JP5439926B2 - Iron-based mixed powder for powder metallurgy - Google Patents
Iron-based mixed powder for powder metallurgy Download PDFInfo
- Publication number
- JP5439926B2 JP5439926B2 JP2009102347A JP2009102347A JP5439926B2 JP 5439926 B2 JP5439926 B2 JP 5439926B2 JP 2009102347 A JP2009102347 A JP 2009102347A JP 2009102347 A JP2009102347 A JP 2009102347A JP 5439926 B2 JP5439926 B2 JP 5439926B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- lubricant
- based mixed
- porous particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 171
- 229910052742 iron Inorganic materials 0.000 title claims description 74
- 239000011812 mixed powder Substances 0.000 title claims description 54
- 238000004663 powder metallurgy Methods 0.000 title claims description 37
- 239000002245 particle Substances 0.000 claims description 112
- 239000000843 powder Substances 0.000 claims description 77
- 239000000314 lubricant Substances 0.000 claims description 64
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 25
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 14
- 239000000194 fatty acid Substances 0.000 claims description 14
- 229930195729 fatty acid Natural products 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 150000004665 fatty acids Chemical class 0.000 claims description 13
- 239000010419 fine particle Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 239000010687 lubricating oil Substances 0.000 claims description 6
- 229910052752 metalloid Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000000344 soap Substances 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 238000005272 metallurgy Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- -1 etc.) Substances 0.000 description 8
- 238000011049 filling Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005245 sintering Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 4
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 229930182556 Polyacetal Natural products 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- SZINCDDYCOIOJQ-UHFFFAOYSA-L manganese(2+);octadecanoate Chemical compound [Mn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O SZINCDDYCOIOJQ-UHFFFAOYSA-L 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 229910000967 As alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 2
- ZJOLCKGSXLIVAA-UHFFFAOYSA-N ethene;octadecanamide Chemical class C=C.CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(N)=O ZJOLCKGSXLIVAA-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- WGOROJDSDNILMB-UHFFFAOYSA-N octatriacontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O WGOROJDSDNILMB-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、粉末冶金技術に用いて好適な鉄基混合粉末に関するものである。 The present invention relates to an iron-based mixed powder suitable for use in powder metallurgy technology.
粉末冶金技術に用いる鉄基混合粉末は、基本成分である鉄粉に、合金成分を含有する金属粉末(以下、合金用粉末という)と潤滑剤とを混合して製造される。その際、一般に合金用粉末として黒鉛粉末や銅粉末、リン化鉄粉末等が使用され、潤滑剤としてステアリン酸亜鉛、ステアリン酸リチウム等が使用される。また、必要に応じて切削性改善用粉末(例えばMnS等)を添加する場合もある。 The iron-based mixed powder used in the powder metallurgy technique is manufactured by mixing iron powder, which is a basic component, with metal powder containing an alloy component (hereinafter referred to as alloy powder) and a lubricant. At that time, graphite powder, copper powder, iron phosphide powder or the like is generally used as the alloy powder, and zinc stearate, lithium stearate or the like is used as the lubricant. Further, a machinability improving powder (for example, MnS) may be added as necessary.
このような鉄基混合粉末を、粉末冶金技術に適用するに当たって、鉄基混合粉末を金型に充填し、加圧成形して製造した成形体(以下、圧粉体という)を金型から取り出して焼結する。しかしながら、鉄粉、合金用粉末、潤滑剤および切削性改善用粉末等は、各々の特性(すなわち粒径、形状、比重等)が異なるので、混合して得た鉄基混合粉末を輸送の際、さらにホッパーへの装入およびホッパーからの排出の際に、合金用粉末、潤滑剤および切削性改善用粉末等が鉄基混合粉末中で偏析するという問題があった。 In applying such iron-based mixed powder to powder metallurgy technology, the iron-based mixed powder is filled in a mold and pressure-molded and manufactured (hereinafter referred to as a green compact) is removed from the mold. And sinter. However, since iron powder, alloy powder, lubricant, machinability improving powder, etc. have different characteristics (ie, particle size, shape, specific gravity, etc.), the iron-based mixed powder obtained by mixing is transported. In addition, there has been a problem that alloy powder, lubricant, machinability improving powder and the like are segregated in the iron-based mixed powder during charging into the hopper and discharging from the hopper.
偏析が生じた鉄基混合粉末から圧粉体を製造すると、単一の圧粉体内において特性(すなわち成分、密度)の均一な分布が得られず、しかも複数の圧粉体間において特性のバラツキが生じる。従って、そのような圧粉体を焼結して得た焼結体は、寸法や強度が不均一になり、焼結体の歩留りが低下するのは避けられない。 When a green compact is produced from segregated iron-based mixed powder, a uniform distribution of characteristics (ie, component and density) cannot be obtained within a single green compact, and the characteristics vary among multiple green compacts. Occurs. Therefore, a sintered body obtained by sintering such a green compact is inevitably reduced in size and strength, and the yield of the sintered body is reduced.
そこで、鉄基混合粉末における鉄粉、合金用粉末、潤滑剤および切削性改善用粉末等の偏析を防止する技術が種々検討されている。
たとえば、特許文献1〜3には、鉄粉の表面に予め合金用粉末を付着させる技術が開示されている。
また、特許文献4には、遊離潤滑剤を添加して、偏析防止粉の流出性を改善する技術が提案されている。
Therefore, various techniques for preventing segregation of iron powder, alloy powder, lubricant, machinability improving powder and the like in the iron-based mixed powder have been studied.
For example, Patent Documents 1 to 3 disclose a technique in which an alloy powder is attached in advance to the surface of iron powder.
Patent Document 4 proposes a technique for improving the outflow of segregation preventing powder by adding a free lubricant.
さらに、特許文献5には、所定の粒度分布を有する鉄粉を用いて鉄基混合粉末を製造する技術が開示されている。この技術は、鉄基粉末を金型に充填する際の充填性を改善することによって、圧粉体の特性のバラツキを防止し、ひいては焼結体の歩留り低下を防止するものである。
しかしながら、鉄基混合粉末の流動性や金型への充填性を高めると、圧粉体を金型から取り出す際の押圧力(以下、抜出力という)が増加することが一般に知られている。つまり、流動性や充填性を高めた鉄基混合粉末を用いると抜出力が増加し、圧粉体の取り出しに長時間を要することによる生産性低下や圧粉体に欠損が生じることによる歩留り低下を招くことが多い。
Furthermore, Patent Document 5 discloses a technique for producing an iron-based mixed powder using iron powder having a predetermined particle size distribution. This technique prevents variations in the characteristics of the green compact by improving the filling properties when filling the iron-based powder into the mold, and thus prevents the yield of the sintered body from being lowered.
However, it is generally known that when the fluidity of the iron-based mixed powder and the filling property into the mold are enhanced, the pressing force (hereinafter referred to as the unloading power) when the green compact is taken out from the mold is increased. In other words, when iron-based mixed powder with improved fluidity and filling properties is used, the output is increased, resulting in a decrease in productivity due to the long time required to take out the green compact and a decrease in yield due to the occurrence of defects in the green compact. Is often invited.
圧粉体の抜出力を低減するためには、鉄基混合粉末を加圧成形する温度にて軟質で延伸性を有する潤滑剤を使用することが有効である。その理由は、加圧成形によって潤滑剤が鉄基混合粉末から滲出して金型表面に付着し、金型と圧粉体との摩擦力を低減するからである。ところが、そのような潤滑剤は延伸性を有するが故に、鉄粉や合金用粉末の粒子にも付着し易く、鉄基混合粉末の流動性や充填性を阻害するのである。 In order to reduce the punching power of the green compact, it is effective to use a soft and extensible lubricant at the temperature at which the iron-based mixed powder is pressure-molded. The reason is that the lubricant exudes from the iron-based mixed powder by pressure molding and adheres to the mold surface, reducing the frictional force between the mold and the green compact. However, since such a lubricant has stretchability, it easily adheres to the particles of iron powder and alloy powder, and inhibits the fluidity and filling properties of the iron-based mixed powder.
従って、鉄基混合粉末の流動性や充填性の向上と圧粉体の抜出力の低減とを両立させることは困難であった。
この問題に対して、抜出力を低減する潤滑剤を核とし、流動性を改善する潤滑剤を被覆した二層構造の潤滑剤が検討されている。しかしながら、そのような潤滑剤は製造コストが上昇する。しかも、潤滑剤の粒子寸法が増大し加圧成形時に潰れ難くなるので、圧粉体中に潤滑剤の粒子が残留し、焼結によって燃焼あるいは気化して空洞となる。このようして発生する空洞は焼結体の欠陥であり、焼結体の歩留り低下を招く。
Therefore, it has been difficult to achieve both improvement in fluidity and filling property of the iron-based mixed powder and reduction in the extraction force of the green compact.
In order to solve this problem, a two-layered lubricant having a lubricant for reducing the unloading power as a core and a lubricant for improving the fluidity has been studied. However, such lubricants are expensive to manufacture. In addition, since the particle size of the lubricant increases and it becomes difficult to be crushed during pressure molding, the lubricant particles remain in the green compact and burn or vaporize by sintering to form cavities. The cavities generated in this way are defects in the sintered body, leading to a decrease in the yield of the sintered body.
本発明は、上記の現状に鑑み開発されもので、安価な手段で鉄基混合粉末の流動性の改善と圧粉体の抜出力の低減とを両立させ、成形工程や焼結工程の生産性向上と圧粉体や焼結体の歩留り向上とを達成することができる粉末冶金用の鉄基混合粉末を提供することを目的とする。 The present invention has been developed in view of the above-mentioned present situation, and is capable of improving the fluidity of the iron-based mixed powder and reducing the punching force of the green compact by an inexpensive means, and improving the productivity of the molding process and the sintering process. An object of the present invention is to provide an iron-based mixed powder for powder metallurgy that can achieve an improvement and an improvement in the yield of a green compact and a sintered body.
すなわち、本発明の要旨構成は次のとおりである。
1.鉄基粉末に、潤滑剤を内包する多孔質粒子を配合した粉末冶金用鉄基混合粉末であって、該多孔質粒子が、
化学式:MOxHy(但し、x>0、y>0)
ここで、M:金属元素または半金属元素
O:酸素
H:水素
で示される組成(但し、MgO・Al 2 O 3 ・xSiO 2 ・yH 2 Oを除く)になることを特徴とする粉末冶金用鉄基混合粉末。
That is, the gist configuration of the present invention is as follows.
1. An iron-based powder for powder metallurgy in which porous particles containing a lubricant are mixed with iron-based powder, the porous particles being
Chemical formula: MOxHy (where x> 0, y> 0)
Where M: metal element or metalloid element
O: Oxygen
H: composition represented by hydrogen (except for MgO · Al 2 O 3 · xSiO 2 · yH 2 O) powder metallurgical iron-based mixed powder characterized by comprising a.
2.前記多孔質粒子が、さらにリンを含み、次に示す
化学式:MOxHyPz(但し、x>0、y>0、z>0)
ここで、M:金属元素または半金属元素
O:酸素
H:水素
P:リン
で示される組成になることを特徴とする上記1記載の粉末冶金用鉄基混合粉末。
2. The porous particles further contain phosphorus, and have the following chemical formula: MOxHyPz (where x> 0, y> 0, z> 0)
Where M: metal element or metalloid element
O: Oxygen
H: Hydrogen
P: The iron-based mixed powder for powder metallurgy according to 1 above, which has a composition represented by phosphorus.
3.前記多孔質粒子の鉄基混合粉末全体に対する配合量が0.001〜10質量%であることを特徴とする上記1または2記載の粉末冶金用鉄基混合粉末。 3. 3. The iron-based mixed powder for powder metallurgy according to 1 or 2 above, wherein the amount of the porous particles based on the entire iron-based mixed powder is 0.001 to 10% by mass.
4.前記多孔質粒子が、粒子径:0.001〜10μmの一次微粒子の集合体であることを特徴とする上記1〜3のいずれかに記載の粉末冶金用鉄基混合粉末。 4). 4. The iron-based mixed powder for powder metallurgy according to any one of 1 to 3 above, wherein the porous particles are aggregates of primary fine particles having a particle size of 0.001 to 10 μm.
5.前記多孔質粒子が、連結したチャンネル構造を有することを特徴とする上記1〜4のいずれかに記載の粉末冶金用鉄基混合粉末。 5. The iron-based mixed powder for powder metallurgy according to any one of the above 1 to 4, wherein the porous particles have a connected channel structure.
6.前記多孔質粒子の粒径が1〜100μm であることを特徴とする上記1〜5のいずれかに記載の粉末冶金用鉄基混合粉末。 6). 6. The iron-based mixed powder for powder metallurgy according to any one of 1 to 5 above, wherein the porous particles have a particle size of 1 to 100 μm.
7.前記潤滑剤の割合が、前記多孔質粒子:100質量部に対して10〜400質量部であることを特徴とする上記1〜6のいずれかに記載の粉末冶金用鉄基混合粉末。 7). The iron-based mixed powder for powder metallurgy according to any one of 1 to 6 above, wherein the ratio of the lubricant is 10 to 400 parts by mass with respect to 100 parts by mass of the porous particles.
8.前記潤滑剤が、金属石鹸、ビスアミド、脂肪酸アミド、脂肪酸、液状潤滑剤および熱可塑性樹脂のうちから選んだ1種または2種以上であることを特徴とする上記1〜7のいずれかに記載の粉末冶金用鉄基混合粉末。 8). 8. The lubricant according to any one of 1 to 7 above, wherein the lubricant is one or more selected from metal soap, bisamide, fatty acid amide, fatty acid, liquid lubricant, and thermoplastic resin. Iron-based mixed powder for powder metallurgy.
9.前記鉄基粉末が、鉄粉の表面に有機結合剤を介して合金用粉末を付着させたものであることを特徴とする上記1〜8のいずれかに記載の粉末冶金用鉄基粉末。 9. 9. The iron-based powder for powder metallurgy according to any one of 1 to 8 above, wherein the iron-based powder is obtained by attaching an alloy powder to the surface of the iron powder via an organic binder.
10.前記粉末冶金用鉄基粉末が、遊離潤滑剤を含有するものであることを特徴とする上記1〜9のいずれかに記載の粉末冶金用鉄基粉末。 Ten. 10. The iron-based powder for powder metallurgy according to any one of 1 to 9 above, wherein the iron-based powder for powder metallurgy contains a free lubricant.
本発明によれば、安価な手段で、粉末冶金用鉄基混合粉末の流動性や充填性の改善と圧粉体の抜出力の低減とを両立することができる。その結果、圧粉体や焼結体の生産性向上と歩留り向上とを達成でき、さらに大型かつ複雑な形状を有する焼結製品の製造が可能となる。 According to the present invention, it is possible to achieve both improvement in the fluidity and filling property of the iron-based mixed powder for powder metallurgy and reduction in the output power of the green compact by inexpensive means. As a result, it is possible to improve the productivity and yield of the green compact and the sintered body, and to manufacture a sintered product having a large and complicated shape.
以下、本発明を具体的に説明する。
本発明の粉末冶金用鉄基混合粉末は、基本的に、鉄基粉末と潤滑剤を内包する多孔質粒子を、さらに必要に応じて合金用粉末や切削性改善用粉末、遊離潤滑剤とを混合したものである。
まず、本発明で使用する多孔質粒子について説明する。
多孔質粒子は、その粒子体内に空隙を内在させたものであり、その製法は特に限定しないが、図1(a),(b)に示すような構造になるものが好適である。
図1(a)は、粒子径:0.001〜10μmの微粉末(以下、一次微粒子という)の集合体からなる多孔質粒子1で、図中、符号2が一次微粒子、3が潤滑剤である。
図1(b)は、連結したチャンネル構造(スポンジ状を含む)を有する多孔質粒子1で、図中、符号4でチャンネル構造を示し、ここに潤滑剤3が内包されている。
Hereinafter, the present invention will be specifically described.
The iron-based mixed powder for powder metallurgy of the present invention basically comprises porous particles containing iron-based powder and a lubricant, and further contains an alloy powder, a cutting ability improving powder, and a free lubricant as required. It is a mixture.
First, the porous particles used in the present invention will be described.
The porous particles have voids in the particles, and the production method is not particularly limited, but those having a structure as shown in FIGS. 1 (a) and 1 (b) are preferable.
FIG. 1 (a) is a porous particle 1 made of an aggregate of fine powder (hereinafter referred to as primary fine particles) having a particle size of 0.001 to 10 μm. In the figure,
FIG. 1 (b) shows a porous particle 1 having a connected channel structure (including a sponge shape). In the figure, reference numeral 4 indicates the channel structure, and a
ここで、図1(a)に示した多孔質粒子(以下、多孔質粒子Aという)について述べる。
この多孔質粒子Aは、
化学式:MOxHy(但し、x>0、y>0)
ここで、M:金属元素または半金属元素、O:酸素、H:水素
で示される組成(以下、組成MOHと記す)、または
化学式:MOxHyPz(但し、x>0、y>0、z>0)
ここで、M:金属元素または半金属元素、O:酸素、H:水素、P:リン
で示される組成(以下、組成MOHPと記す)からなる一次微粒子を造粒して得られるものであり、一次微粒子の集合体である。なお、上記化学式中のOおよびHは、水酸基もしくは結晶水として含有されることが一般的である。
Here, the porous particles (hereinafter referred to as porous particles A) shown in FIG.
The porous particles A are
Chemical formula: MOxHy (where x> 0, y> 0)
Here, a composition represented by M: metal element or metalloid element, O: oxygen, H: hydrogen (hereinafter referred to as composition MOH), or chemical formula: MOxHyPz (where x> 0, y> 0, z> 0) )
Here, it is obtained by granulating primary fine particles having a composition represented by M: metal element or metalloid element, O: oxygen, H: hydrogen, P: phosphorus (hereinafter referred to as composition MOHP), It is an aggregate of primary fine particles. In general, O and H in the chemical formula are contained as hydroxyl groups or crystal water.
ここに、一次微粒子の粒子径が0.001μm未満では、一次微粒子の粒子間の空隙が微小になるので、十分な量の潤滑剤を保持できず、抜出力低減の効果が得られない。しかも、貯蔵や搬送の際に目詰まりを起こし、操業に支障を来たすばかりでなく、極めて微細な一次微粒子は、その製造コストの上昇を招く。一方、10μm を超えると、一次微粒子の粒子間の空隙が拡大するので潤滑剤が流出し易くなり、十分な量の潤滑剤を保持できず、抜出力低減の効果が得られない。従って、一次微粒子の粒子径は0.001〜10μmの範囲とするのが好ましい。より好ましくは0.01〜1.0μmの範囲である。 Here, when the particle size of the primary fine particles is less than 0.001 μm, the voids between the particles of the primary fine particles become minute, so that a sufficient amount of lubricant cannot be retained, and the effect of reducing the unplugging power cannot be obtained. Moreover, clogging occurs during storage and transportation, which not only hinders operation, but extremely fine primary fine particles cause an increase in manufacturing cost. On the other hand, if it exceeds 10 μm, the voids between the primary fine particles are enlarged, so that the lubricant easily flows out, and a sufficient amount of lubricant cannot be retained, and the effect of reducing the unplugging power cannot be obtained. Therefore, the particle diameter of the primary fine particles is preferably in the range of 0.001 to 10 μm. More preferably, it is the range of 0.01-1.0 micrometer.
また、一次微粒子の集合体である多孔質粒子の粒径が1μm 未満では、粉末冶金用鉄基混合粉末を加圧成形する際に、潤滑剤を内包する多孔質粒子が鉄基混合粉末の間隙に偏析して圧壊され難くなり、内包された潤滑剤が放出され難くなるので、抜出力低減の効果が得られない。一方、100μmを超えると、圧粉体中に多孔質粒子がそのままの形状で残存し、圧粉体を焼結して得られる焼結体の欠陥となり、焼結体の強度低下の原因になる。したがって、多孔質粒子の粒径は1〜100μm の範囲内とすることが好ましい。上記の欠点をさらに減少させるためには、より好ましくは1〜40μm の範囲内、さらに好ましくは10〜25μm の範囲内である。 Further, when the particle size of the porous particles, which are aggregates of primary fine particles, is less than 1 μm, the porous particles containing the lubricant are interspersed between the iron-based mixed powders when the iron-based mixed powder for powder metallurgy is pressed. Segregated to become difficult to be crushed and the contained lubricant is difficult to be released, so the effect of reducing the unplugging power cannot be obtained. On the other hand, when the thickness exceeds 100 μm, the porous particles remain in the green compact as they are, resulting in defects in the sintered body obtained by sintering the green compact, causing a reduction in the strength of the sintered body. . Therefore, the particle size of the porous particles is preferably in the range of 1 to 100 μm. In order to further reduce the above disadvantages, the thickness is more preferably in the range of 1 to 40 μm, still more preferably in the range of 10 to 25 μm.
前記MOH粒子もしくはMOHP粒子を造粒して多孔質粒子を製造する際に、MOH粒子もしくはMOHP粒子に潤滑剤を添加して造粒することにより、潤滑剤を内包する多孔質粒子を得ることができる。
かかる潤滑剤については、特に制限されるものではないが、金属石鹸(例えばステアリン酸亜鉛、ステアリン酸マンガン、ステアリン酸リチウム等)、ビスアミド(例えばエチレンビスステアリン酸アミド等)、モノアミドを含む脂肪酸アミド(例えばステアリン酸モノアミド、エルカ酸アミド等)、脂肪酸(例えばオレイン酸、ステアリン酸等)、液状潤滑剤(例えばリン酸エステル、ポリオールエステル、鉱油、ポリグリコール等)、熱可塑性樹脂(例えばポリアミド、ポリエチレン、ポリアセタール等)が、圧粉体の抜出力を低減する効果を有するので特に好ましい。
但し、脂肪酸や液状潤滑剤のような室温で液体となる潤滑剤は、MOH粒子間もしくはMOHP粒子間に液架橋を生じて、粒子同士が付着し凝集するので、流動性が低下するおそれがある。また、脂肪酸アミドのようなワックス系の潤滑剤は、室温で固体であるが、粘着性が高いため、粒子同士が付着し凝集するので、流動性が低下するおそれがある。従って、造粒する際に添加する潤滑剤は、これらの特性を考慮して適宜選択する必要がある。その際、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。
When the porous particles are produced by granulating the MOH particles or MOHP particles, a porous particle containing the lubricant can be obtained by granulating by adding a lubricant to the MOH particles or the MOHP particles. it can.
Such lubricants are not particularly limited, but include metal soaps (eg, zinc stearate, manganese stearate, lithium stearate, etc.), bisamides (eg, ethylene bisstearic acid amides), fatty acid amides including monoamides ( For example, stearic acid monoamide, erucic acid amide, etc.), fatty acid (eg, oleic acid, stearic acid, etc.), liquid lubricant (eg, phosphate ester, polyol ester, mineral oil, polyglycol, etc.), thermoplastic resin (eg, polyamide, polyethylene, Polyacetal, etc.) are particularly preferred because they have the effect of reducing the green compact output.
However, lubricants that are liquid at room temperature, such as fatty acids and liquid lubricants, cause liquid cross-linking between MOH particles or between MOHP particles, and the particles adhere to each other and agglomerate, which may reduce fluidity. . In addition, wax-based lubricants such as fatty acid amides are solid at room temperature, but because of their high adhesiveness, particles adhere to each other and aggregate, which may reduce fluidity. Accordingly, it is necessary to appropriately select the lubricant added when granulating in consideration of these characteristics. In that case, you may use individually, respectively, and may use 2 or more types together.
また、MOH粒子もしくはMOHP粒子を造粒して製造した多孔質粒子に、潤滑剤を含浸させても良い。この場合の潤滑剤としては、金属石鹸(例えばステアリン酸亜鉛、ステアリン酸マンガン、ステアリン酸リチウム等)、ビスアミド(例えばエチレンビスステアリン酸アミド等)、モノアミドを含む脂肪酸アミド(例えばステアリン酸モノアミド、エルカ酸アミド等)、脂肪酸(例えばオレイン酸、ステアリン酸等)、液状潤滑剤(例えばリン酸エステル、ポリオールエステル、鉱油、ポリグリコール等)、熱可塑性樹脂(例えばポリアミド、ポリエチレン、ポリアセタール等)が、圧粉体の抜出力を低減する効果を有するので好ましい。 Further, a lubricant may be impregnated into porous particles produced by granulating MOH particles or MOHP particles. In this case, as the lubricant, metal soap (for example, zinc stearate, manganese stearate, lithium stearate, etc.), bisamide (for example, ethylene bis stearamide, etc.), fatty acid amide containing monoamide (for example, stearic acid monoamide, erucic acid) Amide etc.), fatty acids (eg oleic acid, stearic acid etc.), liquid lubricants (eg phosphate esters, polyol esters, mineral oil, polyglycol etc.), thermoplastic resins (eg polyamide, polyethylene, polyacetal etc.) This is preferable because it has the effect of reducing the body output.
特に脂肪酸や液状潤滑剤は、多孔質粒子に含浸させ易いので好ましい。上記多孔質粒子に含浸させる潤滑剤は、これらの特性を考慮して、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。 In particular, fatty acids and liquid lubricants are preferred because they are easily impregnated into porous particles. The lubricants impregnated into the porous particles may be used alone or in combination of two or more in consideration of these characteristics.
ここに、潤滑剤の添加量(合計)が、MOH粒子またはMOHP粒子:100質量部に対して10質量部未満では、圧粉体の抜出力を低減する効果が得られない。一方、400質量部を超えると、MOH粒子またはMOHP粒子、あるいは多孔質粒子が凝集するので、流動性が低下するおそれがある。従って、MOH粒子またはMOHP粒子を造粒する際に添加する潤滑剤、あるいは造粒して得た多孔質粒子に含浸させる潤滑剤の量は、潤滑剤の添加、含浸を単独で行う場合または併用する場合、いずれの場合も、多孔質粒子:100質量部に対して10〜400質量部の範囲内とすることが好ましい。 Here, if the addition amount (total) of the lubricant is less than 10 parts by mass with respect to 100 parts by mass of MOH particles or MOHP particles, the effect of reducing the green compact output is not obtained. On the other hand, when the amount exceeds 400 parts by mass, the MOH particles, the MOHP particles, or the porous particles aggregate, so that the fluidity may be lowered. Therefore, the amount of lubricant added when granulating MOH particles or MOHP particles, or the amount of lubricant impregnated into the porous particles obtained by granulation is the same as when adding or impregnating the lubricant alone or in combination. In any case, it is preferable that the porous particles are within a range of 10 to 400 parts by mass with respect to 100 parts by mass of the porous particles.
組成MOHの粉末としては、水酸化鉄、水酸化アルミニウムなどの粉末を利用することができる。一方、組成MOHPの粉末としては、ヒドロキシアパタイトなどの粉末を利用することができる。また、リン酸鉄リチウムのように、Mを複数種含有する粉末も利用可能である。これらの粉末は、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。 As the powder of composition MOH, powders of iron hydroxide, aluminum hydroxide and the like can be used. On the other hand, powder such as hydroxyapatite can be used as the powder of composition MOHP. Moreover, the powder containing multiple types of M like lithium iron phosphate can also be utilized. These powders may be used alone or in combination of two or more.
次に、図1(b)に示した多孔質粒子(以下、多孔質粒子Bという)について述べる。
かような構造になる多孔質粒子Bにおいて、組成MOHの多孔質粒子としては、シリカゲル等を、一方組成MOHPの多孔質粒子としては、ヒドロキシアパタイト多孔質粒子等を利用することができる。また、バクテリア由来の管状(鞘状)酸化鉄粒子なども利用することができる。さらに、フローライトR(花弁状ケイ酸カルシウム、トクヤマ製)のように、Mを複数種含有する粒子も利用可能である。これらの多孔質粒子は、それぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。
Next, the porous particles (hereinafter referred to as porous particles B) shown in FIG.
In the porous particle B having such a structure, silica gel or the like can be used as the porous particle having the composition MOH, and hydroxyapatite porous particles or the like can be used as the porous particle having the composition MOHP. In addition, bacterial (tubular) iron oxide particles derived from bacteria can be used. Furthermore, particles containing a plurality of types of M, such as Florite R (petal-like calcium silicate, manufactured by Tokuyama), can also be used. These porous particles may be used alone or in combination of two or more.
これらの多孔質粒子Bに、多孔質粒子Aと同様に潤滑剤を含浸させる。使用する潤滑剤および含浸技術は、多孔質粒子Aの場合と同じである。 Like the porous particles A, these porous particles B are impregnated with a lubricant. The lubricant used and the impregnation technique are the same as in the case of the porous particles A.
なお、多孔質粒子A、多孔質粒子Bいずれの場合においても、MOH粒子とMOHP粒子が共存してもよく、さらに製造過程において混入する不可避的不純物(N、Cなど)を含有していてもよい。 In either case of the porous particles A and the porous particles B, the MOH particles and the MOHP particles may coexist and may contain unavoidable impurities (N, C, etc.) mixed in the manufacturing process. Good.
前記した潤滑剤を内包する多孔質粒子の鉄基混合粉末全体に対する配合量は0.001〜10質量%程度とするのが好ましい。というのは、上記多孔質粒子の配合量が0.001質量%に満たないとその添加効果に乏しく、一方10質量%を超えると、鉄基混合粉末の流動性だけでなく、粉末成形品や焼結品の特性が劣化するおそれがあるからである。これらの悪影響を一層低減するためには、多孔質粒子の配合量は0.1〜1質量%の範囲とするのがより好ましい。 The blending amount of the porous particles containing the lubricant described above with respect to the entire iron-based mixed powder is preferably about 0.001 to 10% by mass. This is because if the amount of the porous particles is less than 0.001% by mass, the addition effect is poor. On the other hand, if the amount exceeds 10% by mass, not only the fluidity of the iron-based mixed powder but also the powder molded product and sintered This is because the characteristics of the product may deteriorate. In order to further reduce these adverse effects, the blending amount of the porous particles is more preferably in the range of 0.1 to 1% by mass.
次に、本発明で使用する鉄基粉末について説明する。
本発明において、鉄基粉末としては、アトマイズ鉄粉や還元鉄粉などの純鉄粉、または部分拡散合金化鋼粉および完全合金化鋼粉、さらには完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉などが例示される。
Next, the iron-based powder used in the present invention will be described.
In the present invention, as iron-based powder, pure iron powder such as atomized iron powder and reduced iron powder, or partially diffused alloyed steel powder and fully alloyed steel powder, and further partially diffused alloy components in fully alloyed steel powder. The hybrid steel powder etc. which were made to be illustrated are illustrated.
また、合金用粉末としては、黒鉛粉末、Cu,Mo,Niなどの金属粉末、ボロン粉末および亜酸化銅粉末などが例示される。これらの合金用粉末を鉄基粉末に混合させることにより焼結体の強度を上昇させることができる。また、切削性改善用粉末としては、MnS粉末等が例示される。これらの合金用粉末あるいは切削性改善用粉末はそれぞれ単独で使用しても良いし、あるいは2種を併用しても良い。
上記した合金用粉末および切削性改善用粉末の配合量は、鉄基混合粉末中0.1〜10質量%程度とすることが好ましい。というのは、合金用粉末を0.1質量%以上配合することにより、得られる焼結体の強度が有利に向上し、一方10質量%を超えると焼結体の寸法精度が低下するからである。
Examples of the alloy powder include graphite powder, metal powder such as Cu, Mo, and Ni, boron powder, and cuprous oxide powder. The strength of the sintered body can be increased by mixing these alloy powders with the iron-based powder. Examples of the machinability improving powder include MnS powder. These alloy powders or machinability improving powders may be used alone or in combination of two kinds.
The blending amount of the above-mentioned alloy powder and machinability improving powder is preferably about 0.1 to 10% by mass in the iron-based mixed powder. This is because the strength of the obtained sintered body is advantageously improved by blending the alloy powder in an amount of 0.1% by mass or more, while the dimensional accuracy of the sintered body is lowered when the amount exceeds 10% by mass.
特に本発明では、鉄基粉末として、有機結合剤を介して鉄粉の表面に合金用粉末や切削性改善粉末を付着させたもの(以下、合金成分外装鉄粉という)が好ましい。鉄粉の表面に合金用粉末や切削性改善粉末を付着させることによって、合金用粉末や切削性改善粉末の偏析を防止することができる。使用する鉄粉の特性は限定せず、圧粉体を焼結した焼結製品に要求される仕様に応じて適宜選択する。 In particular, in the present invention, the iron-based powder is preferably one in which an alloy powder or a machinability improving powder is attached to the surface of the iron powder via an organic binder (hereinafter referred to as alloy component-coated iron powder). By attaching the alloy powder or the machinability improving powder to the surface of the iron powder, segregation of the alloy powder or the machinability improving powder can be prevented. The characteristics of the iron powder to be used are not limited, and are appropriately selected according to the specifications required for the sintered product obtained by sintering the green compact.
有機結合剤の種類は、脂肪酸アミド、金属石鹸を用いることが好ましい。これらの有機結合剤をそれぞれ単独で使用しても良いし、あるいは2種以上を併用しても良い。鉄基混合粉末全体に占める有機結合剤の添加量が0.05質量%未満では、鉄粉の表面に合金用粉末や切削性改善粉末を均一かつ十分に付着させることができない。一方、0.6質量%を超えると、鉄粉同士が付着し凝集するので、流動性が低下する惧れがある。従って、有機結合剤の添加量は0.05〜0.6質量%の範囲内とするのが好ましい。 The organic binder is preferably a fatty acid amide or a metal soap. These organic binders may be used alone or in combination of two or more. When the amount of the organic binder added to the entire iron-based mixed powder is less than 0.05% by mass, the alloy powder and the machinability improving powder cannot be uniformly and sufficiently adhered to the surface of the iron powder. On the other hand, if it exceeds 0.6% by mass, the iron powder adheres and agglomerates, which may reduce the fluidity. Therefore, the amount of organic binder added is preferably in the range of 0.05 to 0.6% by mass.
さらに、本発明では、粉末冶金用鉄基混合粉の流動性を向上させるために、遊離潤滑剤を添加しても良い。この遊離潤滑剤は、多孔質粒子に内包させる潤滑剤とは別に添加し、その添加量は粉末冶金用鉄基混合粉全体に占める割合で1質量%以下であることが好ましい。遊離潤滑剤の種類は、金属石鹸(例えばステアリン酸亜鉛、ステアリン酸マンガン、ステアリン酸リチウム等)、ビスアミド(例えばエチレンビスステアリン酸アミド等)、モノアミドを含む脂肪酸アミド(例えばステアリン酸モノアミド、エルカ酸アミド等)、脂肪酸(例えばオレイン酸、ステアリン酸等)、熱可塑性樹脂(例えばポリアミド、ポリエチレン、ポリアセタール等)が、圧粉体の抜出力を低減する効果を有するので好ましい。 Further, in the present invention, a free lubricant may be added in order to improve the fluidity of the iron-based mixed powder for powder metallurgy. This free lubricant is added separately from the lubricant to be encapsulated in the porous particles, and the amount added is preferably 1% by mass or less as a percentage of the total iron-based mixed powder for powder metallurgy. The types of free lubricants include metal soaps (eg, zinc stearate, manganese stearate, lithium stearate, etc.), bisamides (eg, ethylene bisstearic acid amide), fatty acid amides including monoamides (eg, stearic acid monoamide, erucic acid amide) Etc.), fatty acids (for example, oleic acid, stearic acid, etc.), and thermoplastic resins (for example, polyamide, polyethylene, polyacetal, etc.) are preferred because they have the effect of reducing the output of the green compact.
特に好ましくは、以上のようにして得た多孔質粒子と合金成分外装鉄粉と遊離潤滑剤等を混合して、粉末冶金用鉄基混合粉末を得る。混合装置は、従来から知られている撹拌翼型ミキサー(例えばヘンシェルミキサー等)や容器回転型ミキサー(例えばV型ミキサー、ダブルコーンミキサー等)が使用できる。
このようにして得た粉末冶金用鉄基混合粉末は、優れた流動性と充填性を有し、かつ圧粉体の抜出力を低減することができる。しかも、安価な材料を用いて粉末冶金用鉄基混合粉末を製造することができる。
Particularly preferably, the porous particles obtained as described above, the alloy component-coated iron powder, the free lubricant, and the like are mixed to obtain an iron-based mixed powder for powder metallurgy. As the mixing apparatus, conventionally known stirring blade type mixers (for example, Henschel mixer) and container rotation type mixers (for example, V type mixer, double cone mixer, etc.) can be used.
The iron-based mixed powder for powder metallurgy thus obtained has excellent fluidity and filling properties, and can reduce the output of the green compact. Moreover, an iron-based mixed powder for powder metallurgy can be produced using an inexpensive material.
鉄基粉末として、純鉄粉(平均粒径:約80μmのアトマイズ鉄粉)と、この純鉄粉の表面に有機結合剤を介して合金用粉末を付着させた合金成分外装鉄粉との2種類を準備した。合金用粉末は、銅粉末(平均粒径:25μm):2mass%と黒鉛粉末(平均粒径:5μm):0.8mass%の2種類とした。また、有機結合剤としては、ステアリン酸モノアミド:0.05mass%およびエチレンビスステアリン酸アミド:0.05mass%を用いた。なお、これらの添加比率はいずれも、鉄基粉末全体に占める比率である。
また、表1に示すようなMOH粒子またはMOHP粒子に潤滑剤を添加含浸して、図1(a)に示したような、潤滑剤を内包する多孔質粒子を製造した。さらに、ヒドロキシアパタイト粒子(MOHP粒子)に潤滑剤を含浸させて、図1(b)に示したような構造になる多孔質粒子とした。
As iron-based powder, pure iron powder (atomized iron powder having an average particle size of about 80 μm) and alloy component-coated iron powder in which alloy powder is attached to the surface of this pure iron powder via an organic binder Prepared the kind. Two types of alloy powders were used: copper powder (average particle size: 25 μm): 2 mass% and graphite powder (average particle size: 5 μm): 0.8 mass%. As organic binders, stearic acid monoamide: 0.05 mass% and ethylenebisstearic acid amide: 0.05 mass% were used. In addition, all of these addition ratios are ratios which occupy for the whole iron-based powder.
Further, the MOH particles or MOHP particles as shown in Table 1 were added and impregnated with a lubricant to produce porous particles containing the lubricant as shown in FIG. 1 (a). Further, hydroxyapatite particles (MOHP particles) were impregnated with a lubricant to obtain porous particles having a structure as shown in FIG.
原料粒子の平均粒径(一次微粒子の平均粒径)、多孔質粒子の平均粒径、潤滑剤の種類および含浸量、ならびに潤滑剤を内包する多孔質粒子の鉄基粉末全体に対する配合量は、表1に示したとおりである。なお、粒子の平均粒径は、粒子を走査型電子顕微鏡で撮影して測定した。 The average particle diameter of the raw material particles (average particle diameter of the primary fine particles), the average particle diameter of the porous particles, the type and amount of impregnation of the lubricant, and the blending amount of the porous particles containing the lubricant with respect to the entire iron-based powder are: As shown in Table 1. The average particle size of the particles was measured by photographing the particles with a scanning electron microscope.
上記の鉄基粉末(合金成分外装鉄粉)と、潤滑剤を内包する多孔質粒子と、表2に示す遊離潤滑剤とを種々の割合で混合して、粉末冶金用鉄基混合粉末とした。
得られた粉末冶金用鉄基混合粉末の流動度について測定した結果を、表2に示す。なお、混合粉末の流動度はJIS Z 2502に準拠して評価し、この流動度が30 sec/50g以下であれば、流動性は良好といえる。
The above iron-based powder (alloy component exterior iron powder), porous particles enclosing a lubricant, and free lubricant shown in Table 2 were mixed at various ratios to obtain an iron-based mixed powder for powder metallurgy. .
Table 2 shows the results of measurement of the fluidity of the obtained iron-based mixed powder for powder metallurgy. The fluidity of the mixed powder is evaluated according to JIS Z 2502. If this fluidity is 30 sec / 50 g or less, the fluidity can be said to be good.
次に、得られた各鉄基混合粉末を、金型に充填し、室温で圧力:980 MPaで加圧成形し、円柱状(外径:11mm、高さ:11mm)の圧粉体とした。その際、圧粉体を金型から抜き出す時の抜出力および得られた圧粉体の圧粉密度について測定した結果を、表2に併記する。なお、抜出力が20 MPa以下であれば抜出性に優れているといえる。また、圧粉体密度が7.3 Mg/m3以上であれば圧縮性は良好といえる。 Next, each iron-based mixed powder obtained was filled in a mold and pressure-formed at a pressure of 980 MPa at room temperature to obtain a cylindrical compact (outer diameter: 11 mm, height: 11 mm). . At that time, Table 2 shows the measurement results of the extraction force when the green compact is extracted from the mold and the green density of the obtained green compact. In addition, if the extraction power is 20 MPa or less, it can be said that the extraction performance is excellent. Further, if the green density is 7.3 Mg / m 3 or more, the compressibility is good.
表2に示したとおり、発明例1〜9はいずれも、流動度が30 sec/50g以下であり、流動性は良好であった。また、抜出力も20 MPa以下であり、抜出性にも優れていた。さらに、圧粉体密度は最低でも7.32 Mg/m3であり、高い圧粉体密度を得ることができた。 As shown in Table 2, the inventive examples 1 to 9 all had a fluidity of 30 sec / 50 g or less and good fluidity. In addition, the output power was 20 MPa or less, and the output performance was excellent. Furthermore, the green density was at least 7.32 Mg / m 3 , and a high green density could be obtained.
本発明に従い、鉄基粉末中に、潤滑剤を内包する多孔質粒子を適量配合することにより、鉄基混合粉末の流動性、圧縮性の改善のみならず、圧粉体の抜出力を大幅に低減することができ、その結果、生産性の向上および製造コストの低減に大きく貢献する。 In accordance with the present invention, by mixing an appropriate amount of porous particles containing a lubricant in the iron-based powder, not only the fluidity and compressibility of the iron-based mixed powder is improved, but also the output of the green compact is greatly increased. As a result, it greatly contributes to improvement of productivity and reduction of manufacturing cost.
1 多孔質粒子
2 一次微粒子
3 潤滑剤
4 連結したチャンネル構造
DESCRIPTION OF SYMBOLS 1
Claims (10)
化学式:MOxHy(但し、x>0、y>0)
ここで、M:金属元素または半金属元素、O:酸素、H:水素
で示される組成(但し、MgO・Al 2 O 3 ・xSiO 2 ・yH 2 Oを除く)になることを特徴とする粉末冶金用鉄基混合粉末。 An iron-based powder for powder metallurgy in which porous particles containing a lubricant are mixed with iron-based powder, the porous particles being
Chemical formula: MOxHy (where x> 0, y> 0)
Here, M: metal element or a metalloid element, O: oxygen, H: powder characterized by comprising a composition represented by hydrogen (except for MgO · Al 2 O 3 · xSiO 2 · yH 2 O) Iron-based mixed powder for metallurgy.
化学式:MOxHyPz(但し、x>0、y>0、z>0)
ここで、M:金属元素または半金属元素、O:酸素、H:水素、P:リン
で示される組成になることを特徴とする請求項1記載の粉末冶金用鉄基混合粉末。 The porous particles further contain phosphorus, and have the following chemical formula: MOxHyPz (where x> 0, y> 0, z> 0)
The iron-based mixed powder for powder metallurgy according to claim 1, wherein the composition is represented by M: metal element or metalloid element, O: oxygen, H: hydrogen, P: phosphorus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009102347A JP5439926B2 (en) | 2008-04-23 | 2009-04-20 | Iron-based mixed powder for powder metallurgy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008112068 | 2008-04-23 | ||
JP2008112068 | 2008-04-23 | ||
JP2009102347A JP5439926B2 (en) | 2008-04-23 | 2009-04-20 | Iron-based mixed powder for powder metallurgy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009280906A JP2009280906A (en) | 2009-12-03 |
JP5439926B2 true JP5439926B2 (en) | 2014-03-12 |
Family
ID=41451652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009102347A Expired - Fee Related JP5439926B2 (en) | 2008-04-23 | 2009-04-20 | Iron-based mixed powder for powder metallurgy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5439926B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12023732B2 (en) | 2021-10-25 | 2024-07-02 | Hyundai Motor Company | Iron-based mixed powder and method for manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5617529B2 (en) * | 2010-10-28 | 2014-11-05 | Jfeスチール株式会社 | Iron-based mixed powder for powder metallurgy |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7993429B2 (en) * | 2005-12-30 | 2011-08-09 | Höganäs Ab (Publ) | Lubricant for powder metallurgical compositions |
JP5170390B2 (en) * | 2007-03-22 | 2013-03-27 | Jfeスチール株式会社 | Iron-based mixed powder for powder metallurgy |
-
2009
- 2009-04-20 JP JP2009102347A patent/JP5439926B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12023732B2 (en) | 2021-10-25 | 2024-07-02 | Hyundai Motor Company | Iron-based mixed powder and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2009280906A (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101352883B1 (en) | Iron-based mixed powder for powdery metallurgy | |
JP5170390B2 (en) | Iron-based mixed powder for powder metallurgy | |
KR101355040B1 (en) | Iron-based mixed powder for powder metallurgy | |
JP2010265454A (en) | Lubricant combination and process for preparing the same | |
JP5439926B2 (en) | Iron-based mixed powder for powder metallurgy | |
CN1950161A (en) | Powder metallurgical compositions and methods for making the same | |
JP5245728B2 (en) | Iron-based mixed powder for powder metallurgy | |
WO2016190038A1 (en) | Mixed powder for iron-based powder metallurgy, method for producing same, sintered body produced using same, and method for producing sintered body | |
JP5223547B2 (en) | Iron-based mixed powder for powder metallurgy | |
WO2005102566A1 (en) | Method for making compacted products and iron-based powder comprising lubricant | |
US6001150A (en) | Boric acid-containing lubricants for powered metals, and powered metal compositions containing said lubricants | |
KR101650174B1 (en) | Cu-Carbon binded powder and pressed articles and slide material manufactured therewith | |
CN112166001B (en) | Powder mixture for powder metallurgy and method for producing same | |
EP1758700A1 (en) | Lubricants for insulated soft magnetic iron-based powder compositions | |
US11643710B2 (en) | Mixed powder for powder metallurgy | |
JP2010007175A (en) | Iron-based powdery mixture for powder metallurgy | |
JP2010007176A (en) | Iron-based powdery mixture for powder metallurgy | |
JP2024017984A (en) | Iron-based powder mix for powder metallurgy, iron-based sintered body, and sintered mechanical component | |
CN110709191B (en) | Powder mixture for powder metallurgy and method for producing same | |
WO2018230568A1 (en) | Powder mixture for powder metallurgy and method of manufacturing same | |
US20090028742A1 (en) | Dry powder metal compositions and methods of making and using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20131001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |