[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5436009B2 - High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same - Google Patents

High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same Download PDF

Info

Publication number
JP5436009B2
JP5436009B2 JP2009092847A JP2009092847A JP5436009B2 JP 5436009 B2 JP5436009 B2 JP 5436009B2 JP 2009092847 A JP2009092847 A JP 2009092847A JP 2009092847 A JP2009092847 A JP 2009092847A JP 5436009 B2 JP5436009 B2 JP 5436009B2
Authority
JP
Japan
Prior art keywords
steel sheet
alloying
plating
steel plate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009092847A
Other languages
Japanese (ja)
Other versions
JP2010242173A (en
Inventor
亮介 大友
潤一郎 衣笠
文雄 湯瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009092847A priority Critical patent/JP5436009B2/en
Publication of JP2010242173A publication Critical patent/JP2010242173A/en
Application granted granted Critical
Publication of JP5436009B2 publication Critical patent/JP5436009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、主に自動車用構造部材用鋼板、特に耐食性が要求される部位、例えばサイドメンバ、サイドシル、クロスメンバ、ピラー下部の補強部材などの素材として用いられる、引張強度980MPa以上の高強度合金化溶融亜鉛めっき鋼板に関する。   The present invention is a high strength alloy having a tensile strength of 980 MPa or more, which is mainly used as a steel plate for structural members for automobiles, particularly as a material for parts requiring corrosion resistance, such as side members, side sills, cross members, and pillar lower reinforcement members. The present invention relates to a galvannealed steel sheet.

近年、車体重量の軽減による燃費向上の観点から自動車用鋼板の高強度化が求められ、耐食性が要求される部位の素材として用いられる合金化溶融亜鉛めっき鋼板もその例外ではない。合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき鋼板に対して主として耐食性、塗装後耐食性および溶接性の向上を目的として溶融亜鉛めっき層をZn−Fe合金に合金化したものである。   In recent years, high strength steel sheets for automobiles have been demanded from the viewpoint of improving fuel efficiency by reducing vehicle weight, and alloyed hot-dip galvanized steel sheets used as materials for parts requiring corrosion resistance are no exception. The alloyed hot-dip galvanized steel sheet is obtained by alloying a hot-dip galvanized layer with a Zn-Fe alloy mainly for the purpose of improving corrosion resistance, post-coating corrosion resistance and weldability with respect to the hot-dip galvanized steel sheet.

合金化溶融亜鉛めっき鋼板においても溶融亜鉛めっき鋼板と同様、プレス成形時にめっき層が粉状あるいは塊状に剥離する現象(「パウダリング」と呼ばれる。)が問題になるが、高強度化に伴って強加工のプレス成形がなされ、成形加工の際にめっき層の表面に加わる負荷も大きくなり、パウダリングはより深刻な問題になっている。   As with hot-dip galvanized steel sheets, the phenomenon that the coating layer peels off in powder or lump form during press forming (called “powdering”) is a problem, but with increasing strength, Strong press forming is performed, and the load applied to the surface of the plating layer during the forming process is increased, so that powdering is a more serious problem.

合金化溶融亜鉛めっき鋼板におけるパウダリングは、Fe3Zn10などの特に硬くて脆いΓ相の生成に起因している。Γ相が形成されると、めっき密着性が低下し、めっき層が剥離し易くなるため、パウダリングが生じやすくなる。このため、Fe−Zn合金化反応の過度の進行を抑制し、Γ相の生成を抑制することが、めっき密着性に優れた合金化溶融亜鉛めっき鋼板を製造する上の指針となる。 The powdering in the alloyed hot-dip galvanized steel sheet is caused by the formation of a particularly hard and brittle Γ phase such as Fe 3 Zn 10 . When the Γ phase is formed, the plating adhesion is lowered and the plating layer is easily peeled off, so that powdering is likely to occur. For this reason, suppressing excessive progress of the Fe—Zn alloying reaction and suppressing the formation of the Γ phase is a guideline for producing an alloyed hot-dip galvanized steel sheet having excellent plating adhesion.

従来、かかる観点から種々の技術が提案されてきた。例えば、特許文献1では、めっき層中の平均Fe含有率を7〜11重量%に抑え、ζ相、δ1相およびΓ相の量を調整し、Γ相の形成を抑制すること、さらに表面粗度を低く抑えることにより、耐パウダリング性および耐フレーキング性を向上させることが開示されている。しかし、めっき層の平均Fe量を低く抑えるだけでは、めっき層の界面領域においてはZn、Fe濃度が連続的に分布するため、同領域でのΓ相の形成が必ずしも抑制されず、十分なめっき密着性ひいては十分な耐パウダリング性が得られていない。   Conventionally, various techniques have been proposed from this viewpoint. For example, in Patent Document 1, the average Fe content in the plating layer is suppressed to 7 to 11% by weight, the amounts of ζ phase, δ1 phase, and Γ phase are adjusted to suppress the formation of Γ phase. It is disclosed that the powdering resistance and the flaking resistance are improved by keeping the degree low. However, if the average Fe amount in the plating layer is kept low, Zn and Fe concentrations are continuously distributed in the interface region of the plating layer, so the formation of the Γ phase in that region is not necessarily suppressed, and sufficient plating is performed. Adhesiveness, and thus sufficient powdering resistance, is not obtained.

また、特許文献2では、めっき浴中の有効Al濃度を規定し、めっき層−地鋼板界面にAlが濃化した部分を局所的に形成することにより、Γ相を分断し、Γ層の亀裂の進展を抑えることによってめっき密着性を改善することが記載されている。しかし、この方策では昨今の高強度化に対して成形加工時の耐パウダリング性が十分とは言えない。   Further, in Patent Document 2, the effective Al concentration in the plating bath is defined, and the Γ phase is divided by locally forming a concentrated Al portion at the plating layer-ground steel plate interface, and the Γ layer cracks. It is described that plating adhesion is improved by suppressing the progress of. However, with this measure, it cannot be said that the powdering resistance at the time of molding is sufficient with respect to the recent increase in strength.

その他、耐パウダリング性を向上させる技術して、特許文献3には、熱延時のコイル巻取り温度を高く、冷却速度を遅くすることで、めっき層直下となる、スケール下の結晶粒界に酸化物を成長させ、プレス加工時のめっき密着性を向上させることが記載されている。しかし、高強度化に重要な役割を果たすMnが0.1%以上含まれる場合、表面にMn酸化物が過剰に形成され、不めっきの懸念が生じる。   In addition, as a technique for improving the powdering resistance, Patent Document 3 discloses that the coil winding temperature at the time of hot rolling is high and the cooling rate is slowed down, so that the grain boundary under the scale, which is directly under the plating layer, It is described that an oxide is grown to improve plating adhesion during press working. However, when 0.1% or more of Mn, which plays an important role in increasing the strength, is contained, Mn oxide is excessively formed on the surface, and there is a concern about non-plating.

また、特許文献4には、フェライト・マルテンサイトDP鋼を主体とする地鋼板を用いた合金化溶融亜鉛めっき鋼板について、めっき層表面から深さ300Å以上に亘ってAlの濃化層、すなわち原子数%でAl%/Zn%を0.10以上の領域が存在するようにして耐パウダリング性の向上を行っている。しかし、この技術はめっき層の表層300ÅをAl濃化による高硬度化を図るものであり、根本的にめっき密着性の改善がなされていない。   Patent Document 4 discloses an alloyed hot-dip galvanized steel sheet using a ground steel sheet mainly composed of ferrite-martensite DP steel, and a concentrated layer of Al, that is, atoms over a depth of 300 mm or more from the surface of the plated layer. The anti-powdering property is improved so that a region of Al% / Zn% of 0.10 or more exists at several%. However, this technique is intended to increase the hardness of the surface layer 300 の of the plating layer by concentrating Al, and the plating adhesion is not fundamentally improved.

特許第2695259号公報Japanese Patent No. 2695259 特開平8−269667号公報JP-A-8-269667 特開平9−31620号公報Japanese Patent Laid-Open No. 9-31620 特開2008−127637号公報JP 2008-127637 A

以上のように、従来の技術では、高強度鋼板を地鋼板とする合金化溶融亜鉛めっき鋼板では、めっき密着性、耐パウダリング性は十分とは言えない。本発明は、かかる問題に鑑みなされたもので、めっき密着性、耐パウダリング性に優れた高強度合金化溶融亜鉛めっき鋼板を提供することを目的とする。   As described above, in the prior art, the galvannealed steel sheet using a high-strength steel sheet as the base steel sheet cannot be said to have sufficient plating adhesion and powdering resistance. This invention is made | formed in view of this problem, and it aims at providing the high intensity | strength galvannealed steel plate excellent in plating adhesiveness and powdering resistance.

本発明者は、めっき層全体のFe量やAl量の平均値を調整するだけではめっき密着性の改善に限界があり、場合によっては弊害が生じるので、このような問題のない合金化溶融亜鉛めっき層の密着性を改善する方策を検討したところ、合金化処理の工夫により、めっき層−地鋼板の界面領域におけるAl濃度を制御することで、界面領域におけるΓ相の生成を抑制することができることを知見し、これによって化成処理性の低下や不めっきを招来することなく、めっき密着性ひいては耐パウダリング性を改善できることを見出し、本発明を完成するに至った。   The present inventor has a limit in improving the adhesion of plating only by adjusting the average value of Fe amount and Al amount of the entire plating layer. We have investigated measures to improve the adhesion of the plating layer. By controlling the Al concentration in the interface region between the plating layer and the ground steel plate, we can suppress the formation of the Γ phase in the interface region. As a result, the present inventors have found that the plating adhesion and thus the powdering resistance can be improved without causing deterioration of chemical conversion properties and non-plating, thereby completing the present invention.

すなわち、本発明の高強度合金化溶融亜鉛めっき鋼板は、地鋼板に合金化溶融亜鉛めっき層が被覆されたものであり、前記地鋼板は、化学組成が質量%で、
C:0.1〜0.3%、
Si:0.2%以下、
Mn:1.0〜4.0%、
P:0.1%以下、
S:0.01%以下、
Al:0.01〜3.0%
を含有し、残部がFe及び不可避不純物からなり、板厚方向における局所的なZn量とFe量の比[Zn]/[Fe]が0.5以上、5.0以下である、めっき層と地鋼板との界面領域におけるAl量の平均値(平均Al濃度)を1.5%以上としたものである。
That is, the high-strength galvannealed steel sheet of the present invention is a base steel sheet coated with an alloyed galvanized layer, and the base steel sheet has a chemical composition of mass%,
C: 0.1 to 0.3%
Si: 0.2% or less,
Mn: 1.0-4.0%,
P: 0.1% or less,
S: 0.01% or less,
Al: 0.01 to 3.0%
A plating layer, wherein the balance consists of Fe and inevitable impurities, and the ratio [Zn] / [Fe] of the local Zn content and Fe content in the thickness direction is 0.5 or more and 5.0 or less, The average value (average Al concentration) of the Al amount in the interface region with the ground steel plate is 1.5% or more.

前記地鋼板は、化学組成として、さらにNb:0.005〜0.5%、Ti:0.005〜0.5%、Cu:0.003〜0.5%、Ni:0.003〜l.0%、Mo:0・01〜1.0%、B:0.0001〜0.1%、Ca:0.0005〜0.005%、Mg:0.0005〜0.01%、V:0.003〜1.0%の内から一種又は二種以上を含むことができる。   The steel sheet further has a chemical composition of Nb: 0.005-0.5%, Ti: 0.005-0.5%, Cu: 0.003-0.5%, Ni: 0.003-l . 0%, Mo: 0.01 to 1.0%, B: 0.0001 to 0.1%, Ca: 0.0005 to 0.005%, Mg: 0.0005 to 0.01%, V: 0 One or more of 0.003 to 1.0% may be included.

この高強度合金化溶融亜鉛めっき鋼板は、所定成分の高強度鋼板で形成された地鋼板に合金化溶融亜鉛めっき層が被覆形成されたものであり、Γ相の生成し易い、[Zn]/[Fe]が0.5〜5.0の界面領域の平均Al濃度を1.5%以上とするので、剥離の要因となる界面領域でのΓ相の生成を抑制することができ、これによって合金化溶融亜鉛めっき層の密着性を向上させることができ、地鋼板の高強度化に伴う強加工に対しても合金化溶融亜鉛めっき層のパウダリングを防止することができる。   This high-strength alloyed hot-dip galvanized steel sheet is obtained by coating a ground steel sheet formed of a high-strength steel sheet of a predetermined component with an alloyed hot-dip galvanized layer, and easily generates a Γ phase, [Zn] / Since the average Al concentration in the interface region with [Fe] of 0.5 to 5.0 is 1.5% or more, generation of a Γ phase in the interface region, which causes peeling, can be suppressed. The adhesion of the alloyed hot dip galvanized layer can be improved, and powdering of the alloyed hot dip galvanized layer can be prevented even when the steel plate is strengthened with increased strength.

また、本発明の高強度合金化溶融亜鉛めっき鋼板の製造方法は、上記地鋼板に溶融亜鉛めっきを施し、さらに被覆された溶融亜鉛めっき層を合金化する合金化処理を行うものであって、前記合金化処理として450℃〜500℃の合金化処理温度で10〜30秒保持し、引き続いて200〜300℃で10分以上保持する処理を行うものである。   Moreover, the method for producing a high-strength galvannealed steel sheet according to the present invention comprises subjecting the base steel sheet to hot dip galvanization, and further performing an alloying treatment for alloying the coated hot dip galvanized layer, As the alloying treatment, a treatment is performed at an alloying treatment temperature of 450 ° C. to 500 ° C. for 10 to 30 seconds, and subsequently at 200 to 300 ° C. for 10 minutes or more.

この製造方法によると、溶融亜鉛めっき処理後に行う合金化処理を二段に分け、第1段合金化処理として合金化を比較的低温かつ短時間で行い、引き続いて第2段合金化処理として、200〜300℃で10分以上の加熱を行うので、めっき層と地鋼板の界面領域における、板厚方向(鋼板面垂直方向)のAl濃度分布を制御することができ、合金化温度から室温までの冷却過程で界面領域にAl濃化層を残留させることができる。これによって、界面領域にΓ相の生成を抑制し、めっき層の密着性を向上させることができ、プレス成形時の耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板を提供することができる。   According to this manufacturing method, the alloying process performed after the hot dip galvanizing process is divided into two stages, the alloying is performed at a relatively low temperature and in a short time as the first stage alloying process, and subsequently as the second stage alloying process, Since heating is performed at 200 to 300 ° C. for 10 minutes or more, the Al concentration distribution in the plate thickness direction (steel plate surface vertical direction) can be controlled in the interface region between the plating layer and the ground steel plate, from the alloying temperature to room temperature. In the cooling process, an Al concentrated layer can be left in the interface region. Thereby, the formation of a Γ phase in the interface region can be suppressed, the adhesion of the plating layer can be improved, and an alloyed hot-dip galvanized steel sheet having excellent powdering resistance during press forming can be provided.

本発明の高強度合金化溶融亜鉛めっき鋼板によれば、高強度の地鋼板と合金化溶融亜鉛めっき層との界面領域における平均Al濃度を1.5%以上とするので、硬くて脆いΓ相が界面領域に生成するのを抑制することができ、これによって高強度の地鋼板に対して優れためっき密着性、ひいては耐パウダリング性を備えることができる。このため、高強度鋼板に対する強加工の下でも、パウダリングを抑制し、プレス成型品の型かじりの防止、めっき剥離部の耐食性の劣化防止、および剥離しためっき片によるキズ発生を抑制することができる。   According to the high-strength galvannealed steel sheet of the present invention, since the average Al concentration in the interface region between the high-strength ground steel sheet and the galvannealed layer is 1.5% or more, a hard and brittle Γ phase Can be prevented from being generated in the interface region, and thereby, it is possible to provide excellent plating adhesion to a high-strength ground steel plate, and thus powdering resistance. For this reason, even under strong processing on high-strength steel sheets, it is possible to suppress powdering, prevent die squeezing of press-formed products, prevent deterioration of corrosion resistance of the plating peeling part, and suppress the generation of scratches by the peeled plating pieces. it can.

本発明の合金化処理における熱処理線図を示す。The heat processing diagram in the alloying process of this invention is shown. 発明例(試料No. A1)および比較例(試料No. A3)の高強度合金化溶融亜鉛めっき鋼板の界面領域周辺での発光分光分析結果を示し、板厚方向の位置(横軸)とAl濃度との関係を示すグラフである。The emission spectroscopic analysis results in the vicinity of the interface region of the high-strength galvannealed steel sheets of the inventive example (Sample No. A1) and the comparative example (Sample No. A3) are shown. The position in the plate thickness direction (horizontal axis) and Al It is a graph which shows the relationship with a density | concentration.

まず、本発明(実施形態)に係る高強度合金化溶融亜鉛めっき鋼板の地鋼板について説明する。この地鋼板は、化学組成が質量%(以下、単に「%」と表記する。)C:0.1〜0.3%、Si:0.2%以下、Mn:1.0〜4.0%、P:0.1%以下、S:0.01%以下、Al:0.01〜3.0%を含有し、残部がFe及び不可避不純物からなるものである。以下、成分限定理由について説明する。   First, the ground steel plate of the high-strength galvannealed steel plate according to the present invention (embodiment) will be described. This base steel plate has a chemical composition of mass% (hereinafter simply referred to as “%”) C: 0.1 to 0.3%, Si: 0.2% or less, Mn: 1.0 to 4.0. %, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 3.0%, with the balance being Fe and inevitable impurities. Hereinafter, the reason for component limitation will be described.

C:0.1〜0.3%
Cは鋼板の強度を確保するために必須の元素であり、0.1%未満では強度が不足する。一方、C含有量が過剰になると溶接性が劣化するようになる。このため、C量の下限を0.10%、好ましくは0.12%とし、その上限を0.30%、より好ましくは0.25%とする。
C: 0.1 to 0.3%
C is an essential element for ensuring the strength of the steel sheet, and if it is less than 0.1%, the strength is insufficient. On the other hand, when the C content is excessive, weldability deteriorates. For this reason, the lower limit of the C content is 0.10%, preferably 0.12%, and the upper limit is 0.30%, more preferably 0.25%.

Si:0.2%以下
Siは材質を大きく硬質化する置換型固溶体強化元素である。しかし多量に添加すると表面に酸化皮膜を生成すると共に、溶融亜鉛めっきの合金化速度を著しく遅くし、めっきムラや不めっきの原因となる。このため、その上限を0.2%に止める。
Si: 0.2% or less Si is a substitutional solid solution strengthening element that greatly hardens the material. However, if added in a large amount, an oxide film is formed on the surface, and the alloying rate of hot dip galvanizing is remarkably slowed, resulting in uneven plating and non-plating. For this reason, the upper limit is limited to 0.2%.

Mn:1.0〜4.0%
Mnは鋼板の強度確保に有効な元素である。1.0%未満では強度向上効果が不足する。逆に多量に含有させると偏析が顕著になって加工性が低下し、さらに溶接性が劣化し、また鋼板表面に酸化物を生成することによるめっき性の低下が生じる。このため、Mn量の下限を1.0%、好ましくは1.5%とし、その上限を4.0%、好ましくは3.0%とする。
Mn: 1.0-4.0%
Mn is an element effective for securing the strength of the steel sheet. If it is less than 1.0% strength improving effect is shortage. On the other hand, when it is contained in a large amount, segregation becomes prominent, workability is lowered, weldability is further deteriorated, and plating property is lowered due to generation of oxide on the steel sheet surface. For this reason, the lower limit of the amount of Mn is set to 1.0%, preferably 1.5%, and the upper limit is set to 4.0%, preferably 3.0%.

P:0.1%以下
Pは粒界偏析による粒界破壊を助長する元素であり、少ないほどよい。本発明では上限を0.1%、好ましくは0.05%に止める。
P: 0.1% or less P is an element that promotes grain boundary destruction by grain boundary segregation, and the smaller the better. In the present invention, the upper limit is limited to 0.1%, preferably 0.05%.

S:0.01%
Sは過剰に含有されると硫化物系介在物が増大して鋼板の強度が劣化する。このため上限を0.01%、好ましくは0.005%に止める。
S: 0.01%
If S is excessively contained, sulfide inclusions increase and the strength of the steel sheet deteriorates. For this reason, the upper limit is limited to 0.01%, preferably 0.005%.

Al:0.01〜3.0%
Alは脱酸のために必要な元素である。かかる効果を有効に発揮させるため0.01%以上、好ましくは0.5%以上添加する。しかし過剰に添加すると、延性の低下や鋼の脆化を招くため、その上限を3.0%、好ましくは2.5%とする。
Al: 0.01 to 3.0%
Al is an element necessary for deoxidation. In order to effectively exhibit such an effect, 0.01% or more, preferably 0.5% or more is added. However, if added excessively, ductility is reduced and steel becomes brittle, so the upper limit is made 3.0%, preferably 2.5%.

実施形態に係る地鋼板は、上記成分を基本成分とし、残部がFe及び不可避的不純物からなるが、特性向上元素として、Nb:0.005〜0.5%、Ti:0.005〜0.5%、Cu:0.003〜0.5%、Ni:0.003〜l.0%、Mo:0・01〜1.0%、B:0.0001〜0.1%、Ca:0.0005〜0.005%、Mg:0.0005〜0.01%、V:0.003〜1.0%の内から一種又は二種以上を基本成分に添加することができ、例えば下記(1) 〜(5) の組成とすることができる。
(1) 基本成分にNb,Tiの内一種又は二種を含む。
(2) 基本成分又は上記(1) の成分にCu,Niの一種又は二種を含む。
(3) 基本成分,上記(1) 又は(2) の成分にMo,Bの一種又は二種を含む。
(4) 基本成分,上記(1) ,(2) 又は(3) の成分にCa,Mgの一種又は二種を含む。
(5) 基本成分,上記(1) ,(2) ,(3) 又は(4) の成分にVを含む。
The ground steel plate according to the embodiment includes the above components as basic components, and the balance is composed of Fe and inevitable impurities, but Nb: 0.005-0.5%, Ti: 0.005-0. 5%, Cu: 0.003-0.5%, Ni: 0.003-l. 0%, Mo: 0.01 to 1.0%, B: 0.0001 to 0.1%, Ca: 0.0005 to 0.005%, Mg: 0.0005 to 0.01%, V: 0 One or two or more of 0.003 to 1.0% can be added to the basic component. For example, the following compositions (1) to (5) can be obtained.
(1) The basic component contains one or two of Nb and Ti.
(2) One or two of Cu and Ni are included in the basic component or the component (1).
(3) One or two of Mo and B are included in the basic component and the component (1) or (2) above.
(4) The basic component, (1), (2) or (3) above contains one or two of Ca and Mg.
(5) V is included in the basic component, (1), (2), (3) or (4) above.

以下、上記特性向上元素の限定理由を以下説明する。
Nb、Tiは結晶粒を微細化する元素であり、靭性を損なうことなく鋼板の強度を向上させるのに有効な元素である。それらの効果を有効に発揮させるため、それぞれ下限を好ましくは0.005%、より好ましくは0.03%とする。しかし過剰に含有させてもその効果が飽和するだけでなく、コスト的にも不利になるため、それぞれ上限を好ましくは0.5%、より好ましくは0.3%とする。
Hereinafter, the reasons for limiting the above-mentioned characteristic improving elements will be described below.
Nb and Ti are elements that refine crystal grains and are effective elements for improving the strength of the steel sheet without impairing toughness. In order to effectively exhibit these effects, the lower limit is preferably 0.005%, more preferably 0.03%. However, even if contained excessively, the effect is not only saturated but also disadvantageous in terms of cost. Therefore, the upper limit is preferably 0.5%, more preferably 0.3%.

Cu、Niはいずれも固溶強化元素であり、鋼板の強度を向上させるのに寄与する。またCu、Niの存在により鋼板自体の耐食性も向上させることができる。これらの効果を十分に発揮させるために、それぞれ下限を好ましくは0.003%、より好ましくは0.01%とする。しかし、めっき鋼板自体が耐食性に優れるため、過剰に含有させてもその効果が飽和し、またコスト的にも不利になるため、Cuの上限を好ましくは0.5%、より好ましくは0.4%とする。またNiも同様に過剰に含有させてもその効果が飽和し、コスト的に不利になるため、Niの上限を好ましくは1.0%、より好ましくは0.8%とする。   Cu and Ni are both solid solution strengthening elements and contribute to improving the strength of the steel sheet. Further, the presence of Cu and Ni can improve the corrosion resistance of the steel sheet itself. In order to fully exhibit these effects, the lower limit is preferably 0.003%, more preferably 0.01%. However, since the plated steel sheet itself is excellent in corrosion resistance, its effect is saturated even if it is excessively contained, and the cost is disadvantageous, so the upper limit of Cu is preferably 0.5%, more preferably 0.4. %. Similarly, if Ni is excessively contained, the effect is saturated and disadvantageous in terms of cost. Therefore, the upper limit of Ni is preferably 1.0%, more preferably 0.8%.

Mo、Bは共に鋼板の焼き入れ性を高めるために有効な元素である。Moは水素侵入を抑制し、遅れ破壊特性を向上させる効果、さらに粒界を強化して水素脆性の発生を抑制する効果がある。これらの効果を有効に発揮させるため、Moの下限を好ましくは0.01%とする。しかし過剰に含有させると効果が飽和するばかりか、高価な合金元素の過剰添加によるコストアップ、加えて熱延板の強度が非常に高まり圧延し難くなるなどの問題が生じる。このためMo量の上限を好ましくは1.0%、より好ましくは0.5%、より好ましくは0.3%とする。一方、Bは粒界を強化して耐遅れ破壊性を向上させる効果をも有する。これらの効果を十分に発揮させるため、Bの下限を好ましくは0.0001%、より好ましくは0.00015%とする。しかし過剰に含有させると熱間加工性が劣化するため、その上限を好ましくは0.01%、より好ましくは0.005%とする。   Both Mo and B are effective elements for improving the hardenability of the steel sheet. Mo has the effect of suppressing hydrogen penetration and improving delayed fracture characteristics, and further has the effect of strengthening grain boundaries and suppressing the occurrence of hydrogen embrittlement. In order to effectively exhibit these effects, the lower limit of Mo is preferably 0.01%. However, if it is contained excessively, not only will the effect be saturated, but there will also be problems such as an increase in cost due to excessive addition of expensive alloy elements, and in addition, the strength of the hot rolled sheet becomes very high and rolling becomes difficult. For this reason, the upper limit of the amount of Mo is preferably 1.0%, more preferably 0.5%, and more preferably 0.3%. On the other hand, B also has the effect of strengthening grain boundaries and improving delayed fracture resistance. In order to sufficiently exhibit these effects, the lower limit of B is preferably 0.0001%, more preferably 0.00015%. However, since the hot workability deteriorates if contained excessively, the upper limit is preferably 0.01%, more preferably 0.005%.

Ca、Mgは共に鋼中硫化物の形態を制御し、加工性向上に有効な元素である。また鋼板表面の腐食に伴う界面雰囲気の水素イオン濃度の上昇を抑制する。これらの効果を十分に発揮するためにはそれぞれ0.0005%以上含有させることが好ましい。一方、過剰に含有させると加工性が劣化するため、好ましい上限をCa:0.005%、Mg:0.01%とする。   Both Ca and Mg are effective elements for controlling the form of sulfide in steel and improving workability. Moreover, the rise of the hydrogen ion concentration of the interface atmosphere accompanying corrosion on the steel sheet surface is suppressed. In order to fully exhibit these effects, it is preferable to contain 0.0005% or more of each. On the other hand, since processability will deteriorate if it is contained excessively, the preferable upper limit is made Ca: 0.005% and Mg: 0.01%.

Vは保護性さびの形成に寄与し、特にTi、Vを複合添加することで保護性さびの形成が促進される。またVは鋼板の強度上昇、細粒化にも有効な元素であり、さらにTiと同様、鋼中のCやNと結合して微細な炭窒化物を形成し、引張強度が980MPaを越える高強度鋼板で懸念される水素脆化の原因となる水素のトラップサイトとしても有効に働く。これらの効果を有効に発揮させるためには、その下限を好ましくは0.003、より好ましくは0.01%とする。しかし過剰に加えると、析出物が多くなり、加工性の低下を招くため、上限を好ましくは1.0%、より好ましくは0.5%とする。   V contributes to the formation of protective rust, and in particular, the formation of protective rust is promoted by the combined addition of Ti and V. V is an element effective for increasing the strength of steel sheets and making them finer. Further, like Ti, it combines with C and N in steel to form fine carbonitrides and has a high tensile strength exceeding 980 MPa. It works effectively as a hydrogen trap site that causes hydrogen embrittlement, which is a concern with high-strength steel sheets. In order to exhibit these effects effectively, the lower limit is preferably 0.003, more preferably 0.01%. However, if it is added excessively, the amount of precipitates increases and the workability is lowered. Therefore, the upper limit is preferably 1.0%, more preferably 0.5%.

前記地鋼板の組織は特に限定されず、引張強さが980MPa以上、好ましくは1180MPa以上あればよく、少なくともマルテンサイトやベイナイトなどの低温変態生成物を含む複合組織鋼板や変態誘起塑性を利用したTRIP鋼板などの適宜の組織形態を採ることができる。   The structure of the base steel sheet is not particularly limited, and the tensile strength may be 980 MPa or more, preferably 1180 MPa or more. An appropriate structure form such as a steel plate can be adopted.

次に、合金化溶融亜鉛めっき層と地鋼板との界面領域のAl濃度分布について説明する。地鋼板に溶融亜鉛めっきを施す際、亜鉛めっき浴にAlを0.2%程度以下含有させることにより、Al−Fe合金化層を形成させ、めっき密着性を低下させるΓ相の形成を抑制することは広く知られている。これはAl−Fe合金化が優先的に起こることでΓ相の形成を抑制するためと考えられているが、本発明者らの研究によりFe−Zn合金系にAlが含まれることによっても、Γ相の生成が抑制されることが見出された。従って、めっき層のめっき密着性を向上させるには、めっき層と地鋼板との界面領域においてAl濃度を高めて、界面領域でのΓ相の生成を抑制することが有効である。   Next, the Al concentration distribution in the interface region between the galvannealed layer and the ground steel plate will be described. When hot-dip galvanizing is applied to the base steel plate, the Al-Fe alloyed layer is formed by containing Al in the galvanizing bath in an amount of about 0.2% or less, and the formation of a Γ phase that reduces plating adhesion is suppressed. That is widely known. This is considered to suppress the formation of the Γ phase by preferentially Al-Fe alloying, but also by the fact that Al is contained in the Fe-Zn alloy system by our study, It has been found that the formation of the Γ phase is suppressed. Therefore, in order to improve the plating adhesion of the plating layer, it is effective to increase the Al concentration in the interface region between the plating layer and the ground steel plate and suppress the formation of the Γ phase in the interface region.

界面領域におけるΓ相の生成については以下のように考えられる。めっき層−地鋼板界面付近の地鋼板側のFe主体の領域では、合金化処理温度(約500℃)においては、室温に比べて相対的にα相がより安定であるため、主にΓ相は合金化処理後の冷却過程において形成されると考えられる。しかし、合金化処理温度が高いと、溶融亜鉛めっきの際にめっき層−地鋼板界面に形成されたAl濃化層からAl原子が拡散してしまうため、冷却時には十分なAlが界面領域のZn−Fe合金中に存在しないようになる。このため、従来の合金化処理条件では界面領域においてΓ相の形成が不可避的に生じる。なお、亜鉛めっき浴は通常0.15%程度以下のAlを含むが、この程度のAlが含まれる場合でも溶融亜鉛めっきの段階ではめっき浴に含まれるAlがZnよりも優先的にFeと合金化するため、めっき後から合金化処理を行うまでの間にはめっき層−地鋼板界面に前記Al濃化層が形成される。   The generation of the Γ phase in the interface region is considered as follows. In the region mainly composed of Fe on the ground steel plate side near the plating layer-ground steel plate interface, the α phase is relatively more stable than the room temperature at the alloying treatment temperature (about 500 ° C.). Is considered to be formed in the cooling process after alloying. However, when the alloying treatment temperature is high, Al atoms diffuse from the Al concentrated layer formed at the plating layer-ground steel plate interface during hot dip galvanization, so that sufficient Al is Zn in the interface region during cooling. -Will not be present in the Fe alloy. For this reason, formation of a Γ phase inevitably occurs in the interface region under conventional alloying conditions. The galvanizing bath usually contains about 0.15% or less of Al. Even when Al is contained at this level, the Al contained in the plating bath is preferentially alloyed with Fe over Zn at the stage of hot dip galvanizing. Therefore, the Al concentrated layer is formed at the interface between the plating layer and the ground steel plate after the plating and before the alloying treatment is performed.

そこで、本発明では、合金化処理の際に、界面領域からAl原子の拡散が生じないように、合金化処理として、まず比較的低温で短時間保持する第1段合金化処理を行う。しかし、このような低温、短時間保持では、めっき層のZn−Feの合金化が不足する。このため、めっき層のZn−Feの合金化を促進するように、前記第一段合金化処理後、引き続いてAl原子の拡散がほとんど生じない250〜300℃にて10分程度以上の加熱を行う第2段合金化処理を実施する。このように合金化処理を二段に分けて行うことにより、Alが拡散するのを抑制しながら十分な合金化を行うことができる。これによって合金化処理後においても、めっき層−地鋼板の界面領域にAlの濃化層を温存することができ、これにより界面領域でのΓ相の生成を抑制し、成形加工時のめっき密着性を向上させることができる。   Therefore, in the present invention, in order to prevent Al atoms from diffusing from the interface region during the alloying process, firstly, a first stage alloying process is performed that is held at a relatively low temperature for a short time. However, in such a low temperature and short time holding, the alloying of Zn—Fe in the plating layer is insufficient. For this reason, in order to promote the alloying of Zn—Fe in the plating layer, after the first-stage alloying treatment, heating for about 10 minutes or more is performed at 250 to 300 ° C., in which Al atom diffusion hardly occurs. A second-stage alloying process is performed. By performing the alloying process in two stages in this way, sufficient alloying can be performed while suppressing the diffusion of Al. As a result, even after alloying treatment, an Al concentrated layer can be preserved in the interface region between the plating layer and the ground steel plate, thereby suppressing the formation of a Γ phase in the interface region, and adhesion of the plating during forming processing. Can be improved.

めっき層と地鋼板との界面領域では、Fe、Zn、Alなどの原子が相互に拡散した状態であり、ある界面を境界として両層が接合されているわけではない。このため、本発明では冷却の際にΓ相が形成される板厚方向における界面領域をZnとFeの濃度(%)比すなわち[Zn]/[Fe]によって規定することとし、[Zn]/[Fe]が0.5〜5.0の範囲を界面領域とした。Γ相の生成を抑制するには、後述の実施例から明らかなとおり、[Zn]/[Fe]が0.5〜5.0の界面領域における平均Al濃度を1.5%以上とする必要がある。なお、地鋼板のAl含有量が1.5%以上の場合、ある程度のAlがめっき層−地鋼板の界面領域に存在するため、前記界面領域の各部において所期のAl濃度は確保され易い。   In the interface region between the plating layer and the ground steel plate, atoms such as Fe, Zn, Al and the like are in a mutually diffused state, and the two layers are not joined with a certain interface as a boundary. Therefore, in the present invention, the interface region in the thickness direction where the Γ phase is formed during cooling is defined by the Zn (Fe) concentration (%) ratio, that is, [Zn] / [Fe], and [Zn] / [Fe]. The range where [Fe] was 0.5 to 5.0 was defined as the interface region. In order to suppress the formation of the Γ phase, it is necessary to set the average Al concentration in the interface region having [Zn] / [Fe] of 0.5 to 5.0 to 1.5% or more, as will be apparent from Examples described later. There is. When the Al content of the ground steel plate is 1.5% or more, a certain amount of Al exists in the interface region between the plating layer and the ground steel plate, so that the desired Al concentration is easily secured in each part of the interface region.

次に、上記高強度合金化溶融亜鉛めっき鋼板の製造方法について説明する。合金化処理の基本的な考え方はすでに説明したが、ここでは主に製造条件の点から説明する。   Next, the manufacturing method of the said high intensity | strength galvannealed steel plate is demonstrated. The basic concept of the alloying treatment has already been explained, but here it will be explained mainly in terms of manufacturing conditions.

地鋼板の製造については、常法に従って、上記組成の鋼片を鋳造し、その鋳片を熱間圧延、冷間圧延を施して所望の板厚のコイルに巻き取る。熱間圧延の条件は特に制限しないが、例えば加熱温度を1100〜1300℃程度、仕上げ圧延温度を800〜950℃程度、巻取り温度を500〜700℃程度で行えばよい。コイルの巻取り温度高いと鋼板スケールが厚くなり、酸洗性が低下するので、600℃程度以下にすることが望ましい。また、冷間圧延の条件も特に制限しないが、例えば冷延率30〜60%程度で行えばよい。 About manufacture of a base steel plate, according to a conventional method, the steel slab of the said composition is cast, the slab is hot-rolled and cold-rolled, and it winds up to the coil of desired plate | board thickness. The hot rolling conditions are not particularly limited, and for example, the heating temperature may be about 1100 to 1300 ° C, the finish rolling temperature may be about 800 to 950 ° C, and the winding temperature may be about 500 to 700 ° C. When the coil winding temperature is high, the steel plate scale becomes thick and the pickling property is lowered. Moreover, the conditions of the cold rolling are not particularly limited, but may be performed, for example, at a cold rolling rate of about 30 to 60%.

冷間圧延後、組織の調整を行うために焼鈍を施す。熱処理のプロセスは鋼材組織によって異なるが、例えば700〜900℃程度で10〜600秒程度保持する。加熱による表面の過度の酸化を抑制するため、一般に行われているように、概ねH2約10%の還元性雰囲気にして加熱することが望ましい。 After cold rolling, annealing is performed to adjust the structure. Although the heat treatment process varies depending on the steel material structure, for example, it is held at about 700 to 900 ° C. for about 10 to 600 seconds. In order to suppress excessive oxidation of the surface due to heating, it is desirable to heat in a reducing atmosphere of approximately 10% H 2 as is generally done.

焼鈍後、鋼板はめっき浴温度(400〜460℃程度)まで冷却され、めっき浴に1〜5秒程度浸漬する、溶融亜鉛めっき処理がなされる。めっき浴侵入時の鋼板温度がめっき浴温度よりも高過ぎると、鋼板からめっき浴へのFe溶出が多くなり、ドロスの生成量を増加させ、生産性を低下させる原因となる。めっき浴成分としては通常のものでよく、例えばAl:0.13〜0.15%、溶出したFe(0.02−0.06%程度)を含み、残部がZnおよび不可避的不純物からなるものを挙げることができる。めっき付着量についても特に制限はないが、耐食性および密着性の点から25〜200g/m2(厚さ:4〜30μm )程度とすることが好ましい。 After the annealing, the steel sheet is cooled to a plating bath temperature (about 400 to 460 ° C.) and immersed in the plating bath for about 1 to 5 seconds to perform a hot dip galvanizing treatment. If the steel plate temperature at the time of penetration of the plating bath is too higher than the plating bath temperature, Fe elution from the steel plate to the plating bath increases, causing an increase in the amount of dross generated and reducing productivity. The plating bath component may be a normal one, for example, Al: 0.13-0.15%, including eluted Fe (about 0.02-0.06%), with the balance being Zn and inevitable impurities Can be mentioned. The plating adhesion amount is not particularly limited, but is preferably about 25 to 200 g / m 2 (thickness: 4 to 30 μm) from the viewpoint of corrosion resistance and adhesion.

溶融亜鉛めっき処理後、1〜30秒以内に合金化処理を行う。既述のとおり、合金化処理は、図1に示すように、まず第一段合金化処理1を行い、引き続いて第二段合金化処理2を行う。前記第一段合金化処理1は、加熱温度T1を通常よりも比較的低温の450〜500℃とし、かつ保持時間t1を比較的短時間の10〜30秒とする。引き続いて行う第二段合金化処理2は、加熱温度T2を200〜300℃とし、保持時間t2を10分以上とする。前記第二段合金化処理2において、加熱温度が300℃を超えると、合金化が進行し過ぎて、めっき層が硬質になり、かえってパウダリングが起こり易くなる。他方、200℃を下回ると合金化促進効果が不十分となる。加熱時間についても10分未満では効果が過少である。10分以上好ましくは30分以上とするのがよい。さらに長時間、例えば60分以上行ってもよいが、密着性改善効果は飽和し、また熱処理時間は短いほど生産性が良いので、通常は15〜30分程度で行うのがよい。処理雰囲気としては、99%以上の窒素雰囲気が好ましく、より好ましくは5〜10体積%程度の水素を含み、残部窒素からなる還元性雰囲気とする。合金化の加熱方法は特に限定されず、例えばガス加熱、インダクションヒーター加熱などの慣用手段を採用することができる。合金化処理後は約1℃/S以上の冷却速度で常温まで冷却する。   An alloying process is performed within 1 to 30 seconds after the hot dip galvanizing process. As described above, in the alloying process, as shown in FIG. 1, first-stage alloying process 1 is first performed, and then second-stage alloying process 2 is performed. In the first-stage alloying treatment 1, the heating temperature T1 is set to 450 to 500 ° C., which is relatively lower than usual, and the holding time t1 is set to a relatively short time of 10 to 30 seconds. In the subsequent second-stage alloying treatment 2, the heating temperature T2 is set to 200 to 300 ° C., and the holding time t2 is set to 10 minutes or more. In the second-stage alloying process 2, when the heating temperature exceeds 300 ° C., alloying proceeds too much, the plating layer becomes hard, and powdering tends to occur. On the other hand, if the temperature is lower than 200 ° C., the effect of promoting alloying becomes insufficient. As for the heating time, if it is less than 10 minutes, the effect is insufficient. 10 minutes or more, preferably 30 minutes or more. The treatment may be performed for a longer time, for example, 60 minutes or longer. However, the effect of improving the adhesion is saturated, and the shorter the heat treatment time, the better the productivity. Therefore, it is usually performed in about 15 to 30 minutes. The treatment atmosphere is preferably a nitrogen atmosphere of 99% or more, more preferably a reducing atmosphere containing about 5 to 10% by volume of hydrogen and the balance being nitrogen. The heating method for alloying is not particularly limited, and conventional means such as gas heating and induction heater heating can be employed. After the alloying treatment, it is cooled to room temperature at a cooling rate of about 1 ° C./S or more.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではなく、前後記述の趣旨に適合し得る範囲で適当に変更を加えて実施することができる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not construed as being limited to such examples, and appropriate modifications are made within a range that can meet the gist of the description before and after. Can be implemented.

表1に示した組成の鋼を溶製し、その鋳片を1150〜1250℃で30分間加熱した後、仕上温度を850℃として熱間圧延を行い、圧延終了後40℃/sで冷却し、550℃で巻き取った。酸洗後、冷延率50%で冷間圧延を施し、800℃で60秒保持する焼鈍を行い、これに引き続いてめっき浴温度(460℃)に冷却した鋼板を下記組成のめっき浴に4.0秒間浸漬する溶融亜鉛めっきを施し、引き続いて表2に示す条件(T1、t1,T2,t2は図1に示すとおり)で合金化処理を行った。合金化中の雰囲気は窒素ガス雰囲気とした。
・めっき浴組成
Al:0.14%、Fe:0.02%、残部Znおよび不可避不純物(0.l%未満)
The steel having the composition shown in Table 1 was melted and the slab was heated at 1150 to 1250 ° C. for 30 minutes, then hot rolled at a finishing temperature of 850 ° C. and cooled at 40 ° C./s after the end of rolling. It wound up at 550 degreeC. After pickling, cold rolling is performed at a cold rolling rate of 50%, annealing is performed at 800 ° C. for 60 seconds, and subsequently the steel sheet cooled to a plating bath temperature (460 ° C.) is added to a plating bath having the following composition. Hot dip galvanizing was performed by immersing in 0.0 second, followed by alloying treatment under the conditions shown in Table 2 (T1, t1, T2, and t2 are as shown in FIG. 1). The atmosphere during alloying was a nitrogen gas atmosphere.
-Plating bath composition Al: 0.14%, Fe: 0.02%, balance Zn and inevitable impurities (less than 0.1%)

以上のようにして製造された合金化溶融亜鉛めっき鋼板から引っ張り試験片を採取し、引張強さを測定した。また、成分分析試験片を採取し、板厚方向に沿っての元素分布をマーカス型高周波グロー放電発光分光分析装置(GD−OES)を用いて測定し、めっき層−地鋼板の界面付近における[Zn]/[Fe]が0.5〜5.0の界面領域の平均Al濃度を求めた。前記発光分光分析の結果の一例(表2の試料No. A1とA3)を図2に示す。また、前記界面領域における平均Al濃度の値を表2に併せて示す。   A tensile test piece was taken from the galvannealed steel sheet produced as described above, and the tensile strength was measured. In addition, a component analysis test piece was collected, and the element distribution along the plate thickness direction was measured using a Marcus type high-frequency glow discharge optical emission spectrometer (GD-OES). The average Al concentration in the interface region where Zn] / [Fe] was 0.5 to 5.0 was determined. An example of the result of the emission spectroscopic analysis (sample Nos. A1 and A3 in Table 2) is shown in FIG. Further, Table 2 also shows the value of the average Al concentration in the interface region.

また、プレス成形時の耐パウダリング性を評価するため、各試料鋼板から試験片を採取し、10×10mmの領域に縦横それぞれ1mmの間隔でクロスカット(合計で100マス)を入れ、その部分を曲げ半径が5mmの曲げ加工を行い、クロスカットを入れた部分をテープで剥離し、剥離されたマスの個数をカウントし、その個数によって成形性評価を行った。カウント数が0〜5個のものを特にめっき密着性に優れるものとして「◎」、カウント数が6〜20のものをめっき密着性に優れるものとして「O」、カウント数が21〜50のものをめっき密着性にやや劣るものとして「△」、51〜100のものをめっき密着性に劣るもの「×」として評価を行った。これらの評価結果を表2に併せて示す。
In addition, in order to evaluate the powdering resistance at the time of press forming, a test piece was taken from each sample steel plate, and a cross cut (total of 100 squares) was made in a 10 × 10 mm area at intervals of 1 mm in length and width. Was bent with a bending radius of 5 mm, the cross cut portion was peeled off with tape, the number of peeled masses was counted, and the formability was evaluated based on the number. Those having a count number of 0 to 5 are particularly excellent in plating adhesion, “◎”, those having a count number of 6 to 20 are excellent in plating adhesion, “O”, and those having a count number of 21 to 50 Were evaluated as “△”, with a slight inferior plating adhesion, and “×” with a poor adhesion in the plating of 51-100. These evaluation results are also shown in Table 2.

表2の試料No. A1〜A6及び図2より、第2段合金化処理を行わない試料No. A5や同処理条件が不適当な試料No. A6は、界面領域におけるAl濃度が低下し、めっき密着性が低下した。また、試料No. A5のように、第2段合金化処理を行わず、合金化処理温度を通常の場合より低く設定したものでは、目視により外観を観察したところ、Zn−Fe合金化が不十分であり、合金化溶融亜鉛めっき鋼板としての十分な特性が得られない場合があった。また、第2段合金化処理を適切に行っても、第1段合金化処理が適切でない試料No. A3,A4についても、界面領域において所定の平均Al濃度が確保されないため、やはりめっき密着性が低下した。これに対して、適切な第1、第2段合金化処理を施した試料No. A1、A2では界面領域における平均Al濃度が本発明条件を満足し、優れためっき密着性が得られることが確認された。また、鋼種Aに限らず、鋼種B,Cなどの他の組成のものでも、組成が同じであっても合金化処理条件が本発明条件を満足するもの(試料No. B1,B2、C1,C2、D1〜K1)は、満足しないもの(試料B3,B4、B5、C3、D2〜K2)に比べて十分にZn−Fe合金化しためっき性状で、高いめっき密着性が得られた。   From sample Nos. A1 to A6 in Table 2 and FIG. 2, sample No. A5 that is not subjected to the second-stage alloying treatment and sample No. A6 in which the same processing conditions are inappropriate have a reduced Al concentration in the interface region. Plating adhesion decreased. Further, in the case where the second-stage alloying treatment was not performed as in sample No. A5 and the alloying treatment temperature was set lower than usual, the appearance was visually observed, and Zn-Fe alloying was not observed. In some cases, sufficient characteristics as an galvannealed steel sheet cannot be obtained. Further, even if the second-stage alloying treatment is appropriately performed, the predetermined average Al concentration is not ensured in the interface region even for sample Nos. A3 and A4 that are not suitable for the first-stage alloying treatment. Decreased. On the other hand, in sample Nos. A1 and A2 subjected to appropriate first and second stage alloying treatments, the average Al concentration in the interface region satisfies the conditions of the present invention, and excellent plating adhesion can be obtained. confirmed. Further, not only the steel type A but also other compositions such as steel types B and C, even if the composition is the same, the alloying treatment conditions satisfy the conditions of the present invention (Sample Nos. B1, B2, C1, C2 and D1 to K1) were sufficiently plated with Zn-Fe alloy as compared with unsatisfactory samples (samples B3, B4, B5, C3, and D2 to K2), and high plating adhesion was obtained.

Figure 0005436009
Figure 0005436009

Figure 0005436009
Figure 0005436009

Claims (3)

地鋼板に合金化溶融亜鉛めっき層が被覆された合金化溶融亜鉛めっき鋼板であって、
前記地鋼板は、化学組成が質量%で、
C:0.1〜0.3%、
Si:0.2%以下、
Mn:1.0〜4.0%、
P:0.1%以下、
S:0.01%以下、
Al:0.01〜3.0%
を含有し、残部がFe及び不可避不純物からなり、
板厚方向における局所的なZn量とFe量の比[Zn]/[Fe]が0.5以上、5.0以下である、めっき層と地鋼板との界面領域におけるAl量の平均値が1.5%以上である、高強度合金化溶融亜鉛めっき鋼板。
An alloyed hot-dip galvanized steel sheet in which a base steel sheet is coated with an alloyed hot-dip galvanized layer,
The base steel plate has a chemical composition of mass%,
C: 0.1 to 0.3%
Si: 0.2% or less,
Mn: 1.0-4.0%,
P: 0.1% or less,
S: 0.01% or less,
Al: 0.01 to 3.0%
And the balance consists of Fe and inevitable impurities,
The ratio [Zn] / [Fe] of the local Zn content and Fe content in the plate thickness direction is 0.5 or more and 5.0 or less, and the average value of the Al content in the interface region between the plating layer and the ground steel plate is A high-strength galvannealed steel sheet of 1.5% or more.
請求項1に記載した高強度合金化溶融亜鉛めっき鋼板であって、前記地鋼板は、化学組成として、さらにNb:0.005〜0.5%、Ti:0.005〜0.5%、Cu:0.003〜0.5%、Ni:0.003〜l.0%、Mo:0・01〜1.0%、B:0.0001〜0.1%、Ca:0.0005〜0.005%、Mg:0.0005〜0.01%、V:0.003〜1.0%の内から一種又は二種以上を含む、高強度合金化溶融亜鉛めっき鋼板。   The high-strength galvannealed steel sheet according to claim 1, wherein the base steel sheet further has a chemical composition of Nb: 0.005-0.5%, Ti: 0.005-0.5%, Cu: 0.003-0.5%, Ni: 0.003-l. 0%, Mo: 0.01 to 1.0%, B: 0.0001 to 0.1%, Ca: 0.0005 to 0.005%, Mg: 0.0005 to 0.01%, V: 0 A high-strength galvannealed steel sheet containing one or more of 0.003 to 1.0%. 請求項1又は2に記載した地鋼板に溶融亜鉛めっきを施し、さらに被覆された溶融亜鉛めっき層を合金化する合金化処理を行う合金化溶融亜鉛めっき鋼板の製造方法であって、
前記合金化処理は、450℃〜500℃の合金化処理温度で10〜30秒保持し、引き続いて200〜300℃で10分以上保持する、高強度合金化溶融亜鉛めっき鋼板の製造方法。
A method for producing an alloyed hot-dip galvanized steel sheet, which is obtained by subjecting the ground steel sheet according to claim 1 or 2 to hot-dip galvanizing and further alloying the coated hot-dip galvanized layer.
The said alloying process is a manufacturing method of the high intensity | strength galvannealed steel plate which hold | maintains for 10 to 30 seconds at the alloying process temperature of 450 to 500 degreeC, and hold | maintains at 200 to 300 degreeC for 10 minutes or more continuously.
JP2009092847A 2009-04-07 2009-04-07 High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same Expired - Fee Related JP5436009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092847A JP5436009B2 (en) 2009-04-07 2009-04-07 High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092847A JP5436009B2 (en) 2009-04-07 2009-04-07 High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010242173A JP2010242173A (en) 2010-10-28
JP5436009B2 true JP5436009B2 (en) 2014-03-05

Family

ID=43095504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092847A Expired - Fee Related JP5436009B2 (en) 2009-04-07 2009-04-07 High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same

Country Status (1)

Country Link
JP (1) JP5436009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282763A (en) * 2016-08-11 2017-01-04 宁波市鄞州亚大汽车管件有限公司 A kind of brake pipe joint

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118186A2 (en) 2009-04-07 2010-10-14 Frank's International, Inc. Friction reducing wear band and method of coupling a wear band to a tubular
JP5856002B2 (en) 2011-05-12 2016-02-09 Jfeスチール株式会社 Collision energy absorbing member for automobiles excellent in impact energy absorbing ability and method for manufacturing the same
EP2997173B1 (en) * 2013-05-17 2018-10-03 Ak Steel Properties, Inc. Method of production of zinc-coated steel for press hardening application
US9920412B2 (en) 2013-08-28 2018-03-20 Antelope Oil Tool & Mfg. Co. Chromium-free thermal spray composition, method, and apparatus
CN106287053B (en) * 2016-08-11 2018-03-16 宁波市鄞州亚大汽车管件有限公司 One kind withholds casing joint
KR101819394B1 (en) * 2016-12-23 2018-01-16 주식회사 포스코 Zinc-magnesium alloy plated steel material having excellent adhesion to plating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080951A (en) * 2000-09-07 2002-03-22 Kobe Steel Ltd Method for producing galvannealed steel sheet
ES2629109T3 (en) * 2006-05-15 2017-08-07 Thyssenkrupp Steel Europe Ag Procedure for the manufacture of a flat steel product coated with a corrosion protection system
JP5092507B2 (en) * 2007-04-06 2012-12-05 住友金属工業株式会社 High tensile alloyed hot dip galvanized steel sheet and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282763A (en) * 2016-08-11 2017-01-04 宁波市鄞州亚大汽车管件有限公司 A kind of brake pipe joint

Also Published As

Publication number Publication date
JP2010242173A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
EP1978113B1 (en) High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
JP4503001B2 (en) High-strength galvannealed steel sheet with excellent powdering resistance and workability
WO2013018726A1 (en) Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
JP5436009B2 (en) High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP3459500B2 (en) High-strength galvannealed steel sheet excellent in formability and plating adhesion and method for producing the same
JP7241283B2 (en) Aluminum-iron plated steel sheet for hot press with excellent corrosion resistance and weldability and its manufacturing method
JP6187028B2 (en) Alloyed hot-dip galvanized steel sheet with excellent productivity and press formability and manufacturing method thereof
JP6052145B2 (en) Bake-hardening hot-dip galvanized steel sheet
JP6398967B2 (en) High-strength hot-dip hot-rolled steel sheet excellent in surface appearance and plating adhesion and method for producing the same
EP3913106A1 (en) Method for manufacturing hot-dip galvanized steel sheet
JP5192704B2 (en) High strength steel plate with excellent strength-elongation balance
WO2014178358A1 (en) Galvanized steel sheet and production method therefor
US11884987B2 (en) Galvannealed steel sheet
KR101359183B1 (en) Plated steel sheet for hot press forming having good anti-lme property
JP3889767B2 (en) High strength steel plate for hot dip galvanizing
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4890492B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JP5173638B2 (en) Method for producing galvannealed steel sheet
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP4679195B2 (en) Low yield ratio high tension hot dip galvanized steel sheet manufacturing method
JP2001295017A (en) High strength hot-dip zincing steel sheet having good corrosion resistance and press-workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees