JP5430783B2 - Fresh water storage system - Google Patents
Fresh water storage system Download PDFInfo
- Publication number
- JP5430783B2 JP5430783B2 JP2013059387A JP2013059387A JP5430783B2 JP 5430783 B2 JP5430783 B2 JP 5430783B2 JP 2013059387 A JP2013059387 A JP 2013059387A JP 2013059387 A JP2013059387 A JP 2013059387A JP 5430783 B2 JP5430783 B2 JP 5430783B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- fresh water
- lens
- fresh
- underground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013505 freshwater Substances 0.000 title claims description 137
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 177
- 230000000903 blocking effect Effects 0.000 claims description 31
- 230000004888 barrier function Effects 0.000 claims description 9
- 239000003673 groundwater Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 description 58
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 238000010276 construction Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000440 bentonite Substances 0.000 description 5
- 229910000278 bentonite Inorganic materials 0.000 description 5
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 5
- 239000004568 cement Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000014653 Carica parviflora Nutrition 0.000 description 4
- 241000243321 Cnidaria Species 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/40—Protecting water resources
- Y02A20/406—Aquifer recharge
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Description
本発明は、透水性の地盤を有する島において、淡水レンズの淡水を取水する取水システムと、この取水システムが設置された淡水貯留取水システムと、に関する。 The present invention relates to a water intake system for taking fresh water from a fresh water lens on an island having a water-permeable ground, and a fresh water storage water intake system in which the water intake system is installed.
一般に、水の浸透しやすい石灰岩で構成されたサンゴ島などでは、周囲の海水(塩水)は島の下側まで浸入していることが知られている。 In general, in coral islands composed of limestone that easily penetrates water, it is known that the surrounding seawater (salt water) penetrates to the bottom of the island.
サンゴ島などの水の浸透しやすい島に降水があると、雨水は、表流水として海へ流出するとともに、地盤中に浸透することになる。そして、地盤中へ浸透した雨水は、塩水と淡水との密度差によって、塩水の上に浮かんだ状態となって溜まることが知られている。 If there is precipitation on coral islands or other islands where water can easily penetrate, the rainwater will flow into the sea as surface water and penetrate into the ground. It is known that rainwater that has penetrated into the ground floats on the salt water and accumulates due to the density difference between the salt water and the fresh water.
この塩水の上に溜まった淡水は、島の中央に近いほど厚みがあり、海岸へ近づくにつれて薄くなるため、その形状から淡水レンズと呼ばれており、島に住む人々によって様々に利用されている。 The fresh water collected on the salt water is thicker as it gets closer to the center of the island and becomes thinner as it approaches the coast, so it is called a fresh water lens because of its shape, and it is used in various ways by people living on the island. .
一方、この淡水レンズの内部には、海へと向かう流れがあるため、長期間降雨がない場合などには、淡水レンズが消滅してしまうおそれや、淡水レンズの層厚が薄くなるため取水した際に塩水が混入するおそれがある。 On the other hand, since there is a flow toward the sea inside this freshwater lens, when there is no rainfall for a long period of time, the freshwater lens may disappear or the layer thickness of the freshwater lens will be reduced. There is a risk of salt water mixing.
このような島に地下水を貯留させる方法として、いわゆる地下ダムが知られている。 A so-called underground dam is known as a method for storing groundwater in such an island.
この地下ダムでは、海水面より上に帯水層がある場合、止水壁によって地下水を堰き止めることによって、淡水の貯留量を増加させることができる。 In this subsurface dam, when there is an aquifer above the sea level, the amount of fresh water stored can be increased by blocking the groundwater with a water barrier.
また、特許文献1では、淡水レンズの淡水を取水する方法として、立孔の下位部から水平放射状に削孔された注水孔とこの注水孔の上方の集水孔とを備える取水施設が開示されている。 Further, Patent Document 1 discloses a water intake facility that includes a water injection hole that is drilled horizontally from a lower portion of a vertical hole and a water collection hole above the water injection hole as a method of taking fresh water from a fresh water lens. ing.
この構成によれば、供給水が注水孔から淡水レンズ内に送水され、淡水レンズが縮小することがないため、取水した際に塩水が混入することを防止できる。
しかしながら、上記した地下ダムは、海水面より上に帯水層がない場合には設置することができない。 However, the above-mentioned underground dam cannot be installed when there is no aquifer above the sea level.
また、上記した特許文献1の構成では、注水孔や集水孔が必要になるうえに、水質調整された供給水が必要になるという問題があった。 Moreover, in the structure of above-mentioned patent document 1, in addition to the water injection hole and the water collection hole needed, there existed a problem that the supply water adjusted water quality was needed.
そこで、本発明は、海水面より上に不透水層がない島においても地下水を有効に利用できる取水システムと、この取水システムを備える淡水貯留取水システムと、を提供することを目的としている。 Therefore, an object of the present invention is to provide a water intake system that can effectively use groundwater even on an island that does not have an impermeable layer above the seawater surface, and a fresh water storage water intake system that includes this water intake system.
前記目的を達成するために、本発明の取水システムは、地下の塩水の上方に形成された淡水域の淡水を取水する取水システムであって、互いに近接する一対の井戸が構築され、一方の井戸のストレーナは前記淡水域の淡水に挿入されるとともに、他方の井戸のストレーナは前記塩水に挿入されて、両方の前記ストレーナを通じて前記淡水及び前記塩水を取水することを特徴とする。 In order to achieve the above object, a water intake system according to the present invention is a water intake system for taking fresh water in a fresh water area formed above underground salt water, wherein a pair of wells adjacent to each other is constructed, and one well is constructed. The strainer is inserted into the fresh water in the fresh water area, and the strainer of the other well is inserted into the salt water to take in the fresh water and the salt water through both the strainers.
また、本発明の淡水貯留取水システムは、上記の取水システムと、地下の塩水の上方に形成された淡水域を囲む地下止水壁と、を備え、前記一方の井戸のストレーナは前記地下止水壁によって囲まれて厚みが増した前記淡水域の淡水に挿入され、前記他方の井戸のストレーナは前記塩水に挿入されて、両方の前記ストレーナを通じて前記淡水及び前記塩水を取水することを特徴とする。 The fresh water storage and intake system of the present invention includes the above intake system and an underground water barrier wall surrounding the fresh water area formed above the underground salt water, and the strainer of the one well is the underground water stop The fresh water is inserted into fresh water in the fresh water area surrounded by a wall and increased in thickness, and the strainer of the other well is inserted into the salt water, and the fresh water and the salt water are taken in through both the strainers. .
さらに、前記地下止水壁の下端は、不透水性の地盤より上に位置することが好ましい。 Furthermore, it is preferable that the lower end of the underground water blocking wall is located above the water-impermeable ground.
そして、前記地下止水壁の上端は、地下水位よりも上に位置することが好ましい。 And it is preferable that the upper end of the said underground water stop wall is located above a groundwater level.
このように、本発明の取水システムは、互いに近接する一対の井戸が構築され、一方の井戸のストレーナは淡水域の淡水に挿入されるとともに、他方の井戸のストレーナは塩水に挿入されて、両方のストレーナを通じて淡水及び塩水を取水する。 In this way, the water intake system of the present invention has a pair of wells that are close to each other, and the strainer of one well is inserted into the freshwater in the freshwater area and the strainer of the other well is inserted into the saltwater. Fresh water and salt water are taken through the strainer.
したがって、両方の井戸から取水することで、塩水と淡水との境界付近において井戸に向かう鉛直方向の流れが相殺されるため、取水の際に塩水が混入することを防止できる。 Therefore, by taking water from both wells, the vertical flow toward the well is canceled in the vicinity of the boundary between the salt water and the fresh water, so that the salt water can be prevented from being mixed during the water intake.
また、本発明の淡水貯留取水システムは、上記の取水システムと、地下の塩水の上方に形成された淡水域を囲む地下止水壁と、を備え、一方の井戸のストレーナは地下止水壁によって囲まれて厚みが増した淡水域の淡水に挿入され、他方の井戸のストレーナは塩水に挿入されて、両方のストレーナを通じて淡水及び塩水を取水する。 The fresh water storage and intake system of the present invention includes the above intake system and an underground water barrier surrounding the fresh water area formed above the underground salt water, and the strainer of one well is formed by the underground water barrier. It is inserted into fresh water in a fresh water area that is surrounded and increased in thickness, and the strainer of the other well is inserted into salt water, and fresh water and salt water are taken through both strainers.
したがって、淡水の貯留量が増加するとともに、淡水レンズの厚みが増えることで、いっそう取水の際に塩水が混入しにくくなる。 Accordingly, the amount of fresh water stored is increased and the thickness of the fresh water lens is increased, so that salt water is less likely to be mixed during water intake.
さらに、地下止水壁の下端は、不透水性の地盤より上に位置することで、地下止水壁の下から塩水を吐き出すことができる。 Furthermore, the lower end of the underground water barrier wall is located above the impermeable ground, so that salt water can be discharged from under the underground water barrier wall.
そして、地下止水壁の上端は、地下水位よりも上に位置することで、浸透する雨水を効率よく貯留することができる。 And the upper end of a underground water stop wall can be stored efficiently from the infiltrated rain water by being located above a groundwater level.
以下、本発明の最良の実施の形態について図面を参照して説明する。 The best mode for carrying out the present invention will be described below with reference to the drawings.
まず、図1を用いて本実施の形態の淡水貯留取水システムSの全体構成を説明する。 First, the whole structure of the fresh water storage water intake system S of this Embodiment is demonstrated using FIG.
本実施の形態の淡水貯留取水システムSは、図1,2に示すように、石灰岩などの透水係数の比較的大きい地盤62を有する島60を囲む地下止水壁4と、地下の塩水51の上方に凸レンズ状に形成された淡水域としての淡水レンズLの淡水50を取水する取水システム1と、を備えている。 As shown in FIGS. 1 and 2, the fresh water storage and intake system S of the present embodiment includes an underground water blocking wall 4 that surrounds an island 60 having a ground 62 with a relatively high permeability such as limestone, and underground salt water 51. A water intake system 1 for taking in fresh water 50 of a fresh water lens L as a fresh water area formed in a convex lens shape upward.
この島60は、透水係数が大きく水が浸透しやすい石灰岩などで構成されたいわゆるサンゴ島である。なお、この島60としては、サンゴ島以外でも、亀裂の多い岩盤などの透水性の地盤62を備えた島であれば、地盤62の組成はどのようなものであってもよい。 This island 60 is a so-called coral island made of limestone or the like having a high permeability coefficient and allowing water to easily penetrate. The island 60 may have any composition other than the coral island as long as it is an island having a water-permeable ground 62 such as a rock with many cracks.
前記したように、このような水の浸透しやすい島60に降水があると、雨水は、地表61を流れる表流水として海へ流出するとともに、透水性の地盤62中に浸透することになる。そして、地盤62中へ浸透した雨水は、塩水51と淡水50との密度差によって、塩水51の上にレンズ状に浮かんだ淡水レンズLとなっている。 As described above, when there is precipitation on the island 60 where water easily permeates, the rainwater flows out into the sea as surface water flowing on the ground surface 61 and permeates into the permeable ground 62. The rainwater that has penetrated into the ground 62 becomes a freshwater lens L that floats in a lens shape on the saltwater 51 due to the density difference between the saltwater 51 and the freshwater 50.
すなわち、淡水レンズLは、島60の中央に近いほど厚みがあり、海岸へ近づくにつれて薄くなるため、その形状から淡水レンズLと呼ばれており、島60に住む人々によって飲料用水や農業用水などとして利用されている。加えて、この淡水レンズLは、取水によって消失した場合、回復するために長期間要することが知られている。 That is, the fresh water lens L is thicker as it is closer to the center of the island 60 and becomes thinner as it approaches the coast. Therefore, the fresh water lens L is called the fresh water lens L because of its shape. It is used as. In addition, it is known that this fresh water lens L takes a long time to recover when it disappears due to water intake.
また、本実施の形態の地下止水壁4は、図1,2に示すように、地盤62とセメントミルクとを混練したソイルセメントや矢板などの止水性を有する材料によって、地表面61下に連続した壁状に形成されるもので、淡水レンズLの周囲を隙間なく囲む略円形状に構築される。 In addition, as shown in FIGS. 1 and 2, the underground water blocking wall 4 of the present embodiment is formed below the ground surface 61 by a material having water blocking properties such as soil cement and sheet pile obtained by kneading the ground 62 and cement milk. It is formed in a continuous wall shape, and is constructed in a substantially circular shape surrounding the fresh water lens L without a gap.
なお、この地下止水壁4の平面形状としては、淡水レンズLを隙間なく囲むものに限定されるものではなく、一部に通水のための通水部などがあってもよいし、一重に限らず二重や三重のものでもよく、淡水レンズLを囲むことで淡水50の厚みを増加させる効果があればどのような形状でもよい。 In addition, the planar shape of the underground water blocking wall 4 is not limited to the one that surrounds the fresh water lens L without a gap, and there may be a water passage portion for water passage or the like. However, the shape may be double or triple, and any shape may be used as long as the thickness of the fresh water 50 is increased by surrounding the fresh water lens L.
さらに、この地下止水壁4の上端41の位置は、降雨の際に雨水が直接に海64に流出せずに捕捉できるように自然の地下水位53よりも1m程度は高い位置にあることが好ましいとともに、大雨の際に地表61が冠水しないように地表面61よりも低い位置にあることが好ましい。 Furthermore, the position of the upper end 41 of the underground water blocking wall 4 may be about 1 m higher than the natural groundwater level 53 so that rainwater can be captured without flowing directly into the sea 64 during rain. It is preferable that the ground surface 61 is located at a position lower than the ground surface 61 so as not to be submerged during heavy rain.
また、地下止水壁4の下端42の位置は、淡水レンズLの厚みを増加させるために、自然の状態の淡水レンズLの淡水50と塩水51との境界52より深い位置にあることが好ましいとともに、塩水51の吐き出し口を確保するために、透水性の地盤62の下方の不透水性の地盤63より浅い位置にあることが好ましい。 Moreover, in order to increase the thickness of the freshwater lens L, the position of the lower end 42 of the underground water blocking wall 4 is preferably deeper than the boundary 52 between the freshwater 50 and the saltwater 51 of the natural freshwater lens L. At the same time, in order to secure a discharge port for the salt water 51, it is preferable to be in a position shallower than the water-impermeable ground 63 below the water-permeable ground 62.
そして、本実施の形態の取水システム1は、図1,2に示すように、互いに近接する一対の井戸2,3と、排水路32と、を備えている。 And the water intake system 1 of this Embodiment is equipped with the pair of wells 2 and 3 which adjoin each other, and the drainage channel 32, as shown to FIG.
この一方の井戸2は、淡水レンズLを囲む地下止水壁4の内側に設置されるもので、図3に示すように、樹脂などによって円筒状に形成された井戸管23と、井戸管23の下端近傍に設けられたストレーナ21と、ストレーナ21の周囲を埋めるケイ砂24と、ケイ砂24の上方を遮水するベントナイトペレット25と、ベントナイトペレット25の上方を埋めるセメントミルク26と、井戸管23に挿入された通水管28と、通水管28の下端に取り付けられた水中ポンプ27と、によって主に形成されている。 This one well 2 is installed inside the underground water blocking wall 4 surrounding the freshwater lens L. As shown in FIG. 3, a well pipe 23 formed in a cylindrical shape with resin or the like, and a well pipe 23 A strainer 21 provided in the vicinity of the lower end of the steel, a silica sand 24 filling the periphery of the strainer 21, a bentonite pellet 25 for shielding water above the silica sand 24, a cement milk 26 filling the top of the bentonite pellet 25, and a well pipe The water pipe 28 inserted into the water pipe 23 and the submersible pump 27 attached to the lower end of the water pipe 28 are mainly formed.
また、他方の井戸3は、上記した一方の井戸2に近接して淡水レンズLを囲む地下止水壁4の内側に設置されるもので、図3に示すように、ストレーナ31が淡水レンズLの下方の塩水51の高さに設けられ、排水路32が接続されている他は、上記した一方の井戸2と略同一の構成を備えている。 Further, the other well 3 is installed inside the underground water blocking wall 4 surrounding the freshwater lens L in the vicinity of the one well 2 described above, and as shown in FIG. It has substantially the same configuration as the one well 2 except that it is provided at the height of the salt water 51 below and connected to the drainage channel 32.
このストレーナ21,31は、小石やゴミなどが井戸管23,33内に取り込まれないように、金属や樹脂によって網目状などのスクリーンとして形成されるもので、井戸管23,33の下端に嵌め合わされて固定されている。 The strainers 21 and 31 are formed as a mesh-like screen with metal or resin so that pebbles and dust are not taken into the well tubes 23 and 33, and are fitted to the lower ends of the well tubes 23 and 33. Combined and fixed.
そして、本実施の形態の淡水50を取水する一方の井戸2のストレーナ21は、淡水レンズLの淡水50に挿入され、塩水51を取水する他方の井戸3のストレーナ31は、淡水レンズLの下方の塩水51に挿入されている。 The strainer 21 of one well 2 that takes in the fresh water 50 of the present embodiment is inserted into the fresh water 50 of the fresh water lens L, and the strainer 31 of the other well 3 that takes in the salt water 51 is below the fresh water lens L. The salt water 51 is inserted.
加えて、この一対のストレーナ21,31は、淡水50と塩水51との境界52からの距離が略同一になるように設けられている。 In addition, the pair of strainers 21 and 31 are provided such that the distances from the boundary 52 between the fresh water 50 and the salt water 51 are substantially the same.
さらに、水中ポンプ27,37は相互に連動するように制御されているため、略同一の圧力で吸い上げることで、略同一の通水面積を有するストレーナ21,31を通じて、略同時に略同量の淡水50と塩水51とを吸い上げることができる。 Furthermore, since the submersible pumps 27 and 37 are controlled so as to be linked to each other, by sucking up at substantially the same pressure, the substantially the same amount of fresh water is passed through the strainers 21 and 31 having substantially the same water flow area. 50 and salt water 51 can be sucked up.
また、塩水51を吸い上げるための井戸3に接続される排水路32は、塩水51を取水する他方の井戸3を通じて吸い上げた塩水51を海64に排水するために、井戸3から海64まで延設されている。 Further, the drainage channel 32 connected to the well 3 for sucking up the salt water 51 extends from the well 3 to the sea 64 in order to drain the salt water 51 sucked up through the other well 3 that takes in the salt water 51 to the sea 64. Has been.
次に、本実施の形態の取水システム1の井戸2,3のうち、一方の井戸2の施工順序について、図4を参照しながら説明する。なお、他方の井戸3の施工順序は、ストレーナ31の高さが塩水51の高さに設けられることを除いて略同様であるから説明は省略する。 Next, the construction sequence of one well 2 out of the wells 2 and 3 of the water intake system 1 of the present embodiment will be described with reference to FIG. In addition, since the construction order of the other well 3 is substantially the same except that the height of the strainer 31 is provided at the height of the salt water 51, the description is omitted.
まず、図4(a)に示すように、掘削機械71によって、透水性の地盤62を円柱状に削孔し、孔壁が崩壊しないように保護するための円筒状のケーシング72を建て込む。 First, as shown to Fig.4 (a), the cylindrical casing 72 for drilling the water-permeable ground 62 in a column shape with the excavation machine 71, and protecting so that a hole wall may not collapse | fold is built.
つづいて、図4(b)に示すように、ケーシング72の内側に、先端にストレーナ21を取り付けた井戸管23を建て込む。ここにおいて、このストレーナ21は、淡水50と塩水51の境界52より上に位置するように設置される。 Subsequently, as shown in FIG. 4B, the well pipe 23 with the strainer 21 attached to the tip is built inside the casing 72. Here, the strainer 21 is installed so as to be located above the boundary 52 between the fresh water 50 and the salt water 51.
次に、図4(c)に示すように、ケーシング72を引き抜きながら、ストレーナ21の周囲にケイ砂24を充填する。 Next, as shown in FIG. 4C, silica sand 24 is filled around the strainer 21 while the casing 72 is pulled out.
そして、図4(d)に示すように、ケーシング72を引き抜きながら、ケイ砂24の上に遮水のためのベントナイトペレット25を50cm程度の厚みで充填し、ベントナイトペレット25の上にセメントミルク26を充填する。 Then, as shown in FIG. 4 (d), while pulling out the casing 72, the bentonite pellets 25 for water shielding are filled on the silica sand 24 with a thickness of about 50 cm, and the cement milk 26 is placed on the bentonite pellets 25. Fill.
最後に、井戸2の井戸管23には、下端に水中ポンプ27が取り付けられた通水管28が挿入されて、井戸2の施工が完了する(図3参照)。 Finally, the water pipe 28 with the submersible pump 27 attached to the lower end is inserted into the well pipe 23 of the well 2 to complete the construction of the well 2 (see FIG. 3).
この他、塩水51を取水する他方の井戸3には、取水した塩水51を海64に排水できるように、通水管38に排水路32が接続される(図1,2,3参照)。 In addition, a drainage channel 32 is connected to the water conduit 38 so that the saltwater 51 taken in can be drained into the sea 64 in the other well 3 that takes in the saltwater 51 (see FIGS. 1, 2, and 3).
次に、本実施の形態の取水システム1を備える淡水貯留取水システムSの作用について、図5,6を参照しながら説明する。 Next, the effect | action of the freshwater storage water intake system S provided with the water intake system 1 of this Embodiment is demonstrated, referring FIG.
このように、本実施の形態の取水システム1は、互いに近接する一対の井戸2,3が構築され、一方の井戸2のストレーナ21は淡水レンズLの淡水50の高さに位置し、他方の井戸3のストレーナ31は淡水レンズLの下方の塩水51の高さに位置して、両方のストレーナ21,31を通じて淡水50及び塩水51から取水する。 Thus, in the water intake system 1 of the present embodiment, a pair of wells 2 and 3 that are close to each other is constructed, and the strainer 21 of one well 2 is located at the height of the fresh water 50 of the fresh water lens L, and the other The strainer 31 of the well 3 is located at the height of the salt water 51 below the fresh water lens L, and takes water from the fresh water 50 and the salt water 51 through both strainers 21 and 31.
したがって、両方の井戸2,3から取水することで、塩水51と淡水50との境界52付近において井戸2,3に向かう鉛直方向の流れが相殺され、淡水50を取水する際に塩水51が混入することを防止できる。 Therefore, by taking water from both the wells 2 and 3, the vertical flow toward the wells 2 and 3 near the boundary 52 between the salt water 51 and the fresh water 50 is offset, and the salt water 51 is mixed when taking the fresh water 50. Can be prevented.
すなわち、図6(a)に示すように、一つの井戸2Aを用いて淡水レンズLの淡水50を取水する場合には、図5(a)に示すように、図中において白丸で示したストレーナ21位置を中心として同心円状に流れ場が形成される。 That is, as shown in FIG. 6A, when the fresh water 50 of the fresh water lens L is taken using one well 2A, as shown in FIG. 5A, the strainer indicated by a white circle in the drawing. A flow field is formed concentrically around the 21 position.
したがって、ストレーナ21の下方では、ストレーナ21に向かう上向きの流れが生ずることになる。そうすると、図6(a)に示すように、淡水50と塩水51との境界52が楔状に淡水レンズLに引き込まれることとなり、最終的には取水の際に塩水51を取水してしまうことになる。 Therefore, an upward flow toward the strainer 21 is generated below the strainer 21. Then, as shown in FIG. 6A, the boundary 52 between the fresh water 50 and the salt water 51 is drawn into the fresh water lens L in a wedge shape, and eventually the salt water 51 is taken in at the time of water intake. Become.
これに対して、本実施の形態の取水システム1では、図5(b)に示すように、図中において上側の白丸で示した一方のストレーナ21と下側の白丸で示した他方のストレーナ31との中間の高さに、鉛直方向の流速がない流れ場が形成されている。 On the other hand, in the water intake system 1 of the present embodiment, as shown in FIG. 5 (b), one strainer 21 indicated by an upper white circle and the other strainer 31 indicated by a lower white circle in the drawing. A flow field having no vertical flow velocity is formed at an intermediate height.
つまり、両方のストレーナ21,31の間では、鉛直方向の流速が打ち消し合って、水平方向の流速のみが残留することになる。そうすると、前記したような淡水レンズLに対する塩水51の楔状の引き込みは生じず、図6(b)に示すように淡水レンズLの厚みが一定の割合で減少するようになる。 That is, between the strainers 21 and 31, the vertical flow rates cancel each other, and only the horizontal flow rate remains. Then, the wedge-shaped pulling of the salt water 51 into the fresh water lens L as described above does not occur, and the thickness of the fresh water lens L decreases at a constant rate as shown in FIG. 6B.
すなわち、井戸2,2Aを通じて、略同一量の淡水50を取水した場合には、図6(a)の従来の取水システムと比べて、図6(b)に示す本実施の形態の取水システム1のほうが、井戸2,2Aの近傍の淡水レンズLの層厚の減少量が抑制される。したがって、淡水50の取水時に塩水51の混入を防止できることになる。 That is, when approximately the same amount of fresh water 50 is taken through the wells 2 and 2A, the intake system 1 of the present embodiment shown in FIG. 6B is compared with the conventional intake system shown in FIG. This suppresses the decrease in the layer thickness of the fresh water lens L in the vicinity of the wells 2 and 2A. Therefore, mixing of the salt water 51 can be prevented when the fresh water 50 is taken.
この場合、それぞれの井戸2,3からの取水量を地盤62の透水係数などを考慮して調整することで、鉛直流速が平衡する深さを調整できるため、淡水レンズLの層厚が減少した際にも、これに対応して塩水51の引き込みを防止できる。 In this case, the depth at which the vertical flow velocity is balanced can be adjusted by adjusting the water intake from each of the wells 2 and 3 in consideration of the permeability coefficient of the ground 62, and thus the layer thickness of the fresh water lens L is reduced. At the same time, it is possible to prevent the salt water 51 from being drawn in correspondingly.
また、本実施の形態の取水システム1は、いわゆる満州井戸などのように、立坑の底部近傍から水平方向に複数の横坑を設ける必要がないため、地上からの施工によってきわめて容易に取水のための井戸2,3を構築することができる。 Further, the water intake system 1 of the present embodiment does not need to provide a plurality of horizontal shafts in the horizontal direction from the vicinity of the bottom of the shaft, as in a so-called Manchu well, and therefore can be very easily taken in by construction from the ground. Wells 2 and 3 can be constructed.
したがって、1つの淡水レンズLについて、複数の取水システム1を設けることも容易となる。 Therefore, it becomes easy to provide a plurality of water intake systems 1 for one fresh water lens L.
そして、複数の取水システム1を設けることで、1つの取水システム1からの取水量を少なくできるため、淡水レンズLに対する塩水51の楔状の引き込みをいっそう抑制することもできる。 And since the water intake from one water intake system 1 can be decreased by providing the some water intake system 1, the wedge-shaped drawing of the salt water 51 with respect to the freshwater lens L can also be suppressed further.
また、本実施の形態の淡水貯留取水システムSは、淡水レンズLは、地下止水壁4によって囲まれるとともに、取水システム1の一方のストレーナ21は、地下止水壁4によって囲まれて厚みが増した淡水レンズLの淡水50の高さに位置し、他方のストレーナ31は淡水レンズLの下方の塩水51の高さに位置して、両方のストレーナ21,31を通じて淡水50及び塩水51から取水する。 Further, in the fresh water storage and intake system S of the present embodiment, the fresh water lens L is surrounded by the underground water blocking wall 4, and one strainer 21 of the water intake system 1 is surrounded by the underground water blocking wall 4 and has a thickness. The fresh water lens L is located at the height of the fresh water 50, and the other strainer 31 is located at the height of the salt water 51 below the fresh water lens L and is taken from the fresh water 50 and the salt water 51 through both strainers 21, 31. To do.
したがって、淡水50の貯留量が増加するとともに、淡水レンズLの厚みが増えることで、いっそう取水の際に塩水51が混入しにくくなる。 Therefore, the storage amount of the fresh water 50 is increased, and the thickness of the fresh water lens L is increased, so that the salt water 51 is less likely to be mixed during water intake.
つまり、淡水レンズLの厚みが薄い端部近傍において、地下止水壁4を構築して淡水50が海64へ向かう流れを堰き止めることで、地下止水壁4の内部において海64の海面から上の淡水50の厚みが増加し、これに対応して海面から下の淡水50の厚みも増加することになる。 That is, in the vicinity of the end where the thickness of the fresh water lens L is thin, the underground water blocking wall 4 is constructed and the flow of the fresh water 50 toward the sea 64 is blocked, so that the inside of the underground water blocking wall 4 is from the sea surface of the sea 64. The thickness of the upper fresh water 50 increases, and the thickness of the lower fresh water 50 from the sea surface increases correspondingly.
この場合、ガイベン−ヘルツベルグの法則によれば、基準となる周囲の海面から下の淡水50の厚みは、海面から上の淡水50の厚みの40倍になることが知られている。例えば、20cmだけ海面上の淡水50の水位を上げることで、海面下の淡水50の厚みは8m増加することになる。 In this case, it is known that the thickness of the fresh water 50 below the reference sea level is 40 times the thickness of the fresh water 50 above the sea level according to the Geiben-Herzberg law. For example, raising the water level of the fresh water 50 above the sea level by 20 cm increases the thickness of the fresh water 50 below the sea level by 8 m.
したがって、一般に少なくとも数十〜数百メートル単位の広さを有する淡水レンズLにおいて、わずかに淡水50の水位を上げてやることで、貯留量を著しく大きくすることが可能となる。 Therefore, generally, in the fresh water lens L having an area of at least several tens to several hundreds of meters, the storage amount can be remarkably increased by slightly raising the water level of the fresh water 50.
さらに、このように淡水レンズLの厚みを人工的に厚くし、淡水レンズLを強化してやることで、井戸2,3を通じて取水した際に、楔状の引き込みが発生しにくくなる。 Further, by artificially increasing the thickness of the freshwater lens L and strengthening the freshwater lens L in this way, when water is taken through the wells 2 and 3, it becomes difficult for wedge-shaped pull-in to occur.
つまり、淡水50と塩水51とから同時に取水する場合でも、淡水レンズLの厚みが薄い場合には、塩水51の引き込みが発生する可能性はあるが、淡水レンズLの厚みが厚い場合には、それぞれのストレーナ21,31の位置を境界52から離してやることで塩水51の引き込みは発生しにくくなる。 That is, even when water is taken from the fresh water 50 and the salt water 51 at the same time, if the fresh water lens L is thin, the salt water 51 may be drawn, but if the fresh water lens L is thick, By pulling the positions of the strainers 21 and 31 away from the boundary 52, the salt water 51 is less likely to be drawn.
そして、地下止水壁4の下端42が、不透水性の地盤63よりも高い位置にあることで、地下止水壁4の下から塩水51を吐き出すことができる。 And the salt water 51 can be discharged from under the underground water blocking wall 4 because the lower end 42 of the underground water blocking wall 4 is at a position higher than the impermeable ground 63.
すなわち、仮に、地下止水壁4の下端42が不透水性の地盤63に貫入していれば、淡水域の淡水50の厚みが増加しても地下止水壁4の下から塩水51が流出しないため、下方の塩水51を押し出して淡水域の厚みが増すことはない。したがって、塩水51の上に淡水50が積層される結果、淡水50の貯留量の増加はわずかなものにとどまることになる。 That is, if the lower end 42 of the underground water blocking wall 4 penetrates the impermeable ground 63, the salt water 51 flows out from under the underground water blocking wall 4 even if the thickness of the fresh water 50 in the fresh water area increases. Therefore, the lower salt water 51 is not pushed out to increase the thickness of the fresh water area. Therefore, as a result of stacking the fresh water 50 on the salt water 51, the increase in the amount of the fresh water 50 is limited.
これに対して、地下止水壁4の下端42が不透水性の地盤63に貫入していなければ、地下止水壁4の下から塩水51が流出し、下方の塩水51を押し出して淡水域の厚みが増すため、淡水50の貯留量は大きく増加することになる。 On the other hand, if the lower end 42 of the underground water blocking wall 4 does not penetrate the impermeable ground 63, the salt water 51 flows out from under the underground water blocking wall 4 and pushes out the salt water 51 below to produce fresh water. Therefore, the storage amount of the fresh water 50 is greatly increased.
ただし、地下止水壁4の下端42が不透水性の地盤63に貫入していても、通水のための通水部などがあれば、塩水51を吐き出して淡水50を貯留することができる。 However, even if the lower end 42 of the underground water blocking wall 4 penetrates the impervious ground 63, if there is a water passage portion for water passage, the salt water 51 can be discharged and the fresh water 50 can be stored. .
さらに、地下止水壁4の上端41は、地下水位53よりも高い位置にあることで、浸透する雨水を効率よく貯留することができる。 Furthermore, since the upper end 41 of the underground water blocking wall 4 is at a position higher than the underground water level 53, it is possible to efficiently store the permeated rainwater.
つまり、雨水を地下止水壁4によって堰き止めることで、海面より上の淡水50の厚みが増加するため、これに伴って海面より下の淡水50の厚みも増加する。 That is, since the thickness of the fresh water 50 above the sea surface is increased by blocking the rainwater by the underground water blocking wall 4, the thickness of the fresh water 50 below the sea surface is increased accordingly.
また、地下止水壁4の上端41が、地表面61よりも低い位置にあることで、大雨の際に地下止水壁4を越流しても、地表面61が冠水してしまうことを防止できる。 Further, since the upper end 41 of the underground water blocking wall 4 is located at a position lower than the ground surface 61, the ground surface 61 is prevented from being flooded even if it overflows the underground water blocking wall 4 during heavy rain. it can.
加えて、地下止水壁4の上端41が、地表面61よりも低い位置とすることで、生物などの移動を妨げないため、環境に配慮した構造物となる。 In addition, since the upper end 41 of the underground water blocking wall 4 is positioned lower than the ground surface 61, movement of organisms and the like is not hindered, so that the structure is environmentally friendly.
さらに、地下止水壁4には、淡水レンズLを隙間なく囲むのではなく、通水のための隙間である通水部を設けて囲むことで、所定の貯水量を確保しつつ地表面61が冠水してしまうことを防止できるうえに、淡水貯留取水システムSの全体の建設費用を抑えることもできる。 Further, the underground water blocking wall 4 is not surrounded by the fresh water lens L without a gap, but is provided with a water passage portion that is a gap for water passage to surround the ground surface 61 while ensuring a predetermined water storage amount. Can be prevented from being flooded, and the entire construction cost of the fresh water storage and intake system S can be reduced.
以上、図面を参照して、本発明の最良の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 Although the best embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes that do not depart from the gist of the present invention are possible. Are included in the present invention.
例えば、本実施の形態では、地下止水壁4によって、淡水レンズLが囲まれる場合について説明したが、これに限定されるものではなく、地下止水壁4を設けなくても、取水システム1を構築することはできる。 For example, in the present embodiment, the case where the freshwater lens L is surrounded by the underground water blocking wall 4 is described. However, the present invention is not limited to this, and the water intake system 1 can be provided without providing the underground water blocking wall 4. Can be built.
そして、本実施の形態では、淡水域として島60の地下に形成される淡水レンズLを例として説明したが、これに限定されるものではなく、塩水51の上方に形成された淡水域であれば、取水システム1を適用できる。 In the present embodiment, the fresh water lens L formed in the basement of the island 60 as a fresh water area has been described as an example. However, the present invention is not limited to this, and may be a fresh water area formed above the salt water 51. In this case, the water intake system 1 can be applied.
また、本実施の形態では、1つの取水システム1について、淡水50を取水するための井戸2と、塩水51を取水するための井戸3と、を1つずつ有する場合について説明したが、これに限定されるものではなく、少なくとも一対の井戸2,3を備えていれば、それぞれが複数あってもよい。 Moreover, in this Embodiment, although the well 2 for taking in the fresh water 50 and the well 3 for taking in the salt water 51 were demonstrated about one water intake system 1 each, There is no limitation, and a plurality of each may be provided as long as at least a pair of wells 2 and 3 are provided.
さらに、本実施の形態では、淡水貯留取水システムSにおいて、1つの取水システム1を構築する場合について説明したが、これに限定されるものではなく、複数の取水システムを、複数の箇所において複数の深さに設けることで、より効率的に淡水50を取水することができる。 Furthermore, in this Embodiment, although the case where the one intake system 1 was constructed | assembled was demonstrated in the fresh water storage intake system S, it is not limited to this, A several intake system is made into several in several places. By providing the depth, the fresh water 50 can be taken in more efficiently.
S 淡水貯留取水システム
L 淡水レンズ(淡水域)
1 取水システム
2,3 井戸
21,31 ストレーナ
32 排水路
4 地下止水壁
41 上端
42 下端
50 淡水
51 塩水
52 境界
53 地下水位
60 島
62 透水性の地盤
63 不透水性の地盤
64 海
S Freshwater storage and intake system L Freshwater lens (freshwater area)
DESCRIPTION OF SYMBOLS 1 Intake system 2,3 Well 21,31 Strainer 32 Drainage channel 4 Underground water barrier wall 41 Upper end 42 Lower end 50 Fresh water 51 Salt water 52 Boundary 53 Groundwater level 60 Island 62 Permeable ground 63 Impervious ground 64 Sea
Claims (1)
前記地下止水壁の下端は、不透水性の地盤より上に位置し、または、前記不透水性の地盤に貫入して通水のための通水部を備え、
前記地下止水壁の上端は、地下水位よりも上に位置するとともに地表面よりも低い位置にあって、
海面より上の淡水の厚みを増加して海面より下の淡水の厚みを増加することを特徴とする淡水貯留システム。 In a freshwater storage system that dams the freshwater of an island with permeable ground by an underground water barrier,
The lower end of the underground water barrier wall is located above the water-impermeable ground, or includes a water-permeable portion for water passage through the water-impermeable ground,
The upper end of the underground water blocking wall is located above the groundwater level and at a position lower than the ground surface,
A fresh water storage system characterized by increasing the thickness of fresh water above the sea level to increase the thickness of fresh water below the sea level.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013059387A JP5430783B2 (en) | 2013-03-22 | 2013-03-22 | Fresh water storage system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013059387A JP5430783B2 (en) | 2013-03-22 | 2013-03-22 | Fresh water storage system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007327278A Division JP5291927B2 (en) | 2007-12-19 | 2007-12-19 | Fresh water storage and intake system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013117167A JP2013117167A (en) | 2013-06-13 |
JP5430783B2 true JP5430783B2 (en) | 2014-03-05 |
Family
ID=48711897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013059387A Active JP5430783B2 (en) | 2013-03-22 | 2013-03-22 | Fresh water storage system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5430783B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6368014B1 (en) * | 2017-08-01 | 2018-08-01 | 国立研究開発法人農業・食品産業技術総合研究機構 | Evaluation method for underground wall materials |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106351286A (en) * | 2016-10-17 | 2017-01-25 | 重庆大学 | Coral reef sand underground freshwater reserving and using method |
CN109339149A (en) * | 2018-11-16 | 2019-02-15 | 卫振海 | Coral island fresh groundwater collection drainage facility method of construction |
CN111236140A (en) * | 2020-03-05 | 2020-06-05 | 浙江省水利水电勘测设计院 | Coral island underground fresh water reservoir and construction method thereof |
CN114232663B (en) * | 2022-01-12 | 2022-10-28 | 中国海洋大学 | Variable-permeability underground curtain for preventing seawater intrusion and land source pollution and construction method thereof |
CN114263241B (en) * | 2022-02-08 | 2023-10-03 | 核工业北京化工冶金研究院 | Negative pressure eliminator in recharging well |
CN115824921B (en) * | 2022-12-09 | 2023-08-18 | 中国海洋大学 | Seepage simulation device for preventing seawater intrusion by intercepting seepage wall and measuring method thereof |
-
2013
- 2013-03-22 JP JP2013059387A patent/JP5430783B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6368014B1 (en) * | 2017-08-01 | 2018-08-01 | 国立研究開発法人農業・食品産業技術総合研究機構 | Evaluation method for underground wall materials |
Also Published As
Publication number | Publication date |
---|---|
JP2013117167A (en) | 2013-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5291927B2 (en) | Fresh water storage and intake system | |
JP5430783B2 (en) | Fresh water storage system | |
JP3104969B2 (en) | Wide-area underground water storage tank | |
US6840710B2 (en) | Underground alluvial water storage reservoir and method | |
CN109736338A (en) | A kind of hydraulic engineering foundation pit pipe well combination light well point Yield rainfall relation method | |
CN110735468A (en) | underground water cross-flow supply recharging system combined with irrigation channels and irrigation wells | |
JP5628014B2 (en) | Impermeable wall structure | |
JP2015183493A (en) | Rainwater storage infiltration facility | |
CN106988378A (en) | A kind of large-scale seawater intake strucure of box culvert-type, constructing structure and construction method | |
CN203924210U (en) | A kind of pumped well device of sand control | |
US20080073087A1 (en) | Ventilation of underground porosity storage reservoirs | |
JP2004285678A (en) | Method and structure for suppressing buoyancy of structure | |
JP5659693B2 (en) | Condensation method and condensate system | |
CN206245444U (en) | Rainwater penetration system | |
CN205012357U (en) | Precipitation tubular well combines waterproof construction of high pressure jet grouting pile stagnant water curtain | |
WO2009137848A2 (en) | A well and a method of constructing a well | |
CN103669333B (en) | It is easy to the friction pile of vacuum-dewatering | |
CN208578054U (en) | A kind of embed-type shallow-layer combined water drain pipe | |
JP5929089B2 (en) | Liquefaction countermeasure structure and liquefaction countermeasure construction method | |
CN202187360U (en) | Well point positioning water pumping pipe well | |
KR20170089063A (en) | System and method for controlling land deformation | |
CN105625448A (en) | Underground water drainage method and device for underground building | |
CN211172113U (en) | Anti-floating structure of siphon drainage method | |
CN210712967U (en) | Impervious anti structure that floats of basement | |
JP3648663B2 (en) | Waste disposal facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5430783 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |