[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5544221B2 - Ni-based alloy - Google Patents

Ni-based alloy Download PDF

Info

Publication number
JP5544221B2
JP5544221B2 JP2010126602A JP2010126602A JP5544221B2 JP 5544221 B2 JP5544221 B2 JP 5544221B2 JP 2010126602 A JP2010126602 A JP 2010126602A JP 2010126602 A JP2010126602 A JP 2010126602A JP 5544221 B2 JP5544221 B2 JP 5544221B2
Authority
JP
Japan
Prior art keywords
mass
less
based alloy
content
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010126602A
Other languages
Japanese (ja)
Other versions
JP2011252199A (en
Inventor
茂紀 植田
修 吉本
智雄 田中
武人 久野
冨田  新
和郎 山崎
由弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Sumitomo Electric Industries Ltd
Niterra Co Ltd
Original Assignee
Daido Steel Co Ltd
NGK Spark Plug Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, NGK Spark Plug Co Ltd, Sumitomo Electric Industries Ltd filed Critical Daido Steel Co Ltd
Priority to JP2010126602A priority Critical patent/JP5544221B2/en
Publication of JP2011252199A publication Critical patent/JP2011252199A/en
Application granted granted Critical
Publication of JP5544221B2 publication Critical patent/JP5544221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Spark Plugs (AREA)

Description

本発明は、Ni基合金に関し、さらに詳しくは、耐高温酸化性、及び、耐高温窒化性に優れたNi基合金に関する。   The present invention relates to a Ni-based alloy, and more particularly to a Ni-based alloy having excellent high-temperature oxidation resistance and high-temperature nitridation resistance.

従来、点火プラグなどのエンジン部品で1000℃近くの高温に曝される部位で使用される耐熱材料として、JIS NCF600が知られている。この材料は、Crを多く含むNi基合金であり、耐酸化性に優れている。しかしながら、内燃機関の高出力化及び高効率化のために、エンジン部品がより高温に曝されるようになっている。一方、Ni基合金を各種エンジン部品等に加工するためには、冷間加工性が優れていることが必要とされる。そのため、この種のエンジン部品に用いられる材料には、さらなる耐酸化性の向上、高温強度の向上、及び、冷間加工性の向上が求められている。   Conventionally, JIS NCF600 is known as a heat-resistant material used in parts exposed to high temperatures near 1000 ° C. in engine parts such as spark plugs. This material is a Ni-based alloy containing a large amount of Cr and has excellent oxidation resistance. However, in order to increase the output and efficiency of the internal combustion engine, engine parts are exposed to higher temperatures. On the other hand, in order to process the Ni-based alloy into various engine parts, it is necessary that the cold workability is excellent. Therefore, materials used for this type of engine component are required to have further improved oxidation resistance, improved high-temperature strength, and improved cold workability.

JIS NCF600の耐酸化性をさらに高めた材料として、Alを添加したJIS NCF601も知られている。また、NCF601を改良した材料も開発されている。
例えば、特許文献1には、質量%でC:0.1%以下、Si:1.0%以下、Mn:2.0%以下、Cr:12〜32%、Fe:20%以下、Ti:0.03%以下、Mg:0.001〜0.04%、不純物であるSは0.01%以下(但し、Mg/S≧1)を含み、残部はNi及び不可避的不純物からなる点火プラグ用電極材料が開示されている。
同文献には、Ti量を低く抑えることにより耐酸化性を改善できる点、及び、Mgを添加してSをMgとの化合物として除去又は固定することにより熱間加工性が向上する点が記載されている。
As a material that further improves the oxidation resistance of JIS NCF600, JIS NCF601 added with Al is also known. In addition, a material obtained by improving NCF601 has been developed.
For example, in Patent Document 1, in mass%, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 12 to 32%, Fe: 20% or less, Ti: Spark plug comprising 0.03% or less, Mg: 0.001 to 0.04%, S, which is an impurity, 0.01% or less (provided that Mg / S ≧ 1), the balance being Ni and inevitable impurities An electrode material is disclosed.
This document describes that oxidation resistance can be improved by keeping the amount of Ti low, and that hot workability is improved by adding or removing Mg as a compound with Mg by adding Mg. Has been.

また、特許文献2には、質量%でC:0.1%以下、Si:1.0%以下、Mn:2.0%以下、Cr:12〜32%、Fe:20%以下、Ti:1.0%以下、Al:5.0%以下、MoとWの一種又は二種をMo+1/2Wで0.5%を超え4.0%未満含み、残部は実質的にNiからなる点火プラグ用電極材料が開示されている。
同文献には、適量のMoとWを添加すると、冷間加工性を維持しながら、さらに高温強度を改善できる点が記載されている。
In Patent Document 2, C: 0.1% or less, Si: 1.0% or less, Mn: 2.0% or less, Cr: 12 to 32%, Fe: 20% or less, and Ti: An ignition plug comprising 1.0% or less, Al: 5.0% or less, one or two of Mo and W in Mo + 1 / 2W exceeding 0.5% and less than 4.0%, with the balance being substantially Ni An electrode material is disclosed.
This document describes that the addition of appropriate amounts of Mo and W can further improve the high-temperature strength while maintaining cold workability.

Ni基合金にAlを添加すると、高温下で表層にAl酸化物が形成され、酸化による材料の消耗が抑制される。しかしながら、Ni基合金にAlを添加すると、酸化物層の下部に塊状のAl窒化物が層状に形成される現象が見られる。この窒化物層は、温度が高く、高温保持時間が長いほど、材料内部まで析出し、厚みが薄い材料では、深さ方向全面に析出する。そのため、機械的特性や各種物性など部品として本来材料に必要な特性(例えば、耐疲労性など)が損なわれるという問題がある。
また、Al添加は、固溶化熱処理後の硬さを上昇させ、冷間加工性を低下させるために、部品の加工が困難になり、コスト上昇を招く。
When Al is added to the Ni-based alloy, Al oxide is formed on the surface layer at a high temperature, and consumption of the material due to oxidation is suppressed. However, when Al is added to the Ni-based alloy, a phenomenon in which massive Al nitride is formed in the lower layer of the oxide layer is observed. The nitride layer is deposited to the inside of the material as the temperature is high and the high temperature holding time is long. In the case of a thin material, the nitride layer is deposited on the entire surface in the depth direction. Therefore, there is a problem that characteristics (for example, fatigue resistance, etc.) originally necessary for the material such as mechanical characteristics and various physical properties are impaired.
Further, the addition of Al increases the hardness after the solution heat treatment and decreases the cold workability, so that it becomes difficult to process the parts and causes an increase in cost.

特開2000−336446号公報JP 2000-336446 A 特開2002−129268号公報JP 2002-129268 A

本発明が解決しようとする課題は、耐高温酸化性及び耐高温窒化性に優れ、しかも、耐疲労性及び延性に優れたNi基合金を提供することにある。   The problem to be solved by the present invention is to provide a Ni-based alloy that is excellent in high-temperature oxidation resistance and high-temperature nitridation resistance and excellent in fatigue resistance and ductility.

上記課題を解決するために本発明に係るNi基合金は、
0.005≦C<0.10mass%、
1.0<Si≦3.0mass%、
0.05≦Mn≦1.0mass%、
20.0≦Cr≦32.0mass%、
6.0≦Fe≦16.0mass%、
0.001≦Y≦0.5mass%、
を含み、残部がNi及び不可避的不純物からなる。
In order to solve the above problems, the Ni-based alloy according to the present invention is:
0.005 ≦ C <0.10 mass%,
1.0 <Si ≦ 3.0 mass%,
0.05 ≦ Mn ≦ 1.0 mass%,
20.0 ≦ Cr ≦ 32.0 mass%,
6.0 ≦ Fe ≦ 16.0 mass%,
0.001 ≦ Y ≦ 0.5 mass%,
The balance consists of Ni and inevitable impurities.

Ni基合金に対して所定量のSi及びYを添加すると、耐窒化性を害することなく、耐酸化性が向上する。また、所定量のSi及びYを含むNi基合金に対してさらにAlを添加すると、耐窒化性を害することなく、さらに耐酸化性が向上する。さらに、このようなNi基合金に対してCu、Nb、REM等を添加すると、耐酸化性がさらに向上する。   When a predetermined amount of Si and Y is added to the Ni-based alloy, the oxidation resistance is improved without impairing the nitridation resistance. Further, when Al is further added to a Ni-based alloy containing a predetermined amount of Si and Y, oxidation resistance is further improved without impairing nitriding resistance. Furthermore, when Cu, Nb, REM or the like is added to such a Ni-based alloy, the oxidation resistance is further improved.

以下、本発明の一実施の形態について詳細に説明する。
[1. Ni基合金]
本発明に係るNi基合金は、以下のような元素を含み、残部がNi及び不可避的不純物からなる。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
[1.1. 主構成元素]
(1) 0.005≦C<0.10mass%。
Cは、CrやNbと結合して炭化物を形成し、固溶化熱処理時の結晶粒粗大化防止及び粒界の強化に寄与する。そのためには、C含有量は、0.005mass%以上とする必要がある。
一方、C含有量が過剰になると、マトリックス中のCrを過剰に消費し、耐酸化性を低下させる。従って、C含有量は、0.10mass%未満である必要がある。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Ni-based alloy]
The Ni-based alloy according to the present invention contains the following elements, with the balance being Ni and inevitable impurities. The kind of additive element, its component range, and the reason for limitation are as follows.
[1.1. Main constituent elements]
(1) 0.005 ≦ C <0.10 mass%.
C combines with Cr and Nb to form carbides, and contributes to prevention of crystal grain coarsening and strengthening of grain boundaries during solution heat treatment. For that purpose, C content needs to be 0.005 mass% or more.
On the other hand, when the C content is excessive, Cr in the matrix is excessively consumed and the oxidation resistance is lowered. Therefore, the C content needs to be less than 0.10 mass%.

(2) 1.0<Si≦3.0mass%。
Siは、脱酸元素として有用である。また、Siは、耐窒化性を低下させることなく、耐酸化性を向上させるのに有効である。さらに、Siは、Alと複合で添加しても耐窒化性を低下させることなく、耐酸化性を向上させる作用がある。そのためには、Si含有量は、1.0mass%超とする必要がある。Si含有量は、さらに好ましくは、1.1mass%以上である。
一方、Siの過剰添加は、熱間加工性、冷間加工性、及び、靱性を低下させる。従って、Si含有量は、3.0mass%以下とする必要がある。Si含有量は、さらに好ましくは、2.0mass%以下である。
(2) 1.0 <Si ≦ 3.0 mass%.
Si is useful as a deoxidizing element. Si is effective in improving oxidation resistance without reducing nitriding resistance. Furthermore, even if Si is added in combination with Al, it has an effect of improving oxidation resistance without deteriorating nitriding resistance. For that purpose, Si content needs to be more than 1.0 mass%. The Si content is more preferably 1.1 mass% or more.
On the other hand, excessive addition of Si reduces hot workability, cold workability, and toughness. Therefore, the Si content needs to be 3.0 mass% or less. The Si content is more preferably 2.0 mass% or less.

(3) 0.05≦Mn≦1.0mass%。
Mnは、脱酸元素として有用である。Mn含有量は、0.05mass%以上である必要がある。
一方、Mn含有量が過剰になると、熱間加工性、冷間加工性、及び、耐酸化性を低下させる。従って、Mn含有量は、1.0mass%以下とする必要がある。
(3) 0.05 ≦ Mn ≦ 1.0 mass%.
Mn is useful as a deoxidizing element. Mn content needs to be 0.05 mass% or more.
On the other hand, when the Mn content is excessive, hot workability, cold workability, and oxidation resistance are lowered. Therefore, the Mn content needs to be 1.0 mass% or less.

(4) 20.0≦Cr≦32.0mass%。
Crは、高温下で材料表面にCr23を形成し、耐酸化性を付与するために必須の元素である。また、Cと結びついて炭化物を形成し、固溶化熱処理時の結晶粒粗大化防止や高温強化に役立つ。その効果を得るためには、Cr含有量は、少なくとも20.0mass%以上が必要である。
一方、Cr含有量が過剰になると、熱間加工性や靱性が低下する。従って、Cr含有量は、32.0mass%以下とする必要がある。Cr含有量は、さらに好ましくは、30.0mass%以下、さらに好ましくは、25.0mass%以下である。
(4) 20.0 ≦ Cr ≦ 32.0 mass%.
Cr is an essential element for forming Cr 2 O 3 on the surface of the material at a high temperature and imparting oxidation resistance. Moreover, it combines with C to form a carbide, which is useful for preventing grain coarsening and for high-temperature strengthening during solution heat treatment. In order to obtain the effect, the Cr content needs to be at least 20.0 mass%.
On the other hand, when Cr content becomes excessive, hot workability and toughness will fall. Therefore, the Cr content needs to be 32.0 mass% or less. The Cr content is more preferably 30.0 mass% or less, and further preferably 25.0 mass% or less.

(5) 6.0<Fe≦16.0mass%。
Feは、固溶化熱処理後の硬さを低下させる効果、熱間加工性を向上させる効果、及び材料を低コスト化する効果がある。このような効果を得るためには、Fe含有量は、6.0mass%以上とする必要がある。
一方、Feの過剰添加は、耐酸化性を低下させるだけでなく、脆性相であるσ相が析出しやすくなる。従って、Fe含有量は、16.0mass%以下とする必要がある。
(5) 6.0 <Fe ≦ 16.0 mass%.
Fe has the effect of reducing the hardness after solution heat treatment, the effect of improving hot workability, and the effect of reducing the cost of the material. In order to obtain such an effect, the Fe content needs to be 6.0 mass% or more.
On the other hand, excessive addition of Fe not only lowers the oxidation resistance but also tends to precipitate the σ phase, which is a brittle phase. Therefore, the Fe content needs to be 16.0 mass% or less.

(6) 0.001≦Y≦0.5mass%。
Yは、酸化スケール、特にSi酸化物の剥離を抑制し、耐酸化性を向上させる。また、熱間加工性を改善し、粒界を強化する。このような効果を得るためには、Y含有量は、0.001mass%以上とする必要がある。
一方、Yの過剰添加は、逆に熱間加工性を低下させる。また、溶接が必要な部品に用いる場合、Yの過剰添加は、溶接性を害する。従って、Y含有量は、0.5mass%以下とする必要がある。
(6) 0.001 ≦ Y ≦ 0.5 mass%.
Y suppresses exfoliation of oxide scale, particularly Si oxide, and improves oxidation resistance. It also improves hot workability and strengthens grain boundaries. In order to obtain such an effect, the Y content needs to be 0.001 mass% or more.
On the other hand, excessive addition of Y decreases the hot workability. In addition, when used for parts that require welding, excessive addition of Y impairs weldability. Therefore, the Y content needs to be 0.5 mass% or less.

[1.2. 副構成元素]
本発明に係るNi基合金は、上述した各種の添加元素に加えて、以下のいずれか1以上の元素をさらに含んでいても良い。
(7) 0.05≦Al≦3.5mass%。
Alは、1000℃以上での耐酸化性向上に有効な元素である。但し、Alを添加すると、窒化物を材料内部に形成してしまい、靱性や疲労強度の低下を招く。従って、Alを添加する場合には、Si及びYとの複合添加が必須である。耐酸化性を向上させるためには、Al含有量は、0.05%以上とするのが好ましい。Al含有量は、さらに好ましくは、0.1mass%以上である。
一方、Al含有量が過剰になると、加工性が低下する。従って、Al含有量は、3.5mass%以下が好ましい。Al含有量は、さらに好ましくは、2.5mass%以下である。
[1.2. Sub-constituent elements]
The Ni-based alloy according to the present invention may further contain any one or more of the following elements in addition to the various additive elements described above.
(7) 0.05 ≦ Al ≦ 3.5 mass%.
Al is an element effective for improving the oxidation resistance at 1000 ° C. or higher. However, if Al is added, nitride is formed inside the material, leading to a decrease in toughness and fatigue strength. Therefore, in the case of adding Al, a combined addition with Si and Y is essential. In order to improve the oxidation resistance, the Al content is preferably 0.05% or more. The Al content is more preferably 0.1 mass% or more.
On the other hand, when the Al content is excessive, workability is reduced. Therefore, the Al content is preferably 3.5 mass% or less. The Al content is more preferably 2.5 mass% or less.

(8) 0.1≦Nb≦2.0mass%。
Nbは、Cと結びついて炭化物を形成し、固溶化熱処理時の結晶粒粗大化防止や高温強化に役立つ。Nbは、Crよりも優先的に炭化物を生成するため、マトリックス中のCr量を相対的に増加させることができ、2次的に耐酸化性を向上させる。このような効果を得るためには、Nb含有量は、0.1mass%以上が好ましい。
一方、Nbの過剰添加は、熱間加工性を低下させる。従って、Nb含有量は、2.0mass%以下が好ましい。
(8) 0.1 ≦ Nb ≦ 2.0 mass%.
Nb combines with C to form a carbide, which is useful for preventing grain coarsening and high-temperature strengthening during solution heat treatment. Since Nb produces carbide preferentially over Cr, the amount of Cr in the matrix can be relatively increased, and the oxidation resistance is secondarily improved. In order to obtain such an effect, the Nb content is preferably 0.1 mass% or more.
On the other hand, excessive addition of Nb reduces hot workability. Therefore, the Nb content is preferably 2.0 mass% or less.

(9) 0.1≦Cu≦5.0mass%。
Cuは、高温下では表層に形成されるCr23層とマトリックスとの境界に濃化し、酸化スケールの耐剥離性を高めて耐酸化性を向上させる。このような効果を得るためには、Cu含有量は、0.1mass%以上が好ましい。Cu含有量は、さらに好ましくは、0.5mass%以上である。
一方、Cuの過剰添加は、熱間加工性を低下させる。従って、Cu含有量は、5.0mass%以下が好ましい。Cu含有量は、さらに好ましくは、2.5mass%以下である。
(9) 0.1 ≦ Cu ≦ 5.0 mass%.
Cu is concentrated at the boundary between the Cr 2 O 3 layer formed on the surface layer and the matrix at a high temperature, and the oxidation resistance of the oxide scale is enhanced to improve the oxidation resistance. In order to obtain such an effect, the Cu content is preferably 0.1 mass% or more. The Cu content is more preferably 0.5 mass% or more.
On the other hand, excessive addition of Cu reduces hot workability. Therefore, the Cu content is preferably 5.0 mass% or less. The Cu content is more preferably 2.5 mass% or less.

(10) 0.001≦REM≦0.3mass%、
REM(Ce、Laなど)は、Cuと同様に、高温下では表層に形成されるCr23層とマトリックスとの境界に濃化し、酸化スケールの耐剥離性を高めて耐酸化性を向上させる。このような効果を得るためには、REM含有量は、0.001mass%以上が好ましい。
一方、REMの過剰添加は、熱間加工性を低下させる。従って、REM含有量は、0.3mass%以下が好ましい。
なお、REMは、単独で添加しても良く、あるいは、Cuと同時に添加しても良い。
(10) 0.001 ≦ REM ≦ 0.3 mass%,
REM (Ce, La, etc.), like Cu, concentrates at the boundary between the Cr 2 O 3 layer formed on the surface layer and the matrix at high temperatures, improving the oxidation resistance by increasing the peel resistance of the oxide scale. Let In order to obtain such an effect, the REM content is preferably 0.001 mass% or more.
On the other hand, excessive addition of REM reduces hot workability. Therefore, the REM content is preferably 0.3 mass% or less.
Note that REM may be added alone or at the same time as Cu.

(11) 0.001≦B≦0.01mass%。
(12) 0.001≦Mg≦0.01mass%。
B及びMgは、いずれも熱間加工性を改善し、粒界を強化する。このような効果を得るためには、これらの元素の含有量は、それぞれ、上記の下限値以上が好ましい。
一方、B及び/又はMgの過剰添加は、逆に熱間加工性を低下させる。また、溶接が必要な部品に用いる場合、これらの元素の過剰添加は、溶接性を害する。従って、これらの元素の含有量は、それぞれ、上記の上限値以下が好ましい。
(11) 0.001 ≦ B ≦ 0.01 mass%.
(12) 0.001 ≦ Mg ≦ 0.01 mass%.
B and Mg both improve hot workability and strengthen grain boundaries. In order to obtain such an effect, the content of these elements is preferably not less than the above lower limit value.
On the other hand, excessive addition of B and / or Mg decreases the hot workability. In addition, when used for parts that require welding, excessive addition of these elements impairs weldability. Therefore, the content of these elements is preferably not more than the above upper limit value.

[2. Ni基合金の作用]
Ni基合金に対して所定量のSi及びYを添加すると、耐窒化性を害することなく、耐酸化性が向上する。また、所定量のSi及びYを含むNi基合金に対してさらにAlを添加すると、耐窒化性を害することなく、さらに耐酸化性が向上する。さらに、このようなNi基合金に対してCu、Nb、REM等を添加すると、耐酸化性がさらに向上する。
Si添加によって耐酸化性を保持したまま、耐窒化性が向上する理由の詳細は不明であるが、おそらく、Si添加によって表面に窒素の拡散を阻止する保護層が形成されたためと考えられる。
[2. Action of Ni-based alloy]
When a predetermined amount of Si and Y is added to the Ni-based alloy, the oxidation resistance is improved without impairing the nitridation resistance. Further, when Al is further added to a Ni-based alloy containing a predetermined amount of Si and Y, oxidation resistance is further improved without impairing nitriding resistance. Furthermore, when Cu, Nb, REM or the like is added to such a Ni-based alloy, the oxidation resistance is further improved.
Although the details of the reason why the nitriding resistance is improved while maintaining the oxidation resistance by adding Si are unknown, it is considered that a protective layer that prevents diffusion of nitrogen is formed on the surface by adding Si.

(実施例1〜18、参考例19、実施例20、参考例21〜23、実施例24、参考例25〜27、実施例28、参考例29〜30、比較例1〜20)
[1. 試料の作製]
表1及び表2に示す各成分の合金を真空高周波誘導炉で溶解し、50kgのインゴットを得た。次にφ16mmの丸棒に鍛造した後、1100℃の固溶化熱処理を行った。
[2. 試験方法]
これらの素材から、幅15mm、長さ25mm、厚さ3mmの試験片を切り出し、大気腐食試験に供した。大気腐食試験は、JIS Z 2281に準拠し、1050℃で200時間保持後の大気腐食後増量及び減量を測定した。さらに、1050℃×200時間連続大気腐食後に、断面での窒化物層深さ(窒化物生成先端深さ)を測定した。
なお、本発明において、「大気腐食後増量」とは、大気腐食後、剥離スケールと密着スケールを含めた試験片の単位面積当たりの質量増をいう。また、「大気腐食後減量」とは、大気腐食後、剥離スケールを除いた試験片の単位面積当たりの質量減をいう。
また、「窒化物生成先端深さ(先端深さ)」とは、1050℃×200時間連続大気腐食後の材料表面から、窒化物の生成が認められる材料内部の最深部までの距離をいう。
(Examples 1 to 18, Reference Example 19, Example 20, Reference Examples 21 to 23, Example 24, Reference Examples 25 to 27, Example 28, Reference Examples 29 to 30, and Comparative Examples 1 to 20)
[1. Preparation of sample]
Alloys of respective components shown in Table 1 and Table 2 were melted in a vacuum high frequency induction furnace to obtain 50 kg of ingot. Next, after forging into a round bar of φ16 mm, solution heat treatment at 1100 ° C. was performed.
[2. Test method]
From these materials, test pieces having a width of 15 mm, a length of 25 mm, and a thickness of 3 mm were cut out and subjected to an atmospheric corrosion test. The atmospheric corrosion test was based on JIS Z 2281 and measured the increase and decrease after atmospheric corrosion after holding at 1050 ° C. for 200 hours. Further, after continuous atmospheric corrosion at 1050 ° C. × 200 hours, the nitride layer depth (nitride generation tip depth) in the cross section was measured.
In the present invention, the “increase after atmospheric corrosion” means an increase in mass per unit area of the test piece including the peel scale and the adhesion scale after atmospheric corrosion. The “weight loss after atmospheric corrosion” refers to the mass loss per unit area of the test piece excluding the peeling scale after atmospheric corrosion.
Further, “nitride generation tip depth (tip depth)” refers to the distance from the surface of the material after continuous atmospheric corrosion at 1050 ° C. for 200 hours to the deepest part inside the material where nitride formation is observed.

[3. 試験結果]
表1及び表2に、各試料の組成及び各種試験の結果を示す。なお、比較例16〜20は、鍛造割れが生じたため、腐食後増量及び先端深さを測定できなかった。
表1及び表2より、以下のことが分かる。
(1)Si又はYが過剰になると、鍛造割れが生ずる(比較例16〜20)。
(2)Si又はYのいずれか一方が不足すると、1050℃×200時間連続大気腐食後の大気腐食後増量が相対的に大きくなる(比較例1〜15)のに対し、適量のSi及びYが含まれていると、大気腐食後増量が少なくなる(実施例1〜18、参考例19、実施例20、参考例21〜23、実施例24、参考例25〜27、実施例28、参考例29〜30)。
(3)所定量のSi及びYを含まない材料にAlを添加すると、大気腐食試験後に材料内部に窒化物の生成が認められる(比較例6〜8、11〜12、14)のに対し、所定量のSi及びYを含む材料にAlをさらに添加すると、大気腐食試験後も窒化物の生成が認められない(実施例6、10〜12、14、16〜18、参考例19、実施例20、参考例21〜23、実施例24、参考例25〜27、実施例28、参考例29〜30)。
[3. Test results]
Tables 1 and 2 show the composition of each sample and the results of various tests. In Comparative Examples 16 to 20, since forging cracks occurred, the increase after corrosion and the tip depth could not be measured.
Table 1 and Table 2 show the following.
(1) When Si or Y becomes excessive, forging cracks occur (Comparative Examples 16 to 20).
(2) When either one of Si or Y is insufficient, the increase after atmospheric corrosion after 1050 ° C. × 200 hours continuous atmospheric corrosion becomes relatively large (Comparative Examples 1 to 15), whereas appropriate amounts of Si and Y Is contained (Examples 1 to 18, Reference Example 19, Example 20, Reference Examples 21 to 23, Example 24, Reference Examples 25 to 27, Example 28, Reference) Examples 29-30 ).
(3) When Al is added to a material that does not contain a predetermined amount of Si and Y, nitride formation is observed inside the material after the atmospheric corrosion test (Comparative Examples 6-8, 11-12, 14), When Al is further added to a material containing a predetermined amount of Si and Y, the formation of nitride is not recognized even after the atmospheric corrosion test (Examples 6 , 10 to 12, 14, 16 to 18, Reference Example 19, Example 20, Reference Examples 21-23, Example 24, Reference Examples 25-27, Example 28, Reference Examples 29-30 ).

Figure 0005544221
Figure 0005544221

Figure 0005544221
Figure 0005544221

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係るNi基合金は、エンジンの点火プラグ用電極、エンジンの排気系、内燃機関部品、1000℃以上の高温に曝される各種プラント部品などに用いることができる。   The Ni-based alloy according to the present invention can be used for an engine spark plug electrode, an engine exhaust system, an internal combustion engine component, various plant components exposed to a high temperature of 1000 ° C. or higher.

Claims (5)

0.005≦C<0.10mass%、
1.0<Si≦3.0mass%、
0.05≦Mn≦1.0mass%、
20.0≦Cr≦32.0mass%、
6.0≦Fe≦16.0mass%、
0.001≦Y≦0.5mass%、
を含み、残部がNi及び不可避的不純物からなるNi基合金。
0.005 ≦ C <0.10 mass%,
1.0 <Si ≦ 3.0 mass%,
0.05 ≦ Mn ≦ 1.0 mass%,
20.0 ≦ Cr ≦ 32.0 mass%,
6.0 ≦ Fe ≦ 16.0 mass%,
0.001 ≦ Y ≦ 0.5 mass%,
Ni-based alloy comprising Ni and inevitable impurities in the balance.
20.0≦Cr≦24.0mass%であり、
0.05≦Al≦1.8mass%
をさらに含む請求項1に記載のNi基合金。
20.0 ≦ Cr ≦ 24.0 mass%,
0.05 ≦ Al ≦ 1.8 mass%
The Ni-based alloy according to claim 1, further comprising:
0.01≦Nb≦2.0mass%
をさらに含む請求項1又は2に記載のNi基合金。
0.01 ≦ Nb ≦ 2.0 mass%
The Ni-based alloy according to claim 1 or 2, further comprising:
0.1≦Cu≦3.0mass%、及び、
0.001≦REM≦0.3mass%、
から選ばれるいずれか1以上をさらに含む請求項1から3までのいずれかに記載のNi基合金。
0.1 ≦ Cu ≦ 3.0 mass%, and
0.001 ≦ REM ≦ 0.3 mass%,
The Ni-based alloy according to any one of claims 1 to 3, further comprising at least one selected from the group consisting of:
0.001≦B≦0.01mass%、及び、
0.001≦Mg≦0.01mass%、
から選ばれるいずれか1以上をさらに含む請求項1から4までのいずれかに記載のNi基合金。
0.001 ≦ B ≦ 0.01 mass%, and
0.001 ≦ Mg ≦ 0.01 mass%,
The Ni-based alloy according to claim 1, further comprising at least one selected from the group consisting of:
JP2010126602A 2010-06-02 2010-06-02 Ni-based alloy Active JP5544221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126602A JP5544221B2 (en) 2010-06-02 2010-06-02 Ni-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126602A JP5544221B2 (en) 2010-06-02 2010-06-02 Ni-based alloy

Publications (2)

Publication Number Publication Date
JP2011252199A JP2011252199A (en) 2011-12-15
JP5544221B2 true JP5544221B2 (en) 2014-07-09

Family

ID=45416344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126602A Active JP5544221B2 (en) 2010-06-02 2010-06-02 Ni-based alloy

Country Status (1)

Country Link
JP (1) JP5544221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451267A (en) * 2014-11-22 2015-03-25 湘潭高耐合金制造有限公司 Nickel-yttrium alloy spark plug electrode material and preparation method thereof
CN109136653B (en) * 2017-06-15 2020-06-12 宝武特种冶金有限公司 Nickel-based alloy for nuclear power equipment and manufacturing method of hot rolled plate of nickel-based alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256614B2 (en) * 2002-01-31 2009-04-22 三菱重工業株式会社 High chromium-high nickel heat resistant alloy
JP4513466B2 (en) * 2004-09-07 2010-07-28 住友金属工業株式会社 Welded joints and welding materials

Also Published As

Publication number Publication date
JP2011252199A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US9932656B2 (en) Nickel-based alloy with silicon, aluminum, and chromium
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
JP5697484B2 (en) Spark plug electrode material
RU2518814C1 (en) Nickel-based alloy
CA2841329A1 (en) Hot-forgeable ni-based superalloy excellent in high temperature strength
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP2011219864A (en) Heat resistant steel for exhaust valve
JPWO2019131954A1 (en) Austenitic heat resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP4706441B2 (en) Spark plug electrode material
JP4972972B2 (en) Ni-based alloy
JP5788360B2 (en) Heat-resistant steel for exhaust valves
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP2006316344A (en) Electrode material for spark plug
JP5544221B2 (en) Ni-based alloy
JP3625262B2 (en) Spark plug electrode material with excellent high-temperature oxidation resistance and hot workability
JP2000328198A (en) Austenitic stainless steel with excellent hot workability
JP4577256B2 (en) Austenitic stainless steel
US10240223B2 (en) Ni-based alloy having excellent high-temperature creep characteristics, and gas turbine member using the same
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JP5521490B2 (en) Spark plug electrode material
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP2004190060A (en) Heat-resistant alloy for engine valve
JP2001158943A (en) Heat resistant bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5544221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250