JP5429327B2 - Spot welding method for high strength steel sheet - Google Patents
Spot welding method for high strength steel sheet Download PDFInfo
- Publication number
- JP5429327B2 JP5429327B2 JP2012123312A JP2012123312A JP5429327B2 JP 5429327 B2 JP5429327 B2 JP 5429327B2 JP 2012123312 A JP2012123312 A JP 2012123312A JP 2012123312 A JP2012123312 A JP 2012123312A JP 5429327 B2 JP5429327 B2 JP 5429327B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- energization
- strength
- tensile strength
- cts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Resistance Welding (AREA)
Description
本発明は、自動車用部品の取付けおよび車体の組立て等で使用されるスポット溶接方法で形成させた高強度鋼板溶接継手の引張強さを向上させる技術に関するものである。 The present invention relates to a technique for improving the tensile strength of a high-strength steel plate welded joint formed by a spot welding method used for mounting automobile parts and assembling a vehicle body.
近年、低燃費化やCO2排出量削減を目的とした車体の軽量化および衝突安全性向上のために、自動車分野では、車体や部品などに、薄肉の高強度鋼板を使用するニーズが高まっている。
一方、車体の組立てや部品の取付け等では、スポット溶接方法が主に用いられているが、高強度鋼板をスポット溶接した場合には、以下のような問題が生じる。
スポット溶接部(溶接継手)の品質指標としては、引張強さと疲労強度が挙げられるが、前者は部材の強度を決定するパラメーターとして非常に重要である。溶接継手の引張強さには、せん断方向に引張荷重を負荷して測定する引張せん断強さ(TSS)と剥離方向に引張荷重を負荷して測定する十字引張強さ(CTS)がある。
In recent years, there has been a growing demand for the use of thin high-strength steel sheets for the body and parts of automobiles in order to reduce the weight of vehicles and improve collision safety for the purpose of reducing fuel consumption and reducing CO 2 emissions. Yes.
On the other hand, the spot welding method is mainly used for assembling the vehicle body and attaching parts, but the following problems arise when spot-welding a high-strength steel sheet.
Examples of quality indicators for spot welds (welded joints) include tensile strength and fatigue strength. The former is very important as a parameter for determining the strength of a member. The tensile strength of the welded joint includes a tensile shear strength (TSS) measured by applying a tensile load in the shear direction and a cross tensile strength (CTS) measured by applying a tensile load in the peeling direction.
一般に、溶接継手の引張せん断強さは、鋼板の引張強さとともに増加するが、十字引張強さは、鋼板の引張強さが780MPa位でピークを示し、それ以降は低下する。従って例えば、引張強さが290MPaの軟鋼板の代わりに、引張強さが1470MPaの高強度鋼板を用いれば、スポット溶接継手の引張せん断強さは増加するが、溶接継手の十字引張強さは増加せず、むしろ軟鋼板の場合より低い値を示すことがあるとされている。
図5は、高張力鋼について引張剪断強さ(TSS)と十字引張強さ(CTS)とを対比して示す説明図である。横軸が試験加重(MPa)を示す。
高強度鋼板としては、980MPaクラス、1180MPaクラス、1470MPaクラスまでの鋼種が開発されているが、図5に示す如く引張剪断強さ(TSS)1470MPaクラスの高張力鋼であっても、十字引張強さ(CTS)は遙かに低い値を示し、300MPa程度の軟鋼板と同程度かあるいはそれよりも低い値を示す場合もあることが知られている。
In general, the tensile shear strength of a welded joint increases with the tensile strength of the steel plate, but the cross tensile strength shows a peak when the tensile strength of the steel plate is around 780 MPa, and decreases thereafter. Therefore, for example, if a high strength steel plate with a tensile strength of 1470 MPa is used instead of a mild steel plate with a tensile strength of 290 MPa, the tensile shear strength of the spot welded joint increases, but the cross tensile strength of the welded joint increases. Rather, it is said that the value may be lower than that of a mild steel plate.
FIG. 5 is an explanatory diagram showing a comparison of tensile shear strength (TSS) and cross tensile strength (CTS) for high-tensile steel. The horizontal axis indicates the test load (MPa).
Steel types up to 980 MPa class, 1180 MPa class, and 1470 MPa class have been developed as high-strength steel sheets. However, even if it is a high-tensile steel with a tensile shear strength (TSS) 1470 MPa class as shown in FIG. It is known that the value (CTS) shows a much lower value and may show a value similar to or lower than that of a mild steel plate of about 300 MPa.
従来、高強度鋼板溶接継手の十字引張強さ(CTS)を向上させる方法として、スポット溶接の通電が完了した後、一定時間経過後にテンパー通電を行い、スポット溶接部(ナゲット部)と熱影響部を焼鈍して硬さを低下させる方法が知られている。(特許文献1、非特許文献1参照)
これらの方法の他に、炭素等量の低い鋼板を使用することも考えられるが、鋼板成分の制限によって製造が困難になったり、必要な機械的特性が得られなかったりすることがある。また、1470MPa級のホットスタンピング鋼板(特許文献2参照)では、焼き入れが必要であるため、炭素等量を下げることは困難である。
Conventionally, as a method of improving the cross tensile strength (CTS) of high-strength steel plate welded joints, temper energization is performed after a certain period of time has passed after spot welding energization, and the spot welded portion (nugget portion) and heat affected zone There is known a method of annealing to lower the hardness. (See
In addition to these methods, it is conceivable to use a steel plate having a low carbon equivalent, but the production may be difficult due to the limitation of the steel plate components, or the necessary mechanical properties may not be obtained. Moreover, in the hot stamping steel plate of 1470 MPa class (see Patent Document 2), it is difficult to lower the carbon equivalent because quenching is necessary.
従来、溶接継手の十字引張強さ(CTS)を向上させるために、抵抗スポット溶接打点数(ナゲット数)を増やす方法も知られている。しかし、この方法は、溶接作業効率の低下、溶接施工コストの上昇、および設計自由度の制約等の問題を抱えている。 Conventionally, in order to improve the cross tensile strength (CTS) of a welded joint, a method of increasing the number of resistance spot welding hit points (number of nuggets) is also known. However, this method has problems such as a decrease in welding work efficiency, an increase in welding construction cost, and a restriction on design freedom.
前述のテンパー通電を行う従来方法は、テンパー通電の適正な条件範囲の幅が非常に狭く、また、操業条件の変化により再現性が乏しいという実用上の問題がある。特に、めっき鋼板を連続的に打点してスポット溶接する場合には、打点数の増加とともに、電極先端がめっきとの合金化反応によって劣化し、電極先端径が増大して電流密度が低下し、最適なテンパー通電条件から外れるため、安定的に継手の十字引張強さを向上させることが困難となる。また、この方法は溶接プロセス全体の時間が2倍以上に長くなるという欠点を持っている。
次に、前述の抵抗スポット溶接打点数(ナゲット数)を増やす方法にあっては、継手に応力が負荷された場合、各溶接点(ナゲット)に必ずしも均等に応力がかからないため、応力分散効果が十分発揮されず、どちらかの溶接点に応力が集中する。その結果、溶接打点数を、例えば、1点から2点、3点と増やしたとしても、継手の疲労強度は、必ずしも2倍、3倍にはならない。
The conventional method for conducting temper energization as described above has a practical problem that the range of the appropriate condition range of temper energization is very narrow and reproducibility is poor due to changes in operating conditions. In particular, when spot welding is performed by continuously spotting a plated steel sheet, the electrode tip deteriorates due to an alloying reaction with the plating as the number of hit points increases, the electrode tip diameter increases, and the current density decreases, Since it deviates from the optimum temper energization condition, it is difficult to stably improve the cross tensile strength of the joint. This method also has the disadvantage that the entire welding process takes more than twice as long.
Next, in the above-described method of increasing the number of resistance spot welding points (number of nuggets), when stress is applied to the joint, stress is not necessarily applied evenly to each welding point (nugget). It is not fully utilized, and stress concentrates on either welding point. As a result, even if the number of welding points is increased from 1 point to 2 points or 3 points, for example, the fatigue strength of the joint is not necessarily doubled or tripled.
即ち、従来の技術においては、高強度鋼板、特に引張強さが980MPa級以上の鋼板をスポット溶接した場合に、ナゲット周囲での応力集中増加、炭素当量との関係等によって継手の十字引張強さが低下し、場合によっては軟鋼板を溶接した継手より低い値を示す場合があるという課題を解決できる技術が提供されていない状況であった。 That is, in the conventional technique, when spot-welding a high-strength steel sheet, particularly a steel sheet having a tensile strength of 980 MPa or more, the cross tensile strength of the joint due to an increase in stress concentration around the nugget and the relationship with the carbon equivalent. However, in some cases, a technology that can solve the problem that a value lower than that of a joint welded with a mild steel plate may be provided has not been provided.
本発明は、溶接中または溶接後の通電パターン制御によって、高強度鋼板のスポット溶接継手の十字引張強さを向上させることを目的としている。
本発明では、炭素等量等に制限を設けることもなく、また、溶接プロセス全体の時間を長くすることもなく、実用の範囲内で通電パターンを変化させることによって、スポット溶接継手の十字引張強さを向上させることを目的とする。
An object of the present invention is to improve the cross tensile strength of a spot-welded joint of a high-strength steel sheet by controlling energization patterns during or after welding.
In the present invention, the cross tensile strength of the spot welded joint is changed by changing the energization pattern within a practical range without limiting the carbon equivalent and the like, and without increasing the time of the entire welding process. The purpose is to improve.
上記課題を解決することを目的とした本発明の要旨は以下の通りである。
(1)引張強さが900〜1850MPaである高強度鋼板のスポット溶接方法において、溶接通電に引き続き、下記(6)式、(7)式および(8)式、(9)式を満たすように2段階で後加熱通電してスポット溶接継手の十字引張強さを向上させることを特徴とする高強度鋼板のスポット溶接方法。
0.85×WC≦PHC3≦0.95×WC ・・・・・(6)
40≦PHT3≦80 ・・・・・(7)
0.70×WC≦PHC4≦0.80×WC ・・・・・(8)
40≦PHT4≦80 ・・・・・(9)
ただし、WC:溶接電流(kA)、PHC3:溶接後後加熱電流(kA)、PHT3:溶接後後加熱時間(ms)、PHC4:溶接後後加熱電流(kA)、PHT4:溶接後後加熱時間(ms)を示す。
The gist of the present invention aimed at solving the above problems is as follows.
(1) In the spot welding method of a high strength steel sheet having a tensile strength of 900 to 1850 MPa, following the welding energization, the following formulas (6), (7), (8), and (9) are satisfied. A spot-welding method for high-strength steel sheets, wherein post-heating energization is performed in two stages to improve the cross tensile strength of the spot-welded joint.
0.85 × WC ≦ PHC3 ≦ 0.95 × WC (6)
40 ≦ PHT3 ≦ 80 (7)
0.70 × WC ≦ PHC4 ≦ 0.80 × WC (8)
40 ≦ PHT4 ≦ 80 (9)
However, WC: Welding current (kA), PHC3: Heating current after welding (kA), PHT3: Heating time after welding (ms), PHC4: Heating current after welding (kA), PHT4: Heating time after welding (Ms).
本発明によれば、自動車用部品の取付けおよび車体の組立て等で用いる高強度鋼板のスポット溶接において、良好な溶接作業性を確保しつつ溶接継手の十字引張強さを向上させることができる。
従って、本発明の適用により、自動車分野などで高強度鋼板適用による安全性向上や軽量化による低燃料費、CO2排出量削減のメリットなどを十分に享受でき、社会的な貢献は多大である。
ADVANTAGE OF THE INVENTION According to this invention, the cross tensile strength of a welded joint can be improved, ensuring favorable welding workability | operativity in the spot welding of the high-strength steel plate used for the attachment of the components for motor vehicles, the assembly of a vehicle body, etc.
Therefore, by applying the present invention, it is possible to fully enjoy the safety improvement by applying high-strength steel sheet in the automobile field and the like, the low fuel cost by weight reduction, the merit of CO 2 emission reduction, etc., and the social contribution is great. .
以下、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではない。
図1は本発明のスポット溶接方法を説明するための概念図である。まず、本実施形態に係るスポット溶接方法では、被接合材である2枚の高強度鋼板1を重ね合わせ、その重ね合わせ部分に対し、両側から(図1では上下方向から)挟み込むように銅などからなる溶接電極2、2を押し付けつつ通電し、2枚の高強度鋼板1の間に溶融金属部を形成させる。この溶融金属部は、スポット溶接通電終了後、水冷された電極への抜熱や高強度鋼板の熱伝導により急速に冷却されて凝固し、2枚の高強度鋼板1の間に図1に示す断面楕円形状のナゲット(溶接金属)3が形成されて2枚の高強度鋼板1が接合される。
Hereinafter, although an embodiment of the present invention is described in detail, the present invention is not limited to the following embodiment.
FIG. 1 is a conceptual diagram for explaining the spot welding method of the present invention. First, in the spot welding method according to the present embodiment, two high-
ところで、一般的なスポット溶接法を実施する場合、図2(A)に示す如く規定の時間(t)、規定の電流値(I)を溶接電極2に通電し、通電後に電流を遮断している。また、スポット溶接を行う場合、溶接電極2は水冷による冷却手段により冷却されているので、通電を停止した後、高強度鋼板1は急冷される結果、高強度鋼板1の金属組織はマルテンサイト組織となって、高強度な特性を発揮する。以上説明のスポット溶接方法において通電電流の大きさと通電時間は、用いる高強度鋼板1の厚さ、鋼種、などに応じて適宜設定される。
By the way, when performing a general spot welding method, as shown in FIG. 2 (A), a specified time (t) and a specified current value (I) are energized to the
本実施の形態において用いる高強度鋼板は引張強さが900〜1850MPaの範囲の鋼板であることが好ましい。
本発明のスポット溶接においては、鋼板の種類について特に限定する必要がなく、2相組織型(例えば、フェライト中にマルテンサイトを含む組織、フェライト中にベイナイトを含む組織)、加工誘起変態型(フェライト中に残留オーステナイトを含む組織)、微細結晶型(フェライト主体組織)等、いずれの型の鋼板であっても良い。鋼板の板厚についても、特に限定する必要はなく、本発明のスポット溶接方法の適用により、鋼板の特性を損なうことなく、優れた引張強さを有する継手を実現することができる。
鋼板の表層に施されるめっき層の種類も、Zn系のものなら特に限定するものではない。例えば、Zn、Zn−Fe、Zn−Ni、Zn−Al、Sn−Zn等いずれのもので良い。これらのめっき層の目付量は特に限定しないが、両面で100/100g/m2以下のものが望ましい。
また、本発明の方法は、同種同厚鋼板組合せに限定されるものではなく、規定を満たしているのであれば、同種異厚、異種同厚、異種異厚組合せであっても良い。
The high-strength steel plate used in the present embodiment is preferably a steel plate having a tensile strength in the range of 900 to 1850 MPa.
In the spot welding of the present invention, it is not necessary to particularly limit the type of steel sheet, and a two-phase structure type (for example, a structure containing martensite in ferrite and a structure containing bainite in ferrite), a work-induced transformation type (ferrite) Any type of steel sheet may be used, such as a structure containing retained austenite therein) or a fine crystal type (ferrite main structure). The plate thickness of the steel plate is not particularly limited, and by applying the spot welding method of the present invention, a joint having excellent tensile strength can be realized without impairing the properties of the steel plate.
The kind of the plating layer applied to the surface layer of the steel plate is not particularly limited as long as it is a Zn-based one. For example, any of Zn, Zn—Fe, Zn—Ni, Zn—Al, Sn—Zn, and the like may be used. The basis weight of these plating layers is not particularly limited, but is preferably 100/100 g / m 2 or less on both sides.
Further, the method of the present invention is not limited to the same type and the same thickness steel plate combination, and may be the same type of different thickness, different type of different thickness, or different types of different thickness combination as long as the specification is satisfied.
本実施の形態に係るスポット溶接方法を実施する場合、図2(A)に示す一般的なスポット溶接方法における電流印加条件に対し、第1の例では、図2(B)に示す如く、溶接通電終了後、通電条件を変更し、初期通電電流よりも1段低い電流を流して所定時間通電後、通電終了するような条件でスポット溶接を行う。
この場合に適用する高強度鋼板は、引張強さが900〜1850MPaである高強度鋼板とする。この第1の例では初期通電は通常の電流でスポット溶接通電を行い、次いで、下記(1)式、(2)式を満たすように後加熱通電する。
0.70×WC≦PHC1≦0.90×WC ・・・・・(1)
40≦PHT1≦80 ・・・・・(2)
ただし、WC:溶接電流(kA)、PHC1:後加熱電流(kA)、PHT1:後加熱時間(ms)を示す。
When the spot welding method according to the present embodiment is performed, in the first example, as shown in FIG. 2B, welding is performed with respect to the current application conditions in the general spot welding method shown in FIG. After the energization is completed, the energization conditions are changed, and spot welding is performed under the condition that the energization is terminated after a predetermined time has passed by passing a current one step lower than the initial energization current.
The high strength steel plate applied in this case is a high strength steel plate having a tensile strength of 900 to 1850 MPa. In this first example, initial energization is spot welding energization with a normal current, and then post-heating energization is performed so as to satisfy the following expressions (1) and (2).
0.70 × WC ≦ PHC1 ≦ 0.90 × WC (1)
40 ≦ PHT1 ≦ 80 (2)
However, WC: welding current (kA), PHC1: post-heating current (kA), PHT1: post-heating time (ms).
この第1の例の如く適用する高強度鋼板引張強さが900〜1850MPaの範囲が好ましいのは、一般的なスポット溶接を行う場合、900MPa以上の高強度鋼板において十字引張強さ(CTS)の低下が大きくなり、1470MPa以上では軟鋼板継手のCTSよりも低い値を示す傾向があるからである。また、1850MPaを超える引張強さの高強度鋼板ではCTSの向上効果が見込めない。
PHC1(後加熱電流)を前述の範囲としたのは、溶接電流の70%〜90%の範囲の後加熱通電条件でCTSの向上効果を得られるからである。PHT1(後加熱時間)を前述の範囲としたのは、40ms以上でCTS向上効果があり、また、80msを超えて長くなっても生産性が落ちるからである。
The tensile strength of the high-strength steel plate to be applied as in the first example is preferably in the range of 900 to 1850 MPa. In general spot welding, the tensile strength (CTS) of the high-strength steel plate of 900 MPa or higher is used. This is because the decrease tends to increase, and at 1470 MPa or more, there is a tendency to show a value lower than the CTS of the mild steel plate joint. Further, a high strength steel sheet having a tensile strength exceeding 1850 MPa cannot be expected to improve CTS.
The reason why PHC1 (post-heating current) is in the above-described range is that an effect of improving CTS can be obtained under post-heating energization conditions in the range of 70% to 90% of the welding current. The reason why PHT1 (post-heating time) is set in the above-described range is that there is an effect of improving CTS at 40 ms or more, and productivity is lowered even if it is longer than 80 ms.
本実施形態に係るスポット溶接方法を実施する場合、図2(A)に示す一般的なスポット溶接方法における電流印加条件に対し、第2の例では、図2(C)に示す如く、溶接通電終了後、通電を完全に停止して所定時間冷却後、再度先の溶接電流よりも低い電流を所定時間印加して後加熱通電する。
この第2の例の場合に適用する高強度鋼板は、引張強さが900〜1850MPaである高強度鋼板とする。この第2の例では初期通電は通常の電流で溶接通電を行い、次いで、溶接通電直後に下記(3)式を満たす冷却時間をおいた後、引き続き下記(4)式、(5)式を満たすように後加熱通電する。
20≦CT≦40 ・・・・・(3)
0.40×WC≦PHC2≦0.70×WC ・・・・・(4)
40≦PHT2≦200 ・・・・・(5)
ただし、CT:冷却時間(ms)、PHC2:冷却後後加熱電流(kA)、PHT2:冷却後後加熱時間(ms)を示す。
When carrying out the spot welding method according to the present embodiment, in contrast to the current application conditions in the general spot welding method shown in FIG. 2A, in the second example, as shown in FIG. After the end, the energization is completely stopped and cooled for a predetermined time, and then a current lower than the previous welding current is applied again for a predetermined time and then the post-heating energization is performed.
The high-strength steel plate applied in the case of this second example is a high-strength steel plate having a tensile strength of 900 to 1850 MPa. In this second example, initial energization is performed with normal energization, and then a cooling time satisfying the following equation (3) is set immediately after the energization of welding, and then the following equations (4) and (5) are continued. Energize after heating to satisfy.
20 ≦ CT ≦ 40 (3)
0.40 × WC ≦ PHC2 ≦ 0.70 × WC (4)
40 ≦ PHT2 ≦ 200 (5)
However, CT: Cooling time (ms), PHC2: Heating current after cooling (kA), PHT2: Heating time after cooling (ms).
この第2の例の如く適用する高強度鋼板引張強さが900〜1850MPaの範囲が好ましいのは、一般的なスポット溶接を行う場合、900MPa以上の高強度鋼板において十字引張強さ(CTS)の低下が大きくなり、1470MPa以上では軟鋼板継手のCTSよりも低い値を示す傾向があるからである。また、1850MPaを超える引張強さではCTSの向上効果が見込めない。
この第2の例において冷却時間CTを20ms以上とするのは、20ms以上でCTS向上効果があり、また、40ms以上の停止では生産性が低下するためである。また、冷却後の後加熱電流(PHC2)は溶接電流の40%以上70%以下の範囲で十字引張強さ(CTS)の向上効果がある。更に、冷却後後加熱時間は40ms以上でCTS向上効果があり、200msを超えると生産性が低下するために好ましくない。
The tensile strength of the high strength steel plate applied as in the second example is preferably in the range of 900 to 1850 MPa. When performing general spot welding, the cross tensile strength (CTS) of a high strength steel plate of 900 MPa or more is preferred. This is because the decrease tends to increase, and at 1470 MPa or more, there is a tendency to show a value lower than the CTS of the mild steel plate joint. Further, if the tensile strength exceeds 1850 MPa, the CTS improvement effect cannot be expected.
The reason why the cooling time CT is set to 20 ms or longer in the second example is that there is an effect of improving the CTS at 20 ms or longer, and the productivity is lowered at a stop of 40 ms or longer. Further, the post-heating current (PHC2) after cooling has an effect of improving the cross tensile strength (CTS) in the range of 40% to 70% of the welding current. Furthermore, after heating, the post-cooling heating time is 40 ms or more, which is effective for improving CTS, and if it exceeds 200 ms, productivity is lowered, which is not preferable.
本実施形態に係るスポット溶接方法を実施する場合、図2(A)に示す一般的なスポット溶接方法における電流印加条件に対し、第3の例では、図2(D)に示す如く、溶接通電終了後、通電条件を変更し、初期通電時よりも1段低い電流を流して所定時間通電後、更に1段低い電流を流して所定時間通電後、通電終了とするような条件でスポット溶接を行う。
即ち、この第3の例では、溶接通電に引き続き、下記(6)式、(7)式および(8)式、(9)式を満たすように2段階で後加熱通電する。
0.85×WC≦PHC3≦0.95×WC ・・・・・(6)
40≦PHT3≦80 ・・・・・(7)
0.70×WC≦PHC4≦0.80×WC ・・・・・(8)
40≦PHT4≦80 ・・・・・(9)
ただし、PHC3:溶接後後加熱電流(kA)、PHT3:溶接後後加熱時間(ms)、PHC4:溶接後後加熱電流(kA)、PHT4:溶接後後加熱時間(ms)を示す。
When the spot welding method according to the present embodiment is performed, the current application condition in the general spot welding method shown in FIG. 2 (A) is compared with that in the third example, as shown in FIG. 2 (D). After completion, the energization conditions are changed, and after spot welding is performed under conditions where a current lower by one step than at the time of initial energization is applied for a predetermined time, a current lower by one step is supplied for a predetermined time, and then energization is terminated. Do.
That is, in the third example, after the welding energization, post-heating energization is performed in two stages so as to satisfy the following expressions (6), (7), (8), and (9).
0.85 × WC ≦ PHC3 ≦ 0.95 × WC (6)
40 ≦ PHT3 ≦ 80 (7)
0.70 × WC ≦ PHC4 ≦ 0.80 × WC (8)
40 ≦ PHT4 ≦ 80 (9)
However, PHC3: Heating current after welding (kA), PHT3: Heating time after welding (ms), PHC4: Heating current after welding (kA), PHT4: Heating time after welding (ms)
この第3の例の如く適用する高強度鋼板引張強さが900〜1850MPaの範囲が好ましいのは、一般的なスポット溶接を行う場合、900MPa以上の高強度鋼板において十字引張強さ(CTS)の低下が大きくなり、1470MPa以上では軟鋼板継手のCTSよりも低い値を示す傾向があるからである。また、1850MPaを超える引張強さではCTSの向上効果が見込めない。
この第3の例において1段目の後加熱電流を溶接電流の85%以上、95%以下としたのはこの範囲でCTSの向上効果があるからであり、1段目の後加熱時間は40ms以上でCTS向上効果があり、80msを超えると生産性が低下する。また、2段目の後加熱電流を溶接電流の70%以上、80%以下としたのはこの範囲でCTSの向上効果があるからであり、2段目の後加熱時間は40ms以上でCTS向上効果があり、80msを超えると生産性が低下する。
The tensile strength of the high-strength steel plate to be applied as in the third example is preferably in the range of 900 to 1850 MPa. When performing general spot welding, the cross-tensile strength (CTS) of the high-strength steel plate of 900 MPa or more is preferable. This is because the decrease tends to increase, and at 1470 MPa or more, there is a tendency to show a value lower than the CTS of the mild steel plate joint. Further, if the tensile strength exceeds 1850 MPa, the CTS improvement effect cannot be expected.
In this third example, the reason why the post-heating current of the first stage is set to 85% or more and 95% or less of the welding current is because CTS is improved in this range, and the post-heating time of the first stage is 40 ms. With the above, there is an effect of improving CTS, and when it exceeds 80 ms, productivity is lowered. The reason why the second stage post-heating current is set to 70% or more and 80% or less of the welding current is that CTS is improved in this range, and the second stage post-heating time is 40 ms or more to improve CTS. There is an effect, and when it exceeds 80 ms, productivity is lowered.
次に、本願発明で適用する高強度鋼板の炭素当量の基本概念について以下に説明する。
下記(10)式は溶接部の硬さに関わる炭素当量であり、また、(11)式は溶接部の靭性に関わる炭素当量である。一般的に、鋼板の引張強さが増加すると、(10)式、(11)式で示される炭素当量の値が増加し、その結果、溶接部の硬さは増加し靭性は低下する。靭性が低下すると、十字引張試験のようにナゲットの周囲で高い応力集中が起こる場合には、ナゲット内で亀裂が発生し易くなり、その結果、十字引張強さは低い値を示すようになるのである。特に、下記(11)式の値が0.24を超える場合には、ナゲット内で亀裂が発生し、十字引張強さは低下する。
Ceq.=C+Si/40+Cr/20 ・・・・・(10)
Ceq.=C+Si/30+Mn/20+2P+4S ・・・・・(11)
なお、上記の(10)式、(11)式で、C、Si、Mn、P、および、Sは、それぞれ、鋼板中の炭素、珪素、マンガン、リン、硫黄の各含有量(質量%)を示す。
Next, the basic concept of the carbon equivalent of the high-strength steel sheet applied in the present invention will be described below.
The following equation (10) is a carbon equivalent related to the hardness of the welded portion, and equation (11) is a carbon equivalent related to the toughness of the welded portion. Generally, when the tensile strength of a steel plate increases, the value of the carbon equivalent shown by the formulas (10) and (11) increases, and as a result, the hardness of the weld increases and the toughness decreases. When the toughness is reduced, if a high stress concentration occurs around the nugget as in the cross tension test, cracks are likely to occur in the nugget, and as a result, the cross tensile strength becomes low. is there. In particular, when the value of the following formula (11) exceeds 0.24, cracks occur in the nugget and the cross tensile strength decreases.
Ceq. = C + Si / 40 + Cr / 20 (10)
Ceq. = C + Si / 30 + Mn / 20 + 2P + 4S (11)
In the above formulas (10) and (11), C, Si, Mn, P, and S are the respective contents (mass%) of carbon, silicon, manganese, phosphorus, and sulfur in the steel sheet. Indicates.
上記のように、炭素等量が増加すると十字引張強さが低下するが、十字引張強さが低下するもうひとつの原因としては、鋼板の引張強さ増加に伴うナゲット周囲での応力集中増加が考えられる。鋼板の引張強さが980MPa以上では、上記(10)式、(11)式で示す炭素当量の値はほとんど増加しないが十字引張強さの値は低下する。これは、鋼板の引張強さの増加に伴ってナゲット周囲が変形し難くなるためで、ナゲット周囲での応力集中が高まると、その部分でより亀裂が発生し易くなる。 As mentioned above, as the carbon equivalent increases, the cross tensile strength decreases.Another cause of the decrease in the cross tensile strength is an increase in stress concentration around the nugget accompanying the increase in the tensile strength of the steel sheet. Conceivable. When the tensile strength of the steel sheet is 980 MPa or more, the value of the carbon equivalent shown by the above formulas (10) and (11) hardly increases, but the value of the cross tensile strength decreases. This is because the periphery of the nugget becomes difficult to deform as the tensile strength of the steel plate increases, and when stress concentration around the nugget increases, cracks are more likely to occur at that portion.
図3は高強度鋼板1、1を重ねてスポット溶接し、ナゲット3が形成されている状態の断面構造を示すが、ナゲット3の周囲にはナゲット3を一定幅で取り囲むように熱影響部3aが形成される。
そして、この構造を有するスポット溶接品は、高強度鋼板1、1を互いに剥離する方向に引き剥がす十字引張試験を行った場合、通常はナゲット3の外周縁部分から上下方向に伸びる亀裂ライン1aを生成するように剥離破壊される。
FIG. 3 shows a cross-sectional structure in a state in which the high-
And when the spot welded product which has this structure performs the cross tension test which peels off the high
本発明に係るスポット溶接方法では、以上説明の如く、図2(B)に示す如く通常溶接通電後、1段低い通電処理を行うか、図2(C)に示す如く通常溶接通電後、一旦通電停止して所定時間経過後、再度通電するか、図2(D)に示す如く通常溶接通電後、1段目と2段目の後加熱通電を行うことで、スポット溶接部における熱履歴としては、溶接通電後の冷却時における冷却速度を緩くしていると言える。
本発明の実施後の溶接部の金属組織は、通常のスポット溶接方法の場合に得られるマルテンサイト組織になると想定できるが、後加熱通電処理により冷却速度を少し緩やかにしているので、マルテンサイトの性状が異なり、硬度が僅かに低下して亀裂感受性が鈍くなり、結果的に十字引張強さ(CTS)が向上したものと思われる。
即ち、本発明方法によれば、ナゲット3と熱影響部3aとの境界部分及びその周囲領域において、特にマルテンサイトの性状が異なり、硬度が僅かに低下して亀裂感受性が鈍くなっているものと思われる。
In the spot welding method according to the present invention, as described above, after the normal welding energization as shown in FIG. 2 (B), a one-step lower energization process is performed, or after the normal welding energization as shown in FIG. 2 (C), As the heat history in the spot welded part, after energization is stopped and then energized again after a predetermined time, or after normal welding energization as shown in FIG. It can be said that the cooling rate at the time of cooling after welding energization is made slow.
The metal structure of the welded portion after the implementation of the present invention can be assumed to be a martensite structure obtained in the case of a normal spot welding method, but the cooling rate is slightly moderated by the post-heating energization process. It seems that the properties are different, the hardness is slightly lowered and the crack sensitivity becomes dull, and as a result, the cross tensile strength (CTS) is improved.
That is, according to the method of the present invention, in the boundary portion between the
本発明方法による後通電加熱の時間は最大でも200ms以下、例えば数10msで良いので、スポット溶接時間を長くすることがない。これは生産性の面において極めて有利となる。
なおまた、従来知られていたスポット溶接後の後加熱処理ではスポット溶接時間に対して更に長い時間焼鈍するなどの処理が必要であったので、本願発明の概念とは全く異なる処理方法である。また、従来知られていたスポット溶接後の後加熱処理は疲労強度を高めるための処理であって、本願の如く十字引張強さを向上させるための処理ではなく、本願発明の如く短時間の後通電加熱により十字引張強さを向上できる技術は全く新規であって優れた技術であると把握することができる。
The post-heating time according to the method of the present invention may be 200 ms or less, for example several tens of ms at the maximum, so that the spot welding time is not lengthened. This is extremely advantageous in terms of productivity.
In addition, in the conventionally known post-heat treatment after spot welding, a treatment such as annealing for a longer time than the spot welding time is required, and thus the treatment method is completely different from the concept of the present invention. Further, the conventionally known post-heat treatment after spot welding is a treatment for increasing the fatigue strength, and is not a treatment for improving the cross tensile strength as in the present application, but a short time after the treatment as in the present invention. It can be understood that the technology that can improve the cross tensile strength by energization heating is completely new and excellent.
ところで、本願発明方法を適用する高強度鋼板の板厚は、スポット溶接に適用される鋼板として0.6mm〜3.2mm程度の厚さのものを適宜利用することができる。また、好ましくは、厚さ0.6mm〜2.0mm程度の高強度鋼板を利用できる。
また、トータルとしてのスポット溶接の通電時間は板厚に関係する。この関係はWT+PHT≦1.5t(tは板厚)で表記することができる。従って板厚に応じてトータルのスポット溶接時間をこの範囲内とすることが好ましい。
By the way, the plate | board thickness of the high-strength steel plate to which this invention method is applied can use suitably the thickness of about 0.6 mm-3.2 mm as a steel plate applied to spot welding. Moreover, preferably, a high-strength steel plate having a thickness of about 0.6 mm to 2.0 mm can be used.
Moreover, the energization time of spot welding as a whole is related to the plate thickness. This relationship can be expressed as WT + PHT ≦ 1.5t (t is the plate thickness). Therefore, it is preferable to set the total spot welding time within this range according to the plate thickness.
以下に実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。
(実施例1)
表1に示す板厚:1.6mm、引張強さ:298〜1907MPaの軟鋼板(270E)、焼入れ型鋼板(1470HP、1760HP、1900HP)、2相組織型鋼板(980Y、1180Y、1470Y)から(いずれも冷延鋼板)、抵抗スポット溶接継手の十字引張試験方法(JIS Z3137:「ISO/DIS14272:Specimen dimensions and procedure for cross tension testing resistance spot and embossed projection weldsと一部規定を除き同一」)に基づいて十字引張試験片を作製した。
これらの試験片を、図1に示すように同鋼種の組合せで重ね合わせ、表1の溶接条件でスポット溶接し溶接継手を作製した。次に、得られた溶接継手について、抵抗スポット溶接継手の十字引張試験方法(JIS Z3137)に基づき、図4に示すように剥離方向(図4の符号5で示す如く上側の高強度鋼板を上方向に下側の高強度鋼板を下側に相互に剥離する方向)に負荷して十字引張試験を実施した。表1にその結果を示す。なお、表1に示す鋼種において、270E、980Yは日本鉄鋼連盟規格品を示し、1470HPは特開2000−234153号等に開示されているホットプレス品を示す。
Examples The effects of the present invention will be described below with reference to examples, but the present invention is not limited to the conditions used in the following examples.
Example 1
Thickness: 1.6 mm, tensile strength: from 298 to 1907 MPa, mild steel plate (270E), hardened steel plate (1470HP, 1760HP, 1900HP), dual phase steel plate (980Y, 1180Y, 1470Y) shown in Table 1 ( (All are cold-rolled steel sheets), cross-tension test method for resistance spot welded joints (JIS Z3137: "ISO / DIS14272: Special dimensions and procedure for cross tension testing, partly based on the resistance spot and embossed projection") A cross tensile test piece was prepared.
These test pieces were overlapped with a combination of the same steel types as shown in FIG. 1 and spot welded under the welding conditions shown in Table 1 to produce a welded joint. Next, with respect to the obtained welded joint, on the basis of the resistance spot welded joint cross tension test method (JIS Z3137), as shown in FIG. The cross tensile test was carried out by loading the lower high-strength steel sheet in the direction in the direction in which the lower high-strength steel sheets were peeled downward from each other. Table 1 shows the results. In addition, in the steel types shown in Table 1, 270E and 980Y indicate Japan Iron and Steel Federation standard products, and 1470HP indicates a hot press product disclosed in Japanese Patent Laid-Open No. 2000-234153.
表1は先に説明した実施の形態において第1の例として説明した2段通電によりスポット溶接した場合の例を示す。
第1の例として説明した条件範囲内で2段通電して溶接した場合(条件No.1〜No.9)には、通常の1段通電で溶接した場合(条件No.10〜No.16)に比べて、いずれの鋼種でも、十字引張強さ(CTS)は向上していた。また、第1の例の条件範囲外で2段通電して溶接した場合(条件No.17〜No.21)には、いずれの鋼種でも、十字引張強さ(CTS)は向上していなかった。
Table 1 shows an example when spot welding is performed by the two-stage energization described as the first example in the embodiment described above.
When welding is performed with two-stage energization within the condition range described as the first example (conditions No. 1 to No. 9), when welding is performed with normal one-stage energization (conditions No. 10 to No. 16). ), The cross tensile strength (CTS) was improved in any steel type. Further, in the case where welding was performed with two-stage energization outside the condition range of the first example (conditions No. 17 to No. 21), the cross tensile strength (CTS) was not improved in any steel type. .
即ち、2段目の通電を行っていない条件10〜16の試料では同等の鋼種である条件1〜9の試料と対比してCTSの値が悪く、2段目の電流を1段目の電流の50%とした条件17、1段目と2段目を同じ電流とした条件18、2段目通電時間を少なくするか多くした条件19、20、強度を1900MPaと大きくし過ぎた鋼板とした条件21はいずれにおいてもCTS向上効果がほとんど無かった。
これらに対して前述の条件、{0.70×WC≦PHC1≦0.90×WC・・・・・(1)}、{40≦PHT1≦80・・・・・(2)}の関係を満たした試料はCTS向上効果が17〜30%程度得られた。
In other words, the CTS values of the samples of the conditions 10 to 16 where the second-stage energization is not performed are lower than the samples of the
For these, the above-mentioned conditions, {0.70 × WC ≦ PHC1 ≦ 0.90 × WC (1)}, {40 ≦ PHT1 ≦ 80 (2)} The filled sample gave a CTS improvement effect of about 17 to 30%.
(実施例2)
表2に示す、実施例1と同様の鋼板から、十字引張試験片を作製した。
これらの試験片を、図1に示すように同鋼種の組合せで重ね合わせ、表2の溶接条件でスポット溶接し溶接継手を作製した。次に、得られた溶接継手について、図4に示すように剥離方向に負荷して十字引張試験を実施した。表2にその結果を示す。
第2の例として説明した条件範囲内で、1段目と2段目の間に休止時間を設け、2段通電して溶接した場合(条件No.1〜No.12)には、通常の1段通電で溶接した場合(条件No.13〜No.19)に比べて、いずれの鋼種でも、十字引張強さ(CTS)は向上していた。また、CTSの値は、実施例1の場合より高い値を示した。一方、第2の例の条件範囲外で溶接した場合(条件No.20〜No.26)には、いずれの鋼種でも、十字引張強さ(CTS)は向上していなかった。
(Example 2)
A cross tensile test piece was produced from the same steel plate as in Example 1 shown in Table 2.
These test pieces were overlapped with the combination of the same steel types as shown in FIG. 1, and spot-welded under the welding conditions shown in Table 2 to produce a welded joint. Next, the obtained welded joint was loaded in the peeling direction as shown in FIG. Table 2 shows the results.
In the condition range described as the second example, when a downtime is provided between the first stage and the second stage and welding is performed by energizing two stages (conditions No. 1 to No. 12), The cross tensile strength (CTS) was improved in any steel type as compared with the case where welding was performed by one-stage energization (conditions No. 13 to No. 19). The CTS value was higher than that in Example 1. On the other hand, when welding was performed outside the condition range of the second example (conditions No. 20 to No. 26), the cross tensile strength (CTS) was not improved in any steel type.
即ち、冷却時間を設けず、2段目の後通電を行っていない条件13〜19の試料では、同等の鋼種である条件1〜12の試料と対比してCTSの値が悪く、2段目の後通電電流が30%、80%の条件20、21の試料ではCTSの向上率が悪く、2段目の後通電時間が短すぎるか長すぎる条件22、23の試料ではCTS向上率が条件1〜12に対して悪く、冷却時間を0あるいは60msとして無くするか長すぎる条件24、25の試料はCTS向上率が悪く、強度を1900MPaと大きくし過ぎた鋼板とした条件26はCTS向上効果がほとんど無かった。
That is, in the samples of conditions 13 to 19 where no cooling time is provided and the second stage is not energized, the CTS value is poor compared to the samples of
これらに対して前述の条件、{20≦CT≦40・・・・・(3)}、{0.40×WC≦PHC2≦0.70×WC・・・・・(4)}、{40≦PHT2≦200・・・・・(5)}の関係を満たした試料はCTS向上率として20〜70%の極めて大きな値を示した。 For these, the above-mentioned conditions, {20 ≦ CT ≦ 40 (3)}, {0.40 × WC ≦ PHC2 ≦ 0.70 × WC (4)}, {40 The sample satisfying the relationship of ≦ PHT2 ≦ 200 (5)} showed an extremely large value of 20 to 70% as the CTS improvement rate.
(実施例3)
表3に示す、実施例1と同様の鋼板から、十字引張試験片を作製した。
これらの試験片を、図1に示すように同鋼種の組合せで重ね合わせ、表3の溶接条件でスポット溶接し溶接継手を作製した。次に、得られた溶接継手について、図4に示すように剥離方向に負荷して十字引張試験を実施した。表3にその結果を示す。
請求項1の条件範囲内で、3段通電して溶接した場合(条件No.1〜No.9)には、通常の1段通電で溶接した場合(条件No.10〜No.16)に比べて、いずれの鋼種でも、十字引張強さ(CTS)は向上していた。一方、請求項1の条件範囲外で溶接した場合(条件No.17〜No.25)には、いずれの鋼種でも、十字引張強さ(CTS)は向上していなかった。
(Example 3)
A cross tensile test piece was produced from the same steel plate as in Example 1 shown in Table 3.
These test pieces were overlapped with a combination of the same steel types as shown in FIG. 1 and spot welded under the welding conditions shown in Table 3 to produce a welded joint. Next, the obtained welded joint was loaded in the peeling direction as shown in FIG. Table 3 shows the results.
Within the condition range of
即ち、2段目、3段目の通電を行っていない条件10〜16の試料では同等の鋼種である条件1〜9の試料と対比してCTSの値が悪く、2段目の電流を1段目の電流の80%、100%とした条件17、18、3段目の電流を1段目の電流の65%、85%とした条件19、20、2段目通電時間を少なくするか多くした条件21、22、3段目通電時間を少なくするか多くした条件23、24、強度を1900MPaと大きくし過ぎた鋼板とした条件25はいずれにおいてもCTS向上効果がほとんど無かった。
これらに対して前述の条件、{0.85×WC≦PHC3≦0.95×WC・・・・・(6)}、{40≦PHT3≦80・・・・・(7)}、{0.70×WC≦PHC4≦0.80×WC・・・・・(8)}、{40≦PHT4≦80・・・・・(9)}の関係を満たした試料はCTS向上効果が25〜41%程度得られた。
That is, in the samples of conditions 10 to 16 where the second and third stages are not energized, the CTS value is poor compared to the samples of
For these, {0.85 × WC ≦ PHC3 ≦ 0.95 × WC (6)}, {40 ≦ PHT3 ≦ 80 (7)}, {0 .70 × WC ≦ PHC4 ≦ 0.80 × WC (8)} and {40 ≦ PHT4 ≦ 80 (9)} have a CTS improvement effect of 25 to 25 About 41% was obtained.
ところで、前記種々の鋼種の鋼板の板厚を変化させて試験してみたが、同じ結果が得られると共に、めっき鋼板を用いても、さらに、めっき種、目付量等を変えて実験を実施してみたが、本発明に係る後通電の作用効果は同様であった。 By the way, although it tried by changing the plate thickness of the steel plates of the various steel types, the same result was obtained, and even if the plated steel plate was used, the experiment was further performed by changing the plating type and the basis weight. However, the effects of post-energization according to the present invention were the same.
本発明によれば、自動車用部品の取付けおよび車体の組立て等で用いる高強度鋼板のスポット溶接において、良好な溶接作業性を確保しつつ溶接継手の十字引張強さを向上させることができる。したがって、これにより、自動車分野などで高強度鋼板適用による安全性向上や軽量化による低燃料費、CO2排出量削減のメリットなどを十分に享受でき、社会的な貢献は多大である。 ADVANTAGE OF THE INVENTION According to this invention, the cross tensile strength of a welded joint can be improved, ensuring favorable welding workability | operativity in the spot welding of the high-strength steel plate used for the attachment of the components for motor vehicles, the assembly of a vehicle body, etc. Therefore, this makes it possible to fully enjoy the benefits of improving safety by applying high-strength steel sheets, reducing fuel costs due to weight reduction, reducing CO 2 emissions, etc. in the automotive field and the like, and making a great social contribution.
1…高強度鋼板
1a…破断線
2…溶接電極
3…ナゲット
3a…熱影響部
4…溶接部
5…十字引張試験での負荷方向
DESCRIPTION OF
Claims (1)
0.85×WC≦PHC3≦0.95×WC ・・・・・(6)
40≦PHT3≦80 ・・・・・(7)
0.70×WC≦PHC4≦0.80×WC ・・・・・(8)
40≦PHT4≦80 ・・・・・(9)
ただし、WC:溶接電流(kA)、PHC3:溶接後後加熱電流(kA)、PHT3:溶接後後加熱時間(ms)、PHC4:溶接後後加熱電流(kA)、PHT4:溶接後後加熱時間(ms)を示す。 In the spot welding method for high-strength steel sheets having a tensile strength of 900 to 1850 MPa, following the welding energization, the following formulas (6), (7), (8), and (9) are satisfied in two stages. A spot welding method for high-strength steel sheets, wherein post-heating is applied to improve the cross tensile strength of the spot welded joint.
0.85 × WC ≦ PHC3 ≦ 0.95 × WC (6)
40 ≦ PHT3 ≦ 80 (7)
0.70 × WC ≦ PHC4 ≦ 0.80 × WC (8)
40 ≦ PHT4 ≦ 80 (9)
However, WC: Welding current (kA), PHC3: Heating current after welding (kA), PHT3: Heating time after welding (ms), PHC4: Heating current after welding (kA), PHT4: Heating time after welding (Ms).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012123312A JP5429327B2 (en) | 2012-05-30 | 2012-05-30 | Spot welding method for high strength steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012123312A JP5429327B2 (en) | 2012-05-30 | 2012-05-30 | Spot welding method for high strength steel sheet |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008088579A Division JP5151615B2 (en) | 2008-03-28 | 2008-03-28 | Spot welding method for high strength steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012192455A JP2012192455A (en) | 2012-10-11 |
JP5429327B2 true JP5429327B2 (en) | 2014-02-26 |
Family
ID=47084874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012123312A Active JP5429327B2 (en) | 2012-05-30 | 2012-05-30 | Spot welding method for high strength steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5429327B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200039744A (en) * | 2017-09-13 | 2020-04-16 | 제이에프이 스틸 가부시키가이샤 | Resistance spot welding method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105142847B (en) * | 2013-04-17 | 2018-03-30 | 新日铁住金株式会社 | Spot welding method |
EP3006154B1 (en) * | 2013-06-05 | 2018-01-17 | Nippon Steel & Sumitomo Metal Corporation | Spot welded joined structure and spot welding method |
KR101887291B1 (en) * | 2014-01-31 | 2018-08-09 | 신닛테츠스미킨 카부시키카이샤 | Spot-welded joint and spot welding method |
MX2016011570A (en) * | 2014-03-14 | 2016-11-29 | Nippon Steel & Sumitomo Metal Corp | Welded structure and method for manufacturing welded structure. |
US11007598B2 (en) | 2015-09-03 | 2021-05-18 | Nippon Steel Corporation | Spot welding method |
WO2018162937A1 (en) * | 2017-03-07 | 2018-09-13 | Arcelormittal | Resistance spot welding method for joining zinc coated steel sheets |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4728825U (en) * | 1971-04-28 | 1972-12-01 | ||
JPH02160176A (en) * | 1988-12-14 | 1990-06-20 | Fuji Valve Co Ltd | Method for controlling applied current at time of resistance welding |
JP3320515B2 (en) * | 1993-09-01 | 2002-09-03 | 本田技研工業株式会社 | Post-treatment method for spot welding |
JP2002103048A (en) * | 2000-09-29 | 2002-04-09 | Nippon Steel Corp | Method for spot welding of high strength steel plate |
-
2012
- 2012-05-30 JP JP2012123312A patent/JP5429327B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200039744A (en) * | 2017-09-13 | 2020-04-16 | 제이에프이 스틸 가부시키가이샤 | Resistance spot welding method |
KR102253193B1 (en) | 2017-09-13 | 2021-05-17 | 제이에프이 스틸 가부시키가이샤 | Resistance spot welding method |
Also Published As
Publication number | Publication date |
---|---|
JP2012192455A (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5151615B2 (en) | Spot welding method for high strength steel sheet | |
JP6194765B2 (en) | Spot welding method for high strength steel sheet | |
KR101805284B1 (en) | Spot welded joint and spot welding method | |
JP5429327B2 (en) | Spot welding method for high strength steel sheet | |
KR101588257B1 (en) | Method of resistance spot welding of high-tensile strength steel sheet and welding joint manufactured by the method | |
JP6447752B2 (en) | Automotive parts having resistance welds | |
JP6409470B2 (en) | Spot welding method | |
JP5299257B2 (en) | Spot welding method for high strength steel sheet | |
JP2011067853A (en) | Spot welding method for high-strength steel sheet | |
JP5613521B2 (en) | Automotive structural member having a weld nut and method for manufacturing the same | |
JPWO2013161937A1 (en) | Spot welded joint | |
JP6379819B2 (en) | Lap welding member, lap resistance seam welding method of lap welding member, and lap welding member for automobile having lap welding part | |
JP5168204B2 (en) | Spot welding method for steel sheet | |
JP6763483B2 (en) | Resistance spot welding method, resistance spot welding joint manufacturing method | |
JP5549618B2 (en) | High strength steel plate for spot welding with a tensile strength of 980 MPa or more | |
JP4724535B2 (en) | Fatigue strength improvement method for high strength steel spot welded joint | |
JP2005074467A (en) | Spot welding method and spot-welded steel sheet member | |
JP5429326B2 (en) | Spot welding method for high strength steel sheet | |
JP3875878B2 (en) | Spot-welding method for high-strength steel sheets with excellent fatigue strength characteristics of welds | |
JP7473009B2 (en) | Resistance spot welded joint and resistance spot welding method thereof | |
JP7473861B1 (en) | Resistance Spot Welding Method | |
JP7468825B1 (en) | Method for manufacturing resistance spot welded joints | |
WO2024111224A1 (en) | Resistance spot welding method | |
WO2024209831A1 (en) | Resistance spot welding method and method for manufacturing welded member | |
WO2023063098A1 (en) | Resistance spot-welded joint and resistance spot welding method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130716 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131118 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5429327 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |