[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5433773B2 - 移動局装置、同期チャネル受信方法及び移動通信システム - Google Patents

移動局装置、同期チャネル受信方法及び移動通信システム Download PDF

Info

Publication number
JP5433773B2
JP5433773B2 JP2012264782A JP2012264782A JP5433773B2 JP 5433773 B2 JP5433773 B2 JP 5433773B2 JP 2012264782 A JP2012264782 A JP 2012264782A JP 2012264782 A JP2012264782 A JP 2012264782A JP 5433773 B2 JP5433773 B2 JP 5433773B2
Authority
JP
Japan
Prior art keywords
cell
sch
synchronization channel
sequence
synchronization signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012264782A
Other languages
English (en)
Other versions
JP2013078130A (ja
Inventor
健一 樋口
祥久 岸山
聡 永田
衛 佐和橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2012264782A priority Critical patent/JP5433773B2/ja
Publication of JP2013078130A publication Critical patent/JP2013078130A/ja
Application granted granted Critical
Publication of JP5433773B2 publication Critical patent/JP5433773B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、下りリンクにおいて直交周波数分割多重OFDM(Orthogonal Frequency Division Multiplexing)を適用する無線通信システムに関し、特に基地局装置及び移動局装置並びに同期チャネル送信方法等に関する。
W−CDMAやHSDPAの後継となる通信方式、すなわちロングタームエボリューション(LTE:Long Term Evolution)が、W−CDMAの標準化団体3GPPにより検討され、無線アクセス方式として、下りリンクについてはOFDM、上りリンクについてはSC−FDMA(Single−Carrier Frequency Division Multiple Access)が検討されている(例えば、非特許文献1参照)。
OFDMは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各周波数帯上にデータを載せて伝送を行う方式であり、サブキャリアを周波数上に、一部重なりあいながらも互いに干渉することなく密に並べることで、高速伝送を実現し、周波数の利用効率を上げることができる。
SC−FDMAは、周波数帯域を分割し、複数の端末間で異なる周波数帯域を用いて伝送することで、端末間の干渉を低減することができる伝送方式である。SC−FDMAでは、送信電力の変動が小さくなる特徴を持つことから、端末の低消費電力化及び広いカバレッジを実現できる。
尚、LTEにおいては、OFDMにおいて、遅延波によるシンボル間干渉の影響を軽減するためのCyclic Prefix(CP)として、Long CPとShort CPという長さの異なる2種類のCPが用意されている。例えば、Long CPはセル半径の大きいセルで、また、MBMS(Multimedia Broadcast Multicast Service)信号送信時に適用され、Short CPはセル半径の小さいセルで適用される。Long CPを適用した場合、1スロット内のOFDMシンボル数は6であり、Short CPを適用した場合、1スロット内のOFDMシンボル数は7である。
ところで、一般に、W−CDMAやLTE等を用いた無線通信システムにおいて、移動局は、電源立ち上げ時、待ち受け中、通信中、あるいは、通信中の間欠受信時等において、同期信号などに基づいて、自局にとって無線品質が良好なセルを検出しなければならない。このプロセスを、無線リンクを接続すべきセルを探すという意味で、セルサーチと呼ぶ。セルサーチ方法は、一般に、セルサーチに要する時間、及び、セルサーチを行う際の移動局の処理負荷に基づいて決定される。すなわち、上記セルサーチの方法は、セルサーチに要する時間が短く、かつ、セルサーチを行う際の移動局の処理負荷が小さいような方法でなければならない。
W−CDMAにおいては、Primary SCH(P−SCH)とSecondary SCH(S−SCH)という2種類の同期信号を用いてセルサーチが行われており、LTEにおいても、同様に、セルサーチにP−SCHとS−SCHの2種類の同期信号を用いることが検討されている。
例えば、セルサーチの方法として、5msに1回の時間間隔で、1つの系列を有するP−SCHと、複数の系列を有するS−SCHを送信するセルサーチ方法が検討されている(非特許文献2)。上記方法においては、P−SCHにより、各セルからの下りリンクの受信タイミングが特定され、同じサブフレームに送信されるS−SCHにより、受信フレームタイミングの検出とセルIDもしくはセルのグループ(Group ID)等のセル固有の情報が特定される。ここで、上記S−SCHの復調・復号には、一般に、上記P−SCHから求まるチャネル推定値を用いることが可能である。そして、セルIDのグループ化を行う場合には、その後、検出されたセルのGroup IDに属するセルIDの中から、当該セルのIDを検出する。例えば、セルのIDは、パイロット信号の信号パターンに基づいて算出される。また、例えば、セルのIDは、上記P−SCHおよび上記S−SCHの復調・復号に基づいて算出される。あるいは、セルIDのグループ化を行わずに、S−SCHの情報要素として、セルのIDが含まれていてもよい。この場合、移動局は、S−SCHを復調・復号した時点でセルのIDを検出することができる。
しかしながら、上記セルサーチの方法を適用した場合、各セルからの信号が同期している局間同期システムにおいては、複数のセルから同じ系列で送信されるP−SCHから求まるチャネル推定値に基づいて、複数のセルから異なる系列で送信されるS−SCHを復調・復号することが生じるため、S−SCHの伝送特性が劣化するという問題点がある。ここで、伝送特性は、例えば、セルサーチに要する時間も含む。尚、各セルからの信号が同期していない非局間同期システムの場合は、複数のセルから送信されるP−SCHの系列の受信タイミングが、複数のセルの間で異なるため、上記のような問題は生じない。
上述したような、局間同期システムにおけるS−SCHの特性劣化を防ぐために、P−SCHの系列数を1から2以上の数、例えば、3か7にするセルサーチの方法が検討されている(非特許文献3)。あるいは、上述したような、局間同期システムにおけるS−SCHの特性劣化を防ぐために、P−SCHをセル毎に異なる送信間隔で送信する方法が提案されている(非特許文献4)。上記方法においては、S−SCHの復調・復号において、複数のセルからの受信タイミングが異なるP−SCHを用いることができるため、上述したS−SCHの特性劣化を防ぐことが可能となる。
ところで、上述した、非特許文献3におけるP−SCHの系列数や非特許文献4におけるP−SCHの送信間隔の種類は、セル設計の観点からは、多ければ多いほど良いと考えられる。というのは、上記P−SCHの系列数やP−SCHの送信間隔の種類が少ない場合、隣り合うセルでP−SCHの系列が同じになる確率、あるいは、P−SCHの送信間隔が同じになる確率が高くなり、局間同期システムにおけるS−SCHの特性劣化が生じる確率が高くなるからである。
また、上述したセルサーチに要する時間、すなわち、セルサーチの伝送特性と、セルサーチを行う際の移動局の処理負荷は、トレードオフの関係にあり、パラメータの設定、あるいは、運用方法により、セルサーチの伝送特性を重要視するか、セルサーチを行う際の移動局の処理負荷を重要視するかを選択できることが望ましい。
3GPP TR 25.814 (V7.0.0), "Physical Layer Aspects for Evolved UTRA," June 2006 R1-062990, Outcome of cell search drafting session R1-062636, Cell Search Performance in Tightly Synchronized Network for E-UTRA R1-070428, Further analysis of initial cell search for Approach 1 and 2 - single cell scenario 3GPP TS 36.211 V1.0.0(2007-03) 3GPP R1-060042 SCH Structure and Cell Search Method in E-UTRA Downlink 3GPP R1-071584 Secondary Synchronization Signal Design C. Chu, "Polyphase codes with good periodic correlation properties,"IEEE Trans. Inform. Theory, vol. II-18, pp.531-532, July 1972 R.L.Frank and S.A.Zadoff, "Phase shift pulse codes with good periodic correlation properties, "IRE Trans. Inform. Theory, vol. IT-8, pp. 381-382, 1962 M.J.E. Golay, "Complementary Series," IRE Trans. Inform. Theory, vol. 7, pp. 82-87, April 1961. R1-062487 Hierarchical SCH signals suitable for both (FDD and TDD) modes of E-UTRA 3GPP, R1-070146, S-SCH Sequence Design 3GPP, R1-072093, Details on SSC Sequence Design 3GPP, R1-071641, Frequency Hopping/Shifting of Downlink Reference Signal in E-UTRA 3GPP, R1-071794, Way forward for stage 2.5 details of SCH 3GPP, R1-072368, Mapping of Short Sequences for S-SCH
しかしながら、上述した背景技術には以下の問題がある。
上述したように、同期チャネル(SCH: Synchronization Channel)は、セルサーチに使用される下りリンクのシグナリングである。この同期チャネルには、階層型SCHの適用が決定されている(例えば、非特許文献5参照)。すなわち、プライマリ同期チャネル(Primary SCH)とセカンダリ同期チャネル(Secondary SCH)の2のサブチャネルにより構成される。
このプライマリ同期チャネルとセカンダリ同期チャネルのうち、セカンダリ同期チャネルでは、セルIDグループ、無線フレームタイミング、送信アンテナ数情報などのセル固有の情報が通知される。ユーザ装置は、セカンダリ同期チャネルの系列の検出を行うことにより、セル固有の情報の検出を行う。
上述したように、W−CDMA(Wideband Code Division Multiple Access)方式では、ハンドオーバが行われる場合に周辺セルサーチが行われるが、この周辺セルサーチに先だって、近隣セルのセル固有情報(周辺セル情報)が予めユーザ装置に通知される。しかし、LTEシステムでは、このような周辺セル情報が通知されるか否かについては今のところ決定されていない。通信中や待ち受け時において、ハンドオーバ先となるセルを検出する周辺セルサーチでは、周辺セル情報などが予め通知される場合には、検出すべきセル固有情報の候補数を減少させることが可能である。
セカンダリ同期チャネル系列のマッピング方法として、周波数方向に異なる系列をマッピングする方法が提案されている(例えば、非特許文献6、非特許文献7参照)。例えば、図1に示すように直交系列1(P1(0),P1(1),・・・,P1(31))と、直交系列2(P2(0),P2(1),・・・,P2(31))とが1サブキャリアおきに交互にマッピングされる。また、例えば、図2に示すように直交系列1(P1(0),P1(1),・・・,P1(31))と、直交系列2(P2(0),P2(1),・・・,P2(31))とが連続するサブキャリアにマッピングされる。このように系列を複数に分けることにより、送信できるパターン数を増大させることができる。具体的には、例えば系列長64の系列1種類を用いる場合には、64種類のパターン数を送信可能であるのに対し、図2に示すように系列長32の2種類の系列を用いる場合には、1024種類のパターン数を送信可能となる。
そこで、本発明は、上述した課題に鑑み、その目的は、周辺セルサーチにおいて、検出すべきセル固有情報の候補数を減少させることができる基地局装置及び移動局装置並びに同期チャネル送信方法等を提供することにある。
一実施形態による移動局装置は、
移動通信システムで使用される移動局装置であって、
セルサーチで使用すべき同期チャネルが含まれた信号を基地局装置から受信する受信部と、
前記受信部において受信した信号を処理する処理部とを備え、
前記同期チャネルは、受信タイミングを検出するための一次同期チャネルと、セルIDグループ情報を含む二次同期チャネルとを有し、
前記二次同期チャネルは複数の異なるショートコードで構成され、
複数のショートコードの組み合わせと、セルIDグループ情報との対応関係が予め規定されており、
前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
第2のインデックス番号−第1のインデックス番号≦Δ(Δは正の整数)であることを特徴とする移動局装置。


本発明の実施例によれば、周辺セルサーチにおいて、検出すべきセル固有情報の候補数を減少させることができる基地局装置及び移動局装置並びに同期チャネル送信方法を実現することができる。
S−SCH系列のマッピング方法を示す説明図である。 S−SCH系列のマッピング方法を示す説明図である。 本発明の一実施例に係る無線通信システムの構成を示すブロック図である。 無線フレーム構成を示す説明図である。 サブフレームの構成を示す説明図である。 本発明の一実施例に係る基地局装置を示す部分ブロック図である。 本発明の一実施例に係る基地局装置のベースバンド信号処理部を示すブロック図である。 同期信号送信パターンの一例を示す説明図である。 同期信号送信パターンの一例を示す説明図である。 P−SCH系列番号と同期信号送信パターンとの組み合わせの一例を示す説明図である。 P−SCH系列番号と同期信号送信パターンとの組み合わせの一例を示す説明図である。 P−SCH系列番号と同期信号送信パターンとの組み合わせの一例を示す説明図である。 P−SCH系列番号と同期信号送信パターンとの組み合わせの一例を示す説明図である。 同期信号送信パターンの一例を示す説明図である。 P−SCH系列番号と同期信号送信パターンとの組み合わせの一例を示す説明図である。 同期信号送信パターンの一例を示す説明図である。 P−SCH系列番号と同期信号送信パターンとの組み合わせの一例を示す説明図である。 同期信号送信パターンの一例を示す説明図である。 P−SCH系列番号と同期信号送信パターンとの組み合わせの一例を示す説明図である。 本発明の一実施例に係るS−SCH系列のマッピング方法を示す説明図である。 本発明の一実施例に係る移動局装置を示す部分ブロック図である。 本発明の一実施例に係るセルサーチ方法を示すフロー図である。 ショートコードのマッピング方法の一例を示す説明図である。 本発明の一実施例に係るショートコードのマッピング方法の一例を示す説明図である。 本発明の一実施例に係るS−SCH系列のマッピング方法を示す説明図である。 S−SCH系列の決定方法を説明するための図である。 S−SCH系列の別の決定方法を説明するための図である。 S−SCH系列の別の決定方法を説明するための図である。 ショートコードのマッピング方法の一例を示す図である。 ショートコードとスクランブルコードの対応関係を示す図である。
以下、本発明の実施例を、図面を参照しつつ説明する。実施例を説明するための全図において、同一機能を有するものは同一符号を用い、繰り返しの説明は省略する。
図3を参照しながら、本発明の実施例に係る移動局及び基地局装置を有する無線通信システムについて説明する。
無線通信システム1000は、例えばEvolved UTRA and UTRAN(別名:Long Term Evolution,或いは,Super 3G)が適用されるシステムである。無線通信システム1000は、基地局装置(eNB: eNode B)200(200、200、200、・・・、200、mはm>0の整数)と、基地局装置200と通信する複数の移動局100(100、100、100、・・・100、nはn>0の整数)とを備える。基地局装置200は、上位局、例えばアクセスゲートウェイ装置300と接続され、アクセスゲートウェイ装置300は、コアネットワーク400と接続される。移動局100はセル50(50、50、・・・、50、kはk>0の整数)のいずれかにおいて基地局装置200とEvolved UTRA and UTRANにより通信を行う。
ここで、上記移動局100には、基地局装置200のいずれかと通信チャネルを確立し、通信状態にあるものと、基地局200のいずれとも通信チャネルを確立しておらず、無通信状態にあるものが混在するものとする。
基地局装置200は、同期信号を送信する。移動局100は、セル50(50、50、50、・・・50、kはk>0の整数)のいずれかに位置し、電源立ち上げ時、あるいは、通信中の間欠受信時等において、上記同期信号に基づいて、自局にとって無線品質が良好なセルを検出するセルサーチを行う。すなわち、移動局100は、同期信号を用いてシンボルタイミングとフレームタイミングとを検出し、かつ、セルID(セルIDから生成されるセル固有のスクランブルコード)またはセルIDの集合(以下、セルIDグループと呼ぶ)などのセル固有の制御情報の検出を行う。
ここで、セルサーチは、移動局100が通信状態にある場合と無通信状態にある場合の両方で行われる。例えば、通信状態におけるセルサーチとしては、同じ周波数のセルを検出するためのセルサーチや異なる周波数のセルを検出するためのセルサーチ等がある。また、無線通信状態におけるセルサーチとしては、例えば、電源立ち上げ時のセルサーチや待ち受け時のセルサーチ等がある。
以下、基地局装置200(200、200、200、・・・200)については、同一の構成、機能、状態を有するので、以下では特段の断りがない限り基地局200として説明を進める。以下、移動局100(100、100、100、・・・100)については、同一の構成、機能、状態を有するので、以下では特段の断りがない限り移動局100として説明を進める。以下、セル50(50、50、50、・・・50)については、同一の構成、機能、状態を有するので、以下では特段の断りがない限りセル50として説明を進める。
無線通信システム1000は、無線アクセス方式として、下りリンクについてはOFDM(直交周波数分割多元接続)、上りリンクについてはSC−FDMA(シングルキャリア−周波数分割多元接続)が適用される。上述したように、OFDMは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各周波数帯上にデータを載せて伝送を行う方式である。SC−FDMAは、周波数帯域を分割し、複数の端末間で異なる周波数帯域を用いて伝送することで、端末間の干渉を低減することができる伝送方式である。
ここで、Evolved UTRA and UTRANにおける通信チャネルについて説明する。
下りリンクについては、各移動局100で共有して使用される下り共有物理チャネル(PDSCH: Physical Downlink Shared Channel)と、LTE用の下り制御チャネルとが用いられる。下りリンクでは、LTE用の下り制御チャネルにより、下り共有物理チャネルにマッピングされる移動局の情報やトランスポートフォーマットの情報、上り共有物理チャネルにマッピングされる移動局の情報やトランスポートフォーマットの情報、上り共有物理チャネルの送達確認情報などが通知され、下り共有物理チャネルによりユーザデータが伝送される。
また、下りリンクにおいて、基地局装置200は、移動局100がセルサーチを行うための同期信号を送信する。
上りリンクについては、各移動局100で共有して使用される上り共有物理チャネル(PUSCH:Physical Uplink Shared Channel)と、LTE用の上り制御チャネルとが用いられる。尚、上り制御チャネルには、上り共有物理チャネルと時間多重されるチャネルと、周波数多重されるチャネルの2種類がある。
上りリンクでは、LTE用の上り制御チャネルにより、下りリンクにおける共有物理チャネルのスケジューリング、適応変復調・符号化(AMC: Adaptive Modulation and Coding)に用いるための下りリンクの品質情報(CQI: Channel Quality Indicator)及び下りリンクの共有物理チャネルの送達確認情報(HARQ ACK information)が伝送される。また、上り共有物理チャネルによりユーザデータが伝送される。
下りリンク伝送では、図4に示すように、1無線フレーム(Radio Frame)は10msであり、1Radio Frame内に10個のサブフレームが存在する。また、図5に示すように、1サブフレームは、2個のスロットで構成され、1個のスロットは、ショートCP(Short CP)を用いる場合に7個のOFDMシンボル、ロングCP(Long CP)を用いる場合に6個のOFDMシンボルで構成される。
次に、本発明の実施例に係る基地局装置200について、図6を参照して説明する。
本実施例に係る基地局装置200は、送受信アンテナ202と、アンプ部204と、送受信部206と、ベースバンド信号処理部208と、呼処理部210と、伝送路インターフェース212とを備える。
下りリンクにより基地局装置200から移動局100に送信されるパケットデータは、基地局装置200の上位に位置する上位局、例えばアクセスゲートウェイ装置300から伝送路インターフェース212を介してベースバンド信号処理部208に入力される。
ベースバンド信号処理部208では、パケットデータの分割・結合、RLC(radio link control)再送制御の送信処理などのRLC layerの送信処理、MAC再送制御、例えばHARQ(Hybrid Automatic Repeat reQuest)の送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT: Inverse Fast Fourier Transform)処理が行われて、送受信部206に転送される。また、ベースバンド信号処理部208では、後述するように、同期信号の生成処理が行われる。上記同期信号は、上記パケットデータに多重されて送受信部206に転送される。
送受信部206では、ベースバンド信号処理部208から出力されたベースバンド信号を無線周波数帯に変換する周波数変換処理が施され、その後、アンプ部204で増幅されて送受信アンテナ202より送信される。ここで、ベースバンド信号とは、上述したパケットデータや同期信号等である。
一方、上りリンクにより移動局100から基地局装置200に送信されるデータについては、送受信アンテナ202で受信された無線周波数信号がアンプ部204で増幅され、送受信部206で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部208に入力される。
ベースバンド信号処理部208では、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、MAC再送制御の受信処理、RLC layerの受信処理がなされ、伝送路インターフェース212を介してアクセスゲートウェイ装置300に転送される。
呼処理部210は、無線基地局200の状態管理やリソース割り当てを行う。
次に、ベースバンド信号処理部208の構成について、図7を参照して説明する。尚、本発明に係る実施形態は、主に下りリンクに係るため、同図においては、下りリンクの処理に係る部分を示し、上りリンクの処理に係る部分は省略する。
ベースバンド信号処理部208は、RLC処理部208と、MAC(Medium Access Control)処理部208と、符号化部208と、データ変調部208と、多重部208と、直並列変換部208と、乗算器208と、乗算器208と、スクランブルコード生成部208と、振幅調整部20810と、合成部20811と、IFFT(IDFT)20812と、CP付加部20813と、同期信号生成部209とを具備する。
伝送路インターフェース部より受け取った下りリンクのパケットデータの送信データ系列は、RLC処理部208において、分割・結合、RLC再送制御の送信処理等のRLC layerの送信処理が行われ、MAC処理部208において、HARQ(Hybrid Automatic Repeat reQuest)の送信処理や、スケジューリング、伝送フォーマットの選択、周波数リソースの割り当て等のMAC layerの送信処理が行われた後、符号化部208において符号化され、データ変調部208においてデータ変調される。そして、データ変調された送信データ系列に、多重部208においてパイロットシンボルが多重され、上記パイロットシンボルが多重された送信データ系列は、直並列変換部208において直並列変換されて周波数軸上のN個の情報シンボル系列に変換され、周波数軸上に並べられる。ここで、上記パイロットシンボルは、例えば、Donwlink Reference Signalである。上記周波数軸上に並べられたN個の情報シンボル系列に対して、N個の乗算器208それぞれにおいて、スクランブルコード生成部208が出力するスクランブルコードが周波数方向に乗算され、さらに、スクランブルコードが乗算されたシンボル系列に対して、N個の乗算部208それぞれにおいて、振幅調整部20810の出力する振幅調節系列値が乗算され、合成部20811に出力される。合成部20811は、スクランブルコードおよび振幅調整系列値が乗算された系列長Nのシンボル系列に、同期信号生成部209において作成された同期信号を、N個のサブキャリアのうちの該当する特定のサブキャリアに多重する。
後述するように、同期信号が送信されるサブフレーム番号およびスロット番号は、同期信号制御部209によって決定される。同期信号が送信されるサブフレーム番号およびスロット番号においては、同期信号生成部209において作成された同期信号が、スクランブルコードおよび振幅調整系列値が乗算された、系列長Nの下りリンクのパケットデータのシンボル系列に対して多重され、同期信号が送信されないサブフレーム番号およびスロット番号においては、同期信号生成部209において作成された同期信号は多重されず、スクランブルコードおよび振幅調整系列値が乗算された、系列長Nの下りリンクのパケットデータのシンボル系列のみが逆フーリエ変換部20812に送信される。同期信号が多重されるサブキャリアは、例えば、全帯域幅の中心に位置する。また、同期信号が多重されるサブキャリアの帯域幅は、1.25MHzである。
逆フーリエ変換部(IFFT部)20812は、N個のシンボルを直交マルチキャリア信号に変換する。CP付加部20813は、フーリエ対象時間毎にこのマルチキャリア信号に、CPを挿入する。尚、上記CPの長さ(CP長)には、Long CPとShort CPの2種類があり、セル毎にどちらのCP長を用いるかが選択される。
同期信号生成部209における同期信号の生成処理について説明する。尚、上記同期信号は、第1の同期信号(以下、P−SCHと呼ぶ)と、第2の同期信号(以下、S−SCHと呼ぶ)とから構成される。同期信号生成部209は、同期信号制御部209と、同期信号発生部209と、データ変調部209と、直並列変換部209と、乗算器209と、振幅調整部209とを具備する。同期信号制御部209は、同期信号発生部209に接続される。
同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDあるいはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定する。移動局は、例えば、セルIDグループを特定した後、パイロット信号、すなわち、Reference Signalの信号パターンに基づいてセルを特定してもよい。この場合、例えば、Reference Signalの信号パターンとセルのIDが予め規定されていることになる。あるいは、移動局は、例えば、P−SCHおよびS−SCHの復調・復号に基づいて、セルを特定してもよい。この場合、例えば、P−SCH系列番号とセルID情報が予め規定されていることになる。
そして、同期信号制御部209は、上記P−SCHの系列番号を、同期信号系列情報として同期信号発生部209に通知する。また、上記P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号を、同期信号送信タイミング情報として同期信号発生部209に通知する。
例えば、無線通信システム1000は、非特許文献5および図8に示すように、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号を定義する。この例においては、複数種類のP−SCH系列が用いられ、サブフレーム番号#1とサブフレーム番号#6において同期信号が送信される。また、この例においては、P−SCHがスロットスロットの最後のOFDMシンボルにマッピングされることにより、移動局において、Long CPが用いられているか、Short CPが用いられているかに関係なく、P−SCHの復調を行うことが可能となる。その理由は、スロットの最後のOFDMシンボルにおいては、Long CP適用時の6番目のOFDMシンボルとShort CP適用時の7番目のOFDMシンボルが時間的に一致しているからである。言い換えれば、ショートCPでもロングCPでもサブフレームの先頭及び末尾のタイミングは一致しているからである。この時、無線通信システムは、P−SCH系列番号とセルID情報とを予め関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDに基づき、P−SCHの系列番号を決定することができる。
あるいは、例えば、無線通信システム1000は、図9に示すように、4通りの、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号を定義し、それぞれ、同期信号送信パターン#1、#2、#3、#4と定義してもよい。この例においては、サブフレーム番号#1とサブフレーム番号#6において同期信号が送信されるため、同期信号が等間隔で送信されることになり、移動局において複数フレームの平均化処理が容易となる。また、この例においては、P−SCHがサブフレームの最後のOFDMシンボルにマッピングされることにより、移動局において、Long CPが用いられているか、Short CPが用いられているかに関係なく、P−SCHの復調を行うことが可能となる。
そして、無線通信システム1000は、例えば、図10に示すように、4通りのP−SCH系列と、2通りの同期信号送信パターンを用いて、8通りのP−SCH系列と同期信号送信パターンの組み合わせを定義してもよい。この時、無線通信システムは、隣接するセルと上記P−SCH系列と同期信号送信パターンの組み合わせが同じにならないように、セルIDまたはセルIDグループと、上記P−SCH系列と同期信号送信パターンの組み合わせとを関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルID、または、セルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定することができる。また、このとき、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1と#4のどちらで送信されているかの情報が含まれてもよい。このとき、移動局は、例えば、S−SCHに含まれる情報要素に基づいて、同期信号送信パターン#1と#4のどちらで送信されているかを判定することができる。
図10に示す組み合わせを定義した場合、組み合わせの番号が異なる場合には、P−SCHが時間的に衝突しない、あるいは、系列が異なることにより、S−SCHの特性が劣化することを防ぐことが可能になる。
あるいは、無線通信システム1000は、図11に示すように、4通りのP−SCH系列と、2通りの同期信号送信パターンを用いて、8通りのP−SCH系列と同期信号送信パターンの組み合わせを定義してもよい。この時、無線通信システムは、隣接するセルと上記P−SCH系列と同期信号送信パターンの組み合わせが同じにならないように、セルIDまたはセルIDグループと、上記P−SCH系列と同期信号送信パターンの組み合わせとを関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDまたはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定することができる。なお、このとき、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#2と#3のどちらで送信されているかの情報が含まなくてもよい。移動局は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#2と#3のどちらで送信されているかを判定することができる。図11に示す組み合わせを定義した場合、組み合わせの番号が異なる場合には、P−SCHが時間的に衝突しない、あるいは、系列が異なることにより、S−SCHの特性が劣化することを防ぐことが可能になる。
あるいは、無線通信システム1000は、図12に示すように、3通りのP−SCH系列と、3通りの同期信号送信パターンを用いて、9通りのP−SCH系列と同期信号送信パターンの組み合わせを定義してもよい。この時、無線通信システムは、隣接するセルと上記P−SCH系列と同期信号送信パターンの組み合わせが同じにならないように、セルのIDまたはセルIDグループと、上記P−SCH系列と同期信号送信パターンの組み合わせとを関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDまたはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定することができる。なお、このとき、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3のいずれで送信されているかの情報が含まなくてもよい。移動局は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#1、#2、#3のいずれで送信されているかを判定することができる。図12に示す組み合わせを定義した場合、組み合わせの番号が異なる場合でも、P−SCHが時間的に衝突する場合が存在するが、P−SCHが時間的に衝突しない場合も存在するため、S−SCHの特性が劣化するのを少し防ぐことが可能となる。一方で、9個のP−SCH系列と同期信号送信パターンの組み合わせを定義するために、3個のP−SCH系列しか用いていないため、移動局の処理負荷を小さくすることが可能となる。さらに、図12に示す組み合わせを定義することにより、セルIDまたはセルIDグループと、上記図12に示す組み合わせとを関連づける際に、より柔軟に組み合わせを選択することが可能となる。例えば、S−SCHの特性が劣化するのを出来る限り防ぎたいエリアのセルにおいては、組み合わせ#2、#3、#5、#6、#8、#9のみを用いることができる。この場合、使用されるP−SCH系列と同期信号送信パターンは、図11相当となり、P−SCHが時間的に衝突しないため、S−SCHの特性が劣化するのを出来る限り防ぐことが可能となる。一方、S−SCHの特性が多少劣化しても構わないエリアのセルにおいては、組み合わせ#1〜#9の全てを用いることができる。この場合、セルIDまたはセルIDグループと、上記組み合わせとの対応付けが容易となる。
尚、図12においては、同期信号パターンを#1、#2、#3としたが、代わりに、#2、#3、#4としてもよい。
あるいは、無線通信システム1000は、図13に示すように、2通りのP−SCH系列と、4通りの同期信号送信パターンを用いて、8通りのP−SCH系列と同期信号送信パターンの組み合わせを定義してもよい。この時、無線通信システムは、隣接するセルと上記P−SCH系列と同期信号送信パターンの組み合わせが同じにならないように、セルIDまたはセルIDグループと、上記P−SCH系列と同期信号送信パターンの組み合わせとを関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDまたはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定することができる。なお、このとき、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3、#4のいずれで送信されているかの情報が含まれてもよい。このとき、移動局は、例えば、S−SCHに含まれる情報要素に基づいて、同期信号送信パターン#1、#2、#3、#4のいずれで送信されているかを判定することができる。図13に示す組み合わせを定義した場合、組み合わせの番号が異なる場合でも、P−SCHが時間的に衝突する場合が存在するが、P−SCHが時間的に衝突しない場合も存在するため、S−SCHの特性が劣化するのを少し防ぐことが可能となる。一方で、8個のP−SCH系列と同期信号送信パターンの組み合わせを定義するために、2個のP−SCH系列しか用いていないため、移動局の処理負荷を小さくすることが可能となる。
さらに、図13に示す組み合わせを定義することにより、セルIDまたはセルIDグループと上記図13に示す組み合わせとを関連づける際に、より柔軟に組み合わせを選択することが可能となる。例えば、S−SCHの特性が劣化するのを出来る限り防ぎたいエリアのセルにおいては、組み合わせ#1、#4、#5、#8のみを用いることができる。この場合、使用されるP−SCH系列と同期信号送信パターンは、図10相当となり、P−SCHが時間的に衝突しないため、S−SCHの特性が劣化するのを出来る限り防ぐことが可能となる。一方、S−SCHの特性が多少劣化しても構わないエリアのセルにおいては、組み合わせ#1〜#8の全てを用いることができる。この場合、セルIDまたはセルIDグループと上記組み合わせの対応付けが容易となる。
また、上述した図9においては、P−SCHおよびS−SCHが、サブフレーム番号#1とサブフレーム番号#6とにおいて送信されるが、代わりに、サブフレーム番号#1とサブフレーム番号#5において送信されてもよい。すなわち、同期信号が異なる間隔で送信されることにより、移動局において、P−SCHの送信間隔から、Radio Frameの境目を容易に検出することが可能となる。この場合、P−SCHおよびS−SCHがサブフレーム番号#1とサブフレーム番号#6とにおいて送信される場合と同様に、サブフレーム番号#1とサブフレーム番号#5とにおいて送信されるP−SCHおよびS−SCHに対して、図9に示す同期信号送信パターン#1、#2、#3、#4が定義され、図10、11、12及び13に示すP−SCH系列番号と同期信号送信パターンの組み合わせが定義され、セルIDまたはセルIDグループと、P−SCH系列番号と同期信号送信パターンの組み合わせとが関連づけられる。
また例えば、無線通信システム1000は、図14に示すように、2通りの、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号を定義し、それぞれ、同期信号送信パターン#1、#2と定義する。この例においては、サブフレーム番号#1とサブフレーム番号#5において同期信号が送信されるため、同期信号が異なる間隔で送信されることになり、移動局においてRadio frameの境目を容易に検出することが可能となる。また、この例においては、P−SCHがスロットの最後のOFDMシンボルにマッピングされることにより、移動局において、Long CPが用いられているか、Short CPが用いられているかに関係なく、P−SCHの復調を行うことが可能となる。その理由は、スロットの最後のOFDMシンボルにおいては、Long CP適用時の6番目のOFDMシンボルとShort CP適用時の7番目のOFDMシンボルが時間的に一致しているからである。この同期信号送信パターンの特徴としては、1Radio Frameの内のサブフレーム番号#1にのみS−SCHが送信され、サブフレーム番号#5の場合にS−SCHが送信されない点である。P−SCHの送信間隔が均等ではないため、移動局は容易にRadio Frameの境目を検出することが可能であり、そして、移動局は、サブフレーム番号#1においてのみS−SCHの復調を行う。尚、サブフレーム番号#1においては、P−SCHおよびS−SCHが送信されるOFDMシンボルが、同期信号送信パターン#1と#2とで異なるため、P−SCHが時間的に衝突することがなく、S−SCHの特性が劣化するのを防ぐことが可能となる。
そして、無線通信システム1000は、図15に示すように、4通りのP−SCH系列と、2通りの同期信号送信パターンを用いて、8通りのP−SCH系列と同期信号送信パターンの組み合わせを定義してもよい。この時、無線通信システムは、隣接するセルと上記P−SCH系列と同期信号送信パターンの組み合わせが同じにならないように、セルIDまたはセルIDグループと、上記P−SCH系列と同期信号送信パターンの組み合わせとを関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDまたはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定することができる。また、このとき、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1と#2のどちらで送信されているかの情報が含まれてなくてもよい。このとき、移動局は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#1と#2のどちらで送信されているかを判定することができる。
さらに例えば、無線通信システム1000は、図16に示すように、3通りの、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号を定義し、それぞれ、同期信号送信パターン#1、#2、#3と定義する。この例においては、サブフレーム番号#1とサブフレーム番号#6において同期信号が送信されるため、同期信号が等間隔で送信されることになり、移動局において複数フレームの平均化処理が容易となる。この同期信号パターンは、P−SCHの送信タイミングが、同期信号送信パターンが異なる場合には、一致することがないという特徴を有する。
そして、無線通信システム1000は、図17に示すように、3通りのP−SCH系列と、3通りの同期信号送信パターンを用いて、9通りのP−SCH系列と同期信号送信パターンの組み合わせを定義してもよい。この時、無線通信システムは、隣接するセルと上記P−SCH系列と同期信号送信パターンの組み合わせが同じにならないように、セルIDまたはセルIDグループと、上記P−SCH系列と同期信号送信パターンの組み合わせとを関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルIDまたはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定することができる。また、このとき、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3のいずれで送信されているかの情報が含まれてもよい。このとき、移動局は、例えば、S−SCHに含まれる情報要素に基づいて、同期信号送信パターン#1、#2、#3のどちらで送信されているかを判定することができる。
図17に示す組み合わせを定義した場合、組み合わせの番号が異なる場合には、P−SCHが時間的に衝突しない、あるいは、系列が異なることにより、S−SCHの特性が劣化することを防ぐことが可能になる。
さらに例えば、無線通信システム1000は、図18に示すように、4通りの、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号を定義し、それぞれ、同期信号送信パターン#1、#2、#3、#4と定義する。この例においては、サブフレーム番号#1とサブフレーム番号#6において同期信号が送信されるため、同期信号が等間隔で送信されることになり、移動局において複数フレームの平均化処理が容易となる。この同期信号パターンは、P−SCHの送信タイミングが、同期信号送信パターンが異なる場合には、一致することがないという特徴を有する。また、図16に示す同期信号送信パターンとの違いは、図16に示す同期信号送信パターンにおいては、P−SCHとS−SCHがマッピングされるOFDMシンボルが1スロット内で収まっているが、図13に示す同期信号送信パターンにおいては、P−SCHとS−SCHがマッピングされるOFDMシンボルが1スロット内ではなく2スロット内、すなわち、1サブフレーム内で収まっている。
そして、無線通信システム1000は、図19に示すように、2通りのP−SCH系列と、4通りの同期信号送信パターンを用いて、8通りのP−SCH系列と同期信号送信パターンの組み合わせを定義してもよい。この時、無線通信システムは、隣接するセルと上記P−SCH系列と同期信号送信パターンの組み合わせが同じにならないように、セルIDまたはセルIDグループと、上記P−SCH系列と同期信号送信パターンの組み合わせとを関連づけてもよい。このような関連付けが無線通信システム1000により行われることにより、各基地局装置200の同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDまたはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号とを決定することができる。また、このとき、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3、#4のいずれで送信されているかの情報が含まれていなくてもよい。このとき、移動局は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#1、#2、#3、#4のどちらで送信されているかを判定することができる。
図19に示す組み合わせを定義した場合、組み合わせの番号が異なる場合には、P−SCHが時間的に衝突しない、あるいは、系列が異なることにより、S−SCHの特性が劣化することを防ぐことが可能になる。
一般に、基地局装置200が提供する通信エリアは、2つ以上のエリアに分割されている。これはセクタ化と呼ばれる。基地局装置200が複数のセクタを有する場合には上記セルIDまたはセルIDグループは、基地局装置200の全てのセクタを合わせたエリアのIDとして使われてもよいし、基地局装置200の各セクタのIDとして使われてもよい。セルIDまたはセルIDグループが、基地局装置200の全てのセクタを合わせたエリアのIDとして使われる場合には、上記同期信号系列と、上記同期信号が送信されるサブフレーム番号およびスロット番号との組み合わせは、基地局装置200毎に設定される。セルIDまたはセルIDグループが、基地局装置200の各セクタのIDとして使われる場合には、上記同期信号系列と、上記同期信号が送信されるサブフレーム番号およびスロット番号との組み合わせは、基地局装置200のセクタ毎に設定される。
P−SCH系列としては,Zadoff−Chu系列(非特許文献8)などのCAZAC(Constant Amplitude Zero AutoCorrelation sequence)系列、Frank系列(非特許文献9)、Modulated Frank系列(非特許文献9)、Golay系列(非特許文献10)、Double Repetitive Golay Complementary sequence(非特許文献11)、PN(Pseudo Noise)系列などを用いるようにしてもよい。
また、S−SCH系列としては、非直交系列又は直交系列であるスクランブル系列を直交系列に又は非直交系列に乗算した2階層型のS−SCH系列(非特許文献12)を用いてもよいし、複数の直交系列又は非直交系列を周波数領域で交互に配置するS−SCH系列を用いてもよいし、複数の直交系列又は非直交系列に非直交系列又は直交系列であるスクランブル系列を乗算したS−SCH系列(非特許文献6)を用いてもよいし,複数の直交系列又は非直交系列を連続するサブキャリアに配置するS−SCH系列(非特許文献7)を用いてもよいし、複数の直交系列または非直交系列を連続するサブキャリアに配置し、非直交系列又は直交系列であるスクランブル系列を乗算するS−SCH系列を用いてもよい。直交系列には、ウォルシュアダマール(Walsh−Hadamard)系列、位相回転直交系列、直交M系列を用いてもよいし、非直交系列には、GCL系列などのカザック(CAZAC)系列、ゴレイ(Golay)系列、Golay Complementary sequence(非特許文献10)、M系列(非特許文献13)及びPN系列などを用いるようにしてもよい。
同期信号発生部209は、同期信号制御部209より通知された同期信号系列情報および同期信号送信タイミング情報に基づき、同期信号系列を生成する。ここで、上記同期信号系列とは、P−SCHとS−SCHのいずれかである。
例えば、同期信号発生部209は、S−SCHを生成する場合に、S−SCHで通知するセル固有情報を階層化してもよい。セル固有の情報とは、セルIDグループ、無線フレームタイミング及び送信アンテナ数情報のうち少なくとも1つの情報が含まれる。ここで、無線通信システム1000は、移動局がセルサーチを行う際に、周辺セル情報などの事前情報として、階層化された一部の情報を通知してもよい。例えば、事前情報として、セルIDグループを通知してもよいし、セルIDグループの一部を通知してもよいし、無線フレームタイミングを通知してもよいし、送信アンテナ数情報を通知してもよいし、セルIDグループの一部、セルIDグループ、無線フレームタイミング及び送信アンテナ数情報を組み合わせた情報のうちいずれか1つの情報が含まれていてもよい。このようにすることにより、移動局がセルサーチを行う際に検出する系列数を減少させることができる。具体的には、例えば、図20に示すように、セルIDグループを複数種類の系列、例えば2種類の32チップ長の系列(ショートコード)における各系列インデックスの組み合わせにより表されるものとする。図20には、ファーストセルIDグループが29種類、セカンドレイヤーセルIDグループが6種類存在し、ファーストセルIDグループとセカンドレイヤーセルIDグループの組み合わせにより、セルIDグループが一意に決まる。(これにより、29×6=174個のセルIDグループを区別できる。)系列2において、無線フレームタイミング及び/又は送信アンテナ数情報を送信するようにしてもよい。例えば、移動局に、セルIDグループを事前情報として通知した場合には、移動局は、ハンドオーバ時には、無線フレームタイミング及び送信アンテナ数情報のみを検出すればよい。
LTEでは、下りリンクリファレンスシグナルのホッピング/シフティングについて、下りリンクのリファレンスシグナルを29個のホッピングパターンと6個のシフトパターンに分けて送信することが提案されている(例えば、非特許文献14参照)。29個と6個の2種類の系列で送信する情報を、下りリンクのリファレンスシグナルの周波数ホッピング/シフティングパターンに対応付けるようにしてもよい。このようにすることにより、例えば、事前情報により周波数ホッピングパターンが通知される場合には、ファーストレイヤーセルIDグループが通知されることになり、ファーストレイヤーセルIDグループの検出を行うステップを省くことができる。
周辺セル情報として、送信アンテナ数情報、無線フレームタイミングなどの情報が通知されている場合にも、検出すべき系列数を減少させることができる。
同期信号発生部209で生成された同期信号系列は、データ変調部209においてデータ変調され、さらに、直並列変換部209において直並列変換されて周波数軸上のNSCH個のシンボル系列に変換される。上記NSCH個のシンボル信号に対して、乗算器209において、振幅調節部209により入力される振幅調節系列値が乗算され、合成部20811に出力される。
次に、本実施例に係る移動局100について、図21を参照して説明する。
移動局100は、基本波形相関部102、同期信号レプリカ生成部104、符号系列乗算部106、上位階層符号相関部108、タイミング検出部110及びS−SCH検出部112から構成される。
移動局100は、アンテナで受信したマルチキャリア信号を基本波形相関部102に入力する。一方、同期信号レプリカ生成部104は、予め設定されている基本波形の同期信号レプリカを生成し、基本波形相関部102に順次に入力する。基本波形相関部102において、受信したマルチキャリア信号と基本波形の同期信号レプリカとの相関検出が行われる。符号系列乗算部106は、基本波形に対する基本波形相関部102の出力に符号系列を乗算する(或いは符号反転する)。上位階層符号相関部108は、符号系列乗算部106の出力に対して上位階層符号との相関検出を行う。このようにして、P−SCHのレプリカ相関を行うことができる。
タイミング検出部110は、相関値からP−SCHのタイミングおよびP−SCH系列番号を検出する。P−SCHのタイミング検出が行われると、P−SCHをリファレンス信号としてS−SCH検出部112においてS−SCHを検出する。ここで、例えば、事前情報として、セルIDグループが通知されている場合には、無線フレームタイミングおよび送信アンテナ数情報を検出する。なお、基地局でスクランブルが施されている場合には、同期検波後にデスクランブルを行う必要がある。
具体的に説明する。
下りリンクの信号に含まれるP−SCHとS−SCHによりセルサーチが行われる。尚、上述した、無線通信システム1000が定義するP−SCH系列およびS−SCH系列に基づいて、セルサーチが行われる。すなわち、P−SCH系列およびS−SCH系列を検出することにより、セルIDまたはセルIDグループを検出する。そして、セルIDを検出した後、セルIDと関連づけられるスクランブリングコードを用いて報知情報の受信を行い、セルサーチ処理を終了する。無線通信システム1000が定義するP−SCH系列および同期信号送信パターンの詳細は、基地局装置200における説明と同一であるため省略する。
例えば、無線通信システム1000が、図8における同期信号送信パターンを定義し、かつ、P−SCH系列番号とセルID情報とが予め関連づけられている場合には、タイミング検出部110は、同期チャネルのタイミングおよびP−SCH系列番号の検出を行う。また、S−SCH検出部112は、例えば、S−SCHに含まれる情報要素を検出することにより、セル固有情報を検出することが可能となる。
あるいは、例えば、無線通信システム1000が、図9における同期信号送信パターンと、図10における8通りのP−SCH系列と同期信号送信パターンの組み合わせとを定義し、かつ、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1と#4のどちらで送信されているかの情報が含まれている場合には、S−SCH検出部112は、例えば、S−SCHに含まれる情報要素に基づいて、同期信号送信パターン#1と#4のどちらで送信されているかを判定することができる。そして、タイミング検出部110は、P−SCH系列および同期信号送信パターンを検出することにより、セルIDまたはセルIDグループを検出することが可能となる。
あるいは、無線通信システム1000が、図9における同期信号送信パターンと、図11における8通りのP−SCH系列と同期信号送信パターンの組み合わせとを定義し、かつ、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#2と#3のどちらで送信されているかの情報が含まれない場合においても、基本波形相関部102は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#2と#3のどちらで送信されているかを判定することができる。そして、タイミング検出部110は、P−SCH系列および同期信号送信パターンを検出することにより、セルIDまたはセルIDグループを検出することが可能となる。
あるいは、無線通信システム1000が、図9における同期信号送信パターンと、図12における9通りのP−SCH系列と同期信号送信パターンの組み合わせとを定義し、かつ、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3のいずれで送信されているかの情報が含まれない場合においても、基本波形相関部102は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#1、#2、#3のいずれで送信されているかを判定することができる。そして、タイミング検出部110は、P−SCH系列および同期信号送信パターンを検出することにより、セルIDまたはセルIDグループを検出することが可能となる。
あるいは、無線通信システム1000が、図9における同期信号送信パターンと、図13における8通りのP−SCH系列と同期信号送信パターンの組み合わせとを定義し、かつ、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3、#4のいずれで送信されているかの情報が含まれている場合においても、S−SCH検出部112は、例えば、S−SCHに含まれる情報要素に基づいて、同期信号送信パターン#1、#2、#3、#4のいずれで送信されているかを判定することができる。そして、タイミング検出部110は、P−SCH系列および同期信号送信パターンを検出することにより、セルIDまたはセルIDグループを検出することが可能となる。
さらに例えば、無線通信システム1000が、図14における同期信号送信パターンと、図15における8通りのP−SCH系列と同期信号送信パターンの組み合わせとを定義し、かつ、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1と#2のどちらで送信されているかの情報が含まれてない場合においても、タイミング検出部110は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#1と#2のどちらで送信されているかを判定することができる。そして、タイミング検出部110は、P−SCH系列および同期信号送信パターンを検出することにより、セルIDまたはセルIDグループを検出することが可能となる。
あるいは、無線通信システム1000が、図16における同期信号送信パターンと、図17における9通りのP−SCH系列と同期信号送信パターンの組み合わせを定義し、かつ、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3のいずれで送信されているかの情報が含まれている場合には、タイミング検出部110は、例えば、S−SCHに含まれる情報要素に基づいて、同期信号送信パターン#1、#2、#3のどちらで送信されているかを判定することができる。そして、タイミング検出部110は、P−SCH系列および同期信号送信パターンを検出することにより、セルIDまたはセルIDグループを検出することが可能となる。
あるいは、無線通信システム1000が、図18における同期信号送信パターンと、図19における8通りのP−SCH系列と同期信号送信パターンの組み合わせとを定義し、かつ、S−SCHにマッピングされる情報要素の1つとして、当該同期信号、すなわち、P−SCHおよびS−SCHが、同期信号送信パターン#1、#2、#3、#4のいずれで送信されているかの情報が含まれていない場合でも、タイミング検出部110は、例えば、受信したP−SCHの時間間隔に基づいて、同期信号送信パターン#1、#2、#3、#4のどちらで送信されているかを判定することができる。そして、タイミング検出部110は、P−SCH系列および同期信号送信パターンを検出することにより、セルIDまたはセルIDグループを検出することが可能となる。
次に、本実施例に係る同期チャネル送信方法について説明する。
同期信号発生部209は、複数の同期信号の系列を選択する。例えば、29個のショートコードから1つと6個のショートコードから1つの2種類の系列を選択する。次に、同期信号発生部209は、選択された複数の同期信号の系列のうち、一部の同期信号の系列により移動局に予め通知する事前情報を生成する。例えば、セルIDグループを特定する情報の一部であるファーストレイヤーセルIDグループを示す事前情報を生成する。生成した事前情報が送信される。
また、同期信号発生部209は、複数の同期信号の系列のうち、一部の同期信号の系列以外の同期信号の系列により、セカンダリ同期チャネルを生成する。例えば、セルIDグループを特定する情報の一部であるファーストレイヤーセルIDグループとともに、セルIDグループを特定する情報の一部であるセカンドレイヤーセルIDグループを示すセカンダリ同期チャネルを生成する。セカンダリ同期チャネルが送信される。移動局は、事前情報とセカンダリ同期チャネルにより、セル固有情報を検出する。
次に、本実施例に係る無線通信システム1000におけるセルサーチ方法について、22を参照して説明する。
第1ステップとして、移動局はプライマリ同期チャネル系列と受信信号との相関検出を行い、プライマリ同期チャネルのキャリア周波数及びタイミングを検出する(S2102、S2104)。この結果、プライマリ同期チャネル系列番号が検出される(ステップS2106)。この第1ステップで、移動局は信号の位相差を求め、周波数オフセット補償を行ってもよい。
プライマリ同期チャネルの送信タイミング及びキャリア周波数及びプライマリ同期チャネル系列番号がわかると、セカンダリ同期チャネルの送信タイミング及びキャリア周波数もわかる。セカンダリ同期チャネルで使用されるセル固有のセカンダリ同期チャネル系列から、フレームタイミングを検出する(S2108)。典型的には1フレームに複数(例えば2つ)の同期チャネルが配置されているため、タイミング検出後にフレームタイミングを検出する必要がある。また、セル固有のセカンダリ同期チャネル系列から、セルIDグループを検出する(S2110)。
ここで、例えば、セルIDグループの一部または全てを事前情報として移動局に前もって通知することにより、検出するべき固有情報の候補数を低減できるため、検出精度を向上させることができる。その結果、特性を改善できる。事前情報としては、例えば、無線フレームタイミングを通知してもよいし、送信アンテナ数情報を通知してもよい。
基地局が複数の送信アンテナを有する場合には、基地局が送信アンテナ数情報をセカンダリ同期チャネルで移動局に通知し、第2ステップで移動局が送信アンテナ数情報(MIMO(Multiple Input Multiple Output)アンテナ数情報)を検出してもよい(S2112)。特に、基地局が報知チャネルを送信するために用いられる送信アンテナ数情報を検出してもよい。
次に、第2ステップで検出されたセルIDグループと第1ステップで検出されたプライマリ同期チャネル系列番号を用いてセルIDを検出する(S2114)。
次に、本発明の他の実施例に係る基地局装置及び移動局を有する無線通信システムについて説明する。
本実施例に係る無線通信システムの構成は、図3を参照して説明した無線通信システムと同様である。また、本実施例に係る基地局装置及び移動局の構成は、図6、図7及び図21を参照して説明した基地局装置及び移動局と同様である。
これまで、同期チャネルの系列としては、P−SCHについては、複数、例えば、3種類のZadoff-Chu系列を用いること、S−SCHについては、バイナリ系列を使用すること、この系列は2種類のショートコードの組み合わせであることが決定されている(例えば、非特許文献5及び15参照)。
P−SCHとS−SCHは、5ms毎に送信される。各セルからの信号が同期している局間同期システムにおいては、移動局は複数のセルから、信号を同時に受信する。ここで、各セルが同一のS−SCHを5ms毎に送信する場合、あるセル内において、S−SCHの干渉が5ms毎に生じる。
例えば、図3を参照して説明した無線通信システムの構成において、各基地局装置200、200及び200からは、図8を参照して説明した同期信号送信パターンの定義に従って、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号が定義される。例えば、複数種類のP−SCH系列、2種類のショートコードの組み合わせにより表されるS−SCHが用いられ、5ms毎に、例えばサブフレーム番号#1とサブフレーム番号#6において同期信号が送信される。このような場合、図20を参照して説明したように、サブフレーム番号#1とサブフレーム番号#6においては、S−SCHに使用されるファーストレイヤーセルIDグループは同じ系列(ショートコード)が使用される。
具体的には、図23に示すように、セル50(セル#1)において、サブフレーム番号#1(フレームタイミング#1)において送信されるS−SCHに使用される2種類のショートコードの一方、すなわちファーストレイヤーセルIDグループとして、その系列インデックス(系列番号)が1番のショートコードに使用され、ショートコードの他方、具体的にはセカンドレイヤーセルIDグループとして、その系列インデックスが2番のショートコードに使用され、サブフレーム番号#6(フレームタイミング#2)において送信されるS−SCHに使用されるファーストレイヤーセルIDグループとして、その系列インデックスが1番のショートコードに使用され、セカンドレイヤーセルIDグループとして、その系列インデックスが7番のショートコードに使用される。
また、セル50(セル#2)において、フレームタイミング#1において送信されるS−SCHに使用されるファーストレイヤーセルIDグループとして、その系列インデックスが1番のショートコードに使用され、セカンドレイヤーセルIDグループとして、その系列インデックスが3番のショートコードに使用され、フレームタイミング#2において送信されるS−SCHに使用されるファーストレイヤーセルIDグループとして、その系列インデックスが1番のショートコードに使用され、セカンドレイヤーセルIDグループとして、その系列インデックスが8番のショートコードに使用される。
このように、隣接するセルにおいて、ファーストレイヤーセルIDグループとして、同じショートコードが使用された場合、無線フレームタイミング#1及び無線フレームタイミング#2において、同じ系列が使用されるため、無線フレームタイミング2においても同じ系列が使用される。従って、10−ms無線フレーム間でのS−SCH系列の衝突確率は最大で1/2となる。このような場合、各セルに在圏する移動局100は、隣接セルからのS−SCHが干渉となり、ファーストレイヤーセルIDグループにより使用されるショートコードでは、S−SCHを検出しにくくなり、セカンドレイヤーセルIDグループにより使用されるショートコードによりS−SCHが検出されにくくなり、S−SCHの検出確率が低減する。
上述したように、隣接セルからの同一S−SCH系列の衝突は、隣接セルが、同一の系列番号のショートコードを用いている場合に発生する。そこで、10ms無線フレーム内のS−SCHの2シンボル間で、隣接セルからの同一S−SCH系列の衝突を防ぐ方法として、ショートコードの系列番号のマッピング方法(パーミュテーション)がある(例えば、非特許文献16参照)。この方法では、フレームタイミング#1とフレームタイミング#2に対するS−SCHのマッピングが示される。2種類のショートコードのマッピングが行われる際に、隣接するセルからの干渉が考慮される。すなわち、この方法では、セル固有情報であるセルIDグループと、フレームタイミングと、送信アンテナ数情報のうち少なくとも1つの情報の組み合わせの中から、あるセルにおける干渉が少なくなるように、具体的には隣接セル間で同じショートコードが割り当てられることによる衝突確率が少なくなるように各ショートコードの系列番号が選択される。例えば、10−ms無線フレーム間でのS−SCH系列の衝突確率が最大でも、1/4となるように、セルIDグループ毎に、ショートコードの系列番号の割り当てを予め決めておく。この場合、送信アンテナ数情報も合わせて割り当てておくようにしてもよい。例えば、図24に示すように、セル50(セル#2)において、フレームタイミング#2において送信されるS−SCHに使用される2種類のショートコードの一方、すなわちファーストレイヤーセルIDグループとして、その系列インデックス(系列番号)が4番のショートコードが使用される。このようにすることにより、隣接するセルにおいて、ファーストレイヤーセルIDグループとして、同じショートコードが使用された場合においても、無線フレームタイミング#2において異なる系列が使用できるため、衝突確率を低減できる。
しかし、この方法を適用した場合、予め周辺セルサーチにより、周辺セル情報が予め通知され、セルIDグループ、フレームタイミング及び送信アンテナ数情報のいずれかが通知された場合でも、同様の処理、すなわち、全ての組み合わせの中からS−SCH系列(ショートコード)を選択する必要があるため、基地局装置における処理が大きい問題がある。すなわち、検出すべきS−SCH系列の候補数が多い問題がある。
そこで、本実施例に係る基地局装置200では、図25に示すように、図20を参照して説明したS−SCH系列のマッピング方法において、0−29番の系列インデックスが付されたファーストレイヤーセルIDグループに属するショートコードを2つに分割し、新たに0−15番の系列インデックスを付す。この系列インデックスをファーストレイヤーセルIDグループインジケータと呼ぶ。例えば、S−SCHの系列としては、Walsh-hadamard系列を使用できる。図25の例では、Walsh-hadamard系列に対して付された系列インデックス0−31が0−15と16−31に分割され、それらにファーストレイヤーセルIDインジケータ#1として、それぞれ0−15を対応させた場合を示す。この場合、無線フレームタイミング#1において送信されるS−SCHに使用されるファーストレイヤーセルIDグループとして、系列インデックス0−15に対応するファーストレイヤーセルIDグループインジケータ#1の0−15番が使用され、無線フレームタイミング2において送信されるS−SCHに使用されるファーストレイヤーセルIDグループとして、系列インデックス16−31に対応するファーストレイヤーセルIDグループインジケータ#1の0−15番が使用される。
また、0−31番の系列インデックスが付されたセカンドレイヤーセルIDグループに属するショートコードを2つに分割し、新たに0−15番の系列インデックスを付す。この系列インデックスをセカンドレイヤーセルIDグループインジケータと呼ぶ。例えば、S−SCHの系列としては、Walsh-hadamard系列を使用できる。該Walsh-hadamard系列に対して付された系列インデックス0−31が0−15と16−31に分割され、それらにセカンドレイヤーセルIDインジケータ#2として、それぞれ0−15を対応させる。この場合、無線フレームタイミング#1において送信されるS−SCHに使用されるセカンドレイヤーセルIDグループとして、系列インデックス0−15に対応するセカンドレイヤーセルIDグループインジケータ#2の0−15番が使用され、無線フレームタイミング2において送信されるS−SCHに使用されるセカンドレイヤーセルIDグループとして、系列インデックス16−31に対応するセカンドレイヤーセルIDグループインジケータ#2の0−15番が使用される。系列インデックスの値は便宜上0−31の値を取るが、ファーストセルIDグループまたはセカンドレイヤーセルIDグループに属するショートコードの系列インデックスが32種類用意されることは必須でなく、必要に応じた数の系列インデックスが使い回されてよい。例えば170個程度のセルIDグループを区別する観点からは、ファーストセルIDグループの系列インデックス数は16個、セカンドレイヤーセルIDグループに属する系列インデックスは11個でよい(ファーストレイヤーセルIDグループの系列インデックス16個×セカンドレイヤーセルIDグループの系列インデックス11個=176個)。
図25において、セルIDグループは、ファーストレイヤーセルIDグループインジケータ#1とセカンドレイヤーセルIDグループインジケータ#2との組み合わせにより検出される。例えば、フレームタイミング#1におけるファーストレイヤーセルIDグループインジケータ#1としてのショートコード(S1a)とセカンドレイヤーセルIDグループインジケータ#2としてのショートコード(S)との組み合わせと、フレームタイミング#2におけるファーストセルIDグループインジケータ#1としてのショートコード(S1b)とセカンドレイヤーセルIDグループインジケータ#2としてのショートコード(S)との組み合わせにより検出される。{S1a,S}と{S1b,S}との間で、セルIDグループの衝突が生じないようにその組み合わせが決定される。ターゲットセルの無線フレームタイミング又は送信アンテナ数情報に関する事前情報が通知されることにより、セルサーチの手順を簡略化できる。例えば、タイミング#1が事前情報として予め通知された場合、タイミング#2と送信アンテナ数情報の組み合わせからS−SCHの検出が行われる。この場合、16×32の組み合わせからS−SCHの検出が行われる。
さらに、隣接セルからの干渉を低減させるために、隣接セルにおいて使用される無線フレームタイミング#1及び#2において使用されるファーストレイヤーセルグループIDインジケータ#1とセカンドレイヤーセルグループIDインジケータ#2のうち、最大1つが同じになるように予め設定される。隣接セルとのファーストレイヤーセルグループIDインジケータ#1とセカンドレイヤーセルグループIDインジケータ#2との衝突確率を低減する観点からは、隣接セルにより選択されたファーストレイヤーセルグループIDインジケータ#1及びセカンドレイヤーセルグループIDインジケータ#2は異なる系列(ショートコード)が選択されるのが好ましい。具体的には、セル#1とセル#2において、タイミング#1におけるファーストレイヤーセルIDグループインジケータ#1と、セカンドレイヤーセルIDグループインジケータ#1と、タイミング#2におけるファーストレイヤーセルIDグループインジケータ#1と、セカンドレイヤーセルIDグループインジケータ#1とのうち、全てが異なるようにショートコードが選択される。又は、最大1つが同じとなるように各インジケータが予め決定される。
同期信号制御部209は、当該基地局装置200がEvolved UTRA and UTRANを用いた通信を提供するセルのセルIDあるいはセルIDグループに基づき、P−SCHの系列番号と、P−SCHおよびS−SCHが送信されるサブフレーム番号およびスロット番号と、同期信号送信タイミングとを決定し、それら同期信号系列情報および同期信号送信タイミング情報を同期信号発生部209に入力する。
同期信号発生部209は、同期信号制御部209より通知された同期信号系列情報および同期信号送信タイミング情報に基づき、同期信号系列を生成する。ここで、上記同期信号系列とは、P−SCHとS−SCHのいずれかである。
例えば、同期信号発生部209は、S−SCHを生成する場合に、予め用意された複数種類の系列を階層化する。ここで、無線通信システム1000は、移動局がセルサーチを行う際に、周辺セル情報などの事前情報として、階層化された一部の系列を通知してもよい。例えば、事前情報として、セルIDグループを通知してもよいし、セルIDグループの一部を通知してもよいし、無線フレームタイミングを通知してもよいし、送信アンテナ数情報を通知してもよいし、セルIDグループの一部、セルIDグループ、無線フレームタイミング及び送信アンテナ数情報を組み合わせた情報のうちいずれか1つの情報が含まれていてもよい。このようにすることにより、移動局がセルサーチを行う際に検出する系列数を減少させることができる。具体的には、例えば、図25に示したように、セルIDグループを複数種類の系列、例えば32系列長と32系列長の2種類の系列に分ける。図25には、32系列長の系列1が2つに分割され、それぞれ、0−15のインジケータが付されたファーストレイヤーセルIDグループ、32系列長の系列2として、32系列長の系列1が2つに分割され、それぞれ、0−15のインジケータが付されたセカンドレイヤーセルIDグループが示される。この場合、同期信号制御部209は、隣接セルにおけるタイミング#1におけるファーストレイヤーセルIDグループインジケータ#1と、セカンドレイヤーセルIDグループインジケータ#1と、タイミング#2におけるファーストレイヤーセルIDグループインジケータ#1と、セカンドレイヤーセルIDグループインジケータ#1とのうち、最大でも1つが同じとなるように同期信号系列を決定する。
ファーストレイヤーセルIDグループインジケータ#1(系列1)において無線フレームタイミング、セカンドレイヤーセルIDグループインジケータ#2(系列2)において送信アンテナ数情報を送信するようにしてもよい。系列1及び系列2において、無線フレームタイミング、送信アンテナ数情報のいずれかを送信するかは適宜変更可能である。例えば、移動局に、タイミング1が事前情報として通知された場合には、移動局は、タイミング#1におけるセカンドレイヤーセルIDグループインジケータ、タイミング#2におけるファーストレイヤーセルIDグループインジケータ#1及びセカンドレイヤーセルIDグループインジケータ#2を検出すればよい。
本実施例によれば、周辺セル情報により、セルIDグループ、フレームタイミング及び送信アンテナ数情報のいずれかが通知された場合、通知された情報に応じて、通知されていない場合より少ないS−SCH系列の中から検出が可能となり、基地局装置における処理負荷を低減できる。
また、パーミュテーションを考慮したシステム情報のマッピングを行うことにより,隣接セル及び/又は同一基地局内のセルが同一のS−SCH系列を用いている場合に、隣接セルからの干渉をランダム化することが可能となり、S−SCHの検出確率を改善することが可能となる。その結果、セルサーチ時間特性を改善可能となる。すなわち、セルサーチ時間を短縮できる。例えば、周辺セルサーチにおいて、ユーザ装置に事前に周辺セル情報が通知されている場合に、検出すべきS−SCH系列の候補数を減らすことが可能となる。その結果、S−SCHの検出精度を向上させることができ、セルサーチ時間特性の改善を行うことができる。
また、ユーザ装置に予め事前情報が通知されている場合に、検出すべきS−SCH系列の候補数を減らすことができることにより、シンプルなセルサーチ法を実現することが可能となる。
本実施例では、図25に示したように、ファーストレイヤーセルIDグループと無線フレームタイミングとが関連づけられ、セカンドレイヤーセルIDグループと送信アンテナ数情報とが関連づけられる場合について説明した。しかし、図20に示したように、セカンドレイヤーセルIDグループと無線フレームタイミング及び送信アンテナ数情報とが関連づけられる場合においても、パーミュテーションを考慮したマッピング方法(S−SCH系列の決定方法)の適用を行ってもよい。上述したように、パーミュテーションと階層化型マッピング方法を組み合わせることにより、S−SCH検出精度を向上させることができる。
図26はS−SCH系列の別の決定方法を説明するための図である。図中縦軸の「第1コード」は、S−SCH系列において、例えば系列長31の2種類のショートコードを用いた場合の第1ショートコードの系列インデックスを示す。図中横軸の「第2コード」は第2ショートコードの系列インデックスを示す。何れの系列インデックスも31個用意されているが、上述したように第1コードおよび第2コードに割り当てる系列インデックス数は必要に応じて限定されてもよい。
図示されているように、(フレーム)タイミング#1で使用される第1のショートコードの系列インデックスは、第1の数値範囲(0−13)から選択される。このタイミング#1で使用される第2のショートコードの系列インデックスは、第2の数値範囲(23−30)から選択される。タイミング#1から5ms後のタイミング#2で使用される第1のショートコードの系列インデックスは、第2の数値範囲(23−30)から選択される。このタイミング#2で使用される第2のショートコードの系列インデックスは、第1の数値範囲(0−13)から選択される。
このように第1及び第2のタイミングで使用する系列インデックスの数値範囲が互いに重複しないようにすると、第1及び第2ショートコード各々をサーチする際のコードの候補数が少なく、速やかにサーチできることに加えて、第1ショートコードの系列インデックスを検出した時点でそれがタイミング#1に対応することが速やかに判明する等の点で有利である。
図27はS−SCH系列の別の決定方法を説明するための図である。図示の例では、第1および第2のショートコードの系列インデックスは同じ数値範囲(0−30)から選択される。説明の便宜上、第1,2ショートコードの系列インデックスをm,nとする。図示の例では、例えば、m−n≦Δ又はn−m≦Δを満たすように、m,nの組み合わせが選択される。m,nは0−30の整数であり、Δは29以下の整数である。図26の場合より広い数値範囲の中から系列インデックスが選択されるので、セカンダリ同期チャネルに使用される符合の組み合わせの自由度が多くなり、これは、図23等で懸念された衝突を回避しやすくする等の観点から好ましい。
図28はS−SCH系列の別の決定方法を説明するための図である。図示の例でも第1および第2のショートコードの系列インデックスは同じ数値範囲(0−30)から選択される。但し、図27のような簡易な規則性はなく、同じ組み合わせが生じないように、第1及び第2ショートコードが様々に組み合わせられている。
次に、ショートコードの衝突回避を更に確実にする方法を説明する。
図29は図23と同様な図を示し、隣接するセル#1,#2各々からフレームタイミング#1,#2でユーザ装置に送信されるセカンダリ同期チャネルS−SCHの構成例を示す。図23ではショートコードが「1」、「2」等のような数字で略記されているが、図29ではそれらと同じものが説明の便宜上「M」,「M」等のように示されている。互いに隣接するセル#1,#2でフレームタイミング#1の時点でそれぞれ送信されるセカンダリ同期チャネルS−SCHは、セル#1ではM及びM×SCにより構成され、セル#2ではM及びM×SCにより構成される。セル#1でM,Mが使用され、セル#2でM,Mが使用される点は、図23の場合と同じである。しかしながらショートコード#2にスクランブルコードSCが使用される点が図23の場合と異なる。
図30はショートコードMとそれら各々にスクランブルコードSCが対応付けられている様子が示されている。ショートコードMは図1の系列Pに相当し、一例として系列は符合長31のM系列で構成される。セカンダリ同期チャネルは、例えば符合長62のコードであり、2つのショートコード一組で構成される。スクランブルコードSCはショートコードMにそれぞれ対応付けられる適切な如何なるコードでもよい。スクランブルコードの乗算される前後で互いに異なる符合が得られればよい。一例としてスクランブルコードSCは符合長31のM系列でもよい。
図29のフレーム同期タイミング#1では、セル#1から送信されるセカンダリ同期チャネルS−SCHは、M及びM×SCにより構成される。セル#2から送信されるセカンダリ同期チャネルS−SCHは、M及びM×SCにより構成される。この場合、Mはセル#1,#2で共通するので衝突が起こっている。
フレーム同期タイミング#1の5ms後のフレーム同期タイミング#2では、セル#1から送信されるセカンダリ同期チャネルS−SCHは、M及びM×SCにより構成される。即ち、タイミング#1でショートコード#1に使用されたコードはタイミング#2でショートコード#2に使用される。タイミング#1でショートコード#2に使用されたコードはタイミング#2でショートコード#1に使用される。そして、タイミング#1でも#2でも、ショートコード#2にはショートコード#1のコードに対応するスクランブルコードが乗算される。タイミング#2では、セル#1もセル#2もともにショートコード#2にMを使用しているので、そのままでは衝突が起こってしまう。しかしながら、セル#1ではMにスクランブルコードSCが乗算され、セル#2ではMにスクランブルコードSCが乗算された後に送信されるので、それらは互いに異なる符合となり、タイミング#2で衝突を確実に回避できる。移動局は、セカンダリ同期チャネルの内の第1コードMを特定し、図30に示されるような対応関係からスクランブルコードSCを特定し、第2コードのスクランブルを解除し、スクランブル元のセカンドレイヤーセルIDグループインジケータを特定する。このようにして移動局はセカンダリ同期チャネルに使用されているショートコードの組み合わせを少ない衝突の下で確実に特定できる。図29に示される例では、衝突を確実に減らす観点から、タイミング#1で使用した2つのショートコードがタイミング#2でも使用されている。しかしながらより一般的にはそのような制約は必須でない。ショートコード#1と、そのショートコード#1に対応するスクランブルコードでスクランブルされたショートコード#2とでセカンダリ同期チャネルを構成するようにしてもよい。
尚、上述した実施例においては、Evolved UTRA and UTRAN(別名:Long Term Evolution,或いは,Super 3G)が適用されるシステムにおける例を記載したが、本発明に係る基地局装置及び移動局装置並びに同期チャネル送信方法は、下りリンクにおいて直交周波数分割多重OFDM(Orthogonal Frequency Division Multiplexing)方式を用いる全てのシステムにおいて適用することが可能である。
説明の便宜上、本発明が幾つかの実施例に分けて説明されるが、各実施例の区分けは本発明に本質的ではなく、2以上の実施例が必要に応じて使用されてよい。発明の理解を促すため具体的な数値例を用いて説明されるが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてよい。
以上、本発明は特定の実施例を参照しながら説明されてきたが、各実施例は単なる例示に過ぎず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。説明の便宜上、本発明の実施例に係る装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウエアで、ソフトウエアで又はそれらの組み合わせで実現されてもよい。本発明は上記実施例に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が包含される。
以下、開示される発明の実施形態を例示的に列挙する。
(1)移動局と下りリンクにおいてOFDM方式を用いて通信を行う基地局装置を備える無線通信システムにおける基地局装置であって:
複数の同期信号の系列を選択する系列選択手段;
選択された複数の同期信号の系列のうち、一部の同期信号の系列及び前記一部の同期信号の系列以外の同期信号の系列により、セカンダリ同期チャネルを生成する同期信号発生手段;
前記セカンダリ同期チャネルを送信する送信手段;
を備え、
前記セカンダリ同期チャネルにより、セル固有情報が検出されることを特徴とする基地局装置。
(2)(1)記載の基地局装置において:
前記セル固有の情報には、セルIDグループ、無線フレームタイミング及び送信アンテナ数情報のうち少なくとも1つの情報が含まれることを特徴とする基地局装置。
(3)(2)記載の基地局装置において:
前記一部の同期信号の系列により前記移動局に予め通知する事前情報を生成する事前情報生成手段;
を備え、
前記事前情報には、前記セルIDグループの一部を示す情報、セルIDグループを示す情報、無線フレームタイミングを示す情報、送信アンテナ数情報を示す情報、及び前記セルIDグループの一部を示す情報、セルIDグループを示す情報、前記無線フレームタイミングを示す情報及び送信アンテナ数情報を示す情報を組み合わせた情報のうちいずれか1つの情報が含まれることを特徴とする基地局装置。
(4)(1)ないし(3)のいずれか1項に記載の基地局装置において:
前記系列選択手段は、自基地局装置に隣接するセルにより選択された系列とは異なる系列を選択することを特徴とする基地局装置。
(5)(1)ないし(3)のいずれか1項に記載の基地局装置において:
前記同期信号の系列は送信タイミングに応じて複数に分割され、
前記系列選択手段は、無線フレームにおける前記送信タイミング毎に、前記分割された各同期信号の系列のうち、自基地局装置に隣接するセルにより選択された系列とは最大で1つが同じとなるように系列を選択することを特徴とする基地局装置。
(6)基地局装置と下りリンクにおいてOFDM方式を用いて通信を行う移動局装置を備える無線通信システムにおける移動局装置であって:
前記基地局装置は、複数の同期信号の系列のうち、複数の同期信号の系列を選択し、選択された複数の同期信号の系列のうち、一部の同期信号の系列及び前記一部の同期信号の系列以外の同期信号の系列により、セカンダリ同期チャネルを生成し、
前記セカンダリ同期チャネルにより、セル固有情報を検出する検出手段;
を備えることを特徴とする移動局装置。
(7)(6)記載の移動局装置において:
前記基地局装置は、前記一部の同期信号の系列により、事前情報を予め通知し、
前記検出手段は、前記事前情報以外のセル固有情報を検出することを特徴とする移動局装置。
(8)移動局と下りリンクにおいてOFDM方式を用いて通信を行う基地局装置を備える無線通信システムにおける同期チャネル送信方法であって:
前記基地局装置が、複数の同期信号の系列を選択する系列選択ステップ;
前記基地局装置が、選択された複数の同期信号の系列のうち、一部の同期信号の系列及び前記一部の同期信号の系列以外の同期信号の系列により、セカンダリ同期チャネルを生成する同期信号発生ステップ;
前記基地局装置が、前記セカンダリ同期チャネルを送信するセカンダリ同期チャネル送信ステップ;
を有し、
前記移動局は、前記セカンダリ同期チャネルにより、前記セル固有情報を検出することを特徴とする同期チャネル送信方法。
(9)移動通信システムで使用される基地局装置であって、
ユーザ装置のセルサーチで使用される同期チャネルを生成する手段と、
前記同期チャネルを含む信号を無線送信する手段と、
を有し、前記同期チャネルは、受信タイミングを検出するための一次同期チャネルと、前期セル固有情報を含む二次同期チャネルとを有し、
前記二次同期チャネルは複数の異なるショートコードで構成され、
複数のショートコードの組み合わせと、セルを識別する情報と、フレーム同期タイミングの複数の候補各々との対応関係がメモリに記憶され、
同じショートコードを含む同期チャネルを隣接セルから無線送信することが、複数のフレーム同期タイミングにわたって続かないように前記複数のショートコードの組み合わせが決定される基地局装置。
(10)前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
前記第1のフレーム同期タイミングで送信される同期チャネルでは、第1のインデックス番号は第1の数値範囲から選択されたものであり、第2のインデックス番号も該第1の数値範囲から選択されたものであり、
前記第2のフレーム同期タイミングで送信される同期チャネルでは、第1のインデックス番号は、第1の数値範囲とは異なる第2の数値範囲から選択されたものであり、第2のインデックス番号も該第2の数値範囲から選択されたものである(9)記載の基地局装置。
(11)前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
前記第1のフレーム同期タイミングでも第2のフレーム同期タイミングでも同じ数値範囲から前記第1及び第2のインデックス番号が選択される(9)記載の基地局装置。
(12)前記二次同期チャネルが、第1及び第2のショートコードの組み合わせで構成され、前記第2のショートコードは、前記第1のショートコードに対応付けられたスクランブルコードを或るコードに乗算することで生成されたコードである(9)乃至(11)の何れか1項に記載の基地局装置。
(13)第1のフレーム同期タイミングで送信される二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
第2のフレーム同期タイミングで送信される二次同期チャネルが、前記第2のインデックス番号で指定される第1のショートコード及び前記第1のインデックス番号で指定される第2のショートコードで構成される(12)記載の基地局装置。
(14)前記ショートコードがM系列の符合で構成される(9)乃至(13)の何れか1項に記載の基地局装置。
(15)移動通信システムで基地局装置を介して通信を行うユーザ装置であって、
同期チャネルを含む信号を受信する手段と、
前記同期チャネルに含まれる一次同期チャネルから受信タイミング情報を検出する手段と、
前記同期チャネルに含まれる二次同期チャネルから少なくともセルの識別情報を特定する手段と、
を有し、前記二次同期チャネルは複数の異なるショートコードで構成され、
複数のショートコードの組み合わせと、セルを識別する情報と、フレーム同期タイミングの複数の候補各々との対応関係がメモリに記憶され、
同じショートコードを含む同期チャネルを隣接セルから無線送信することが、複数のフレーム同期タイミングにわたって続かないように前記複数のショートコードの組み合わせは決定されているユーザ装置。
(16)前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
前記第1のフレーム同期タイミングで送信される同期チャネルでは、第1のインデックス番号は第1の数値範囲から選択されたものであり、第2のインデックス番号も該第1の数値範囲から選択されたものであり、
前記第2のフレーム同期タイミングで送信される同期チャネルでは、第1のインデックス番号は、第1の数値範囲とは異なる第2の数値範囲から選択されたものであり、第2のインデックス番号も該第2の数値範囲から選択されたものである(15)記載のユーザ装置。
(17)前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
前記第1のフレーム同期タイミングでも第2のフレーム同期タイミングでも同じ数値範囲から前記第1及び第2のインデックス番号が選択される(15)記載のユーザ装置。
(18)前記二次同期チャネルが、第1及び第2のショートコードの組み合わせで構成され、前記第2のショートコードは、前記第1のショートコードに対応付けられたスクランブルコードを或るコードに乗算することで生成されたコードである(15)乃至(17)の何れか1項に記載のユーザ装置。
(19)第1のフレーム同期タイミングで送信される二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
第2のフレーム同期タイミングで送信される二次同期チャネルが、前記第2のインデックス番号で指定される第1のショートコード及び前記第1のインデックス番号で指定される第2のショートコードで構成される(18)記載の基地局装置。
(20)前記ショートコードがM系列の符合で構成される(15)乃至(19)の何れか1項に記載のユーザ装置。
(21)移動通信システムで使用される方法であって、
同期チャネルを含む信号が基地局装置からユーザ装置へ無線送信されるステップと、
前記同期チャネルに含まれる一次同期チャネルからフレーム同期タイミングの候補が検出されるステップと、
前記同期チャネルに含まれる二次同期チャネルを抽出し、複数のショートコードの組み合わせ、セルを識別する情報及びフレーム同期タイミングを特定するステップと、
を有し、前記二次同期チャネルは複数の異なるショートコードで構成され、
同じショートコードを含む同期チャネルを隣接セルから無線送信することが、複数のフレーム同期タイミングにわたって続かないように前記複数のショートコードの組み合わせが決定されている方法。
50、50、50、・・・、50 セル
100、100、100、100 移動局
102 基本波形相関部
104 同期信号レプリカ生成部
106 符号系列乗算部
108 上位階層符号相関部
110 タイミング検出部
112 S−SCH検出部
200 基地局装置
202 送受信アンテナ
204 アンプ部
206 送受信部
208 ベースバンド信号処理部
208 RLC処理部
208 MAC制御部処理部
208 符号化部
208 データ変調部
208 多重部
208 直並列変換部
208 乗算器
208 乗算器
208 スクランブルコード生成部
20810 振幅調整部
20811 合成部
20812 逆フーリエ変換部
20813 CP付加部
209 同期信号制御部
209 同期信号発生部
209 データ変調部
209 直並列変換部
209 乗算器
209 振幅調整部
210 呼処理部
212 伝送路インターフェース
300 アクセスゲートウェイ装置
400 コアネットワーク
1000 無線通信システム

Claims (11)

  1. 移動通信システムで使用される移動局装置であって、
    セルサーチで使用すべき同期チャネルが含まれた信号を基地局装置から受信する受信部と、
    前記受信部において受信した信号を処理する処理部とを備え、
    前記同期チャネルは、受信タイミングを検出するための一次同期チャネルと、セルIDグループ情報を含む二次同期チャネルとを有し、
    前記二次同期チャネルは複数の異なるショートコードで構成され、
    複数のショートコードの組み合わせと、セルIDグループ情報との対応関係が予め規定されており、
    前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
    第2のインデックス番号−第1のインデックス番号≦Δ(Δは正の整数)であることを特徴とする移動局装置。
  2. 第1及び第2のインデックス番号は、同じ数値範囲から選択されることを特徴とする請求項1に記載の移動局装置。
  3. 第1のフレーム同期タイミングで送信される二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
    第2のフレーム同期タイミングで送信される二次同期チャネルでは、第1のフレーム同期タイミングで送信される二次同期チャネルにおける第1のインデックス番号と第2のインデックス番号との関係が入れ替わることを特徴とする請求項1または2に記載の移動局装置。
  4. 第1のフレーム同期タイミングは、複数のサブフレームにて構成されたフレームのうち、所定のサブフレームに含まれ、第2のフレーム同期タイミングは、フレームのうち、第1のフレーム同期タイミングが含まれたサブフレームよりも後のサブフレームに含まれることを特徴とする請求項3に記載の移動局装置。
  5. 前記ショートコードがM系列の符号で構成されることを特徴とする請求項1から4のいずれかに記載の移動局装置。
  6. 移動通信システムで使用される同期チャネル受信方法であって、
    セルサーチで使用すべき同期チャネルが含まれた信号を基地局装置から受信するステップと、
    受信した信号を処理するステップとを備え、
    前記同期チャネルは、受信タイミングを検出するための一次同期チャネルと、セルIDグループ情報を含む二次同期チャネルとを有し、
    前記二次同期チャネルは複数の異なるショートコードで構成され、
    複数のショートコードの組み合わせと、セルIDグループ情報との対応関係が予め規定されており、
    前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
    第2のインデックス番号−第1のインデックス番号≦Δ(Δは正の整数)であることを特徴とする同期チャネル受信方法。
  7. 第1及び第2のインデックス番号は、同じ数値範囲から選択されることを特徴とする請求項6に記載の同期チャネル受信方法。
  8. 第1のフレーム同期タイミングで送信される二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
    第2のフレーム同期タイミングで送信される二次同期チャネルでは、第1のフレーム同期タイミングで送信される二次同期チャネルにおける第1のインデックス番号と第2のインデックス番号との関係が入れ替わることを特徴とする請求項6または7に記載の同期チャネル受信方法。
  9. 第1のフレーム同期タイミングは、複数のサブフレームにて構成されたフレームのうち、所定のサブフレームに含まれ、第2のフレーム同期タイミングは、フレームのうち、第1のフレーム同期タイミングが含まれたサブフレームよりも後のサブフレームに含まれることを特徴とする請求項8に記載の同期チャネル受信方法。
  10. 前記ショートコードがM系列の符号で構成されることを特徴とする請求項6から9のいずれかに記載の同期チャネル受信方法。
  11. セルサーチで使用すべき同期チャネルが含まれた信号を送信する基地局装置と、
    前記基地局装置からの信号を受信する移動局装置とを備え、
    前記同期チャネルは、受信タイミングを検出するための一次同期チャネルと、セルIDグループ情報を含む二次同期チャネルとを有し、
    前記二次同期チャネルは複数の異なるショートコードで構成され、
    複数のショートコードの組み合わせと、セルIDグループ情報との対応関係が予め規定されており、
    前記二次同期チャネルが、第1のインデックス番号で指定される第1のショートコード及び第2のインデックス番号で指定される第2のショートコードで構成され、
    第2のインデックス番号−第1のインデックス番号≦Δ(Δは正の整数)であることを特徴とする移動通信システム。
JP2012264782A 2007-05-01 2012-12-03 移動局装置、同期チャネル受信方法及び移動通信システム Active JP5433773B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264782A JP5433773B2 (ja) 2007-05-01 2012-12-03 移動局装置、同期チャネル受信方法及び移動通信システム

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007121306 2007-05-01
JP2007121306 2007-05-01
JP2007161946 2007-06-19
JP2007161946 2007-06-19
JP2012264782A JP5433773B2 (ja) 2007-05-01 2012-12-03 移動局装置、同期チャネル受信方法及び移動通信システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011156305A Division JP5150754B2 (ja) 2007-05-01 2011-07-15 基地局装置及び同期チャネル送信方法

Publications (2)

Publication Number Publication Date
JP2013078130A JP2013078130A (ja) 2013-04-25
JP5433773B2 true JP5433773B2 (ja) 2014-03-05

Family

ID=40399015

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011156305A Active JP5150754B2 (ja) 2007-05-01 2011-07-15 基地局装置及び同期チャネル送信方法
JP2012264782A Active JP5433773B2 (ja) 2007-05-01 2012-12-03 移動局装置、同期チャネル受信方法及び移動通信システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011156305A Active JP5150754B2 (ja) 2007-05-01 2011-07-15 基地局装置及び同期チャネル送信方法

Country Status (1)

Country Link
JP (2) JP5150754B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100921769B1 (ko) 2007-07-12 2009-10-15 한국전자통신연구원 하향링크 프레임 생성 방법 및 셀 탐색 방법
KR20090009693A (ko) 2007-07-20 2009-01-23 한국전자통신연구원 하향링크 프레임 생성 방법 및 셀 탐색 방법
US9078146B2 (en) * 2012-09-10 2015-07-07 Qualcomm Incorporated Secondary synchronization signal (SSS) post-processing to eliminate short code collision induced false cells
JP6795489B2 (ja) * 2015-03-13 2020-12-02 シャープ株式会社 端末装置、基地局装置、および通信方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493356B2 (ja) * 2001-10-24 2004-02-03 株式会社エヌ・ティ・ティ・ドコモ 移動局移行制御システム、セル移行制御方法及び移動局
US7916759B2 (en) * 2005-12-20 2011-03-29 Lg Electronics Inc. Method of generating code sequence and method of transmitting signal using the same

Also Published As

Publication number Publication date
JP2011250457A (ja) 2011-12-08
JP5150754B2 (ja) 2013-02-27
JP2013078130A (ja) 2013-04-25

Similar Documents

Publication Publication Date Title
JP4814176B2 (ja) 基地局装置および同期チャネル送信方法
JP4465374B2 (ja) 無線通信システム、基地局装置及び送信方法
JP4465370B2 (ja) 基地局装置、送信方法、及び無線通信システム
JP5106970B2 (ja) ユーザ装置及びベリフィケーション方法
JP5106969B2 (ja) ユーザ装置及びセルサーチ方法
WO2010018787A1 (ja) ユーザ装置及びセルサーチ方法
JP5048613B2 (ja) ユーザ装置及びセルサーチ方法
JP5433773B2 (ja) 移動局装置、同期チャネル受信方法及び移動通信システム
JP5161191B2 (ja) ユーザ装置及び受信方法
JP4916541B2 (ja) 移動局装置及び受信方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5433773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250