团有限公司 Radio frequency signal transmission cable for outer space and manufacturing process thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961257A (en) * 1972-09-27 1974-06-13
JP2508128B2 (en) * 1987-09-09 1996-06-19 日立電線株式会社 Method for manufacturing foamed plastic insulated wire
JP2006286619A (en) * 2005-03-08 2006-10-19 Fujikura Ltd Small-diameter foamed coaxial cable
JP2007048622A (en) * 2005-08-10 2007-02-22 Fujikura Ltd Small diameter foamed coaxial cable
JP2007090787A (en) * 2005-09-30 2007-04-12 Fujikura Ltd Foaming method, foamed coaxial cable and manufacturing method of the foamed coaxial cable

Also Published As

Publication number Publication date
JP2011090920A (en) 2011-05-06
WO2011048973A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
EP2648191B1 (en) Insulated wire and cable
JP5552293B2 (en) Foamed electric wire and transmission cable having the same
JP2012134136A (en) Insulated wire for transmission cable and transmission cable
JP2008019379A (en) Masterbatch for foaming resin composition, foamed coaxial cable and method for producing the same
JP2008021585A (en) Foamed coaxial cable
WO2011048974A1 (en) Foamed electric wire and transmission cable comprising same
JP6113823B2 (en) Insulating resin composition for insulated wires, insulated wires and cables for transmitting signals of frequencies in the GHz band
JP5687024B2 (en) Insulating resin composition for insulated wires, insulated wires and cables
JP2006022276A (en) Composition for insulator and high-foaming insulator and coaxial cable for high frequency using the composition
JP3962421B1 (en) Foam molding method, foamed coaxial cable, and foamed coaxial cable manufacturing method
JP5303639B2 (en) Manufacturing method of foamed wire
JP5426948B2 (en) Foamed electric wire and transmission cable having the same
JP5298148B2 (en) Foamed coaxial cable
JP5420662B2 (en) Foamed electric wire and transmission cable having the same
JP2012087184A (en) Resin composition, and electric wire and cable
KR101418565B1 (en) Foam composition, foamed insulator thereof and coaxial cable
JP5420663B2 (en) Foamed electric wire and transmission cable having the same
JP3926827B1 (en) Foaming resin composition, foam molding method, foamed coaxial cable and foamed coaxial cable manufacturing method
JP4951704B1 (en) Insulated wires for transmission cables and transmission cables
JP2007242589A (en) Foamed coaxial cable
JP5926827B2 (en) Insulating resin composition for insulated wires, insulated wires and cables
JP5298147B2 (en) Foamed coaxial cable
JP2006252820A (en) Foam coaxial cable
JP4916575B1 (en) Insulated wires for transmission cables and transmission cables
JP2007048622A (en) Small diameter foamed coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5552293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees