JP5431194B2 - Electric deionized water production equipment - Google Patents
Electric deionized water production equipment Download PDFInfo
- Publication number
- JP5431194B2 JP5431194B2 JP2010027663A JP2010027663A JP5431194B2 JP 5431194 B2 JP5431194 B2 JP 5431194B2 JP 2010027663 A JP2010027663 A JP 2010027663A JP 2010027663 A JP2010027663 A JP 2010027663A JP 5431194 B2 JP5431194 B2 JP 5431194B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange membrane
- ion exchange
- ion
- exchanger
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 457
- 238000004519 manufacturing process Methods 0.000 title claims description 177
- 239000008367 deionised water Substances 0.000 title claims description 97
- 229910021641 deionized water Inorganic materials 0.000 title claims description 97
- 150000002500 ions Chemical class 0.000 claims description 239
- 238000005342 ion exchange Methods 0.000 claims description 151
- 239000011148 porous material Substances 0.000 claims description 129
- 150000001768 cations Chemical class 0.000 claims description 108
- 229920002554 vinyl polymer Polymers 0.000 claims description 101
- 239000012528 membrane Substances 0.000 claims description 96
- 238000005341 cation exchange Methods 0.000 claims description 95
- 239000003014 ion exchange membrane Substances 0.000 claims description 89
- 238000002242 deionisation method Methods 0.000 claims description 74
- 150000001450 anions Chemical class 0.000 claims description 73
- 238000009826 distribution Methods 0.000 claims description 69
- 239000003011 anion exchange membrane Substances 0.000 claims description 62
- 238000001878 scanning electron micrograph Methods 0.000 claims description 31
- 239000012535 impurity Substances 0.000 claims description 25
- 125000003118 aryl group Chemical group 0.000 claims description 19
- 238000011049 filling Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 17
- 230000005684 electric field Effects 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 10
- 238000005349 anion exchange Methods 0.000 claims description 7
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 238000009296 electrodeionization Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 239000000543 intermediate Substances 0.000 description 119
- 239000000178 monomer Substances 0.000 description 116
- 238000000034 method Methods 0.000 description 93
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 62
- 238000006116 polymerization reaction Methods 0.000 description 53
- 239000003431 cross linking reagent Substances 0.000 description 49
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 48
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 44
- 238000006243 chemical reaction Methods 0.000 description 41
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 239000003960 organic solvent Substances 0.000 description 33
- 239000000203 mixture Substances 0.000 description 27
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 26
- 230000002829 reductive effect Effects 0.000 description 24
- 238000004132 cross linking Methods 0.000 description 20
- 239000003505 polymerization initiator Substances 0.000 description 20
- 230000008961 swelling Effects 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 239000002861 polymer material Substances 0.000 description 18
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 17
- 239000007762 w/o emulsion Substances 0.000 description 17
- 229920001577 copolymer Polymers 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- -1 polyethylene Polymers 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- 125000000542 sulfonic acid group Chemical group 0.000 description 13
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 125000001453 quaternary ammonium group Chemical group 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 11
- 229910052753 mercury Inorganic materials 0.000 description 11
- 230000000379 polymerizing effect Effects 0.000 description 11
- 125000004434 sulfur atom Chemical group 0.000 description 11
- 239000004094 surface-active agent Substances 0.000 description 11
- 238000004453 electron probe microanalysis Methods 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 239000000945 filler Substances 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 8
- SLBOQBILGNEPEB-UHFFFAOYSA-N 1-chloroprop-2-enylbenzene Chemical compound C=CC(Cl)C1=CC=CC=C1 SLBOQBILGNEPEB-UHFFFAOYSA-N 0.000 description 7
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 6
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 235000011069 sorbitan monooleate Nutrition 0.000 description 6
- 239000001593 sorbitan monooleate Substances 0.000 description 6
- 229940035049 sorbitan monooleate Drugs 0.000 description 6
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 5
- 229920000557 Nafion® Polymers 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 5
- 210000000988 bone and bone Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 5
- 239000008234 soft water Substances 0.000 description 5
- 150000003512 tertiary amines Chemical class 0.000 description 5
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- 239000005968 1-Decanol Substances 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- IYSVFZBXZVPIFA-UHFFFAOYSA-N 1-ethenyl-4-(4-ethenylphenyl)benzene Chemical group C1=CC(C=C)=CC=C1C1=CC=C(C=C)C=C1 IYSVFZBXZVPIFA-UHFFFAOYSA-N 0.000 description 4
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 4
- 239000004342 Benzoyl peroxide Substances 0.000 description 4
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 235000019400 benzoyl peroxide Nutrition 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 125000002843 carboxylic acid group Chemical group 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 238000011033 desalting Methods 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 238000002459 porosimetry Methods 0.000 description 4
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- XIRPMPKSZHNMST-UHFFFAOYSA-N 1-ethenyl-2-phenylbenzene Chemical group C=CC1=CC=CC=C1C1=CC=CC=C1 XIRPMPKSZHNMST-UHFFFAOYSA-N 0.000 description 3
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 3
- 238000010559 graft polymerization reaction Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 3
- 229960002447 thiram Drugs 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- ZRZHXNCATOYMJH-UHFFFAOYSA-N 1-(chloromethyl)-4-ethenylbenzene Chemical compound ClCC1=CC=C(C=C)C=C1 ZRZHXNCATOYMJH-UHFFFAOYSA-N 0.000 description 2
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- PFHOSZAOXCYAGJ-UHFFFAOYSA-N 2-[(2-cyano-4-methoxy-4-methylpentan-2-yl)diazenyl]-4-methoxy-2,4-dimethylpentanenitrile Chemical compound COC(C)(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)(C)OC PFHOSZAOXCYAGJ-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 2
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 description 2
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XJUZRXYOEPSWMB-UHFFFAOYSA-N Chloromethyl methyl ether Chemical compound COCCl XJUZRXYOEPSWMB-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920002873 Polyethylenimine Chemical group 0.000 description 2
- 238000000944 Soxhlet extraction Methods 0.000 description 2
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 2
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 2
- 229940073608 benzyl chloride Drugs 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 229940061627 chloromethyl methyl ether Drugs 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 2
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 2
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 229960002089 ferrous chloride Drugs 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical group OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- OXUCOTSGWGNWGC-UHFFFAOYSA-N octane Chemical compound CCCCCCC[CH2-] OXUCOTSGWGNWGC-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 125000005496 phosphonium group Chemical group 0.000 description 2
- 229920003251 poly(α-methylstyrene) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920002102 polyvinyl toluene Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QENRKQYUEGJNNZ-UHFFFAOYSA-N 2-methyl-1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C=C QENRKQYUEGJNNZ-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical compound BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- XWFPHDZKXUAAEY-UHFFFAOYSA-N 4-[(4-carboxy-2-cyanobutan-2-yl)diazenyl]-4-cyanopentanoic acid;1-[(1-cyanocyclohexyl)diazenyl]cyclohexane-1-carbonitrile Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1.OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N XWFPHDZKXUAAEY-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- 239000011475 Accrington brick Substances 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000206608 Pyropia tenera Species 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- UJWXUSDHSDCEAB-UHFFFAOYSA-N dodecane;ethyl acetate Chemical compound CCOC(C)=O.CCCCCCCCCCCC UJWXUSDHSDCEAB-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical class CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- HXOGLFGRVSRSOZ-UHFFFAOYSA-N ethenyl propanoate;methyl prop-2-enoate Chemical compound COC(=O)C=C.CCC(=O)OC=C HXOGLFGRVSRSOZ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- JDNTWHVOXJZDSN-UHFFFAOYSA-N iodoacetic acid Chemical compound OC(=O)CI JDNTWHVOXJZDSN-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 1
- 229920002454 poly(glycidyl methacrylate) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 1
- 239000001570 sorbitan monopalmitate Substances 0.000 description 1
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、脱イオン水を用いる半導体製造工業、製薬工業、食品工業、発電所、研究所等の各種の工業あるいは糖液、ジュース、ワイン等の製造等で利用される電気式脱イオン液製造装置に好適に使用される電気式脱イオン水製造装置に関するものである。 The present invention relates to an electrical deionization liquid production used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, power plant, laboratory, etc. using deionized water, or in the production of sugar liquid, juice, wine, etc. The present invention relates to an electric deionized water production apparatus suitably used for the apparatus.
脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通して脱イオンを行う方法が知られているが、この方法ではイオン交換樹脂がイオンで飽和されたときに薬剤によって再生を行う必要があり、このような処理操作上の不利な点を解消するため、薬剤による再生が全く不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。 As a method for producing deionized water, there is conventionally known a method in which deionized water is passed through an ion exchange resin to be treated. In this method, regeneration is performed with a drug when the ion exchange resin is saturated with ions. In order to eliminate such disadvantages in processing operations, a method for producing deionized water by an electric deionization method which does not require any regeneration by a chemical agent has been established and has been put into practical use.
特開2003−334560号公報には、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μmのメソポアを有する連続気泡構造を有し、全細孔容積が1ml/g〜50ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上の有機多孔質イオン交換体を充填した脱イオン室を有し、該脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆向きに泳動するように行う電気式脱イオン水製造装置が開示されている。 Japanese Patent Application Laid-Open No. 2003-334560 has an open cell structure having macropores connected to each other and mesopores having an average diameter of 1 to 1000 μm in the walls of the macropores, and the total pore volume is 1 ml / g to 50 ml / g. And having a deionization chamber in which the ion exchange groups are uniformly distributed and the ion exchange capacity is filled with an organic porous ion exchanger having a dry porous body of 0.5 mg equivalent / g or more, and is passed through the deionization chamber. Water, remove ionic impurities in the water to produce deionized water, and apply a DC electric field to the deionization chamber to remove ionic impurities adsorbed on the organic porous ion exchanger out of the system In the electric deionized water production apparatus, the application of the DC electric field is performed so that the ions to be excluded migrate in the direction opposite to the water flow direction in the organic porous ion exchanger. Apparatus is disclosed.
この電気式脱イオン水製造装置によれば、多孔質イオン交換体内におけるイオンの移動を速めて吸着イオンの排除を容易にすることができる。また、脱イオン室を多数に分割して並列配設する必要がなく、装置の構造を簡略化して、材料費、加工費、組み立て費を軽減させることができる。また、炭酸カルシウムや水酸化マグネシウム等のスケール発生が全くなく、一次脱塩や軟化などの前処理を必要としない。更に、低電圧で安定した水質の処理水を得ることができる。 According to this electric deionized water production apparatus, it is possible to accelerate the movement of ions in the porous ion exchanger and facilitate the removal of adsorbed ions. Further, it is not necessary to divide the deionization chamber into a large number and arrange them in parallel, simplifying the structure of the apparatus, and reducing material costs, processing costs, and assembly costs. In addition, there is no generation of scale such as calcium carbonate and magnesium hydroxide, and no pretreatment such as primary desalting or softening is required. Furthermore, it is possible to obtain treated water with stable water quality at a low voltage.
しかしながら、特開2003−334560号公報に記載の有機多孔質イオン交換体は、モノリスの共通の開口(メソポア)が1〜1,000μmと記載されているものの、全細孔容積5ml/g以下の細孔容積の小さなモノリスについては、油中水滴型エマルジョン中の水滴の量を少なくする必要があるため共通の開口は小さくなり、実質的に開口の平均径20μm以上のものは製造できない。このため、通水時の圧力損失が大きいという問題があった。また、開口の平均径を20μm近傍のものにすると、全細孔容積もそれに伴い大きくなるため、体積当たりのイオン交換容量が低下し、このため、処理水質が低下し、かつ消費電力も大きいという問題があった。 However, the organic porous ion exchanger described in Japanese Patent Application Laid-Open No. 2003-334560 describes a monolith common opening (mesopore) of 1 to 1,000 μm, but has a total pore volume of 5 ml / g or less. For monoliths with a small pore volume, the amount of water droplets in the water-in-oil emulsion needs to be reduced, so that the common opening becomes small, and those having an average diameter of 20 μm or more cannot be manufactured. For this reason, there existed a problem that the pressure loss at the time of water flow was large. In addition, when the average diameter of the openings is around 20 μm, the total pore volume also increases accordingly, so that the ion exchange capacity per volume decreases, so that the treated water quality decreases and the power consumption increases. There was a problem.
従って、本発明の目的は、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質が良好で、かつ消費電力も少ない電気式脱イオン水製造装置を提供することにある。 Therefore, the object of the present invention is to accelerate the movement of the adsorbed ionic impurities to facilitate the removal of the adsorbed ions, to increase the strength of the ion exchanger, and to reduce the pressure loss during water flow. Is to provide an electric deionized water production apparatus with good power consumption and low power consumption.
かかる実情において、本発明者らは、鋭意検討を行った結果、特開2003−334560号公報記載の方法で得られた比較的大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、開口径が大きく、中間体の有機多孔質体の骨格よりも太い骨格を有する骨太のモノリスが得られること、骨太のモノリスにイオン交換基を導入すると、骨太であるが故に膨潤が大きく、従って、開口を更に大きくできること、骨太のモノリスにイオン交換基を導入したモノリスイオン交換体(以下、「第1のモノリスイオン交換体」とも言う。)は、電気式脱イオン水製造装置のイオン交換体として用いれば、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質が良好で、かつ消費電力も少ないことなどを見出し、本発明を完成するに至った。 Under such circumstances, the present inventors have conducted intensive studies, and as a result, obtained a monolithic organic porous body (intermediate) having a relatively large pore volume obtained by the method described in JP-A-2003-334560. In the presence, if the vinyl monomer and the crosslinking agent are allowed to stand and polymerize in a specific organic solvent, a thick monolith having a larger skeleton than the skeleton of the intermediate organic porous body can be obtained. When an ion exchange group is introduced into a thick monolith, the swelling is large due to the thick bone, and therefore the opening can be further increased. When used as an ion exchanger in an electrical deionized water production apparatus, the ion exchanger can be easily removed by accelerating the movement of the adsorbed ionic impurities. A high strength of the ion exchanger, it is possible to reduce the pressure loss during water flow, the treated water quality is good, and power consumption found such that little, and have completed the present invention.
また、本発明者らは鋭意検討を行った結果、特開2003−334560号公報記載の方法で得られた大きな細孔容積を有するモノリス状有機多孔質体中間体)の存在下に、芳香族ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、三次元的に連続した芳香族ビニルポリマー骨格と、その骨格相間に三次元的に連続した空孔とからなり、両相が絡み合った共連続構造の疎水性モノリスが得られること、この共連続構造のモノリスは、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いこと、更にこの共連続構造の骨格が太いためイオン交換基を導入すれば、体積当りのイオン交換容量の大きなモノリス状有機多孔質イオン交換体が得られること、該モノリス状有機多孔質イオン交換体(以下、「第2のモノリスイオン交換体」とも言う。)は、電気式脱イオン水製造装置のイオン交換体として用いれば、第1のモノリスイオン交換体と同様に、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質が良好で、かつ消費電力も少ないことなどを見出し、本発明を完成するに至った。 In addition, as a result of intensive studies, the present inventors have found that an aromatic monolith-like organic porous material intermediate having a large pore volume obtained by the method described in JP-A-2003-334560 is aromatic. If a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent, they are composed of a three-dimensionally continuous aromatic vinyl polymer skeleton and three-dimensionally continuous pores between the skeleton phases. It is possible to obtain an intertwined, hydrophobic monolith with a continuous structure, this monocontinuous structure has a high continuity of pores, is not biased in size, and has a low pressure loss during fluid permeation. Since the skeleton of the co-continuous structure is thick, if an ion exchange group is introduced, a monolithic organic porous ion exchanger having a large ion exchange capacity per volume can be obtained, and the monolithic organic porous ion exchanger (hereinafter, “ Second When used as an ion exchanger of an electrical deionized water production apparatus, the “noris ion exchanger” can be used to accelerate the movement of adsorbed ionic impurities as in the case of the first monolith ion exchanger. It was found that the ion exchanger was easy to remove, the strength of the ion exchanger was high, the pressure loss during water flow could be reduced, the quality of the treated water was good and the power consumption was low, and the present invention was completed. It was.
すなわち、本発明は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%である有機多孔質イオン交換体を充填した脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆方向に泳動するように行うことを特徴とする電気式脱イオン水製造装置を提供するものである。 That is, the present invention is a continuous macropore structure in which bubble-like macropores overlap each other, and the overlapping portion is an opening having an average diameter of 30 to 300 μm in a water-wet state, and has a total pore volume of 0.5 to 5 ml / g, The ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, the ion exchange groups are uniformly distributed in the porous ion exchanger, and the continuous macropore structure (dried body) In the SEM image of the cut surface of), water is passed through a deionization chamber filled with an organic porous ion exchanger having an area of 25 to 50% of the image area in the image area to remove ionic impurities in water. In the electric deionized water producing apparatus for producing deionized water and applying a DC electric field to the deionized chamber to exclude ionic impurities adsorbed on the organic porous ion exchanger out of the system, The application of the DC electric field is to provide an electric deionized water production apparatus characterized in that the ions to be excluded migrate so as to migrate in the direction opposite to the direction of water flow in the organic porous ion exchanger. is there.
また、本発明は、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体を充填した脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する電気式脱イオン水製造装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆方向に泳動するように行うことを特徴とする電気式脱イオン水製造装置を提供するものである。 The present invention also provides a three-dimensional thickness of 1 to 60 μm in thickness composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which ion exchange groups have been introduced. A co-continuous structure composed of a continuous skeleton and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, and has a total pore volume of 0.5 to 5 ml / g, Deionization packed with an organic porous ion exchanger in which the ion exchange capacity per volume in a wet state is 0.3 to 5 mg equivalent / ml and the ion exchange groups are uniformly distributed in the porous ion exchanger Water is passed through the chamber to remove ionic impurities in the water to produce deionized water, and a DC electric field is applied to the deionization chamber to remove the ionic impurities adsorbed on the organic porous ion exchanger. In the electric deionized water production apparatus excluded outside, the direct The application of an electric field provides an electric deionized water production apparatus characterized in that the ions to be excluded migrate so as to migrate in the direction opposite to the direction of water flow in the organic porous ion exchanger. .
また、本発明は、一側のイオン交換膜と他側の陽イオン交換膜で区画される脱イオン室に有機多孔質陽イオン交換体を充填してなる脱陽イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側の陽イオン交換膜の外側に配設される陰極と、該脱陽イオン室中の他側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部とを有する電気式脱陽イオン水製造装置と、一側の陰イオン交換膜と他側のイオン交換膜で区画される脱イオン室に有機多孔質陰イオン交換体を充填してなる脱陰イオン室と、該一側の陰イオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、前記電気式脱陽イオン水製造装置の第1処理水集水部と連通管で接続される該脱陰イオン室中の一側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを有する電気式脱陰イオン水製造装置と、を備えるものであって、該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とする電気式脱イオン水製造装置を提供するものである。 The present invention also includes a decation chamber formed by filling an organic porous cation exchanger in a deionization chamber partitioned by an ion exchange membrane on one side and a cation exchange membrane on the other side, An anode disposed outside the ion exchange membrane, a cathode disposed outside the other cation exchange membrane, and disposed in the vicinity of the other cation exchange membrane in the decation chamber. An electric decationized water production apparatus comprising: a first treated water introduction / distribution unit; and a first treated water collecting unit disposed in the vicinity of an ion exchange membrane on one side of the decationization chamber, A deionization chamber formed by filling a deionization chamber partitioned by an anion exchange membrane on one side and an ion exchange membrane on the other side with an organic porous anion exchanger, and the outside of the anion exchange membrane on the one side An anode disposed on the other side, a cathode disposed outside the ion exchange membrane on the other side, and a first treatment of the electric decationized ion water production apparatus. A second treated water introduction / distribution unit disposed in the vicinity of the anion exchange membrane on one side in the deanion ion chamber connected to the water collecting unit by a communication pipe; and the other side in the deanion ion chamber An electrodeionized ion water production apparatus having a second treated water collection part disposed in the vicinity of the ion exchange membrane, the organic porous cation exchanger and the organic porous The anion exchanger is a continuous macropore structure in which bubble-like macropores overlap each other, and this overlapping portion is an opening having an average diameter of 30 to 300 μm in a water-wet state, with a total pore volume of 0.5 to 5 ml / g, The ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, the ion exchange groups are uniformly distributed in the porous ion exchanger, and the continuous macropore structure (dried body) ) In the SEM image of the cut surface Area, and provides an electrodeionization water producing apparatus, characterized in that from 25 to 50% in image area.
また、本発明は、一側のイオン交換膜と他側の陽イオン交換膜で区画される脱イオン室に有機多孔質陽イオン交換体を充填してなる脱陽イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側の陽イオン交換膜の外側に配設される陰極と、該脱陽イオン室中の他側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部とを有する電気式脱陽イオン水製造装置と、一側の陰イオン交換膜と他側のイオン交換膜で区画される脱イオン室に有機多孔質陰イオン交換体を充填してなる脱陰イオン室と、該一側の陰イオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、前記電気式脱陽イオン水製造装置の第1処理水集水部と連通管で接続される該脱陰イオン室中の一側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを有する電気式脱陰イオン水製造装置と、を備えるものであって、
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とする電気式脱イオン水製造装置を提供するものである。
The present invention also includes a decation chamber formed by filling an organic porous cation exchanger in a deionization chamber partitioned by an ion exchange membrane on one side and a cation exchange membrane on the other side, An anode disposed outside the ion exchange membrane, a cathode disposed outside the other cation exchange membrane, and disposed in the vicinity of the other cation exchange membrane in the decation chamber. An electric decationized water production apparatus comprising: a first treated water introduction / distribution unit; and a first treated water collecting unit disposed in the vicinity of an ion exchange membrane on one side of the decationization chamber, A deionization chamber formed by filling a deionization chamber partitioned by an anion exchange membrane on one side and an ion exchange membrane on the other side with an organic porous anion exchanger, and the outside of the anion exchange membrane on the one side An anode disposed on the other side, a cathode disposed outside the ion exchange membrane on the other side, and a first treatment of the electric decationized ion water production apparatus. A second treated water introduction / distribution unit disposed in the vicinity of the anion exchange membrane on one side in the deanion ion chamber connected to the water collecting unit by a communication pipe; and the other side in the deanion ion chamber An electrical deionized ion water production apparatus having a second treated water collection unit disposed in the vicinity of the ion exchange membrane,
An aromatic vinyl polymer in which the organic porous cation exchanger and the organic porous anion exchanger contain 0.3 to 5.0 mol% of a crosslinked structural unit in all the structural units into which an ion exchange group is introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. An electrical deionized water production apparatus is provided.
また、本発明は、一側の陽イオン交換膜と、該一側の陽イオン交換膜と他側の陰イオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に有機多孔質陽イオン交換体を充填してなる脱陽イオン室と、該他側の陰イオン交換膜と該中間陽イオン交換膜で区画される第2脱イオン室に有機多孔質陰イオン交換体を充填してなる脱陰イオン室と、該一側の陽イオン交換膜の外側に配設される陰極と、該他側の陰イオン交換膜の外側に配設される陽極と、該脱陽イオン室中の一側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の他側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の中間陽イオン交換膜近傍に配設される第2処理水集水部と、を備えるものであって、
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とする電気式脱イオン水製造装置を提供するものである。
In addition, the present invention provides a first detachment partitioned by a cation exchange membrane on one side and an intermediate cation exchange membrane formed between the cation exchange membrane on one side and the anion exchange membrane on the other side. An organic porous anion is formed in a decation chamber in which an ion chamber is filled with an organic porous cation exchanger, and a second deionization chamber defined by the other anion exchange membrane and the intermediate cation exchange membrane. A deanion chamber filled with an ion exchanger, a cathode disposed outside the cation exchange membrane on one side, an anode disposed outside the anion exchange membrane on the other side, A first treated water introduction / distribution unit disposed in the vicinity of the cation exchange membrane on one side in the decation chamber, and a first disposed in the vicinity of the intermediate cation exchange membrane in the decation chamber. A treated water collection unit is disposed in the vicinity of the anion exchange membrane on the other side in the deionization chamber connected to the first treated water collection unit through a communication pipe. A second processed water inlet distribution unit, there is provided a second processing water catchment portion which is disposed in the intermediate cation exchange membrane vicinity in dehydration anion chamber, and
The organic porous cation exchanger and the organic porous anion exchanger are continuous macropore structures in which bubble-shaped macropores overlap each other, and the overlapping portions form an opening having an average diameter of 30 to 300 μm in a wet state. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. In addition, in the SEM image of the cut surface of the continuous macropore structure (dry body), the skeleton part area that appears in the cross section is 25 to 50% in the image region, A device is provided.
また、本発明は、一側の陽イオン交換膜と、該一側の陽イオン交換膜と他側の陰イオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に有機多孔質陽イオン交換体を充填してなる脱陽イオン室と、該他側の陰イオン交換膜と該中間陽イオン交換膜で区画される第2脱イオン室に有機多孔質陰イオン交換体を充填してなる脱陰イオン室と、該一側の陽イオン交換膜の外側に配設される陰極と、該他側の陰イオン交換膜の外側に配設される陽極と、該脱陽イオン室中の一側の陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の他側の陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の中間陽イオン交換膜近傍に配設される第2処理水集水部と、を備えるものであって、
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とする電気式脱イオン水製造装置を提供するものである。
In addition, the present invention provides a first detachment partitioned by a cation exchange membrane on one side and an intermediate cation exchange membrane formed between the cation exchange membrane on one side and the anion exchange membrane on the other side. An organic porous anion is formed in a decation chamber in which an ion chamber is filled with an organic porous cation exchanger, and a second deionization chamber defined by the other anion exchange membrane and the intermediate cation exchange membrane. A deanion chamber filled with an ion exchanger, a cathode disposed outside the cation exchange membrane on one side, an anode disposed outside the anion exchange membrane on the other side, A first treated water introduction / distribution unit disposed in the vicinity of the cation exchange membrane on one side in the decation chamber, and a first disposed in the vicinity of the intermediate cation exchange membrane in the decation chamber. A treated water collection unit is disposed in the vicinity of the anion exchange membrane on the other side in the deionization chamber connected to the first treated water collection unit through a communication pipe. A second processed water inlet distribution unit, there is provided a second processing water catchment portion which is disposed in the intermediate cation exchange membrane vicinity in dehydration anion chamber, and
An aromatic vinyl polymer in which the organic porous cation exchanger and the organic porous anion exchanger contain 0.3 to 5.0 mol% of a crosslinked structural unit in all the structural units into which an ion exchange group is introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. An electrical deionized water production apparatus is provided.
また、本発明は、一側のイオン交換膜と、該一側のイオン交換膜と他側のイオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に有機多孔質陽イオン交換体を充填してなる脱陽イオン室と、該中間陽イオン交換膜と、該中間陽イオン交換膜と他側のイオン交換膜の間に形成される中間陰イオン交換膜とで区画される濃縮室と、該他側のイオン交換膜と該中間陰イオン交換膜で区画される第2脱イオン室に有機多孔質陰イオン交換体を充填してなる脱陰イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の中間陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを備えるものであって、
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とする電気式脱イオン水製造装置を提供するものである。
The present invention also provides a first deionization chamber defined by an ion exchange membrane on one side and an intermediate cation exchange membrane formed between the ion exchange membrane on the one side and the ion exchange membrane on the other side. A decation chamber filled with an organic porous cation exchanger, the intermediate cation exchange membrane, and an intermediate anion exchange membrane formed between the intermediate cation exchange membrane and the other side ion exchange membrane And a deionization chamber formed by filling an organic porous anion exchanger in a second deionization chamber partitioned by the ion exchange membrane on the other side and the intermediate anion exchange membrane. An anode disposed outside the ion exchange membrane on one side, a cathode disposed outside the ion exchange membrane on the other side, and an intermediate cation exchange membrane in the decation chamber. A first treated water introduction / distribution section provided, and a first disposed in the vicinity of the ion exchange membrane on one side in the decation chamber. A treated water collection section, a second treated water introduction / distribution section disposed in the vicinity of the intermediate anion exchange membrane in the deanion ion chamber connected to the first treated water collection section by a communication pipe, A second treated water collecting section disposed near the ion exchange membrane on the other side in the deanion ion chamber,
The organic porous cation exchanger and the organic porous anion exchanger are continuous macropore structures in which bubble-shaped macropores overlap each other, and the overlapping portions form an opening having an average diameter of 30 to 300 μm in a wet state. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. In addition, in the SEM image of the cut surface of the continuous macropore structure (dry body), the skeleton part area that appears in the cross section is 25 to 50% in the image region, A device is provided.
また、本発明は、一側のイオン交換膜と、該一側のイオン交換膜と他側のイオン交換膜の間に形成される中間陽イオン交換膜とで区画される第1脱イオン室に有機多孔質陽イオン交換体を充填してなる脱陽イオン室と、該中間陽イオン交換膜と、該中間陽イオン交換膜と他側のイオン交換膜の間に形成される中間陰イオン交換膜とで区画される濃縮室と、該他側のイオン交換膜と該中間陰イオン交換膜で区画される第2脱イオン室に有機多孔質陰イオン交換体を充填してなる脱陰イオン室と、該一側のイオン交換膜の外側に配設される陽極と、該他側のイオン交換膜の外側に配設される陰極と、該脱陽イオン室中の中間陽イオン交換膜近傍に配設される第1被処理水導入分配部と、該脱陽イオン室中の一側のイオン交換膜近傍に配設される第1処理水集水部と、該第1処理水集水部と連通管で接続される該脱陰イオン室中の中間陰イオン交換膜近傍に配設される第2被処理水導入分配部と、該脱陰イオン室中の他側のイオン交換膜近傍に配設される第2処理水集水部とを備えるものであって、
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とする電気式脱イオン水製造装置を提供するものである。
The present invention also provides a first deionization chamber defined by an ion exchange membrane on one side and an intermediate cation exchange membrane formed between the ion exchange membrane on the one side and the ion exchange membrane on the other side. A decation chamber filled with an organic porous cation exchanger, the intermediate cation exchange membrane, and an intermediate anion exchange membrane formed between the intermediate cation exchange membrane and the other side ion exchange membrane And a deionization chamber formed by filling an organic porous anion exchanger in a second deionization chamber partitioned by the ion exchange membrane on the other side and the intermediate anion exchange membrane. An anode disposed outside the ion exchange membrane on one side, a cathode disposed outside the ion exchange membrane on the other side, and an intermediate cation exchange membrane in the decation chamber. A first treated water introduction / distribution section provided, and a first disposed in the vicinity of the ion exchange membrane on one side in the decation chamber. A treated water collection section, a second treated water introduction / distribution section disposed in the vicinity of the intermediate anion exchange membrane in the deanion ion chamber connected to the first treated water collection section by a communication pipe, A second treated water collecting section disposed near the ion exchange membrane on the other side in the deanion ion chamber,
An aromatic vinyl polymer in which the organic porous cation exchanger and the organic porous anion exchanger contain 0.3 to 5.0 mol% of a crosslinked structural unit in all the structural units into which an ion exchange group is introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. An electrical deionized water production apparatus is provided.
本発明によれば、吸着したイオン性不純物の移動を速めて吸着イオンの排除を容易にし、イオン交換体の強度が高く、通水時の圧力損失を低下させることができ、処理水水質が良好で、かつ消費電力も少ない。 According to the present invention, the movement of adsorbed ionic impurities can be accelerated to facilitate the removal of adsorbed ions, the ion exchanger has high strength, the pressure loss during water flow can be reduced, and the quality of treated water is good. And low power consumption.
本発明の電気式脱イオン水製造装置は、特定構造の有機多孔質イオン交換体を充填した脱イオン室に通水し、水中のイオン性不純物を除去して脱イオン水を製造すると共に、該脱イオン室に直流電場を印加して、該有機多孔質イオン交換体に吸着したイオン性不純物を系外に排除する装置において、該直流電場の印加は、排除されるイオンが該有機多孔質イオン交換体内における通水方向に対して逆向きに泳動するように行うものである。すなわち、本発明の電気式脱イオン水製造装置の基本構造は、両側のイオン交換膜で区画される脱イオン室に有機多孔質イオン交換体を充填して脱イオン室を構成し、当該イオン交換膜の外側に直流電場を印加する電極を配置してなり、該直流電場の印加を前述のような特定の態様で行うものである。また、本発明において、有機多孔質イオン交換体内における通水方向とは、特定の連続気泡構造を有する有機多孔質イオン交換体内における通水方向、すなわち、特定の連続気泡構造を有する有機多孔質イオン交換体内の通水方向に由来するイオンの平均拡散方向を言うものであり、後述するような、有機多孔質イオン交換体内に別途に配設又は加工される第1、第2被処理水導入分配部内や第1、第2処理水集水部内における通水方向を言うものではない。 The electric deionized water production apparatus of the present invention passes through a deionization chamber filled with an organic porous ion exchanger having a specific structure, and removes ionic impurities in the water to produce deionized water. In an apparatus for applying a DC electric field to a deionization chamber to exclude ionic impurities adsorbed on the organic porous ion exchanger out of the system, the application of the DC electric field is such that the ions to be excluded are the organic porous ions. It is performed so as to migrate in the opposite direction to the direction of water flow in the exchanger. That is, the basic structure of the electric deionized water production apparatus of the present invention is to form a deionization chamber by filling an organic porous ion exchanger into a deionization chamber partitioned by ion exchange membranes on both sides, An electrode for applying a DC electric field is disposed outside the membrane, and the application of the DC electric field is performed in a specific manner as described above. In the present invention, the water flow direction in the organic porous ion exchanger means the water flow direction in the organic porous ion exchanger having a specific open cell structure, that is, organic porous ions having a specific open cell structure. This refers to the average diffusion direction of ions derived from the direction of water flow in the exchanger, and the first and second treated water introduction and distribution separately disposed or processed in the organic porous ion exchanger as described later. It does not mean the direction of water flow in the section or in the first and second treated water collecting sections.
脱イオン室に充填される有機多孔質イオン交換体は、第1のモノリスイオン交換体又は第2のモノリスイオン交換体である。本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。 The organic porous ion exchanger filled in the deionization chamber is the first monolith ion exchanger or the second monolith ion exchanger. In the present specification, “monolithic organic porous body” is simply “monolith”, “monolithic organic porous ion exchanger” is simply “monolith ion exchanger”, and “monolithic organic porous intermediate”. Is also simply referred to as “monolith intermediate”.
<第1のモノリスイオン交換体の説明>
第1のモノリスイオン交換体は、モノリスにイオン交換基を導入することで得られるものであり、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μm、好ましくは30〜200μm、特に35〜150μmの開口(メソポア)となる連続マクロポア構造体であり、更に、該マクロポアと該メソポアで形成される気泡構造の内壁に、平均孔径が5〜800nm、好ましくは2〜500nmの非連続孔であるミクロポアを有していてもよい連続マクロポア構造体である。モノリスイオン交換体の開口の平均直径は、モノリスにイオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの開口の平均直径よりも大となる。開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、開口の平均直径が大き過ぎると、流体とモノリスイオン交換体との接触が不十分となり、その結果イオン交換特性が低下してしまうため好ましくない。なお、本発明では、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態のモノリスの開口の平均直径及び乾燥状態のモノリスイオン交換体の開口の平均直径は、水銀圧入法により測定される値である。また、水湿潤状態のモノリスイオン交換体の開口の平均直径は、乾燥状態のモノリスイオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスイオン交換体の直径がx1(mm)であり、その水湿潤状態のモノリスイオン交換体を乾燥させ、得られる乾燥状態のモノリスイオン交換体の直径がy1(mm)であり、この乾燥状態のモノリスイオン交換体を水銀圧入法により測定したときの開口の平均直径がz1(μm)であったとすると、水湿潤状態のモノリスイオン交換体の開口の平均直径(μm)は、次式「水湿潤状態のモノリスイオン交換体の開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、イオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにイオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスイオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。
<Description of the first monolith ion exchanger>
The first monolith ion exchanger is obtained by introducing an ion exchange group into a monolith. Bubble-shaped macropores are overlapped with each other, and the overlapping portion is in a wet state with an average diameter of 30 to 300 μm, preferably 30. A continuous macropore structure having an opening (mesopore) of ˜200 μm, particularly 35 to 150 μm, and an average pore diameter of 5 to 800 nm, preferably 2 to 500 nm, on the inner wall of the cell structure formed by the macropore and the mesopore. It is a continuous macropore structure which may have micropores which are non-continuous pores. The average diameter of the opening of the monolith ion exchanger is larger than the average diameter of the opening of the monolith because the entire monolith swells when an ion exchange group is introduced into the monolith. If the average diameter of the openings is less than 30 μm, the pressure loss at the time of water flow is increased, which is not preferable. If the average diameter of the openings is too large, contact between the fluid and the monolith ion exchanger becomes insufficient. As a result, the ion exchange characteristics deteriorate, which is not preferable. In the present invention, the average diameter of the opening of the monolith intermediate in the dry state, the average diameter of the opening of the monolith in the dry state, and the average diameter of the opening of the monolith ion exchanger in the dry state are values measured by a mercury intrusion method. It is. Further, the average diameter of the openings of the monolith ion exchanger in the wet state is a value calculated by multiplying the average diameter of the openings of the monolith ion exchanger in the dry state by the swelling rate. Specifically, the water-wet monolith ion exchanger has a diameter of x1 (mm), the water-wet monolith ion exchanger is dried, and the resulting dried monolith ion exchanger has a diameter of y1 ( mm), and the average diameter of the opening of the monolith ion exchanger in the dry state measured by the mercury intrusion method was z1 (μm), the average diameter of the opening of the monolith ion exchanger in the water wet state ( μm) is calculated by the following formula: “average diameter of openings of monolith ion exchanger in water wet state (μm) = z1 × (x1 / y1)”. In addition, the average diameter of the opening of the dried monolith before introduction of the ion exchange group, and the swelling ratio of the monolith ion exchanger in the water wet state relative to the dried monolith when the ion exchange group is introduced into the dried monolith. In this case, the average diameter in the water-wet state of the pores of the monolith ion exchanger can also be calculated by multiplying the average diameter of the opening of the monolith in the dry state by the swelling rate.
第1のモノリスイオン交換体において、連続マクロポア構造体の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25〜50%、好ましくは25〜45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、体積当りのイオン交換容量が低下してしまうため好ましくなく、50%を超えると、骨格が太くなり過ぎ、イオン交換特性の均一性が失われるため好ましくない。なお、特開2002−346392公報記載のモノリスは、実際には水に対する油相部の配合比を多くして骨格部分を太くしても、共通の開口を確保するためには配合比に限界があり、断面に表れる骨格部面積の最大値は画像領域中、25%を超えることはできない。 In the first monolith ion exchanger, in the SEM image of the cut surface of the continuous macropore structure, the skeleton part area appearing in the cross section is 25 to 50%, preferably 25 to 45% in the image region. If the area of the skeleton part appearing in the cross section is less than 25% in the image region, it becomes a thin skeleton, which is not preferable because the ion exchange capacity per volume decreases, and if it exceeds 50%, the skeleton becomes too thick. Since the uniformity of ion exchange characteristics is lost, it is not preferable. In addition, the monolith described in JP-A-2002-346392 actually has a limit to the blending ratio in order to ensure a common opening even if the blending ratio of the oil phase part with respect to water is increased to make the skeleton portion thick. Yes, the maximum value of the skeleton part area appearing in the cross section cannot exceed 25% in the image region.
SEM画像を得るための条件は、切断面の断面に表れる骨格部が鮮明に表れる条件であればよく、例えば倍率100〜600、写真領域が約150mm×100mmである。SEM観察は、主観を排除したモノリスの任意の切断面の任意の箇所で撮影された切断箇所や撮影箇所が異なる3枚以上、好ましくは5枚以上の画像で行なうのがよい。切断されるモノリスは、電子顕微鏡に供するため、乾燥状態のものである。SEM画像における切断面の骨格部を図1及び図5を参照して説明する。また、図5は、図1のSEM写真の断面として表れる骨格部を転写したものである。図1及び図5中、概ね不定形状で且つ断面で表れるものは本発明の「断面に表れる骨格部(符号12)」であり、図1に表れる円形の孔は開口(メソポア)であり、また、比較的大きな曲率や曲面のものはマクロポア(図5中の符号13)である。図5の断面に表れる骨格部面積は、矩形状の写真領域11中、28%である。このように、骨格部は明確に判断できる。 The conditions for obtaining the SEM image may be any conditions as long as the skeleton part that appears in the cross section of the cut surface appears clearly. For example, the magnification is 100 to 600, and the photographic area is about 150 mm × 100 mm. SEM observation is preferably performed on three or more images, preferably five or more images, taken at arbitrary locations on an arbitrary cut surface of the monolith excluding subjectivity and at different locations. The monolith to be cut is in a dry state for use in an electron microscope. The skeleton part of the cut surface in the SEM image will be described with reference to FIGS. FIG. 5 is a transcribed skeleton that appears as a cross section of the SEM photograph of FIG. In FIGS. 1 and 5, what is generally indeterminate and shown in cross section is the “skeleton portion (reference numeral 12)” in the present invention, the circular hole shown in FIG. 1 is an opening (mesopore), and A relatively large curvature or curved surface is a macropore (reference numeral 13 in FIG. 5). The skeleton area shown in the cross section of FIG. 5 is 28% in the rectangular photographic region 11. Thus, the skeleton can be clearly determined.
SEM写真において、切断面の断面に表れる骨格部の面積の測定方法としては、特に制限されず、当該骨格部を公知のコンピューター処理などを行い特定した後、コンピューターなどによる自動計算又は手動計算による算出方法が挙げられる。手動計算としては、不定形状物を、四角形、三角形、円形又は台形などの集合物に置き換え、それらを積層して面積を求める方法が挙げられる。 In the SEM photograph, the method for measuring the area of the skeletal part appearing in the cross section of the cut surface is not particularly limited, and after specifying the skeletal part by performing known computer processing or the like, calculation by automatic calculation or manual calculation by a computer or the like A method is mentioned. The manual calculation includes a method in which an indefinite shape is replaced with an aggregate such as a quadrangle, a triangle, a circle, or a trapezoid, and the areas are obtained by stacking them.
また、第1のモノリスイオン交換体は、0.5〜5ml/g、好適には0.8〜4ml/gの全細孔容積を有するものである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当たりのイオン交換容量が低下してしまうため好ましくない。本発明のモノリスは、開口の平均直径及び全細孔容積が上記範囲にあり、且つ骨太の骨格であるため、これを電気式脱イオン水製造装置のイオン交換体として用いた場合、強度が高く、通水差圧が小さく、導電性や処理水水質が向上する。なお、本発明では、モノリス(モノリス中間体、モノリス、モノリスイオン交換体)の全細孔容積は、水銀圧入法により測定される値である。また、モノリス(モノリス中間体、モノリス、モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。 The first monolith ion exchanger has a total pore volume of 0.5 to 5 ml / g, preferably 0.8 to 4 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss during water passage is increased, which is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable. Since the monolith of the present invention has an average diameter and total pore volume of openings in the above ranges and is a thick skeleton, when it is used as an ion exchanger of an electric deionized water production apparatus, the strength is high. The water flow differential pressure is small, and the conductivity and the quality of treated water are improved. In the present invention, the total pore volume of the monolith (monolith intermediate, monolith, monolith ion exchanger) is a value measured by a mercury intrusion method. In addition, the total pore volume of the monolith (monolith intermediate, monolith, monolith ion exchanger) is the same both in the dry state and in the water wet state.
なお、第1のモノリスイオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.1MPa/m・LVの範囲、特に0.001〜0.05MPa/m・LVであることが好ましい。透過速度および全細孔容積がこの範囲にあれば、これを電気式脱イオン水製造装置のイオン交換体として用いた場合、通水時の圧力損失を抑制し、処理水水質を向上させる上に、十分な機械的強度を有しているため好ましい。 In addition, the pressure loss at the time of making water permeate | transmit the 1st monolith ion exchanger is the pressure loss at the time of letting water flow through the column filled with 1 m of the porous body at a water flow rate (LV) of 1 m / h (hereinafter referred to as “pressure loss”). , “Differential pressure coefficient”), it is preferably in the range of 0.001 to 0.1 MPa / m · LV, more preferably 0.001 to 0.05 MPa / m · LV. If the permeation rate and the total pore volume are within this range, when this is used as an ion exchanger in an electrical deionized water production apparatus, pressure loss during water flow is suppressed and the quality of treated water is improved. It is preferable because it has sufficient mechanical strength.
第1のモノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.4〜5mg当量/mlのイオン交換容量を有する。特開2003−334560号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、開口径を更に大きくすると共に、連続マクロポア構造体の骨格を太くする(骨格の壁部を厚くする)ことができるため、透過時の圧力損失を低く押さえたままで脱塩性能を飛躍的に大きくすることができる。体積当りのイオン交換容量が0.4mg当量/ml未満であると、脱塩性能が低下してしまうため好ましくない。なお、本発明のモノリスイオン交換体の重量当りのイオン交換容量は特に限定されないが、イオン交換基が多孔質体の表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。 The first monolith ion exchanger has an ion exchange capacity of 0.4 to 5 mg equivalent / ml per volume in a water-wet state. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2003-334560, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, the monolith ion exchanger of the present invention can further increase the aperture diameter and thicken the skeleton of the continuous macropore structure (thicken the skeleton wall), so that the pressure loss during permeation can be reduced. Desalination performance can be dramatically increased while keeping it low. If the ion exchange capacity per volume is less than 0.4 mg equivalent / ml, the desalting performance is lowered, which is not preferable. The ion exchange capacity per weight of the monolith ion exchanger of the present invention is not particularly limited. However, since the ion exchange groups are uniformly introduced to the surface of the porous body and the inside of the skeleton, 3 to 5 mg equivalent / g It is. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface cannot be determined unconditionally depending on the type of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.
第1のモノリスイオン交換体において、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜50モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、50モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくなく、特に、イオン交換体の場合にはイオン交換基導入量が減少してしまうため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。 In the first monolith ion exchanger, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 50 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, it is not preferable because the mechanical strength is insufficient. On the other hand, if it exceeds 50 mol%, the porous body becomes brittle and the flexibility is lost. In particular, in the case of an ion exchanger, the amount of ion exchange groups introduced is decreased, which is not preferable. The type of the polymer material is not particularly limited, and examples thereof include aromatic vinyl polymers such as polystyrene, poly (α-methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, and polyvinyl naphthalene; polyolefins such as polyethylene and polypropylene; Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene; Nitrile-based polymer such as polyacrylonitrile; Cross-linking weight of (meth) acrylic polymer such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate Coalescence is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking weight of the aromatic vinyl polymer is high due to the ease of forming a continuous macropore structure, the ease of introducing ion-exchange groups and the high mechanical strength, and the high stability to acids and alkalis. A styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.
第1のモノリスイオン交換体のイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。 Examples of the ion exchange group of the first monolith ion exchanger include cation exchange groups such as a sulfonic acid group, a carboxylic acid group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric acid ester group; a quaternary ammonium group and a tertiary amino group And anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group.
第1のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。イオン交換基の分布が不均一だと、多孔質イオン交換体内におけるイオンの移動が不均一となり、吸着されたイオンの迅速な排除が阻害されるので好ましくない。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。 In the first monolith ion exchanger, the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. If the distribution of ion exchange groups is non-uniform, the movement of ions in the porous ion exchanger becomes non-uniform, which is not preferable because rapid removal of the adsorbed ions is impeded. Here, “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA or the like. In addition, if the ion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinkage can be achieved. The durability against is improved.
(第1のモノリスイオン交換体の製造方法)
第1のモノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、該有機多孔質中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、該III工程で得られた骨太有機多孔質体にイオン交換基を導入するIV工程、を行なうことにより得られる。
(Method for producing first monolithic ion exchanger)
The first monolith ion exchanger is prepared by preparing a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizing the water-in-oil emulsion. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure having a total pore volume of 5 to 16 ml / g, a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, a vinyl monomer, Step II for preparing a mixture comprising an organic solvent and a polymerization initiator that dissolves the cross-linking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. The mixture obtained in Step II is allowed to stand still and in Step I. Polymerization is performed in the presence of the obtained monolithic organic porous intermediate to obtain a thick organic porous body having a skeleton thicker than the skeleton of the organic porous intermediate. It is obtained by performing the IV step of introducing an ion exchange group into the thick organic porous material obtained in the step III.
第1のモノリスイオン交換体の製造方法において、I工程は、特開2003−334560号公報や特開2002−306976号公報記載の方法に準拠して行なえばよい。 In the first method for producing a monolith ion exchanger, the step I may be performed in accordance with the methods described in JP-A Nos. 2003-334560 and 2002-306976.
I工程のモノリス中間体の製造において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜50モル%、好ましくは0.3〜5モル%とすることが、後の工程でイオン交換基量を多く導入するに際して必要な機械的強度が得られる点で好ましい。 In the production of the monolith intermediate of step I, the oil-soluble monomer that does not contain an ion exchange group includes, for example, an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, and is soluble in water. Low and lipophilic monomers may be mentioned. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used alone or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 50 mol%, preferably 0.3 to the total oil-soluble monomer. 5 mol% is preferable in that the mechanical strength necessary for introducing a large amount of ion-exchange groups in a later step can be obtained.
界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。 The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used alone or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.
また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。 In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, azobisisobutyronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, potassium persulfate, ammonium persulfate, Examples thereof include hydrogen oxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide.
イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。 The mixing method for mixing the oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. Method of mixing at once, oil-soluble monomer, surfactant and oil-soluble polymerization initiator oil-soluble component and water or water-soluble polymerization initiator water-soluble component separately and uniformly dissolved, A method of mixing the components can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.
I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、モノリス中間体の構造を鋳型として骨太の骨格を有する多孔構造が形成される。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜50モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。特に、全細孔容積が10〜16ml/gと大きい場合には、連続マクロポア構造を維持するため、架橋構造単位を2モル%以上含有していることが好ましい。一方、50モル%を越えると、多孔質体の脆化が進行し、柔軟性が失われるため好ましくない。 The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, a porous structure having a thick skeleton is formed using the structure of the monolith intermediate as a template. The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 50 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. In particular, when the total pore volume is as large as 10 to 16 ml / g, in order to maintain a continuous macropore structure, it is preferable to contain 2 mol% or more of cross-linked structural units. On the other hand, if it exceeds 50 mol%, the porous body becomes brittle and the flexibility is lost.
モノリス中間体のポリマー材料の種類としては、特に制限はなく、前述のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体の骨格に同様のポリマーを形成して、骨格を太らせ均一な骨格構造のモノリスを得ることができる。 The type of the polymer material of the monolith intermediate is not particularly limited, and examples thereof include the same materials as the monolith polymer material described above. Thereby, the same polymer can be formed in the skeleton of the monolith intermediate, and the skeleton can be thickened to obtain a monolith having a uniform skeleton structure.
モノリス中間体の全細孔容積は、5〜16ml/g、好適には6〜16ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、通水時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が連続マクロポア構造から逸脱するため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比を、概ね1:5〜1:20とすればよい。 The total pore volume of the monolith intermediate is 5 to 16 ml / g, preferably 6 to 16 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during water passage becomes large, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer deviates from the continuous macropore structure, which is not preferable. In order to make the total pore volume of the monolith intermediate within the above numerical range, the ratio of the monomer and water may be about 1: 5 to 1:20.
また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20〜200μmである。開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水過時の圧力損失が大きくなってしまうため好ましくない。一方、200μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスイオン交換体との接触が不十分となり、その結果、脱塩効率が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。 Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-200 micrometers in a monolith intermediate body in a dry state. When the average diameter of the openings is less than 20 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss at the time of passing water becomes large, which is not preferable. On the other hand, if it exceeds 200 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the water to be treated and the monolith ion exchanger becomes insufficient, resulting in a decrease in desalting efficiency. This is not preferable. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.
II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。 Step II consists of a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent and a polymerization initiator that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. A step of preparing a mixture of In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.
II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。 The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer containing a polymerizable vinyl group in the molecule and having high solubility in an organic solvent, but is allowed to coexist in the polymerization system. It is preferred to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.
これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜40倍、好ましくは4〜30倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格(モノリス骨格の壁部の厚み)を太くできず、体積当りの吸着容量やイオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が40倍を超えると、開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。 The added amount of these vinyl monomers is 3 to 40 times, preferably 4 to 30 times, by weight with respect to the monolith intermediate coexisting at the time of polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous material, the resulting monolith skeleton (the thickness of the monolith skeleton wall) cannot be made thick, and the adsorption capacity per volume and the volume after introduction of ion exchange groups. This is not preferable because the ion exchange capacity per unit becomes small. On the other hand, when the addition amount of vinyl monomer exceeds 40 times, the opening diameter becomes small, and the pressure loss at the time of passing water becomes large.
II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量に対して0.3〜50モル%、特に0.3〜5モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、50モル%を越えると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくないなお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。 As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is preferably 0.3 to 50 mol%, particularly 0.3 to 5 mol%, based on the total amount of the vinyl monomer and the crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 50 mol%, the brittleness of the monolith proceeds and the flexibility is lost, and the introduction amount of ion exchange groups is reduced. It is preferable to use it so as to be approximately equal to the crosslinking density of the monolith intermediate coexisting during the polymerization of the vinyl monomer / crosslinking agent. If the amounts used of both are too large, the crosslink density distribution is biased in the produced monolith, and cracks are likely to occur during the ion exchange group introduction reaction.
II工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル、セロソルブ、メチルセロソルブ、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。 The organic solvent used in Step II is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. In other words, it is a poor solvent for the polymer formed by polymerization of the vinyl monomer. . Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, ethylene glycol, propylene glycol, tetramethylene glycol, glycerin; diethyl ether, ethylene glycol dimethyl ether, cellosolve, methyl cellosolve, butyl cellosolve, polyethylene glycol, polypropylene Chain (poly) ethers such as glycol and polytetramethylene glycol; hexane, heptane, octane, isooctane, decane, dode Chain saturated hydrocarbons such as down, ethyl acetate, isopropyl acetate, cellosolve acetate, esters such as ethyl propionate. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the range of the present invention. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.
重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。 As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.
III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の骨格より太い骨格を有する骨太のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の骨太のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行して骨太骨格のモノリスが得られると考えられる。なお、開口径は重合の進行により狭められるが、モノリス中間体の全細孔容積が大きいため、例え骨格が骨太になっても適度な大きさの開口径が得られる。 In step III, the mixture obtained in step II is allowed to stand and polymerize in the presence of the monolith intermediate obtained in step I to obtain a thick monolith having a skeleton thicker than the skeleton of the monolith intermediate. It is a process to obtain. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the above-mentioned thick monolith is lost. Is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) is present in the system, the vinyl monomer and the cross-linking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body to obtain a thick skeleton monolith. It is thought that. Although the opening diameter is narrowed by the progress of the polymerization, since the total pore volume of the monolith intermediate is large, an appropriate opening diameter can be obtained even if the skeleton becomes thick.
反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。 The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the thick monolith after polymerization is not pressed from the inner wall of the container and enters the reaction container without any gap, and the monolith is not distorted, and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.
III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜40倍、好ましくは4〜30倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。 In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 40 times by weight, preferably 4 to 30 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a thick skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.
重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該骨格を太らせる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して骨太のモノリスを得る。 Various polymerization conditions can be selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as initiators In a sealed container under an inert atmosphere, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the cross-linking agent are polymerized in the skeleton to thicken the skeleton. After completion of the polymerization, the contents are taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a thick monolith.
次に、上記の方法によりモノリスを製造した後、イオン交換基を導入する方法が、得られるモノリスイオン交換体の多孔構造を厳密にコントロールできる点で好ましい。 Next, a method of introducing an ion exchange group after producing a monolith by the above method is preferable in that the porous structure of the resulting monolith ion exchanger can be strictly controlled.
上記モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、上記の方法によりモノリスに三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基が挙げられる。 There is no restriction | limiting in particular as a method to introduce | transduce an ion exchange group into the said monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group, if the monolith is a styrene-divinylbenzene copolymer, etc., a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; A method of grafting a sodium styrenesulfonate or acrylamido-2-methylpropanesulfonic acid by introducing a mobile group into the skeleton surface or inside the skeleton; Similarly, after graft polymerization of glycidyl methacrylate, a sulfonic acid group is introduced by functional group conversion. And the like. As a method for introducing a quaternary ammonium group, if the monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method in which chloromethylstyrene and divinylbenzene are produced by copolymerization and reacted with a tertiary amine; N, N, N-trimethylammonium is introduced into the monolith by introducing radical initiation groups and chain transfer groups uniformly into the skeleton surface and inside the skeleton. Examples include a method of graft polymerization of ethyl acrylate and N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into a monolith by the above method and then introduced by reacting with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -Introducing a chloromethyl group into the divinylbenzene copolymer with chloromethyl methyl ether, etc., then reacting with a tertiary amine, or producing a monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine The method is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like.
第1のモノリスイオン交換体は、骨太のモノリスにイオン交換基が導入されるため例えば骨太モノリスの1.4〜1.9倍のように大きく膨潤する。すなわち、特開2002−306976記載の従来のモノリスにイオン交換基が導入されたものよりも膨潤度が遥かに大きい。このため、骨太モノリスの開口径が小さいものであっても、モノリスイオン交換体の開口径は概ね、上記倍率で大きくなる。また、開口径が膨潤で大きくなっても全細孔容積は変化しない。従って、第1のモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。 Since the ion exchange group is introduced into the thick monolith, the first monolith ion exchanger swells greatly, for example, 1.4 to 1.9 times as thick as the monolith. That is, the degree of swelling is much greater than that obtained by introducing an ion exchange group into a conventional monolith described in JP-A-2002-306976. For this reason, even if the opening diameter of the thick monolith is small, the opening diameter of the monolith ion exchanger generally increases at the above magnification. In addition, the total pore volume does not change even when the opening diameter increases due to swelling. Therefore, the first monolith ion exchanger has a high mechanical strength because it has a thick bone skeleton despite the remarkably large opening diameter.
<第2のモノリスイオン交換体の説明>
第2のモノリスイオン交換体は、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布している。
<Description of Second Monolith Ion Exchanger>
The second monolith ion exchanger is a tertiary having a thickness of 1 to 60 μm made of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which ion exchange groups are introduced. A co-continuous structure comprising an originally continuous skeleton and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, and the total pore volume is 0.5 to 5 ml / g Yes, the ion exchange capacity per volume in a water-wet state is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger.
第2のモノリスイオン交換体は、イオン交換基が導入された平均太さが水湿潤状態で1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μm、好ましくは15〜90μm、特に20〜80μmの三次元的に連続した空孔とからなる共連続構造体である。すなわち、共連続構造は図6の模式図に示すように、連続する骨格相61と連続する空孔相62とが絡み合ってそれぞれが共に3次元的に連続する構造60である。この連続した空孔62は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。また、骨格が太いため機械的強度が高い。 The second monolith ion exchanger has a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm, preferably 3 to 58 μm in a water-wet state in which ion-exchange groups are introduced, and an average diameter between the skeletons. It is a co-continuous structure composed of three-dimensionally continuous pores of 10 to 100 μm, preferably 15 to 90 μm, particularly 20 to 80 μm in a wet state. That is, as shown in the schematic diagram of FIG. 6, the co-continuous structure is a structure 60 in which a continuous skeleton phase 61 and a continuous vacancy phase 62 are intertwined and each of them is three-dimensionally continuous. The continuous vacancies 62 have higher continuity of vacancies than the conventional open-cell monolith and particle agglomeration monolith, and the size of the vacancies is not biased. Therefore, an extremely uniform ion adsorption behavior can be achieved. Moreover, since the skeleton is thick, the mechanical strength is high.
第2のモノリスイオン交換体の骨格の太さ及び空孔の直径は、モノリスにイオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大となる。この連続した空孔は、従来の連続気泡型モノリス状有機多孔質イオン交換体や粒子凝集型モノリス状有機多孔質イオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。三次元的に連続した空孔の直径が10μm未満であると、流体通過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水と有機多孔質イオン交換体との接触が不十分となり、その結果、イオン交換特性が不均一となるので好ましくない。また、骨格の太さが1μm未満であると、体積当りのイオン交換容量が低下する、機械的強度が低下する等の欠点が生じるため好ましくなく、一方、骨格の太さが大き過ぎると、イオン交換特性の均一性が失われるため好ましくない。 The skeleton thickness and pore diameter of the second monolith ion exchanger are larger than the monolith skeleton thickness and pore diameter because the entire monolith swells when an ion exchange group is introduced into the monolith. It becomes. These continuous pores have higher continuity of pores and are not biased in size compared to conventional open-cell monolithic organic porous ion exchangers and particle-aggregated monolithic organic porous ion exchangers. Therefore, extremely uniform ion adsorption behavior can be achieved. If the diameter of the three-dimensionally continuous pores is less than 10 μm, the pressure loss when passing through the fluid increases, which is not preferable. Becomes unsatisfactory, and as a result, the ion exchange characteristics become non-uniform. In addition, if the thickness of the skeleton is less than 1 μm, it is not preferable because the ion exchange capacity per volume decreases and the mechanical strength decreases. This is not preferable because the uniformity of the exchange characteristics is lost.
上記記連続構造体の空孔の水湿潤状態での平均直径は、公知の水銀圧入法で測定した乾燥状態のモノリスイオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスイオン交換体の直径がx2(mm)であり、その水湿潤状態のモノリスイオン交換体を乾燥させ、得られる乾燥状態のモノリスイオン交換体の直径がy2(mm)であり、この乾燥状態のモノリスイオン交換体を水銀圧入法により測定したときの空孔の平均直径がz2(μm)であったとすると、モノリスイオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「モノリスイオン交換体の空孔の水湿潤状態の平均直径(μm)=z2×(x2/y2)」で算出される。また、イオン交換基導入前の乾燥状態のモノリスの空孔の平均直径、及びその乾燥状態のモノリスにイオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスイオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの空孔の平均直径に、膨潤率を乗じて、モノリスイオン交換体の空孔の水湿潤状態の平均直径を算出することもできる。また、上記記連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態のモノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスイオン交換体の直径がx3(mm)であり、その水湿潤状態のモノリスイオン交換体を乾燥させ、得られる乾燥状態のモノリスイオン交換体の直径がy3(mm)であり、この乾燥状態のモノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がz3(μm)であったとすると、モノリスイオン交換体の連続構造体の骨格の水湿潤状態での平均太さ(μm)は、次式「モノリスイオン交換体の連続構造体の骨格の水湿潤状態の平均太さ(μm)=z3×(x3/y3)」で算出される。また、イオン交換基導入前の乾燥状態のモノリスの骨格の平均太さ、及びその乾燥状態のモノリスにイオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスイオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの骨格の平均太さに、膨潤率を乗じて、モノリスイオン交換体の骨格の水湿潤状態の平均太さを算出することもできる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。 The average diameter of the pores of the above-mentioned continuous structure in the water wet state is a value calculated by multiplying the average diameter of the pores of the monolith ion exchanger in the dry state measured by a known mercury intrusion method and the swelling ratio. It is. Specifically, the water-wet monolith ion exchanger has a diameter of x2 (mm), and the water-wet monolith ion exchanger is dried, and the resulting dried monolith ion exchanger has a diameter of y2 ( mm), and the average diameter of the pores when the dried monolith ion exchanger was measured by the mercury intrusion method was z2 (μm), the pores of the monolith ion exchanger in the water-wet state The average diameter (μm) is calculated by the following formula: “average diameter (μm) of water holes in the monolith ion exchanger pores = z2 × (x2 / y2)”. In addition, the average diameter of the pores of the dried monolith before introduction of the ion exchange groups, and the swelling ratio of the water-dried monolith ion exchanger with respect to the dried monolith when the ion exchange groups are introduced into the dried monolith. If it is known, the average diameter of the monolith ion exchanger pores in the water-wet state can be calculated by multiplying the average diameter of the pores of the dry monolith by the swelling rate. Further, the average thickness of the skeleton of the continuous structure in the water-wet state is obtained by performing SEM observation of the dried monolith ion exchanger at least three times, and measuring the thickness of the skeleton in the obtained image. It is a value calculated by multiplying the average value by the swelling rate. Specifically, the water-wet monolith ion exchanger has a diameter of x3 (mm), the water-wet monolith ion exchanger is dried, and the resulting dried monolith ion exchanger has a diameter of y3 ( SEM observation of this dried monolith ion exchanger at least three times, the thickness of the skeleton in the obtained image was measured, and the average value was z3 (μm). The average thickness (μm) of the skeleton of the continuous structure of the ion exchanger in the water wet state is expressed by the following formula: “average thickness of the skeleton of the continuous structure of the monolith ion exchanger (μm) = z3 × (X3 / y3) ". In addition, the average thickness of the skeleton of the dried monolith before the introduction of the ion exchange group, and the swelling ratio of the monolith ion exchanger in the water wet state relative to the dried monolith when the ion exchange group is introduced into the dried monolith. When it is understood, the average thickness of the skeleton of the monolith ion exchanger can be calculated by multiplying the average thickness of the skeleton of the monolith in the dry state by the swelling ratio. The skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.
第2のモノリスイオン交換体は、3次元的に連続した棒状骨格の太さが10μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、100μmを超えると、脱塩特性の均一性が失われるため好ましくない。モノリスイオン交換体の壁部の定義及び測定方法などは、モノリスと同様である。 If the thickness of the three-dimensional continuous rod-like skeleton is less than 10 μm, the second monolithic ion exchanger is not preferable because the ion exchange capacity per volume is reduced. This is not preferable because the uniformity of the film is lost. The definition and measurement method of the wall of the monolith ion exchanger are the same as those of the monolith.
また、第2のモノリスイオン交換体は、0.5〜5ml/gの全細孔容積を有する。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、流体との接触が極めて均一で接触面積も大きいため、イオン交換帯長さが短く、且つ低圧力損失となる。なお、モノリス(モノリス中間体、モノリス、モノリスイオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。 The second monolith ion exchanger has a total pore volume of 0.5 to 5 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of fluid permeation increases, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume decreases, which is not preferable. If the size of the three-dimensionally continuous pores and the total pore volume are in the above ranges, the contact with the fluid is extremely uniform and the contact area is large, so the ion exchange zone length is short and low pressure loss Become. The total pore volume of the monolith (monolith intermediate, monolith, monolith ion exchanger) is the same in the dry state and in the water wet state.
なお、第2のモノリスイオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.5MPa/m・LVの範囲、特に0.001〜0.1MPa/m・LVである。透過速度および全細孔容積がこの範囲にあれば、これを電気式脱イオン水製造装置のイオン交換体として用いた場合、通水時の圧力損失を抑制し、処理水水質を向上させる。 The pressure loss when water was permeated through the second monolith ion exchanger was the pressure loss when water was passed through a column filled with 1 m of a porous material at a water flow rate (LV) of 1 m / h (hereinafter referred to as “pressure loss”). And “differential pressure coefficient”) in the range of 0.001 to 0.5 MPa / m · LV, particularly 0.001 to 0.1 MPa / m · LV. If the permeation rate and the total pore volume are in this range, when this is used as an ion exchanger of an electrical deionized water production apparatus, pressure loss during water passage is suppressed and the quality of treated water is improved.
第2のモノリスイオン交換体において、共連続構造体の骨格を構成する材料は、全構成単位中、0.3〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。 In the second monolith ion exchanger, the material constituting the skeleton of the co-continuous structure is 0.3 to 5 mol%, preferably 0.5 to 3.0 mol% of the crosslinked structural unit in all the structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure. There is no restriction | limiting in particular in the kind of this aromatic vinyl polymer, For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is used because of its ease of forming a co-continuous structure, ease of introduction of ion exchange groups, high mechanical strength, and high stability against acids and alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.
第2のモノリスイオン交換体は、水湿潤状態での体積当りの陽イオン交換容量が0.3〜5mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができ、処理水水質を高めることができる。なお、第2のモノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。 The second monolith ion exchanger has an ion exchange capacity of 0.3 to 5 mg equivalent / ml cation exchange capacity per volume in a wet state of water. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, since the monolith ion exchanger of the present invention has high continuity and uniformity of three-dimensionally continuous pores, the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, the ion exchange capacity per volume can be dramatically increased while keeping the pressure loss low, and the quality of the treated water can be improved. The ion exchange capacity per weight in the dry state of the second monolith ion exchanger is not particularly limited, but the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the porous body. 5 mg equivalent / g. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface of the skeleton cannot be determined unconditionally depending on the kind of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.
第2のモノリスイオン交換体におけるイオン交換基としては、第1のモノリスイオン交換体におけるイオン交換基と同様であり、その説明を省略する。第2のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。均一分布の定義は、第1のモノリスイオン交換体の均一分布の定義と同じである。 The ion exchange group in the second monolith ion exchanger is the same as the ion exchange group in the first monolith ion exchanger, and the description thereof is omitted. In the second monolith ion exchanger, the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body. The definition of the uniform distribution is the same as the definition of the uniform distribution of the first monolith ion exchanger.
(第2のモノリスイオン交換体の製造方法)
第2のモノリスイオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、該III工程で得られた共連続構造体にイオン交換基を導入するIV工程を行うことで得られる。
(Method for producing second monolith ion exchanger)
The second monolith ion exchanger prepares a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizes the water-in-oil emulsion. Step I for obtaining a monolithic organic porous intermediate having a continuous macropore structure having a total pore volume of more than 16 ml / g and 30 ml / g or less, an aromatic vinyl monomer, and at least two or more vinyl groups in one molecule From an organic solvent and a polymerization initiator in which 0.3 to 5 mol% of the cross-linking agent, aromatic vinyl monomer and cross-linking agent dissolve but the polymer formed by polymerization of the aromatic vinyl monomer does not dissolve in the total oil-soluble monomer having Step II for preparing the mixture, the mixture obtained in Step II is allowed to stand, and polymerization is performed in the presence of the monolithic organic porous intermediate obtained in Step I. III to obtain a continuous structure, obtained by performing the IV step of introducing ion exchange groups to resulting co-continuous structure in the step III.
第2のモノリスイオン交換体におけるモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。 What is necessary is just to perform the I process of obtaining the monolith intermediate body in a 2nd monolith ion exchanger based on the method of Unexamined-Japanese-Patent No. 2002-306976.
すなわち、I工程において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜5モル%、好ましくは0.3〜3モル%とすることが、後の工程でイオン交換基量を多く導入するに際して必要な機械的強度が得られる点で好ましい。 That is, in the step I, as the oil-soluble monomer not containing an ion exchange group, for example, it does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water, and is lipophilic. These monomers are mentioned. Specific examples of these monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; butadiene Diene monomers such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl esters such as vinyl acetate and vinyl propionate Methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethyl methacrylate Sill, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. Among these monomers, preferred are aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene and the like. These monomers can be used alone or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and its content is 0.3 to 5 mol%, preferably 0.3 to the total oil-soluble monomer. 3 mol% is preferable in that a mechanical strength necessary for introducing a large amount of ion-exchange groups in a later step can be obtained.
界面活性剤は、第1のモノリスイオン交換体のI工程で使用する界面活性剤と同様であり、その説明を省略する。 The surfactant is the same as the surfactant used in step I of the first monolith ion exchanger, and the description thereof is omitted.
また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。 In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide, hydrogen peroxide-ferrous chloride Sodium persulfate-sodium acid sodium sulfite and the like.
イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、第1のモノリスイオン交換体のI工程における混合方法と同様であり、その説明を省略する。 As a mixing method when an oil-soluble monomer not containing an ion exchange group, a surfactant, water and a polymerization initiator are mixed to form a water-in-oil emulsion, in the step I of the first monolith ion exchanger This is the same as the mixing method, and the description thereof is omitted.
第2のモノリスイオン交換体の製造方法において、I工程で得られるモノリス中間体は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜5モル%、好ましくは0.3〜3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16〜20ml/gと本発明の中では小さい場合には、共連続構造を形成させるため、架橋構造単位は3モル未満とすることが好ましい。 In the second method for producing a monolith ion exchanger, the monolith intermediate obtained in the step I is an organic polymer material having a crosslinked structure, preferably an aromatic vinyl polymer. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 5 mol%, preferably 0.3 to 3 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the monolith tends to deviate from the co-continuous structure, which is not preferable. In particular, when the total pore volume is as small as 16 to 20 ml / g in the present invention, the cross-linking structural unit is preferably less than 3 mol in order to form a co-continuous structure.
モノリス中間体のポリマー材料の種類は、第1のモノリスイオン交換体のモノリス中間体のポリマー材料の種類と同様であり、その説明を省略する。 The type of the polymer material of the monolith intermediate is the same as the type of the polymer material of the monolith intermediate of the first monolith ion exchanger, and the description thereof is omitted.
モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には6〜25ml/gである。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を鋳型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのイオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積を第2のモノリスイオン交換体の特定の範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。 The total pore volume of the monolith intermediate is more than 16 ml / g and not more than 30 ml / g, preferably 6-25 ml / g. In other words, this monolith intermediate basically has a continuous macropore structure, but the opening (mesopore) that is the overlapping part of the macropore and the macropore is remarkably large. It has a structure as close as possible to the original rod-like skeleton. When this coexists in the polymerization system, a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a template. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer is not preferable because it changes from a co-continuous structure to a continuous macropore structure. On the other hand, if the total pore volume is too large, This is not preferable because the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered and the ion exchange capacity per volume is lowered. In order to make the total pore volume of the monolith intermediate within a specific range of the second monolith ion exchanger, the ratio of monomer to water may be approximately 1:20 to 1:40.
また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5〜100μmである。開口の平均直径が5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、流体とモノリスイオン交換体との接触が不十分となり、その結果、イオン交換特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。 Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is a monolith intermediate body is 5-100 micrometers in a dry state. If the average diameter of the openings is less than 5 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes small, and the pressure loss during water passage becomes large, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the fluid and the monolith ion exchanger becomes insufficient, resulting in a decrease in ion exchange characteristics. Therefore, it is not preferable. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.
第2のモノリスイオン交換体の製造方法において、II工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。 In the second method for producing a monolithic ion exchanger, the step II includes 0.3 to 5 mol% of a crosslinking agent in the aromatic vinyl monomer and the total oil-soluble monomer having at least two or more vinyl groups in one molecule. This is a step of preparing a mixture comprising an organic solvent and a polymerization initiator that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.
第2のモノリスイオン交換体の製造方法において、II工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。 In the second method for producing a monolithic ion exchanger, the aromatic vinyl monomer used in step II includes a lipophilic aromatic vinyl monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. If it is, there is no particular limitation, but it is preferable to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate coexisting in the polymerization system. Specific examples of these vinyl monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl, vinyl naphthalene and the like. These monomers can be used alone or in combination of two or more. Aromatic vinyl monomers preferably used in the present invention are styrene, vinyl benzyl chloride and the like.
これら芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で5〜50倍、好ましくは5〜40倍である。芳香族ビニルモノマー添加量が多孔質体に対して5倍未満であると、棒状骨格を太くできず、イオン交換基導入後の体積当りのイオン交換容量が小さくなって、導電性や処理水水質を高めることができなくなる。 The amount of these aromatic vinyl monomers added is 5 to 50 times, preferably 5 to 40 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of aromatic vinyl monomer added is less than 5 times that of the porous material, the rod-like skeleton cannot be thickened, and the ion exchange capacity per volume after introduction of ion exchange groups is reduced, resulting in conductivity and treated water quality. Can not be increased.
II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3〜5モル%、特に0.3〜3モル%である。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくなく、一方、多過ぎると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。 As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is 0.3 to 5 mol%, particularly 0.3 to 3 mol%, based on the total amount of vinyl monomer and crosslinking agent (total oil-soluble monomer). When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. This is not preferable because a problem arises in that the amount of introduction of is reduced. In addition, it is preferable to use the said crosslinking agent usage-amount so that it may become substantially equal to the crosslinking density of the monolith intermediate body coexisted at the time of vinyl monomer / crosslinking agent polymerization. If the amounts used of both are too large, the crosslink density distribution is biased in the produced monolith, and cracks are likely to occur during the ion exchange group introduction reaction.
II工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。 The organic solvent used in step II is an organic solvent that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer, in other words, is formed by polymerization of the aromatic vinyl monomer. It is a poor solvent for polymers. Since the organic solvent varies greatly depending on the type of the aromatic vinyl monomer, it is difficult to list general specific examples. For example, when the aromatic vinyl monomer is styrene, the organic solvent includes methanol, ethanol, Alcohols such as propanol, butanol, hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain structures such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol (Poly) ethers; chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane; ethyl acetate, isopropyl acetate, cellosolve acetate, propionic acid Examples include esters such as ethyl. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the aromatic vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the aromatic vinyl monomer concentration becomes less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the scope of the present invention, which is not preferable. On the other hand, if the concentration of the aromatic vinyl monomer exceeds 80% by weight, the polymerization may run away, which is not preferable.
重合開始剤は、第1のモノリスイオン交換体のII工程で用いる重合開始剤と同様であり、その説明を省略する。 The polymerization initiator is the same as the polymerization initiator used in Step II of the first monolith ion exchanger, and the description thereof is omitted.
第2のモノリスイオン交換体の製造方法において、III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の連続マクロポア構造を共連続構造に変化させ、骨太骨格のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明の第2のモノリスのように上記重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有するモノリス状有機多孔質体が形成されると考えられる。 In the second method for producing a monolith ion exchanger, in step III, the mixture obtained in step II is allowed to stand and polymerize in the presence of the monolith intermediate obtained in step I. This is a process of changing the continuous macropore structure of the body to a co-continuous structure to obtain a monolith with a bone skeleton. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a specific continuous macropore structure is present in the polymerization system as in the second monolith of the present invention, the structure of the monolith after the polymerization changes dramatically and the particle aggregation structure disappears. Thus, a monolith having the above-described bicontinuous structure is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) having a large total pore volume is present in the system, the vinyl monomer and the crosslinking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body. It is considered that the skeleton constituting the monolith structure is changed from a two-dimensional wall surface to a one-dimensional rod-like skeleton to form a monolithic organic porous body having a co-continuous structure.
反応容器の内容積は、第1のモノリスイオン交換体の反応容器の内容積の説明と同様であり、その説明を省略する。 The internal volume of the reaction vessel is the same as the description of the internal volume of the reaction vessel of the first monolith ion exchanger, and the description thereof is omitted.
III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、芳香族ビニルモノマーの添加量が重量で5〜50倍、好ましくは5〜40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。 In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 5 to 50 times, preferably 5 to 40 times, by weight of the aromatic vinyl monomer added to the monolith intermediate. It is preferable to blend them as described above. Thereby, it is possible to obtain a monolith having a co-continuous structure in which pores of an appropriate size are three-dimensionally continuous and a thick skeleton is three-dimensionally continuous. In the reaction vessel, the aromatic vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that is allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.
共連続構造を有するモノリスの基本構造は、平均太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔が配置された構造である。上記三次元的に連続した空孔の平均直径は、水銀圧入法により細孔分布曲線を測定し、細孔分布曲線の極大値として得ることができる。モノリスの骨格の太さは、SEM観察を少なくとも3回行い、得られた画像中の骨格の平均太さを測定して算出すればよい。また、共連続構造を有するモノリスは、0.5〜5ml/gの全細孔容積を有する。 The basic structure of a monolith having a co-continuous structure is a three-dimensional continuous skeleton having an average thickness of 0.8 to 40 μm in a dry state and a three-dimensional continuous sky having a diameter of 8 to 80 μm between the skeletons. This is a structure in which holes are arranged. The average diameter of the three-dimensionally continuous pores can be obtained as a maximum value of the pore distribution curve by measuring the pore distribution curve by the mercury intrusion method. The thickness of the skeleton of the monolith may be calculated by performing SEM observation at least three times and measuring the average thickness of the skeleton in the obtained image. A monolith having a co-continuous structure has a total pore volume of 0.5 to 5 ml / g.
重合条件は、第1のモノリスイオン交換体のIII工程の重合条件の説明と同様であり、その説明を省略する。 The polymerization conditions are the same as the description of the polymerization conditions in step III of the first monolith ion exchanger, and the description thereof is omitted.
IV工程において、共連続構造を有するモノリスにイオン交換基を導入する方法は、第1のモノリスイオン交換体における、モノリスにイオン交換基を導入する方法と同様であり、その説明を省略する。 In the step IV, the method for introducing an ion exchange group into a monolith having a co-continuous structure is the same as the method for introducing an ion exchange group into a monolith in the first monolith ion exchanger, and the description thereof is omitted.
第2のモノリスイオン交換体は、共連続構造のモノリスにイオン交換基が導入されるため、例えばモノリスの1.4〜1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、第2のモノリスイオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのイオン交換容量を大きくでき、導電性や処理水水質を高めることができる。 Since the ion exchange group is introduced into the bilithic monolith, the second monolith ion exchanger swells greatly, for example, 1.4 to 1.9 times that of the monolith. Further, the total pore volume does not change even if the pore diameter becomes larger due to swelling. Therefore, the second monolith ion exchanger has a high mechanical strength because it has a thick bone skeleton even though the size of three-dimensionally continuous pores is remarkably large. Moreover, since the skeleton is thick, the ion exchange capacity per volume in a water-wet state can be increased, and the conductivity and the quality of treated water can be improved.
本発明において、被処理水としては、脱イオン処理を目的とするものであり、濁質を含まないものであれば特に限定されないが、例えば、濁度1度程度以下の工業用水や市水などを挙げることができる。 In the present invention, the water to be treated is intended for deionization treatment and is not particularly limited as long as it does not contain turbidity. For example, industrial water or city water having a turbidity of about 1 degree or less. Can be mentioned.
次に、本発明の第1の実施の形態における電気式脱イオン水製造装置を図13を参照して説明する。図13は本例の電気式脱イオン水製造装置の構造を示す模式図である。図13の電気式脱イオン水製造装置20Aは、被処理水から陽イオン性不純物を除去する電気式脱陽イオン水製造装置20aと、電気式脱陽イオン水製造装置20aの処理水から陰イオン性不純物を除去する電気式脱陰イオン水製造装置20bとからなるものである。電気式脱陽イオン水製造装置20aは、一側のイオン交換膜17と他側の陽イオン交換膜1で区画される脱イオン室に有機多孔質陽イオン交換体15を充填してなる脱陽イオン室6と、一側のイオン交換膜17の外側に配設される陽極10と、他側の陽イオン交換膜1の外側に配設される陰極9と、脱陽イオン室6中の他側の陽イオン交換膜1近傍に配設される第1被処理水導入分配部3aと、該脱陽イオン室6中の一側のイオン交換膜17近傍に配設される第1処理水集水部4aとを有するものである。すなわち、電気式脱陽イオン水製造装置20aの多孔質陽イオン交換体15内における通水方向は図13中の実線の矢印方向である下から上である。 Next, the electric deionized water production apparatus according to the first embodiment of the present invention will be described with reference to FIG. FIG. 13 is a schematic view showing the structure of the electric deionized water production apparatus of this example. An electric deionized water production apparatus 20A in FIG. 13 removes cationic impurities from the water to be treated, and an anion from the treated water of the electric decation water production apparatus 20a. It comprises an electric deionized water production apparatus 20b that removes ionic impurities. The electric decationized water production apparatus 20a is formed by filling an organic porous cation exchanger 15 in a deionization chamber partitioned by an ion exchange membrane 17 on one side and a cation exchange membrane 1 on the other side. The ion chamber 6, the anode 10 disposed outside the ion exchange membrane 17 on one side, the cathode 9 disposed outside the cation exchange membrane 1 on the other side, and the other in the decation chamber 6 The first treated water introduction / distribution portion 3a disposed in the vicinity of the cation exchange membrane 1 on the side, and the first treated water collection disposed in the vicinity of the ion exchange membrane 17 on the one side in the decation chamber 6. And a water portion 4a. That is, the water flow direction in the porous cation exchanger 15 of the electrical decationized water production apparatus 20a is from the bottom to the top, which is the solid arrow direction in FIG.
一方、電気式脱陰イオン水製造装置20bは、一側の陰イオン交換膜2と他側のイオン交換膜17で区画される脱イオン室に有機多孔質陰イオン交換体16を充填してなる脱陰イオン室7と、一側の陰イオン交換膜2の外側に配設される陽極10と、他側のイオン交換膜17の外側に配設される陰極9と、電気式脱陽イオン水製造装置20aの第1処理水集水部4aと連通管5aで接続される脱陰イオン室7中の一側の陰イオン交換膜2近傍に配設される第2被処理水導入分配部3bと、脱陰イオン室7中の他側のイオン交換膜17近傍に配設される第2処理水集水部4bとを有するものである。すなわち、電気式脱陽イオン水製造装置20bの多孔質陰イオン交換体16内における通水方向は図13中の実線の矢印方向である上から下である。 On the other hand, the electrical deanion water production apparatus 20b is formed by filling an organic porous anion exchanger 16 in a deionization chamber partitioned by an anion exchange membrane 2 on one side and an ion exchange membrane 17 on the other side. A deionization chamber 7, an anode 10 disposed outside the anion exchange membrane 2 on one side, a cathode 9 disposed outside the ion exchange membrane 17 on the other side, and electrical decationized water Second treated water introduction / distribution unit 3b disposed in the vicinity of the anion exchange membrane 2 on one side in the deanion ion chamber 7 connected to the first treated water collecting unit 4a of the production apparatus 20a by the communication pipe 5a. And a second treated water collecting portion 4b disposed in the vicinity of the ion exchange membrane 17 on the other side in the deanion ion chamber 7. That is, the water flow direction in the porous anion exchanger 16 of the electric decationized water production apparatus 20b is from the top to the bottom, which is the solid arrow direction in FIG.
本例の電気式脱陽イオン水製造装置20aの脱陽イオン室6に充填される有機多孔質陽イオン交換体15は、前述の有機多孔質陽イオン交換体であり、電気式脱陰イオン水製造装置20bの脱陰イオン室7に充填される有機多孔質陰イオン交換体16は、前述の有機多孔質陰イオン交換体である。また、脱陽イオン室6及び脱陰イオン室7の形状としては、排除されるイオンが、多孔質イオン交換体内の通水方向に対して逆方向に泳動するように電場を印加することができれば、特に制限されないが、例えば円柱状又は直方体状とすることが構成部材の製造のし易さ等の点から好適である。また、被処理水が移動する距離、即ち脱陽イオン室6及び脱陰イオン室7を構成する多孔質イオン交換体充填層の有効厚みは、20〜600mm、好ましくは30〜300mmとすることが、電気抵抗値や通水差圧を低い値に抑えつつ脱イオン処理を確実に行うことができる点で好適である。両側のイオン交換膜で区画される脱イオン室への有機多孔質イオン交換体の充填方法としては、特に制限されず、例えば脱イオン室に合わせた形状の多孔質イオン交換体を製造してそのまま充填してもよいし、また、複数に分割した層状の有機多孔質イオン交換体を積層して充填してもよい。 The organic porous cation exchanger 15 filled in the decation chamber 6 of the electric decation water production apparatus 20a of this example is the above-mentioned organic porous cation exchanger, and the electric deanion water. The organic porous anion exchanger 16 filled in the deanion chamber 7 of the production apparatus 20b is the aforementioned organic porous anion exchanger. Further, the shape of the decation ion chamber 6 and the deionization ion chamber 7 is such that an electric field can be applied so that ions to be excluded migrate in the direction opposite to the water flow direction in the porous ion exchanger. Although not particularly limited, for example, a cylindrical shape or a rectangular parallelepiped shape is preferable from the viewpoint of ease of manufacture of the constituent members. The distance that the water to be treated moves, that is, the effective thickness of the porous ion exchanger packed layer constituting the decation ion chamber 6 and the deanion chamber 7 is 20 to 600 mm, preferably 30 to 300 mm. It is preferable in that the deionization treatment can be reliably performed while suppressing the electric resistance value and the water flow differential pressure to a low value. The method of filling the organic ion exchanger in the deionization chamber partitioned by the ion exchange membranes on both sides is not particularly limited. For example, a porous ion exchanger having a shape matched to the deionization chamber can be produced and used as it is. It may be filled, or a layered organic porous ion exchanger divided into a plurality of layers may be stacked and filled.
陽イオン交換膜としては、陽イオンのみを透過させ、その両側の水を隔離できるものであれば、特に限定されないが、例えばフッ素樹脂母体に-SO3 −基を導入した強酸性陽イオン交換膜(例えばNafion 117やNafion 350(デュポン社製))及びスチレン−ジビニルベンゼン共重合体母体に-SO3 −基を導入した強酸性陽イオン交換膜(例えばネオセプタ CMX(徳山曹達社製))等が挙げられる。陰イオン交換膜としては、陰イオンのみを透過させ、その両側の水を隔離できるものであれば、特に限定されないが、例えばフッ素樹脂母体に陰イオン交換基を導入した陰イオン交換膜(例えばTOSFLEX IE−SA、TOSFLEX IE−DF、TOSFLEX IE−SF(東ソー社製))及びスチレン−ジビニルベンゼン共重合体母体に陰イオン交換基を導入した陰イオン交換膜(例えばネオセプタ AMH(徳山曹達社製))等が挙げられる。また、本例の電気式脱イオン水製造装置20Aで用いるイオン交換膜17は、陽イオン交換膜又は陰イオン交換膜のいずれかを用いることができる。 The cation exchange membrane is not particularly limited as long as it can permeate only cations and sequester water on both sides thereof. For example, a strongly acidic cation exchange membrane in which a —SO 3 — group is introduced into a fluororesin matrix. (For example, Nafion 117 and Nafion 350 (manufactured by DuPont)) and strongly acidic cation exchange membranes (for example, Neocepta CMX (manufactured by Tokuyama Soda Co., Ltd.)) in which a —SO 3 — group is introduced into a styrene-divinylbenzene copolymer matrix. Can be mentioned. The anion exchange membrane is not particularly limited as long as it can permeate only anions and isolate water on both sides thereof. For example, an anion exchange membrane in which an anion exchange group is introduced into a fluororesin matrix (for example, TOSFLEX) IE-SA, TOSFLEX IE-DF, TOSFLEX IE-SF (manufactured by Tosoh Corporation)) and anion exchange membranes in which anion exchange groups are introduced into a styrene-divinylbenzene copolymer matrix (for example, Neocepta AMH (manufactured by Tokuyama Soda Co., Ltd.)) ) And the like. Moreover, either the cation exchange membrane or the anion exchange membrane can be used for the ion exchange membrane 17 used with the electric deionized water production apparatus 20A of this example.
また、陰極9及び陽極10としては、金属、合金、金属酸化物、これらのいずれかを基板としてメッキまたはコーティングしたもの及び焼結炭素等の導電性材料を用いることができ、その形状としては、板状、パンチングメタル及びメッシュ状等のものを用いることができる。特に、陽極10の材質としては、例えばPt、Pd、Ir、β−PbO2、NiFe2O4等が耐酸性に優れ、酸化され難い点で好適である。また、陰極9の材質としては、例えばPt、Pd、Au、炭素鋼、ステンレス、Ag、Cu、グラファイト、ガラス質カーボン等が耐アルカリ性に優れる点で好適である。 Moreover, as the cathode 9 and the anode 10, a conductive material such as a metal, an alloy, a metal oxide, any one of these plated or coated as a substrate, and sintered carbon can be used. Plates, punching metals, meshes, and the like can be used. In particular, as the material of the anode 10, for example, Pt, Pd, Ir, β-PbO 2 , NiFe 2 O 4 and the like are preferable because they have excellent acid resistance and are not easily oxidized. Moreover, as a material of the cathode 9, for example, Pt, Pd, Au, carbon steel, stainless steel, Ag, Cu, graphite, vitreous carbon, and the like are preferable in terms of excellent alkali resistance.
電極とイオン交換膜の配置は、電極とイオン交換膜を直接接触させる配置とすることが、運転時の電圧を下げて消費電力を低減させることができる点で好適である。電極とイオン交換膜を直接接触させる場合、特に陽極側においては、フッ素樹脂母体のイオン交換膜を用いて、強い酸化作用によるイオン交換膜の劣化を防ぐ必要がある。フッ素樹脂母体以外のイオン交換膜を用いる場合は、ポリオレフィン製メッシュなどの不導体スペーサーを電極とイオン交換膜の間に挿入することが、電極とイオン交換膜の直接の接触を避け、イオン交換膜を劣化から保護することができる点で好適である。ただし、フッ素樹脂母体のイオン交換膜であっても、脱陰イオン室7の陽極側のように第4級アンモニウム基などの陰イオン交換基が導入された陰イオン交換膜2と陽極10が配設される場合は、ポリオレフィン製メッシュなどの不導体スペーサーを陽電極10と陰イオン交換膜2の間に挿入することが、陰イオン交換基の酸化を防止して、イオン交換膜を劣化から保護することができる点で好適である。 The arrangement of the electrode and the ion exchange membrane is preferably such that the electrode and the ion exchange membrane are in direct contact with each other because the voltage during operation can be lowered and the power consumption can be reduced. When the electrode and the ion exchange membrane are brought into direct contact, particularly on the anode side, it is necessary to prevent deterioration of the ion exchange membrane due to a strong oxidizing action by using an ion exchange membrane of a fluororesin matrix. When using an ion exchange membrane other than the fluororesin matrix, inserting a non-conductive spacer such as a polyolefin mesh between the electrode and the ion exchange membrane avoids direct contact between the electrode and the ion exchange membrane. Is preferable in that it can be protected from deterioration. However, even in the case of an ion exchange membrane made of a fluororesin matrix, the anion exchange membrane 2 into which an anion exchange group such as a quaternary ammonium group is introduced and the anode 10 are arranged like the anode side of the deanion chamber 7. When installed, inserting a non-conductive spacer such as a polyolefin mesh between the positive electrode 10 and the anion exchange membrane 2 prevents oxidation of the anion exchange groups and protects the ion exchange membrane from deterioration. This is preferable in that it can be performed.
電気式脱イオン水製造装置20Aにおいて、第1及び第2被処理水導入分配部3a、3b及び第1及び第2処理水集水部4a、4bとしては、例えば脱イオン室内に均等な被処理水の流れを形成せしめるように、脱イオン室形状に合わせて、配管に細孔を開けた分配管および集水管を同心円状や等間隔平行線状に多孔質イオン交換体内に埋設させる方法、及び多孔質イオン交換体の被処理水導入分配部と処理水集水部に溝を切り、多孔質イオン交換体そのものに被処理水分配及び処理水集水機能を持たせる方法が挙げられ、この中、多孔質イオン交換体そのものに被処理水分配及び処理水集水機能を持たせる方法が、別途の配管部材を用意することもなく簡単に作製することができる点で好適である。 In the electric deionized water production apparatus 20A, the first and second treated water introduction / distribution units 3a and 3b and the first and second treated water collecting units 4a and 4b are treated equally in, for example, the deionized chamber. A method of embedding distribution pipes and water collection pipes having pores in the pipes in a concentric or equidistant parallel line in the porous ion exchanger so as to form a water flow, and Examples include a method in which grooves are formed in the treated water introduction / distribution section and the treated water collection section of the porous ion exchanger, and the treated water distribution and treated water collection functions are provided in the porous ion exchanger itself. In addition, the method of giving the treated water distribution and treated water collecting function to the porous ion exchanger itself is preferable in that it can be easily produced without preparing a separate piping member.
本例の電気式脱イオン水製造装置20Aにおいて、直流電流の配置形態としては、脱陽イオン室6と脱陰イオン室7の各室に個別の電源をおいて独立して通電する方法、又は単一の直流電源を用いて脱陽イオン室6と脱陰イオン室7を直列に接続して通電する方法が挙げられる。脱陽イオン室6と脱陰イオン室7を並列に接続して通電する方法は、一般に各脱イオン室の電気抵抗値が異なるため、脱イオン室間で通電電流値に差が生じ、吸着イオンの充分な排出を阻害する恐れがあるので好ましくない。 In the electric deionized water production apparatus 20A of the present example, as a direct current arrangement form, a method of independently energizing each chamber of the decation ion chamber 6 and the deanion ion chamber 7 with individual power supplies, or An example is a method in which the decation ion chamber 6 and the deanion ion chamber 7 are connected in series using a single DC power source and energized. In the method of conducting electricity by connecting the decation chamber 6 and the deionization chamber 7 in parallel, the electric resistance values of the deionization chambers are generally different. This is not preferable because there is a risk of inhibiting the sufficient discharge of the water.
本例の電気式脱イオン水製造装置20Aにおいて、直流電流の通電方法としては、イオン組成の変化などによって生じる多孔質イオン交換体の電気抵抗値の変動に合わせて自動的に電圧値を変動させる定電流運転が、流入するイオン負荷を電気的に効率的に排除することができる点で好ましい。必要電流値は、排除すべきイオン量、即ち被処理水の水質及び処理流量によって決定される。更に、断続運転の場合には、被処理水の水質や処理流量に加えて、通水時間と停止時間によっても必要電流値は異なる。このように、必要電流値は種々の条件によって変化するため、一概に決定することが困難であるが、電気式脱イオン水製造装置における電流効率に水質変動などを見越した安全率を加えた値と、次式で得られる必要最低電流値を乗じた値とすればよい。 In the electric deionized water production apparatus 20A of this example, as a method of energizing the direct current, the voltage value is automatically changed in accordance with the change in the electrical resistance value of the porous ion exchanger caused by the change in the ion composition or the like. The constant current operation is preferable in that the ion load that flows in can be efficiently eliminated. The required current value is determined by the amount of ions to be excluded, that is, the quality of the water to be treated and the treatment flow rate. Further, in the case of intermittent operation, the required current value varies depending on the water flow time and the stop time in addition to the quality of the water to be treated and the treatment flow rate. In this way, the required current value varies depending on various conditions, so it is difficult to determine it in general, but the value obtained by adding a safety factor in anticipation of water quality fluctuations to the current efficiency in the electric deionized water production system And a value obtained by multiplying the necessary minimum current value obtained by the following equation.
脱陽イオン室における必要最低電流値Imin(A)=McQF/(602×103);脱陰イオン室における必要最低電流値Imin(A)=MaQF/(602×103);式中、Mcは被処理水の全陽イオン(meq/l)、Maは全陰イオン(meq/l)、Qは処理流量(l/h)、Fはファラデー定数(C/mol)である。なお、電流効率とは電流がイオンの排除に使われる率であって、本発明の電気式脱イオン水製造装置では95〜100%である。 Necessary minimum current value in the decation chamber Imin (A) = McQF / (60 2 × 10 3 ); Necessary minimum current value in the deanion chamber Imin (A) = MaQF / (60 2 × 10 3 ); , Mc is the total cation (meq / l) of water to be treated, Ma is the total anion (meq / l), Q is the treatment flow rate (l / h), and F is the Faraday constant (C / mol). The current efficiency is the rate at which the current is used to exclude ions, and is 95 to 100% in the electric deionized water production apparatus of the present invention.
また、本例の電気式脱イオン水製造装置20Aの運転方法としては、連続運転及び断続運転のいずれでもよく、例えば被処理水の装置への連続通水及び連続通電による連続運転方法及び被処理水の通水を一定時間停止し、その通水停止時間のみ又は通水停止時間と通水時間の双方で直流電流を通電する断続運転方法とすることもできる。 In addition, the operation method of the electric deionized water production apparatus 20A of this example may be either continuous operation or intermittent operation. For example, the continuous operation method by continuous water flow and continuous energization of the water to be treated and the treatment target. It is also possible to adopt an intermittent operation method in which the water flow is stopped for a certain period of time, and a direct current is applied only during the water flow stop time or both the water flow stop time and the water flow time.
電気式脱陽イオン水製造装置20aにおいて、被処理水は脱陽イオン室6の陰極9側から導入され、第1被処理水導入分配部3aによって多孔質陽イオン交換体15に均等に分配される。次いで、被処理水は多孔質陽イオン交換体15内において陽イオンX+を吸着除去されながら陽極10側へ移動し、酸性軟水となって第1処理水集水部4aによって集水され第1処理水として脱陽イオン室6から排出される。次いで、該酸性軟水は連通管5aによって脱陰イオン7室内の陽極10側に導入され、同様に第2被処理水導入分配部3bによって多孔質陰イオン交換体16に均等に分配される。次いで、被処理水である第1処理水は多孔質陰イオン交換体16内において陰イオンY-を吸着除去されながら陰極9側へ移動し、第2処理水集水部4bによって集水され第2処理水として脱陰イオン室7から排出される。 In the electrical decationized water production apparatus 20a, the water to be treated is introduced from the cathode 9 side of the decationization chamber 6 and is evenly distributed to the porous cation exchanger 15 by the first treated water introduction / distribution unit 3a. The Next, the water to be treated moves to the anode 10 side while adsorbing and removing the cation X + in the porous cation exchanger 15, becomes acidic soft water, is collected by the first treated water collecting section 4 a and is first collected. It is discharged from the decation chamber 6 as treated water. Next, the acidic soft water is introduced to the anode 10 side in the deanion 7 chamber by the communication pipe 5a, and is equally distributed to the porous anion exchanger 16 by the second treated water introduction / distribution unit 3b. Next, the first treated water, which is the treated water, moves to the cathode 9 side while adsorbing and removing the anions Y − in the porous anion exchanger 16, and is collected by the second treated water collecting section 4b. 2 is discharged from the deanion chamber 7 as treated water.
一方、脱陽イオン室6で有機多孔質陽イオン交換体15に吸着された陽イオンX+は、脱陽イオン室6の両端に配設された陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陰極9側の陽イオン交換膜1を通過して陰極室12へ排出される。同様に、脱陰イオン室7で有機多孔質陰イオン交換体16に吸着された陰イオンY−は、脱陰イオン室7の両端に配設された陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陽極10側の陰イオン交換膜2を通過して陽極室13へ排出される。 On the other hand, the cation X + adsorbed by the organic porous cation exchanger 15 in the decation chamber 6 is a direct current applied between the cathode 9 and the anode 10 disposed at both ends of the decation chamber 6. , And passes through the cation exchange membrane 1 on the cathode 9 side and is discharged to the cathode chamber 12. Similarly, the anion Y − adsorbed on the organic porous anion exchanger 16 in the deanion chamber 7 is a direct current applied between the cathode 9 and the anode 10 disposed at both ends of the deanion chamber 7. Electrophoresis is caused by the electric current, passes through the anion exchange membrane 2 on the anode 10 side, and is discharged to the anode chamber 13.
陰極室12に排出された不純物陽イオンは、電極室入口Cから流入し、電極室出口cから流出する電極水に取り込まれ系外に排出される。同様に陽極室13に排出された不純物陰イオンは、電極室入口Dから流入し、電極室出口dから流出する電極水に取り込まれ系外に排出される。電極水は被処理水の一部を分岐させて4つの電極室に独立に流してもよく、また、陽極水系及び陰極水系の2系統にそれぞれ流すようにしてもよい。また、電極水は常時流してもよく、断続的に適宜流してもよい。 Impurity cations discharged into the cathode chamber 12 flow in from the electrode chamber inlet C, are taken into the electrode water flowing out from the electrode chamber outlet c, and are discharged out of the system. Similarly, impurity anions discharged into the anode chamber 13 flow in from the electrode chamber inlet D, are taken into the electrode water flowing out from the electrode chamber outlet d, and are discharged out of the system. The electrode water may be made to flow partially in the four electrode chambers by branching off a part of the water to be treated, or may be allowed to flow in two systems of an anodic water system and a cathodic water system, respectively. Moreover, electrode water may be always flowed and may be appropriately flowed intermittently.
かかる操作により、多孔質イオン交換体内における吸着不純物イオンの濃度分布は、常に被処理水流入側において高く、流出側において低い。このため、処理水集水部4付近における多孔質イオン交換体はほぼ完全再生形が維持されるため、被処理水中の不純物イオンを低濃度まで吸着することが可能であり、高純度の脱イオン水を安定してユースポイント等に供給することができる。また、不純物陽イオンと不純物陰イオンは、それぞれ別個に装置外へ排出されるため、従来の電気式脱イオン水製造装置のように装置内において混合されることがなく、被処理水にカルシウムやマグネシウムなどの硬度成分が含まれた場合でも、装置内にスケールが発生することがない。 By this operation, the concentration distribution of adsorbed impurity ions in the porous ion exchanger is always high on the treated water inflow side and low on the outflow side. For this reason, since the porous ion exchanger in the vicinity of the treated water collecting section 4 is maintained in a substantially completely regenerated form, it is possible to adsorb impurity ions in the treated water to a low concentration, and high purity deionization. Water can be stably supplied to use points. In addition, since the impurity cation and the impurity anion are separately discharged outside the apparatus, they are not mixed in the apparatus unlike conventional electric deionized water production apparatuses, and calcium or Even when a hardness component such as magnesium is contained, no scale is generated in the apparatus.
なお、電気式脱イオン水製造装置20Aの通水方法として、上記以外に、例えば被処理水を電気式脱陰イオン水製造装置20bで処理し、次いで電気式脱陰イオン水製造装置20bの処理水を電気式脱陽イオン水製造装置20aで処理する方法を採ることができる。この方法は、軟水のようにカルシウム、マグネシウムなどの硬度成分を含まない被処理水に適用することができる。しかし、このような軟水以外の水を処理する場合は、被処理水の通水順序を脱陽イオン室6から脱陰イオン室7とすることが、通水順序を逆にした場合に起こりうる脱陰イオン室7内における硬度成分の析出を防止することができる点で好適である。 In addition to the above, as a water passing method of the electric deionized water production apparatus 20A, for example, the treated water is treated by the electric deionized water production apparatus 20b, and then the treatment by the electric deionized water production apparatus 20b. The method of processing water with the electric decation water production apparatus 20a can be taken. This method can be applied to water to be treated which does not contain hardness components such as calcium and magnesium like soft water. However, when water other than soft water is treated, the flow sequence of the water to be treated can be changed from the decation chamber 6 to the deanion chamber 7 when the flow sequence is reversed. This is preferable in that precipitation of hardness components in the deionization chamber 7 can be prevented.
次に、本発明の第2の実施の形態における電気式脱イオン水製造装置を図14を参照して説明する。図14は本例の電気式脱イオン水製造装置の構造を示す模式図である。図14において、図13と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。図14の電気式脱イオン水製造装置20Bにおいて図13と異なる点は、電極1組を省略して、1組の電極間に脱陽イオン室と脱陰イオン室を併設した点にある。すなわち、本例の電気式脱イオン水製造装置20Bは、一側の陽イオン交換膜1と、一側の陽イオン交換膜1と他側の陰イオン交換膜2の間に形成される中間陽イオン交換膜1とで区画される第1脱イオン室に有機多孔質陽イオン交換体15を充填してなる脱陽イオン室6と、他側の陰イオン交換膜2と中間陽イオン交換膜1で区画される第2脱イオン室に有機多孔質陰イオン交換体16を充填してなる脱陰イオン室7と、一側の陽イオン交換膜1の外側に配設される陰極9と、他側の陰イオン交換膜2の外側に配設される陽極10と、脱陽イオン室6中の一側の陽イオン交換膜1近傍に配設される第1被処理水導入分配部3aと、脱陽イオン室6中の中間陽イオン交換膜1近傍に配設される第1処理水集水部4aと、第1処理水集水部4aと連通管5bで接続される脱陰イオン室7中の他側の陰イオン交換膜2近傍に配設される第2被処理水導入分配部3bと、脱陰イオン室7中の中間陽イオン交換膜1近傍に配設される第2処理水集水部4bと、を備えるものである。 Next, an electric deionized water production apparatus according to the second embodiment of the present invention will be described with reference to FIG. FIG. 14 is a schematic diagram showing the structure of the electric deionized water production apparatus of this example. In FIG. 14, the same components as those in FIG. 13 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. The electric deionized water production apparatus 20B of FIG. 14 is different from FIG. 13 in that one set of electrodes is omitted and a decation ion chamber and a deanion chamber are provided between the one set of electrodes. That is, the electric deionized water production apparatus 20B of the present example includes a cation exchange membrane 1 on one side, and an intermediate cation formed between the cation exchange membrane 1 on one side and the anion exchange membrane 2 on the other side. A decation chamber 6 in which a first deionization chamber partitioned by an ion exchange membrane 1 is filled with an organic porous cation exchanger 15, an anion exchange membrane 2 on the other side, and an intermediate cation exchange membrane 1. A deionization chamber 7 formed by filling the second deionization chamber with an organic porous anion exchanger 16, a cathode 9 disposed outside the cation exchange membrane 1 on one side, and the like. An anode 10 disposed outside the anion exchange membrane 2 on the side, a first treated water introduction / distribution portion 3a disposed in the vicinity of the cation exchange membrane 1 on the one side in the decation chamber 6, A first treated water collection section 4a and a first treated water collection section 4a disposed near the intermediate cation exchange membrane 1 in the decation chamber 6. The second treated water introduction / distribution part 3b disposed in the vicinity of the anion exchange membrane 2 on the other side in the deanion chamber 7 connected by the communication pipe 5b, and the intermediate cation exchange in the deanion chamber 7 And a second treated water collecting part 4b disposed in the vicinity of the membrane 1.
電気式脱イオン水製造装置20Bにおいては、電気式脱イオン水製造装置20Aと同様、被処理水は脱陽イオン室6の陰極9側から導入され、第1被処理水導入分配部3aによって多孔質陽イオン交換体15に均等に分配される。次いで、被処理水は多孔質陽イオン交換体15内において陽イオンX+を吸着除去されながら中間陽イオン交換膜1側へ移動し、酸性軟水となって第1処理水集水部4aによって集水され第1処理水として脱陽イオン室6から排出される。次いで、第1処理水は連通管5bによって脱陰イオン室7内の陽極10側に導入され、同様に第2被処理水導入分配部3bによって多孔質陰イオン交換体16に均等に分配される。次いで、被処理水である第1処理水は多孔質陰イオン交換体16内において陰イオンY−を吸着除去されながら中間陽イオン交換膜1側へ移動し、第2処理水集水部4bによって集水され第2処理水として脱陰イオン室7から排出される。 In the electric deionized water production apparatus 20B, as in the electric deionized water production apparatus 20A, the water to be treated is introduced from the cathode 9 side of the decation chamber 6 and is porous by the first treated water introduction / distribution unit 3a. The cation exchanger 15 is evenly distributed. Next, the water to be treated moves to the intermediate cation exchange membrane 1 side while adsorbing and removing the cation X + in the porous cation exchanger 15, and becomes acidic soft water and collected by the first treated water collecting section 4a. Water is discharged from the decation chamber 6 as first treated water. Next, the first treated water is introduced to the anode 10 side in the deanion chamber 7 through the communication pipe 5b, and is equally distributed to the porous anion exchanger 16 by the second treated water introduction / distribution unit 3b. . Next, the first treated water, which is the treated water, moves to the intermediate cation exchange membrane 1 side while adsorbing and removing the anions Y − in the porous anion exchanger 16, and the second treated water collecting section 4 b. Water is collected and discharged from the deanion chamber 7 as second treated water.
一方、脱陽イオン室6で有機多孔質陽イオン交換体15に吸着された陽イオンX+は、該装置20Bの両端に配設された陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陰極9側の陽イオン交換膜1を通過して陰極室12へ排出される。同様に、脱陰イオン室7で有機多孔質陰イオン交換体16に吸着された陰イオンY−は、同様に陰極9及び陽極10間に印加された直流電流によって電気的に泳動し、陽極10側の陰イオン交換膜2を通過して陽極室13へ排出される。第2の実施の形態例の電気式脱イオン水製造装置20Bによれば、第1の実施の形態例の電気式脱イオン水製造装置20Aと同様の効果を奏する他、電極1組を省略して装置の小型化、簡素化を図ることができる。 On the other hand, the cation X + adsorbed on the organic porous cation exchanger 15 in the decation chamber 6 is electrically converted by a direct current applied between the cathode 9 and the anode 10 disposed at both ends of the apparatus 20B. Electrophoretic migration passes through the cation exchange membrane 1 on the cathode 9 side and is discharged to the cathode chamber 12. Similarly, the anion Y − adsorbed on the organic porous anion exchanger 16 in the deanion chamber 7 is also electrophoresed by the direct current applied between the cathode 9 and the anode 10, and the anode 10 It passes through the anion exchange membrane 2 on the side and is discharged to the anode chamber 13. According to the electric deionized water production apparatus 20B of the second embodiment, the same effect as the electric deionized water production apparatus 20A of the first embodiment is obtained, and one set of electrodes is omitted. Thus, the device can be reduced in size and simplified.
次に、本発明の第3の実施の形態における電気式脱イオン水製造装置を図15を参照して説明する。図15は本例の電気式脱イオン水製造装置の構造を示す模式図である。図15において、図13と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。図15の電気式脱イオン水製造装置20Cにおいて図13と異なる点は、電極1組を省略して、1組の電極間に脱陽イオン室と脱陰イオン室を併設すると共に、排除するイオンを中央に設けた濃縮室に集める構造とした点にある。すなわち、本例の電気式脱イオン水製造装置20Cは、一側のイオン交換膜17と、一側のイオン交換膜17と他側のイオン交換膜17の間に形成される中間陽イオン交換膜1とで区画される第1脱イオン室に有機多孔質陽イオン交換体15を充填してなる脱陽イオン室6と、中間陽イオン交換膜1と、中間陽イオン交換膜1と他側のイオン交換膜17の間に形成される中間陰イオン交換膜2とで区画される濃縮室11と、他側のイオン交換膜17と中間陰イオン交換膜2で区画される第2脱イオン室に有機多孔質陰イオン交換体16を充填してなる脱陰イオン室7と、一側のイオン交換膜17の外側に配設される陽極10と、他側のイオン交換膜17の外側に配設される陰極9と、脱陽イオン室6中の中間陽イオン交換膜1近傍に配設される第1被処理水導入分配部3aと、脱陽イオン室6中の一側のイオン交換膜17近傍に配設される第1処理水集水部4aと、第1処理水集水部4aと連通管5bで接続される脱陰イオン室7中の中間陰イオン交換膜2近傍に配設される第2被処理水導入分配部3bと、脱陰イオン室7中の他側のイオン交換膜17近傍に配設される第2処理水集水部4bとを備えるものである。 Next, an electric deionized water production apparatus according to a third embodiment of the present invention will be described with reference to FIG. FIG. 15 is a schematic view showing the structure of the electric deionized water production apparatus of this example. In FIG. 15, the same components as those in FIG. The electric deionized water production apparatus 20C in FIG. 15 differs from that in FIG. 13 in that one set of electrodes is omitted, and a decation ion chamber and a deanion chamber are provided between one set of electrodes and ions to be excluded. It is in the point which made it the structure which collects in the concentration chamber provided in the center. That is, the electric deionized water production apparatus 20C of this example includes an ion exchange membrane 17 on one side and an intermediate cation exchange membrane formed between the ion exchange membrane 17 on one side and the ion exchange membrane 17 on the other side. 1, a decation chamber 6 in which an organic porous cation exchanger 15 is packed in a first deionization chamber partitioned by 1, an intermediate cation exchange membrane 1, an intermediate cation exchange membrane 1, and the other side A concentration chamber 11 defined by the intermediate anion exchange membrane 2 formed between the ion exchange membranes 17 and a second deionization chamber defined by the other side ion exchange membrane 17 and the intermediate anion exchange membrane 2. Deionization chamber 7 filled with organic porous anion exchanger 16, anode 10 disposed outside ion exchange membrane 17 on one side, and outside ion exchange membrane 17 on the other side. Disposed near the intermediate cation exchange membrane 1 in the cathode 9 and the decation chamber 6. A first treated water collection section 3a, a first treated water collection section 4a disposed in the vicinity of the ion exchange membrane 17 on one side in the decation chamber 6; a first treated water collection section 4a; A second treated water introduction / distribution portion 3b disposed in the vicinity of the intermediate anion exchange membrane 2 in the deanion ion chamber 7 connected by the communication pipe 5b, and an ion exchange membrane on the other side in the deanion ion chamber 7 17 is provided with a second treated water collecting portion 4b disposed in the vicinity of 17.
本例の電気式脱イオン水製造装置20Cにおいて、脱陽イオン室6における被処理水の通水方向は中央の濃縮室11側から陽極10側に向かう方向であり、排除される陽イオンX+はその逆方向である。また、脱陰イオン室7における被処理水の通水方向は中央の濃縮室11側から陰極9側に向かう方向であり、排除される陰イオンY−はその逆方向である。濃縮室11に流入した不純物イオンは、濃縮室入口Bから流入し、濃縮室出口bから流出する濃縮水に取り込まれて系外に排出される。濃縮室11を流れる濃縮水は、例えば被処理水の一部が使用できる。電気式脱イオン水製造装置20Cによれば、電気式脱イオン水製造装置20Bと同様の効果を奏することができる。しかし、カルシウムイオンやマグネシウムイオン等の陽イオンと炭酸イオン等の陰イオンが濃縮室11内で混合されるため、濃縮室11内の陰イオン交換膜2面にスケールが発生する恐れがある。従って、電気式脱イオン水製造装置20Cの前段部分に、軟化や一次脱塩などを行う前処理手段を設置することが望ましい。 In the electric deionized water production apparatus 20C of the present example, the direction of water to be treated in the decation chamber 6 is the direction from the central concentration chamber 11 side to the anode 10 side, and is excluded from the cations X +. Is the opposite direction. Further, the flow direction of the water to be treated in the deanion chamber 7 is the direction from the central concentration chamber 11 side to the cathode 9 side, and the anion Y − to be excluded is the opposite direction. Impurity ions that have flowed into the concentration chamber 11 flow in from the concentration chamber inlet B, are taken into the concentrated water flowing out from the concentration chamber outlet b, and are discharged out of the system. For example, a part of the water to be treated can be used as the concentrated water flowing through the concentration chamber 11. According to the electric deionized water production apparatus 20C, the same effects as the electric deionized water production apparatus 20B can be obtained. However, since cations such as calcium ions and magnesium ions and anions such as carbonate ions are mixed in the concentration chamber 11, there is a possibility that scale is generated on the surface of the anion exchange membrane 2 in the concentration chamber 11. Therefore, it is desirable to install a pretreatment means for performing softening, primary desalting or the like in the front part of the electric deionized water production apparatus 20C.
本発明の電気式脱イオン水製造装置においては、電極反応によって、陽極において酸素及び塩素などのガスが少量生成し、陰極において水素などのガスが少量生成する。このため、各電極室又は電極水配管の途中には、気液分離手段と排ガス配管を設け、常時または断続的に生成ガスを排出し、更に、ガスの種類に応じた適正な処理を経て系外に放出する。また、同様に電極反応によって、特に陰極でカルシウム等の金属が析出することがある。この場合、一定運転時間毎に電極の極性を反転させる方法、電極水配管に1mol/l程度の硝酸などの酸を通液して酸洗浄を行う方法又はこれらを複合させた方法により、電極機能を維持することが好適である。 In the electric deionized water production apparatus of the present invention, a small amount of gas such as oxygen and chlorine is generated at the anode and a small amount of gas such as hydrogen is generated at the cathode by the electrode reaction. For this reason, gas-liquid separation means and exhaust gas piping are provided in the middle of each electrode chamber or electrode water piping, and the generated gas is exhausted constantly or intermittently, and after appropriate processing according to the type of gas, the system Release outside. Similarly, a metal such as calcium may be precipitated by the electrode reaction, particularly at the cathode. In this case, the electrode function can be obtained by a method of reversing the polarity of the electrode every fixed operation time, a method of performing acid cleaning by passing an acid such as about 1 mol / l of nitric acid through the electrode water pipe, or a method of combining these. Is preferably maintained.
本発明の電気式脱イオン水製造装置は、従来のイオン交換装置と同様の応用や組み合わせが可能であり、例えば、脱陽イオン室のみを用いて軟化装置としたり、後段に混床式イオン交換器を付けて、更に処理水質の高純度化を図ることなどができる。 The electric deionized water production apparatus of the present invention can be applied and combined in the same way as a conventional ion exchange apparatus. By attaching a vessel, the quality of the treated water can be further increased.
(実施例)
次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって本発明を制限するものではない。
(Example)
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
<第1のモノリスイオン交換体の製造(参考例1)>
(I工程;モノリス中間体の製造)
スチレン19.2g、ジビニルベンゼン1.0g、ソルビタンモノオレエート(以下SMOと略す)1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物をTHF1.8mlを含有する180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。水銀圧入法により測定した該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は56μm、全細孔容積は7.5ml/gであった。
<Production of first monolithic ion exchanger (Reference Example 1)>
(Step I; production of monolith intermediate)
19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water containing 1.8 ml of THF, and a vacuum stirring defoaming mixer which is a planetary stirring device. (EM Co., Ltd.) was used and stirred under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the openings (mesopores) where the macropores and macropores of the monolith intermediate were measured by mercury porosimetry was 56 μm, and the total pore volume was 7.5 ml / g.
(モノリスの製造)
次いで、スチレン49.0g、ジビニルベンゼン1.0g、1-デカノール50g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.5gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、7.6g分取した。分取したモノリス中間体を内径90mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monoliths)
Next, 49.0 g of styrene, 1.0 g of divinylbenzene, 50 g of 1-decanol, and 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 7.6 g was collected. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 90 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を図1に示す。図1のSEM画像は、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図1から明らかなように、当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格が比較例の図12のものと比べて遥かに太く、また、骨格を構成する壁部の厚みが厚いものであった。 FIG. 1 shows the result of observing the internal structure of the monolith (dry body) containing 1.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM as described above. The SEM image in FIG. 1 is an image at an arbitrary position on a cut surface obtained by cutting a monolith at an arbitrary position. As is clear from FIG. 1, the monolith has a continuous macropore structure, and the skeleton constituting the continuous macropore structure is much thicker than that of the comparative example of FIG. The thickness of the part was thick.
次ぎに、得られたモノリスを主観を排除して上記位置とは異なる位置で切断して得たSEM画像2点、都合3点から壁部の厚みと断面に表れる骨格部面積を測定した。壁部の厚みは1つのSEM写真から得た8点の平均であり、骨格部面積は画像解析により求めた。なお、壁部は前述の定義のものである。また、骨格部面積は3つのSEM画像の平均で示した。この結果、壁部の平均厚みは30μm、断面で表れる骨格部面積はSEM画像中28%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は31μm、全細孔容積は2.2ml/gであった。結果を表1及び表2にまとめて示す。表1中、仕込み欄は左から順に、II工程で用いたビニルモノマー、架橋剤、I工程で得られたモノリス中間体、II工程で用いた有機溶媒を示す。 Next, the thickness of the wall part and the area of the skeleton part appearing in the cross section were measured from two SEM images obtained by cutting the obtained monolith at a position different from the above position, excluding subjectivity. The wall thickness was an average of 8 points obtained from one SEM photograph, and the skeleton area was determined by image analysis. The wall portion has the above definition. Moreover, the skeleton part area was shown by the average of three SEM images. As a result, the average thickness of the wall portion was 30 μm, and the area of the skeleton portion represented by the cross section was 28% in the SEM image. Moreover, the average diameter of the opening of the monolith measured by mercury porosimetry was 31 μm, and the total pore volume was 2.2 ml / g. The results are summarized in Tables 1 and 2. In Table 1, the preparation column shows, in order from the left, the vinyl monomer used in Step II, the crosslinking agent, the monolith intermediate obtained in Step I, and the organic solvent used in Step II.
(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。モノリスの重量は27gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸145gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリスカチオン交換体を得た。
(Production of monolith cation exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the monolith was 27 g. To this, 1500 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or lower, 145 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolith cation exchanger having a continuous macropore structure.
得られたカチオン交換体の反応前後の膨潤率は1.7倍であり、体積当りのイオン交換容量は、水湿潤状態で0.67mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ54μmであり、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚みは50μm、骨格部面積はSEM写真の写真領域中28%、全細孔容積は2.2ml/gであった。また、該モノリスカチオン交換体のナトリウムイオンに関するイオン交換帯長さは、LV=20m/hにおいて22mmであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.016MPa/m・LVであった。その結果を表2にまとめて示す。 The swelling rate before and after the reaction of the obtained cation exchanger was 1.7 times, and the ion exchange capacity per volume was 0.67 mg equivalent / ml in a water wet state. The average diameter of the opening of the organic porous ion exchanger in the water-wet state was estimated to be 54 μm from the value of the organic porous body and the swelling ratio of the cation exchanger in the water-wet state. The average thickness of the wall part constituting the skeleton was 50 μm, the skeleton part area was 28% in the photographic region of the SEM photograph, and the total pore volume was 2.2 ml / g. Moreover, the ion exchange zone length regarding the sodium ion of this monolith cation exchanger was 22 mm in LV = 20 m / h. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.016 MPa / m · LV. The results are summarized in Table 2.
次に、モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。結果を図2及び図3に示す。図2は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図3は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図2及び図3より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。 Next, in order to confirm the distribution state of the sulfonic acid group in the monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. FIG. 2 shows a distribution state of sulfur atoms on the surface of the cation exchanger, and FIG. 3 shows a distribution state of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. 2 and 3, it can be seen that the sulfonic acid groups are uniformly introduced into the surface of the cation exchanger and inside the skeleton (cross-sectional direction).
<第1のモノリスイオン交換体の製造(参考例2〜11)>
(モノリスの製造)
スチレンの使用量、架橋剤の種類と使用量、有機溶媒の種類と使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法でモノリスを製造した。その結果を表1及び表2に示す。なお、参考例2〜11のSEM画像(不図示)及び表2から、参考例2〜11のモノリスの開口の平均直径は22〜70μmと大きく、骨格を構成する壁部の平均厚みも25〜50μmと厚く、骨格部面積はSEM画像領域中26〜44%と骨太のモノリスであった。
<Production of first monolith ion exchanger (Reference Examples 2 to 11)>
(Manufacture of monoliths)
Table 1 shows the amount of styrene used, the type and amount of crosslinking agent, the type and amount of organic solvent, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used. A monolith was produced in the same manner as in Reference Example 1 except for the change. The results are shown in Tables 1 and 2. In addition, from the SEM images (not shown) of Reference Examples 2 to 11 and Table 2, the average diameter of the openings of the monoliths of Reference Examples 2 to 11 is as large as 22 to 70 μm, and the average thickness of the walls constituting the skeleton is also 25 to 25 mm. It was as thick as 50 μm, and the skeletal area was 26-44% in the SEM image area, and it was a monolith of bone.
(モノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、それぞれ参考例1と同様の方法でクロロ硫酸と反応させ、連続マクロポア構造を有するモノリスカチオン交換体を製造した。その結果を表2に示す。参考例2〜11のモノリスカチオン交換体の開口の平均直径は46〜138μmであり、骨格を構成する壁部の平均厚みも45〜110μmと厚く、骨格部面積はSEM画像領域中26〜44%であり、イオン交換帯長さも従来のものよりも短く、差圧係数も低い値を示した。また、体積当りの交換容量も大きな値を示した。また、参考例8のモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolith cation exchanger)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 1 to produce a monolith cation exchanger having a continuous macropore structure. The results are shown in Table 2. The average diameters of the openings of the monolith cation exchangers of Reference Examples 2 to 11 are 46 to 138 μm, the average thickness of the wall portion constituting the skeleton is also as thick as 45 to 110 μm, and the skeleton area is 26 to 44% in the SEM image region. The ion exchange zone length was shorter than the conventional one, and the differential pressure coefficient was also low. The exchange capacity per volume also showed a large value. The monolith cation exchanger of Reference Example 8 was also evaluated for mechanical properties.
(モノリスカチオン交換体の機械的特性評価)
参考例8で得られたモノリスカチオン交換体を、水湿潤状態で4mm×5mm×10mmの短冊状に切り出し、引張強度試験の試験片とした。この試験片を引張試験機に取り付け、ヘッドスピードを0.5mm/分に設定し、水中、25℃にて試験を行った。その結果、引張強度、引張弾性率はそれぞれ45kPa、50kPaであり、従来のモノリスカチオン交換体に比べて格段に大きな値を示した。また、引張破断伸びは25%であり、従来のモノリスカチオン交換体よりも大きな値であった。
(Mechanical property evaluation of monolith cation exchanger)
The monolith cation exchanger obtained in Reference Example 8 was cut into a strip of 4 mm × 5 mm × 10 mm in a wet state, and used as a test piece for a tensile strength test. The test piece was attached to a tensile tester, the head speed was set to 0.5 mm / min, and the test was performed at 25 ° C. in water. As a result, the tensile strength and the tensile modulus were 45 kPa and 50 kPa, respectively, which were much larger than those of the conventional monolith cation exchanger. Further, the tensile elongation at break was 25%, which was a value larger than that of the conventional monolith cation exchanger.
参考例12及び13
(モノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量を表1に示す配合量に変更した以外は、参考例1と同様の方法で参考例4と同じ組成・構造のモノリスを製造した。なお、参考例13は内径75mmの反応容器に代えて、内径110mmの反応容器を用いた以外は、参考例12と同様の方法で行ったものである。その結果を表1及び表2に示す。
Reference Examples 12 and 13
(Manufacture of monoliths)
A monolith having the same composition and structure as Reference Example 4 was produced in the same manner as Reference Example 1 except that the amount of styrene used, the amount of crosslinking agent used, and the amount of organic solvent used were changed to the amounts shown in Table 1. . Reference Example 13 was carried out in the same manner as Reference Example 12 except that a reaction vessel having an inner diameter of 110 mm was used instead of the reaction vessel having an inner diameter of 75 mm. The results are shown in Tables 1 and 2.
(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropwise addition, the temperature was raised and reacted at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.
参考例12及び参考例13のアニオン交換体の体積当りのイオン交換容量、水湿潤状態での有機多孔質イオン交換体の開口の平均直径、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚み、骨格部面積(SEM写真の写真領域中に占める割合)、全細孔容積、イオン交換帯長さ及び差圧係数などを表2にまとめて示した。 Ion exchange capacity per volume of the anion exchangers of Reference Example 12 and Reference Example 13, average diameter of openings of organic porous ion exchangers in a wet state of water, and walls constituting the skeleton obtained by the same method as that of monolith Table 2 summarizes the average thickness, skeleton area (ratio in the photographic region of the SEM photograph), total pore volume, ion exchange zone length, differential pressure coefficient, and the like.
次に、多孔質アニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。 Next, in order to confirm the distribution state of the quaternary ammonium groups in the porous anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the skeleton surface of the anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.
<第2のモノリスイオン交換体の製造(参考例14)>
(I工程;モノリス中間体の製造)
スチレン5.4g、ジビニルベンゼン0.17g、ソルビタンモノオレエート(以下SMOと略す)1.4gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像(図7)により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は21.0ml/gであった。
<Production of Second Monolith Ion Exchanger (Reference Example 14)>
(Step I; production of monolith intermediate)
5.4 g of styrene, 0.17 g of divinylbenzene, 1.4 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing. After completion of the polymerization, the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. When the internal structure of the monolith intermediate (dry body) obtained in this way was observed with an SEM image (FIG. 7), the wall portion separating two adjacent macropores was very thin and rod-shaped, but the open cell structure The average diameter of the openings (mesopores) where the macropores overlap with each other as measured by the mercury intrusion method was 70 μm, and the total pore volume was 21.0 ml / g.
(共連続構造モノリスの製造)
次いで、スチレン76.0g、ジビニルベンゼン4.0g、1-デカノール120g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を直径70mm、厚さ約40mmの円盤状に切断して4.1gを分取した。分取したモノリス中間体を内径75mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
(Manufacture of monocontinuous monolith)
Subsequently, 76.0 g of styrene, 4.0 g of divinylbenzene, 120 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 40 mm to fractionate 4.1 g. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 75 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolithic contents having a thickness of about 60 mm were taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.2モル%含有したモノリス(乾燥体)の内部構造をSEMにより観察したところ、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは10μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の大きさは17μm、全細孔容積は2.9ml/gであった。その結果を表3及び4にまとめて示す。表4中、骨格の太さは骨格の直径で表した。 When the internal structure of the monolith (dry body) containing 3.2 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained in this way was observed by SEM, the monolith had a skeleton and pores, respectively. It was a three-dimensional continuous structure with both phases intertwined. Moreover, the thickness of the skeleton measured from the SEM image was 10 μm. Further, the size of the three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 17 μm, and the total pore volume was 2.9 ml / g. The results are summarized in Tables 3 and 4. In Table 4, the thickness of the skeleton was represented by the diameter of the skeleton.
(共連続構造モノリス状カチオン交換体の製造)
上記の方法で製造したモノリスを、直径75mm、厚み約15mmの円盤状に切断した。モノリスの重量は18gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸99gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して共連続構造を有するモノリスカチオン交換体を得た。
(Production of co-continuous monolithic cation exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 75 mm and a thickness of about 15 mm. The weight of the monolith was 18 g. To this was added 1500 ml of dichloromethane, heated at 35 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 99 g of chlorosulfuric acid, heated up and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolith cation exchanger having a co-continuous structure.
得られたカチオン交換体を一部切り出し、乾燥させた後、その内部構造をSEMにより観察したところ、当該モノリスカチオン体は共連続構造を維持していることを確認した。そのSEM画像を図8に示す。また、該カチオン交換体の反応前後の膨潤率は1.4倍であり、体積当りのイオン交換容量は水湿潤状態で0.74mg当量/mlであった。水湿潤状態でのモノリスの連続空孔の大きさを、モノリスの値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ24μmであり、骨格の直径は14μm、全細孔容積は2.9ml/gであった。 A part of the obtained cation exchanger was cut out and dried, and then its internal structure was observed by SEM. As a result, it was confirmed that the monolith cation body maintained a co-continuous structure. The SEM image is shown in FIG. Moreover, the swelling ratio before and after the reaction of the cation exchanger was 1.4 times, and the ion exchange capacity per volume was 0.74 mg equivalent / ml in a water-wet state. The size of the continuous pores of the monolith in the water wet state was estimated from the value of the monolith and the swelling ratio of the cation exchanger in the water wet state to be 24 μm, the skeleton diameter was 14 μm, and the total pore volume was 2. It was 9 ml / g.
また、水を透過させた際の圧力損失の指標である差圧係数は、0.052MPa/m・LVであった。更に、該モノリスカチオン交換体のナトリウムイオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは16mmであり、市販の強酸性カチオン交換樹脂であるアンバーライトIR120B(ロームアンドハース社製)の値(320mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するモノリス状多孔質カチオン交換体の値に比べても短かった。その結果を表4にまとめて示す。 The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.052 MPa / m · LV. Furthermore, when the ion exchange zone length for sodium ions of the monolith cation exchanger was measured, the ion exchange zone length at LV = 20 m / h was 16 mm. Amberlite IR120B (a commercially available strong acid cation exchange resin) It was not only overwhelmingly shorter than the value (320 mm) manufactured by Rohm and Haas, but also shorter than the value of the monolithic porous cation exchanger having a conventional open cell structure. The results are summarized in Table 4.
次に、モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図9及び図10に示す。図9及び図10共に、左右の写真はそれぞれ対応している。図9は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図10は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図9左側の写真中、左右傾斜して延びるものが骨格部であり、図10左側の写真中、2つの円形状は骨格の断面である。図9及び図10より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。 Next, in order to confirm the distribution state of the sulfonic acid group in the monolith cation exchanger, the distribution state of sulfur atoms was observed by EPMA. The results are shown in FIGS. 9 and 10, the left and right photographs correspond to each other. FIG. 9 shows a distribution state of sulfur atoms on the surface of the cation exchanger, and FIG. 10 shows a distribution state of sulfur atoms in the cross-section (thickness) direction of the cation exchanger. In the photograph on the left side of FIG. 9, a part extending in a horizontal direction is a skeleton part, and in the photograph on the left side of FIG. 10, two circular shapes are cross sections of the skeleton. 9 and 10, it can be seen that the sulfonic acid groups are uniformly introduced into the surface of the cation exchanger and inside the skeleton (cross-sectional direction).
<第2のモノリスイオン交換体の製造(参考例15〜17)>
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度及び使用量を表3に示す配合量に変更した以外は、参考例14と同様の方法で共連続構造を有するモノリスを製造した。なお、参考例17は内径75mmの反応容器に代えて、内径110mmの反応容器を用いた以外は、参考例14と同様の方法で行ったものである。その結果を表3及び表4に示す。
<Production of Second Monolith Ion Exchanger (Reference Examples 15 to 17)>
(Manufacture of monolith with co-continuous structure)
Except for changing the amount of styrene used, the amount of crosslinking agent used, the amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used as shown in Table 3. A monolith having a co-continuous structure was produced in the same manner as in Reference Example 14. Reference Example 17 was carried out in the same manner as Reference Example 14 except that a reaction vessel having an inner diameter of 110 mm was used instead of the reaction vessel having an inner diameter of 75 mm. The results are shown in Tables 3 and 4.
(共連続構造を有するモノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、それぞれ参考例14と同様の方法でクロロ硫酸と反応させ、共連続構造を有するモノリスカチオン交換体を製造した。その結果を表4に示す。また、得られた共連続構造を有するモノリスカチオン交換体の内部構造は、不図示のSEM画像及び表4から参考例15〜17で得られたモノリスカチオン交換体はイオン交換体長さは従来のものよりも短く、差圧係数も小さい値を示した。また、参考例15のモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolith cation exchanger having a co-continuous structure)
The monolith produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 14 to produce a monolith cation exchanger having a co-continuous structure. The results are shown in Table 4. Moreover, the internal structure of the obtained monolithic cation exchanger having a co-continuous structure is as follows. The monolithic cation exchangers obtained in Reference Examples 15 to 17 from the SEM images not shown and Table 4 have conventional ion exchanger lengths. Shorter and the differential pressure coefficient showed a smaller value. The monolith cation exchanger of Reference Example 15 was also evaluated for mechanical properties.
(モノリスカチオン交換体の機械的特性評価)
参考例15で得られたモノリスカチオン交換体を、水湿潤状態で4mm×5mm×10mmの短冊状に切り出し、引張強度試験の試験片とした。この試験片を引張試験機に取り付け、ヘッドスピードを0.5mm/分に設定し、水中、25℃にて試験を行った。その結果、引張強度、引張弾性率はそれぞれ23kPa、15kPaであり、従来のモノリスカチオン交換体に比べて格段に大きな値を示した。また、引張破断伸びは50%であり、従来のモノリスカチオン交換体よりも大きな値であった。
(Mechanical property evaluation of monolith cation exchanger)
The monolith cation exchanger obtained in Reference Example 15 was cut into a strip of 4 mm × 5 mm × 10 mm in a wet state of water and used as a test piece for a tensile strength test. The test piece was attached to a tensile tester, the head speed was set to 0.5 mm / min, and the test was performed at 25 ° C. in water. As a result, the tensile strength and the tensile modulus were 23 kPa and 15 kPa, respectively, which were significantly larger than the conventional monolith cation exchanger. Further, the tensile elongation at break was 50%, which was a value larger than that of the conventional monolith cation exchanger.
参考例18及び19
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度及び使用量を表3に示す配合量に変更した以外は、参考例14と同様の方法で共連続構造を有するモノリスを製造した。なお、参考例19は内径75mmの反応容器に代えて、内径110mmの反応容器を用いた以外は、参考例18と同様の方法で行ったものである。その結果を表3及び表4に示す。
Reference Examples 18 and 19
(Manufacture of monolith with co-continuous structure)
Except for changing the amount of styrene used, the amount of crosslinking agent used, the amount of organic solvent used, the porous structure of the monolith intermediate coexisting during styrene and divinylbenzene impregnation polymerization, the crosslinking density and the amount used as shown in Table 3. A monolith having a co-continuous structure was produced in the same manner as in Reference Example 14. Reference Example 19 was carried out in the same manner as Reference Example 18 except that a reaction vessel having an inner diameter of 110 mm was used instead of the reaction vessel having an inner diameter of 75 mm. The results are shown in Tables 3 and 4.
(共連続気泡構造を有するモノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
(Production of monolith anion exchanger having a co-open cell structure)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated.
参考例18及び参考例19のアニオン交換体の体積当りのイオン交換容量、水湿潤状態での有機多孔質イオン交換体の連続空孔の平均直径、モノリスと同様の方法で求めた骨格の太さ、全細孔容積、イオン交換帯長さ及び差圧係数などを表4にまとめて示した。また、得られた共連続構造を有するモノリスアニオン交換体の内部構造はSEM画像(不図示)により観察した。 The ion exchange capacity per volume of the anion exchangers of Reference Example 18 and Reference Example 19, the average diameter of the continuous pores of the organic porous ion exchanger in a water-wet state, and the thickness of the skeleton obtained by the same method as that of the monolith Table 4 summarizes the total pore volume, ion exchange zone length, differential pressure coefficient, and the like. Moreover, the internal structure of the obtained monolith anion exchanger having a co-continuous structure was observed by an SEM image (not shown).
次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の表面のみならず、内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。 Next, in order to confirm the distribution state of the quaternary ammonium groups in the monolith anion exchanger, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chlorine atoms was observed by EPMA. As a result, it was confirmed that the chlorine atoms were uniformly distributed not only on the surface of the anion exchanger but also inside, and the quaternary ammonium groups were uniformly introduced into the anion exchanger.
参考例20
(連続マクロポア構造を有するモノリス状有機多孔質体(公知品)の製造)
特開2002−306976号記載の製造方法に準拠して連続マクロポア構造を有するモノリス状有機多孔質体を製造した。すなわち、スチレン19.2g、ジビニルベンゼン1.0g、SMO1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス状有機多孔質体を製造した。
Reference Example 20
(Manufacture of monolithic organic porous material having a continuous macropore structure (known product))
A monolithic organic porous body having a continuous macropore structure was produced according to the production method described in JP-A-2002-306976. That is, 19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of SMO and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolithic organic porous body having a continuous macropore structure.
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有した有機多孔質体の内部構造を表すSEMは、図12と同様の構造であった。図12から明らかなように、当該有機多孔質体は連続マクロポア構造を有しているが、連続マクロポア構造体の骨格を構成する壁部の厚みは実施例に比べて薄く、また、SEM画像から測定した壁部の平均厚みは5μm、骨格部面積はSEM画像領域中10%であった。また、水銀圧入法により測定した当該有機多孔質体の開口の平均直径は29μm、全細孔容積は、8.6ml/gであった。その結果を表5にまとめて示す。表1、2及び5中、メソポア直径は開口の平均直径を意味する。また、表1〜5中、厚み、骨格直径、空孔の値はそれぞれ平均を示す。 The SEM representing the internal structure of the organic porous material containing 3.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained had the same structure as FIG. As is clear from FIG. 12, the organic porous body has a continuous macropore structure, but the thickness of the wall portion constituting the skeleton of the continuous macropore structure is thinner than that of the example, and from the SEM image The measured wall thickness average thickness was 5 μm, and the skeleton area was 10% in the SEM image area. Moreover, the average diameter of the opening of the organic porous material measured by mercury porosimetry was 29 μm, and the total pore volume was 8.6 ml / g. The results are summarized in Table 5. In Tables 1, 2 and 5, the mesopore diameter means the average diameter of the openings. Moreover, in Tables 1-5, the value of thickness, skeleton diameter, and a void | hole each shows an average.
(連続マクロポア構造を有するモノリス状有機多孔質カチオン交換体(公知品)の製造)
上記の方法で製造した有機多孔質体を、外径70mm、厚み約15mmの円盤状に切断した。有機多孔質体の重量は6gであった。これにジクロロメタン1000mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸30gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリス状多孔質カチオン交換体を得た。得られたカチオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は、水湿潤状態で0.22mg当量/mlと参考例1〜19に比べて小さな値を示した。水湿潤状態での有機多孔質イオン交換体のメソポアの平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ46μmであり、骨格を構成する壁部の平均厚み8μm、骨格部面積はSEM画像領域中10%、全細孔容積は、8.6ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.013MPa/m・LVであった。結果を表5にまとめて示す。また、参考例20で得られたモノリスカチオン交換体については、機械的特性の評価も行なった。
(Production of monolithic organic porous cation exchanger having a continuous macropore structure (known product))
The organic porous body produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. The weight of the organic porous material was 6 g. To this was added 1000 ml of dichloromethane, and the mixture was heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or less, 30 g of chlorosulfuric acid was gradually added, and the temperature was raised and reacted at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolithic porous cation exchanger having a continuous macropore structure. The swelling rate before and after the reaction of the obtained cation exchanger was 1.6 times, and the ion exchange capacity per volume was 0.22 mg equivalent / ml in a water-wet state, which was a small value compared to Reference Examples 1-19. Indicated. The average diameter of the mesopores of the organic porous ion exchanger in the water wet state was 46 μm as estimated from the value of the organic porous body and the swelling ratio of the cation exchanger in the water wet state. The average thickness was 8 μm, the skeleton part area was 10% in the SEM image area, and the total pore volume was 8.6 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, was 0.013 MPa / m · LV. The results are summarized in Table 5. The monolith cation exchanger obtained in Reference Example 20 was also evaluated for mechanical properties.
(従来のモノリスカチオン交換体の機械的特性評価)
参考例20で得られたモノリスカチオン交換体について、参考例8の評価方法と同様の方法で引張試験を行った。その結果、引張強度、引張弾性率はそれぞれ28kPa、12kPaであり、参考例8のモノリスカチオン交換体に比べて低い値であった。また、引張破断伸びも17%であり、本発明のモノリスカチオン交換体よりも小さかった。
(Mechanical property evaluation of conventional monolith cation exchanger)
The monolith cation exchanger obtained in Reference Example 20 was subjected to a tensile test by the same method as the evaluation method of Reference Example 8. As a result, the tensile strength and the tensile modulus were 28 kPa and 12 kPa, respectively, which were lower than the monolith cation exchanger of Reference Example 8. The tensile elongation at break was 17%, which was smaller than that of the monolith cation exchanger of the present invention.
参考例21〜23
(連続マクロポア構造を有するモノリス状有機多孔質体の製造)
スチレンの使用量、ジビニルベンゼンの使用量、SMOの使用量を表5に示す配合量に変更した以外は、参考例20と同様の方法で、従来技術により連続マクロポア構造を有するモノリス状有機多孔質体を製造した。結果を表5に示す。また、参考例23のモノリスの内部構造は不図示のSEMにより観察した。なお、参考例23は全細孔容積を最小とする条件であり、油相部に対してこれ以下の水の配合では、開口が形成できない。参考例21〜23のモノリスはいずれも、開口径が9〜18μmと小さく、骨格を構成する壁部の平均厚みも15μmと薄く、また、骨格部面積はSEM画像領域中最大でも22%と少なかった。
Reference Examples 21-23
(Manufacture of monolithic organic porous body having continuous macropore structure)
A monolithic organic porous material having a continuous macropore structure according to the conventional technique in the same manner as in Reference Example 20, except that the amount of styrene used, the amount of divinylbenzene, and the amount of SMO used are changed to the amounts shown in Table 5. The body was manufactured. The results are shown in Table 5. Further, the internal structure of the monolith of Reference Example 23 was observed with an SEM (not shown). In addition, Reference Example 23 is a condition for minimizing the total pore volume, and an opening cannot be formed by adding less water to the oil phase part. In all of the monoliths of Reference Examples 21 to 23, the opening diameter is small as 9 to 18 μm, the average thickness of the wall portion constituting the skeleton is as thin as 15 μm, and the skeleton portion area is as small as 22% at the maximum in the SEM image region. It was.
(連続マクロポア構造を有するモノリス状有機多孔質カチオン交換体の製造)
上記の方法で製造した有機多孔質体を、参考例20と同様の方法でクロロ硫酸と反応させ、連続マクロポア構造を有するモノリス状多孔質カチオン交換体を製造した。結果を表5に示す。開口直径を大きくしようとすると壁部の厚みが小さくなったり、骨格が細くなったりする。一方、壁部を厚くしたり、骨格を太くしようとすると開口の直径が減少する傾向が認められた。その結果、差圧係数を低く押さえると体積当りのイオン交換容量が減少し、イオン交換容量を大きくすると差圧係数が増大した。
(Production of monolithic organic porous cation exchanger having a continuous macropore structure)
The organic porous material produced by the above method was reacted with chlorosulfuric acid in the same manner as in Reference Example 20 to produce a monolithic porous cation exchanger having a continuous macropore structure. The results are shown in Table 5. If the opening diameter is increased, the thickness of the wall portion is reduced or the skeleton is reduced. On the other hand, when the wall portion was made thicker or the skeleton was made thicker, the diameter of the opening tended to decrease. As a result, when the differential pressure coefficient was kept low, the ion exchange capacity per volume decreased, and when the ion exchange capacity was increased, the differential pressure coefficient increased.
参考例24
(連続マクロポア構造を有するモノリス状有機カチオン交換体の製造)
スチレン83.1g、ジビニルベンゼン20.7g、アゾビスイソブチロニトリル0.42g及びソルビタンモノオレエート11.4gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/アゾビスイソブチロニトリル/ソルビタンモノオレエート混合物を1350mlの純水に添加し、ホモジナイザーを用いて2万回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、油中水滴型エマルジョンをステンレス製のオートクレーブに移し、窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで24時間ソックスレー抽出し、未反応モノマーとソルビタンモノオレエートを除去した後、40℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を14モル%含有した多孔質体に、テトラクロロエタン1500gを加え、60℃で30分加熱した後、室温まで冷却し、クロロ硫酸75gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗、乾燥して多孔質陽イオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で4.0mg当量/ gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は5μm、全細孔容積は、10.1ml/gであった。
Reference Example 24
(Production of monolithic organic cation exchanger having a continuous macropore structure)
83.1 g of styrene, 20.7 g of divinylbenzene, 0.42 g of azobisisobutyronitrile and 11.4 g of sorbitan monooleate were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / azobisisobutyronitrile / sorbitan monooleate mixture is added to 1350 ml of pure water and stirred for 2 minutes at 20,000 rpm using a homogenizer, and a water-in-oil emulsion. Got. After emulsification, the water-in-oil emulsion was transferred to a stainless steel autoclave, sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After the completion of the polymerization, the contents were taken out, extracted with Soxhlet for 24 hours with isopropanol to remove unreacted monomers and sorbitan monooleate, and then dried under reduced pressure at 40 ° C. overnight. 1500 g of tetrachloroethane was added to the porous body containing 14 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained, heated at 60 ° C. for 30 minutes, cooled to room temperature, 75 g of sulfuric acid was gradually added and reacted at room temperature for 24 hours. Thereafter, acetic acid was added, the reaction product was poured into a large amount of water, washed with water and dried to obtain a porous cation exchanger. The ion exchange capacity of this porous material is 4.0 mg equivalent / g in terms of dry porous material, and sulfonic acid groups are uniformly introduced into the porous material by mapping of sulfur atoms using EPMA. It was confirmed. Moreover, as a result of SEM observation, the internal structure of this porous body has an open cell structure, most of the macropores having an average diameter of 30 μm overlap, and the average diameter of the mesopores formed by the overlap of the macropores and the macropores. The value was 5 μm and the total pore volume was 10.1 ml / g.
参考例25
(連続マクロポア構造を有するモノリス状有機アニオン交換体の製造)
スチレン83.1gの代わりに、p- クロロメチルスチレン54.0gを用い、ジビニルベンゼン51.9g、アゾビスイソブチロニトリル0.78gとした以外、上記多孔質陽イオン交換体の製造と同様の油中水滴型エマルジョンの重合を行い、p−クロロメチルスチレン/ジビニルベンゼン共重合体よりなる架橋成分を50モル%含有した多孔質体を製造した。この多孔質体に、ジオキサン1500gを加え80℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液195gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して多孔質陰イオン交換体を得た。この多孔質体のイオン交換容量は、乾燥多孔質体換算で2.5mg当量/gであり、SIMSにより、トリメチルアンモニウム基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は4μm、全細孔容積は9.9ml/gであった。
Reference Example 25
(Production of monolithic organic anion exchanger having continuous macropore structure)
Similar to the production of the porous cation exchanger, except that 54.0 g of p-chloromethylstyrene was used instead of 83.1 g of styrene, and 51.9 g of divinylbenzene and 0.78 g of azobisisobutyronitrile were used. A water-in-oil emulsion was polymerized to produce a porous body containing 50 mol% of a cross-linking component composed of a p-chloromethylstyrene / divinylbenzene copolymer. To this porous body, 1500 g of dioxane was added and heated at 80 ° C. for 30 minutes, then cooled to room temperature, 195 g of an aqueous solution of trimethylamine (30%) was gradually added, reacted at 50 ° C. for 3 hours, and then allowed to stand at room temperature for a whole day and night. did. After completion of the reaction, the porous body was taken out, washed with acetone, washed with water, and dried to obtain a porous anion exchanger. The ion exchange capacity of this porous material was 2.5 mg equivalent / g in terms of dry porous material, and it was confirmed by SIMS that trimethylammonium groups were uniformly introduced into the porous material. Moreover, as a result of SEM observation, the internal structure of this porous body has an open cell structure, most of the macropores having an average diameter of 30 μm overlap, and the average diameter of the mesopores formed by the overlap of the macropores and the macropores. The value was 4 μm and the total pore volume was 9.9 ml / g.
なお、参考例1〜11及び参考例20〜23で製造したモノリスイオン交換体について、差圧係数と体積当りのイオン交換容量の関係を図4に示した。図4から明らかなように、参考例1〜11に対して公知の参考例20〜23は差圧係数とイオン交換容量のバランスが悪いことがわかる。一方、参考例1〜11は体積当りのイオン交換容量が大きく、更に差圧係数も低いことがわかる。 In addition, about the monolith ion exchanger manufactured by Reference Examples 1-11 and Reference Examples 20-23, the relationship between a differential pressure coefficient and the ion exchange capacity per volume was shown in FIG. As is clear from FIG. 4, it can be seen that the known reference examples 20 to 23 have a poor balance between the differential pressure coefficient and the ion exchange capacity with respect to the reference examples 1 to 11. On the other hand, it is understood that Reference Examples 1 to 11 have a large ion exchange capacity per volume and a low differential pressure coefficient.
参考例26
II工程で用いる有機溶媒の種類をポリスチレンの良溶媒であるジオキサンに変更したことを除いて、参考例1と同様の方法でモノリスの製造を試みた。しかし、単離した生成物は透明であり、多孔構造の崩壊・消失が示唆された。確認のためSEM観察を行ったが、緻密構造しか観察されず、連続マクロポア構造は消失していた。
Reference Example 26
Monolith production was attempted in the same manner as in Reference Example 1, except that the type of organic solvent used in Step II was changed to dioxane, which is a good solvent for polystyrene. However, the isolated product was transparent, suggesting collapse / disappearance of the porous structure. SEM observation was performed for confirmation, but only a dense structure was observed, and the continuous macropore structure disappeared.
(電気式脱陽イオン水製造装置Aの作製)
図13に示すような電気式脱イオン水製造装置20Aを作製するため、先ず電気式脱陽イオン水製造装置20aを作製した。参考例8の多孔質陽イオン交換体から、純水湿潤状態で縦100mm、横100mm、厚さ10mmの直方体5個と、縦100mm、横100mm、厚さ5mmの直方体2個を切り出して脱イオン室に積層充填する充填材を得た。次いで、厚さ5mmの充填材2個と、厚さ10mmの充填材2個の片面に、図16に示したような間隔(w)10mm、幅(s)2mmの複数条の縦溝21、縦溝21の一端を繋げる横溝22、横溝22と不図示の外部配管に繋げる導入溝23を切削加工により形成した。次いで厚さ5mmの充填材を溝部24が装置内部を向くように配置して最上部及び最下部とし、その間に厚さ10mmの充填材5個を積層した。このとき、厚さ10mmの充填材の中、上部と下部の充填材はその溝部24が厚さ5mmの充填材の溝部24と向き合うように配置し、被処理水導入分配部3及び処理水集水部4を形成した。このように作製されたブロック状多孔質陽イオン交換体15は、縦100mm、横100mm、全充填層高60mmであり、被処理水導入分配部3の中心から処理水集水部4の中心までの高さ、即ち有効イオン交換体層高が50mmであった。次いで、ブロック状多孔質陽イオン交換体15の他側に陽イオン交換膜(Nafion 350;デュポン社製)を、一側に陽イオン交換膜(Nafion 350;デュポン社製)をそれぞれ密着させて配設した。更に、陽イオン交換膜の外側面に白金メッシュ状の陽極10を、陽イオン交換膜の外側面に白金メッシュ状の陰極9を配置した。得られた構造体を、適宜ノズルやリード線取り出し口を有するポリ塩化ビニル製のケース内に構築し、電気式脱陽イオン水製造装置20aを作製した。
(Production of electric decationized water production apparatus A)
In order to produce an electric deionized water production apparatus 20A as shown in FIG. 13, first, an electric deionized water production apparatus 20a was produced. From the porous cation exchanger of Reference Example 8, deionized by cutting out 5 cuboids 100 mm long, 100 mm wide, 10 mm thick and 2 cuboids 100 mm long, 100 mm wide, 5 mm thick in a pure water wet state. A filler for laminating and filling the chamber was obtained. Next, a plurality of longitudinal grooves 21 having a spacing (w) of 10 mm and a width (s) of 2 mm as shown in FIG. 16 are provided on one side of two fillers having a thickness of 5 mm and two fillers having a thickness of 10 mm. A horizontal groove 22 that connects one end of the vertical groove 21 and an introduction groove 23 that is connected to an external pipe (not shown) were formed by cutting. Next, a filler having a thickness of 5 mm was arranged so that the groove portion 24 faced the inside of the apparatus to be an uppermost part and a lowermost part, and five fillers having a thickness of 10 mm were laminated therebetween. At this time, among the filler having a thickness of 10 mm, the upper and lower fillers are arranged so that the groove portion 24 faces the groove portion 24 of the filler having a thickness of 5 mm, and the treated water introduction / distribution portion 3 and the treated water collection are collected. Water part 4 was formed. The block-shaped porous cation exchanger 15 thus produced has a length of 100 mm, a width of 100 mm, and a total packed bed height of 60 mm. From the center of the treated water introduction / distribution unit 3 to the center of the treated water collection unit 4 The effective ion exchanger layer height was 50 mm. Next, a cation exchange membrane (Nafion 350; manufactured by DuPont) is disposed on the other side of the block-shaped porous cation exchanger 15, and a cation exchange membrane (Nafion 350; manufactured by DuPont) is disposed on the one side. Set up. Further, a platinum mesh anode 10 was disposed on the outer surface of the cation exchange membrane, and a platinum mesh cathode 9 was disposed on the outer surface of the cation exchange membrane. The obtained structure was appropriately constructed in a case made of polyvinyl chloride having a nozzle and a lead wire outlet, and an electric decationized water production apparatus 20a was produced.
(電気式脱陰イオン水製造装置Aの作製)
参考例13の多孔質陰イオン交換体について、前記と同様の方法により充填材を得ると共に、被処理水導入分配部3及び処理水集水部4を形成してブロック状多孔質陰イオン交換体16を得た。次いで、ブロック状多孔質陰イオン交換体16の一側に陰イオン交換膜2(ネオセプタ AMH;徳山曹達社製)を、他側に陽イオン交換膜(Nafion 350;デュポン社製)をそれぞれ密着させて配設した。更に、陰イオン交換膜2の外側面に白金メッシュ状の陽極10を、陽イオン交換膜の外側面に白金メッシュ状の陰極9を配置した。なお、陽極10と陰イオン交換膜2の間にはポリテトラフロロエチレン製メッシュを介在させた。得られた構造体を、適宜ノズルやリード線取り出し口を有するポリ塩化ビニル製のケース内に構築し、電気式脱陰イオン水製造装置20bを作製した。
(Preparation of electric deanion water production apparatus A)
About the porous anion exchanger of Reference Example 13, a filler is obtained by the same method as described above, and the treated water introduction / distribution part 3 and the treated water collecting part 4 are formed to form a block-like porous anion exchanger. 16 was obtained. Next, an anion exchange membrane 2 (Neocepta AMH; manufactured by Tokuyama Soda Co., Ltd.) is adhered to one side of the block-shaped porous anion exchanger 16, and a cation exchange membrane (Nafion 350; manufactured by DuPont) is adhered to the other side. Arranged. Further, a platinum mesh anode 10 was disposed on the outer surface of the anion exchange membrane 2, and a platinum mesh cathode 9 was disposed on the outer surface of the cation exchange membrane. A polytetrafluoroethylene mesh was interposed between the anode 10 and the anion exchange membrane 2. The obtained structure was appropriately constructed in a case made of polyvinyl chloride having a nozzle and a lead wire outlet, and an electrical deionized water production apparatus 20b was produced.
(電気式脱イオン水製造装置Aの作製)
得られた電気式脱陽イオン水製造装置20aの処理水集水部4の開口と電気式脱陰イオン水製造装置20bの被処理水導入分配部3の開口を連通管5aで接続し、4つの電極室には被処理水の一部を独立して供給するようにした。また、電源として直流電源1個を用い、脱陽イオン室と脱陰イオン室が直列に接続されるように配線して、電気式脱イオン水製造装置20Aを得た。
(Production of electric deionized water production apparatus A)
The opening of the treated water collecting section 4 of the obtained electrical decationized water production apparatus 20a and the opening of the treated water introduction / distribution section 3 of the electrical deionized water production apparatus 20b are connected by a communication pipe 5a. A part of the water to be treated was supplied to each of the electrode chambers independently. In addition, a single DC power source was used as a power source, and the decation ion chamber and the deanion chamber were wired in series to obtain an electric deionized water production apparatus 20A.
(電気式脱陽イオン水製造装置Bの作製)
参考例8の多孔質陽イオン交換体に代えて、参考例17の多孔質陽イオン交換体を用いたこと以外は、電気式脱陽イオン水製造装置Aの作製方法と同様の方法により、電気式脱陽イオン水製造装置Bを作製した。
(Production of electric decationized water production apparatus B)
In place of the porous cation exchanger of Reference Example 8 except that the porous cation exchanger of Reference Example 17 was used, the electric decation water production apparatus A was manufactured by the same method as that of the electric decation water production apparatus A. A deionized water production apparatus B was prepared.
(電気式脱陰イオン水製造装置Bの作製)
参考例13の多孔質陰イオン交換体に代えて、参考例19の多孔質陰イオン交換体を用いたこと以外は、電気式脱陰イオン水製造装置Aの作製方法と同様の方法で、電気式脱陰イオン水製造装置Bを作製した。
(Production of electric deanion water production apparatus B)
A method similar to the method for producing the electric deanion water production apparatus A, except that the porous anion exchanger of Reference Example 19 was used instead of the porous anion exchanger of Reference Example 13, Formula deionized water production apparatus B was produced.
(電気式脱イオン水製造装置Bの作製)
電気式脱陽イオン水製造装置20aとして、電気式脱陽イオン水製造装置Bを使用し、電気式脱陰イオン水製造装置20bとして、電気式脱陰イオン水製造装置Bを使用した以外は、電気式脱イオン水製造装置Aと同様の方法により、電気式脱イオン水製造装置Bを作製した。
(Preparation of electric deionized water production apparatus B)
Except for using the electrical decationized water production apparatus B as the electrical decationized water production apparatus 20a and using the electrical deanion water production apparatus B as the electrical deionization water production apparatus 20b, An electric deionized water production apparatus B was produced by the same method as the electric deionized water production apparatus A.
(電気式脱イオン水製造装置Aの運転)
得られた電気式脱イオン水製造装置A(図の符号では20A)に、導電率120μS/cmの市水を被処理水として流速100l/hで連続通水し、4.5Aの直流電流を通電したところ、操作電圧は29Vで、導電率0.055μS/cmの処理水が得られ、本発明の電気式脱イオン水製造装置によって純度の高い純水が生成されることが示された。また、通水差圧は9.0kPaであった。
(Operation of electric deionized water production apparatus A)
The obtained electric deionized water production apparatus A (reference numeral 20A in the figure) was continuously treated with city water having a conductivity of 120 μS / cm as treated water at a flow rate of 100 l / h, and a direct current of 4.5 A was supplied. When energized, the operation voltage was 29 V, and treated water having an electrical conductivity of 0.055 μS / cm was obtained, indicating that pure water with high purity was produced by the electric deionized water production apparatus of the present invention. Further, the water flow differential pressure was 9.0 kPa.
(電気式脱イオン水製造装置Bの運転)
得られた電気式脱イオン水製造装置B(図の符号では20A)に、導電率120μS/cmの市水を被処理水として流速100l/hで連続通水し、4.5Aの直流電流を通電したところ、操作電圧は28Vで、導電率0.055μS/cmの処理水が得られ、本発明の電気式脱イオン水製造装置によって純度の高い純水が生成されることが示された。また、通水差圧は7.5kPaであった。
(Operation of electric deionized water production apparatus B)
The electric deionized water production apparatus B (20A in the figure) was continuously passed at a flow rate of 100 l / h with city water having a conductivity of 120 μS / cm as the treated water, and a direct current of 4.5 A was supplied. When energized, the operation voltage was 28 V, and treated water having an electrical conductivity of 0.055 μS / cm was obtained, indicating that pure water with high purity was produced by the electric deionized water production apparatus of the present invention. Moreover, the water flow differential pressure was 7.5 kPa.
比較例1
(電気式脱陽イオン水製造装置Cの作製)
参考例8の多孔質陽イオン交換体に代えて、参考例24の多孔質陽イオン交換体を用いたこと以外は、電気式脱陽イオン水製造装置Aの作製方法と同様の方法により、電気式脱陽イオン水製造装置Cを作製した。
Comparative Example 1
(Production of electric decationized water production apparatus C)
In place of the porous cation exchanger of Reference Example 8 and using the porous cation exchanger of Reference Example 24, the electric decation water production apparatus A was manufactured by the same method as that of the electric decationized water production apparatus A. A decationized water production apparatus C was prepared.
(電気式脱陰イオン水製造装置Cの作製)
参考例13の多孔質陰イオン交換体に代えて、参考例25の多孔質陰イオン交換体を用いたこと以外は、電気式脱陰イオン水製造装置Aの作製方法と同様の方法で、電気式脱陰イオン水製造装置Cを作製した。
(Preparation of electric deanion water production apparatus C)
A method similar to the method for producing the electric deanion water production apparatus A, except that the porous anion exchanger of Reference Example 25 was used instead of the porous anion exchanger of Reference Example 13, A type deionized water production apparatus C was prepared.
(電気式脱イオン水製造装置Cの作製)
電気式脱陽イオン水製造装置20aとして、電気式脱陽イオン水製造装置Cを使用し、電気式脱陰イオン水製造装置20bとして、電気式脱陰イオン水製造装置Cを使用した以外は、電気式脱イオン水製造装置Aと同様の方法により、電気式脱イオン水製造装置Cを作製した。
(Preparation of electric deionized water production apparatus C)
Except for using the electric decationized water production apparatus C as the electric decationized water production apparatus 20a and using the electric deanion water production apparatus C as the electric deionization water production apparatus 20b, An electric deionized water production apparatus C was produced in the same manner as the electric deionized water production apparatus A.
(電気式脱イオン水製造装置Cの運転)
得られた電気式脱イオン水製造装置C(図の符号では20A)に、導電率120μS/cmの市水を被処理水として流速100l/hで連続通水し、4.5Aの直流電流を通電したところ、操作電圧は36Vで、導電率0.1μS/cmの処理水が得られ、本発明の電気式脱イオン水製造装置によって純度の高い純水が生成されることが示された。また、通水差圧は120kPaであった。
(Operation of electric deionized water production apparatus C)
The obtained electric deionized water production apparatus C (20A in the figure) was continuously treated with city water having a conductivity of 120 μS / cm as the water to be treated at a flow rate of 100 l / h, and a direct current of 4.5 A was supplied. When energized, the operation voltage was 36 V, and treated water having an electrical conductivity of 0.1 μS / cm was obtained, indicating that pure water with high purity was produced by the electric deionized water production apparatus of the present invention. Moreover, the water flow differential pressure was 120 kPa.
1、101 陽イオン交換膜
2、102 陰イオン交換膜
3a、3b 第1、第2被処理水導入分配部
4a、4b 第1、第2処理水集水部
5a、5b 連通管
6 脱陽イオン室
7 脱陰イオン室
9、109 陰極
10、110 陽極
11、105 濃縮室
12、112 陰極室
13、113 陽極室
15 多孔質陽イオン交換体
16 多孔質陰イオン交換体
17、117 陽イオン交換膜、または陰イオン交換膜
20A〜20C 電気式脱イオン水製造装置
24 溝部
61骨格相
62空孔相
104 脱イオン室
106 脱イオンモジュール
107 枠体
108 リブ
111 仕切膜
B 濃縮水流入口
b 濃縮水流出口
C、D 電極水流入口
c、d 電極水流出口
DESCRIPTION OF SYMBOLS 1,101 Cation exchange membrane 2,102 Anion exchange membrane 3a, 3b 1st, 2nd to-be-processed water introduction distribution part 4a, 4b 1st, 2nd treated water collection part 5a, 5b Communication pipe 6 Decation Chamber 7 Deanion chamber 9, 109 Cathode 10, 110 Anode 11, 105 Concentration chamber 12, 112 Cathode chamber 13, 113 Anode chamber 15 Porous cation exchanger 16 Porous anion exchanger 17, 117 Cation exchange membrane Or anion exchange membranes 20A to 20C Electric deionized water production device 24 Groove 61 Skeletal phase 62 Hole phase 104 Deionization chamber 106 Deionization module 107 Frame 108 Rib 111 Partition membrane B Concentrated water inlet b Concentrated water outlet C , D Electrode water inlet c, d Electrode water outlet
Claims (8)
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とする電気式脱イオン水製造装置。 A decation chamber formed by filling an organic porous cation exchanger in a deionization chamber partitioned by an ion exchange membrane on one side and a cation exchange membrane on the other side; and on the outside of the ion exchange membrane on the one side An anode to be disposed; a cathode disposed outside the cation exchange membrane on the other side; and a first treated water disposed in the vicinity of the cation exchange membrane on the other side in the decation chamber. An electric decationized water production apparatus having an introduction / distribution unit and a first treated water collecting unit disposed in the vicinity of an ion exchange membrane on one side in the decation chamber, and anion exchange on one side A deionization chamber formed by filling a deionization chamber partitioned by a membrane and an ion exchange membrane on the other side with an organic porous anion exchanger, and an anode disposed outside the one side anion exchange membrane A cathode disposed outside the ion exchange membrane on the other side, and a first treated water collecting part of the electric decationized ion water production apparatus A second treated water introduction / distribution unit disposed near one anion exchange membrane in the deanion chamber connected by the first and second ion exchange membranes near the other ion exchange membrane in the deanion chamber. An electrical deionized water production apparatus having a second treated water collection unit installed,
The organic porous cation exchanger and the organic porous anion exchanger are continuous macropore structures in which bubble-shaped macropores overlap each other, and the overlapping portions form an opening having an average diameter of 30 to 300 μm in a wet state. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. In addition, in the SEM image of the cut surface of the continuous macropore structure (dry body), the skeleton part area that appears in the cross section is 25 to 50% in the image region, apparatus.
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とする電気式脱イオン水製造装置。 A decation chamber formed by filling an organic porous cation exchanger in a deionization chamber partitioned by an ion exchange membrane on one side and a cation exchange membrane on the other side; and on the outside of the ion exchange membrane on the one side An anode to be disposed; a cathode disposed outside the cation exchange membrane on the other side; and a first treated water disposed in the vicinity of the cation exchange membrane on the other side in the decation chamber. An electric decationized water production apparatus having an introduction / distribution unit and a first treated water collecting unit disposed in the vicinity of an ion exchange membrane on one side in the decation chamber, and anion exchange on one side A deionization chamber formed by filling a deionization chamber partitioned by a membrane and an ion exchange membrane on the other side with an organic porous anion exchanger, and an anode disposed outside the one side anion exchange membrane A cathode disposed outside the ion exchange membrane on the other side, and a first treated water collecting part of the electric decationized ion water production apparatus A second treated water introduction / distribution unit disposed near one anion exchange membrane in the deanion chamber connected by the first and second ion exchange membranes near the other ion exchange membrane in the deanion chamber. An electrical deionized water production apparatus having a second treated water collection unit installed,
An aromatic vinyl polymer in which the organic porous cation exchanger and the organic porous anion exchanger contain 0.3 to 5.0 mol% of a crosslinked structural unit in all the structural units into which an ion exchange group is introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. An electrical deionized water production apparatus.
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とする電気式脱イオン水製造装置。 Organic porous material in a first deionization chamber defined by a cation exchange membrane on one side and an intermediate cation exchange membrane formed between the cation exchange membrane on one side and the anion exchange membrane on the other side An organic porous anion exchanger is filled in a decation chamber filled with a cation exchanger, and a second deion chamber partitioned by the anion exchange membrane on the other side and the intermediate cation exchange membrane. A deionization chamber, a cathode disposed outside the cation exchange membrane on one side, an anode disposed outside the anion exchange membrane on the other side, and the decationization chamber A first treated water introduction / distribution unit disposed near the cation exchange membrane on one side, and a first treated water collection unit disposed near the intermediate cation exchange membrane in the decation chamber The second treated water conduit disposed near the anion exchange membrane on the other side in the deionization chamber connected to the first treated water collecting section by a communication pipe A distribution unit, there is provided a second processing water catchment portion which is disposed in the intermediate cation exchange membrane vicinity in dehydration anion chamber, and
The organic porous cation exchanger and the organic porous anion exchanger are continuous macropore structures in which bubble-shaped macropores overlap each other, and the overlapping portions form an opening having an average diameter of 30 to 300 μm in a wet state. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. In addition, in the SEM image of the cut surface of the continuous macropore structure (dry body), the skeleton part area that appears in the cross section is 25 to 50% in the image region, apparatus.
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とする電気式脱イオン水製造装置。 Organic porous material in a first deionization chamber defined by a cation exchange membrane on one side and an intermediate cation exchange membrane formed between the cation exchange membrane on one side and the anion exchange membrane on the other side An organic porous anion exchanger is filled in a decation chamber filled with a cation exchanger, and a second deion chamber partitioned by the anion exchange membrane on the other side and the intermediate cation exchange membrane. A deionization chamber, a cathode disposed outside the cation exchange membrane on one side, an anode disposed outside the anion exchange membrane on the other side, and the decationization chamber A first treated water introduction / distribution unit disposed near the cation exchange membrane on one side, and a first treated water collection unit disposed near the intermediate cation exchange membrane in the decation chamber The second treated water conduit disposed near the anion exchange membrane on the other side in the deionization chamber connected to the first treated water collecting section by a communication pipe A distribution unit, there is provided a second processing water catchment portion which is disposed in the intermediate cation exchange membrane vicinity in dehydration anion chamber, and
An aromatic vinyl polymer in which the organic porous cation exchanger and the organic porous anion exchanger contain 0.3 to 5.0 mol% of a crosslinked structural unit in all the structural units into which an ion exchange group is introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. An electrical deionized water production apparatus.
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造体であり、全細孔容積0.5〜5ml/g、水湿潤状態での体積当りのイオン交換容量0.4〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布しており、且つ該連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25〜50%であることを特徴とする電気式脱イオン水製造装置。 Organic porous cation exchange in a first deionization chamber partitioned by an ion exchange membrane on one side and an intermediate cation exchange membrane formed between the ion exchange membrane on one side and the ion exchange membrane on the other side Concentration partitioned by a decation chamber filled with a body, the intermediate cation exchange membrane, and an intermediate anion exchange membrane formed between the intermediate cation exchange membrane and the ion exchange membrane on the other side A deionization chamber formed by filling an organic porous anion exchanger in a second deionization chamber partitioned by the chamber, the ion exchange membrane on the other side and the intermediate anion exchange membrane, and the ion on the one side An anode disposed outside the exchange membrane, a cathode disposed outside the ion exchange membrane on the other side, and a first coating disposed in the vicinity of the intermediate cation exchange membrane in the decation chamber. A treated water introduction / distribution section, and a first treated water collection section disposed in the vicinity of the ion exchange membrane on one side in the decation chamber. A second treated water introduction / distribution unit disposed in the vicinity of the intermediate anion exchange membrane in the deanion chamber connected to the first treated water collecting unit by a communication pipe; A second treated water collection section disposed near the ion exchange membrane on the other side,
The organic porous cation exchanger and the organic porous anion exchanger are continuous macropore structures in which bubble-shaped macropores overlap each other, and the overlapping portions form an opening having an average diameter of 30 to 300 μm in a wet state. The total pore volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.4 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. In addition, in the SEM image of the cut surface of the continuous macropore structure (dry body), the skeleton part area that appears in the cross section is 25 to 50% in the image region, apparatus.
該有機多孔質陽イオン交換体及び該有機多孔質陰イオン交換体が、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量0.3〜5mg当量/mlであり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とする電気式脱イオン水製造装置。 Organic porous cation exchange in a first deionization chamber partitioned by an ion exchange membrane on one side and an intermediate cation exchange membrane formed between the ion exchange membrane on one side and the ion exchange membrane on the other side Concentration partitioned by a decation chamber filled with a body, the intermediate cation exchange membrane, and an intermediate anion exchange membrane formed between the intermediate cation exchange membrane and the ion exchange membrane on the other side A deionization chamber formed by filling an organic porous anion exchanger in a second deionization chamber partitioned by the chamber, the ion exchange membrane on the other side and the intermediate anion exchange membrane, and the ion on the one side An anode disposed outside the exchange membrane, a cathode disposed outside the ion exchange membrane on the other side, and a first coating disposed in the vicinity of the intermediate cation exchange membrane in the decation chamber. A treated water introduction / distribution section, and a first treated water collection section disposed in the vicinity of the ion exchange membrane on one side in the decation chamber. A second treated water introduction / distribution unit disposed in the vicinity of the intermediate anion exchange membrane in the deanion chamber connected to the first treated water collecting unit by a communication pipe; A second treated water collection section disposed near the ion exchange membrane on the other side,
An aromatic vinyl polymer in which the organic porous cation exchanger and the organic porous anion exchanger contain 0.3 to 5.0 mol% of a crosslinked structural unit in all the structural units into which an ion exchange group is introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton having a thickness of 1 to 60 μm and three-dimensionally continuous pores having a diameter of 10 to 100 μm between the skeletons, The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume in a wet state of water is 0.3 to 5 mg equivalent / ml, and the ion exchange groups are uniformly distributed in the porous ion exchanger. An electrical deionized water production apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010027663A JP5431194B2 (en) | 2009-03-12 | 2010-02-10 | Electric deionized water production equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009060152 | 2009-03-12 | ||
JP2009060152 | 2009-03-12 | ||
JP2010027663A JP5431194B2 (en) | 2009-03-12 | 2010-02-10 | Electric deionized water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010234360A JP2010234360A (en) | 2010-10-21 |
JP5431194B2 true JP5431194B2 (en) | 2014-03-05 |
Family
ID=43089220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010027663A Expired - Fee Related JP5431194B2 (en) | 2009-03-12 | 2010-02-10 | Electric deionized water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5431194B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5030181B2 (en) * | 2009-05-13 | 2012-09-19 | オルガノ株式会社 | Electric deionized water production equipment |
JP5048712B2 (en) * | 2009-05-13 | 2012-10-17 | オルガノ株式会社 | Electric deionized water production equipment |
JP5030182B2 (en) * | 2009-05-14 | 2012-09-19 | オルガノ株式会社 | Electric deionized liquid production equipment |
JP5586979B2 (en) * | 2009-05-14 | 2014-09-10 | オルガノ株式会社 | Electric deionized water production apparatus and operation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3966501B2 (en) * | 2002-03-18 | 2007-08-29 | オルガノ株式会社 | Ultrapure water production equipment |
JP3773190B2 (en) * | 2002-05-15 | 2006-05-10 | オルガノ株式会社 | Electric deionized water production equipment |
JP5290603B2 (en) * | 2007-05-28 | 2013-09-18 | オルガノ株式会社 | Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter |
JP5208550B2 (en) * | 2007-06-12 | 2013-06-12 | オルガノ株式会社 | Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter |
JP4931006B2 (en) * | 2007-08-03 | 2012-05-16 | オルガノ株式会社 | Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production |
-
2010
- 2010-02-10 JP JP2010027663A patent/JP5431194B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010234360A (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3773190B2 (en) | Electric deionized water production equipment | |
JP5383310B2 (en) | Deionization module and electric deionized water production apparatus | |
KR102542839B1 (en) | Ultrapure water production method, ultrapure water production system, and ion exchanger charging module | |
JP5685632B2 (en) | Ion adsorption module and water treatment method | |
JP5864649B2 (en) | Electric deionized water production equipment | |
JP5486204B2 (en) | Method and apparatus for detecting anion in liquid | |
JP5864648B2 (en) | Deionization module and electric deionized water production apparatus | |
JP5116710B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP5030181B2 (en) | Electric deionized water production equipment | |
JP5431196B2 (en) | Electric deionized water production apparatus and operation method thereof | |
JP5431194B2 (en) | Electric deionized water production equipment | |
JP5137896B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JP5431195B2 (en) | Electric deionized water production equipment | |
JP5048712B2 (en) | Electric deionized water production equipment | |
JP5431197B2 (en) | Electric deionized liquid production equipment | |
JP5718435B2 (en) | Ion chromatography device column, suppressor and ion chromatography device | |
WO2010104007A1 (en) | Deionization module and electric device for producing deionized water | |
JP5586979B2 (en) | Electric deionized water production apparatus and operation method thereof | |
JP5497468B2 (en) | Electric deionized water production equipment | |
JP5030182B2 (en) | Electric deionized liquid production equipment | |
JP5648106B2 (en) | Method and apparatus for detecting anion in liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131204 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5431194 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |